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We study the generalized minimal massive gravity (GMMG) in Compere, Song, and Strominger
boundary conditions employing a semiproduct of Virasoro and ûð1Þ Kac-Moody current algebras as the
asymptotic symmetry algebra. We calculate the entropy of Bañados-Teitelboim-Zanelli black holes via the
degeneracy of states belonging to a Warped conformal field theory. We compute the linearized energy
excitations by using the representations of the algebra ûð1Þ × SLð2; RÞR and show that energies of
excitations are non-negative at (two) chiral points in the parameter space. At these special points, the charge
algebra is described by either Virasoro algebra or Kac-Moody algebra. We also consider some special limits
of the GMMG theory which correspond to 2þ 1-dimensional massive gravity theories such as new
massive and minimal massive gravity theories.
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I. INTRODUCTION

The lack of a complete quantum gravity has led to
extensive study of lower dimensional toy models to reveal
the nature of such an ultimate theory further. In this course,
the topologically massive gravity (TMG), by Deser, Jackiw,
and Templeton, is undoubtedly one of the most prominent
approaches [1,2]. This is because of the fact that TMG is a
renormalizable 3D-dimensional gravity model propagating
with a local dynamical massive graviton with a single
helicity. Holographically, the cosmological TMG (CTMG)
comprises 2þ 1-dimensional anti–de-Sitter (AdS) solutions
corresponding to a 2-dimensional conformal field theory
(CFT) possessing two copies of Virasoro algebra with the
central charges cL;R ¼ 3l=2Gðσ � 1=μlÞ, where μ and l are
the Chern-Simons coupling and AdS radius, respectively.1

Despite all of those inventions, the model involves some
well-known shortcomings which have intensely enforced
researchers to deepen theirworks even further in all aspects to
get over the present ambiguities in the model. This includes
the lack of a stable vacuum state or the unitary problemdue to
the near-boundary log modes at the chiral point [3,4]. The
chiral limit of CTMG has a notable importance towards a
well-behaved 2þ 1-dimensional quantum gravity model

since it specifically resolves the long-lived clash between
the positivity of boundary central charges and the energy of
Bañados-Teitelboim-Zanelli (BTZ) black hole solutions [5].
That is, this controversy drops due to the fact that one of (left-
or right-moving) two central charges associated to the
boundary CFT dies out. The evaporation of either a left or
right-moving central charge, however, results in a logarith-
mic excitation yielding a nonunitary boundary CFT.
To particularly get over this strict flaw arising in the

holographic analysis, an appealing modification of CTMG
via deformation of the model by appropriate higher
curvature terms has been put forward in [6]. The model
is called generalized minimal massive gravity (GMMG),
which is a proper enhancement of minimal massive gravity
(MMG) [7], and steers clear of the conflict in the unitarity
of bulk and boundary. Also, it has been shown that GMMG
is free from the so-called Boulware-Deser ghosts [8], which
in general emerge in massive gravity theories as extra
degrees of freedom (dofs), and has two local dynamical
dofs. (See [9] for the computation of conserved charges in
GMMG. Also, as another interesting completely different
modification of TMG in the Standard Model gauge theory
perspective, see [10] whose asymptotic symmetry structure
has recently been studied in [11].)
Recall that the boundary conditions are extremely pivotal

in finding asymptotic symmetry structure of any theory
entirely. According to various recent peculiar studies which
go beyond the usual Brown-Henneaux boundary conditions
[12] and consider different viable possibilities [13–20],
there is in fact an unignorable dominant idea that
2-dimensional CFT may not be the boundary theory of
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2þ 1-dimensional bare AdS space at all. Here, the boun-
dary conditions introduced by Compere, Song, and
Strominger (CSS) seem to be rather appealing [14].
More precisely, CSS have demonstrated that as one con-
siders a family of specific alternative boundary conditions,
the asymptotic symmetry structure of a 2þ 1-dimensional
theory turns out to consist of a semidirect product of
Virasoro and uð1Þ Kac-Moody algebras which are sym-
metries of the 2-dimensional warped CFT’s [16,21]. (See
[22–33] and references therein for some related studies on
warped CFT’s.) Accordingly, Ciambelli, Detournay, and
Somerhausen have recently demonstrated that as one
imposes the CSS boundary conditions on TMG, one arrives
at two critical points among the existing couplings with
which one gets a chiral Virasoro algebra or a uð1Þ Kac-
Moody algebra as the asymptotic symmetry [34]. In this
work, we analyze the GMMG under the CSS boundary
conditions as is done for TMG in [34]. We obtain the
entropy of BTZ black holes by counting the degeneracy of
states associated with a warped CFT. We compute the
linearized energy excitations and demonstrate that energies
of excitations are non-negative at (two) critical points in the
parameter space where the charge algebra turns out to be a
Virasoro algebra or Kac-Moody algebra. We also consider
some special limits of GMMG corresponding to 2þ 1-
dimensional massive gravity theories such as MMG and
NMG [7,35].
The layout of the paper is as follows: In Sec. II, we study

the charge algebra of GMMG under the CSS boundary
conditions. Here, the entropy of BTZ black holes are also
computed via the degeneracy of states belonging to a
warped CFT. In Sec. III, we obtain the energy of linearized
gravitons in AdS background. Section IV is dedicated to
our conclusions and discussion on possible future direc-
tions. Finally, the NMG under the CSS boundary con-
ditions is studied in the appendix.

II. GMMG UNDER CSS BOUNDARY CONDITIONS

The GMMG is constructed by generalizing the gener-
alized massive gravity via the addition of appropriate
higher curvature terms. The Lagrangian of GMMG is
represented in the compact form as follows [6]:

LGMMG ¼ −ςe:Rþ Λ0

6
e:e × eþ h:TðωÞ

þ 1

2μ

�
ω:dωþ 1

3
ω:ω × ω

�

−
1

m2

�
f:Rþ 1

2
e:f × f

�
þ ϑ

2
e:h × h: ð1Þ

Here,m is a mass parameter of the NMG term [35], h and f
are auxiliary one-form fields, Λ0 is the bare cosmological
parameter with dimension of mass squared, ς denotes �
signs, μ stands for the topological mass parameter of the

Chern-Simons term, ϑ is a dimensionless parameter, e
represents dreibein, ω is a dualized spin connection, and
TðωÞ and RðωÞ are a Lorentz covariant torsion and a
curvature 2-form, respectively. As is mentioned, the equa-
tion for metric is obtained by generalizing the field equation
of MMG. To be more precise, let us recall that the field
equation of GMMG is defined as follows [6]:

σ̄Gμν þ Λ0gμν þ
1

μ
Cμν þ

γ

μ2
Jμν þ

s
2m2

Kμν ¼ 0; ð2Þ

where the explicit form of terms in (2) respectively read

Cμν ¼
1

2
ϵμ

αβ∇α

�
Rβν −

1

4
gνβR

�
;

Jμν ¼ RμαRα
ν −

3

4
RRμν −

1

2
gμν

�
RαβRαβ −

5

8
R2

�
;

Kμν ¼ −
1

2
∇2Rgμν −

1

2
∇μ∇νRþ 2∇2Rμν þ 4RmanbRab

−
3

2
RRμν − RαβRαβgμν þ

3

8
R2gμν; ð3Þ

where Gμν is the Einstein tensor. Note in (2) that the
parameter s denotes sign, while the parameters γ, σ̄, and Λ0

are the ones that are described in terms of cosmological
constant Λ,m, μ, and the sign of Einstein-Hilbert term. One
should also observe that the symmetric tensors Jμν and Kμν

respectively originate from MMG and NMG parts. As is
mentioned above, our main focus is to study GMMG in the
CSS boundary conditions [14] rather than that of the usual
Brown and Henneaux as in [34]. For this purpose, let us
first recall that the CSS boundary conditions on the metric
components are described as

grr ¼
l2

r2
þO

�
1

r4

�
; gþ− ¼ −

l2r2

2
þOð1Þ;

gr� ¼ O
�
1

r3

�
; gþþ ¼ ∂þP̄ðxþÞl2r2 þOð1Þ;

g−− ¼ 4GlΔþO
�
1

r

�
: ð4Þ

The general solution obeying the boundary conditions can
be written as

ds2 ¼ l2

r2
dr2 − r2dxþðdx− − ∂þP̄dxþÞ

þ 4Gl½L̄dxþ2 þ Δðdx− − ∂þP̄dxþÞ2�

−
16G2l2

r2
ΔL̄dxþðdx− − ∂þP̄dxþÞ; ð5Þ

where l stands for the AdS radius, G is the so-called
Newton’s constant, L̄ðxþÞ and ∂þP̄ðxþÞ are dimensionless
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periodic chiral functions, andΔ is any constant. Here, x� ¼
t
l � ϕ where ϕ ∼ ϕþ 2π and the conformal boundary
corresponds to the limit as ρ → ∞ [14,34]. Notice that
the Cotton tensor of the spacetime in (5) vanishes since it is
conformally flat.
As for the GMMG, one can show that the metric in (5) is

also a solution to the GMMG field equations in (2)
provided that

Λ0 ¼ σ̄Λ −
�

γ

4μ2
−

s
4m2

�
Λ2 ð6Þ

yielding

Λ ¼

h
σ̄ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̄2 − Λ0ð γμ2 − s

m2Þ
q i

1
2
ð γ
μ2
− s

m2Þ : ð7Þ

Moreover, by solving the Killing equation, one gets the
following Killing vectors for the metric components in (4):

ξ ¼ ϵ∂þ þ
�
σ̄ þ l2

2r2
∂2þϵ

�
∂− −

r
2
∂þϵ∂r þO

�
l4

r4

�
: ð8Þ

Correspondingly, the conserved charges associated with the
Killing vectors (8) in the limit r → ∞ as defined in [9,36]
can be directly integrated on the phase space as follows:

Qϵ¼eimxþ ¼ 1

2π

Z
2π

0

dϕeimxþ
��

σ̄ þ 1

μl
þ s
4m2l2

þ γ

4μ2l2

�
L̄ −

�
σ̄ −

1

μl
þ s
4m2l2

þ γ

4μ2l2

�
Δð∂þP̄Þ2

�
;

Qσ¼eimxþ ¼ 1

2π

Z
2π

0

dϕeimxþ
�
σ̄ −

1

μl
þ s
4m2l2

þ γ

4μ2l2

�
ðΔþ 2Δ∂þP̄Þ: ð9Þ

Furthermore, one can show that the asymptotic symmetry
generators which can be represented as

Ln ¼ Qðϵ ¼ einx
þÞ; Mn ¼ Qðσ ¼ einx

þÞ; ð10Þ

comply with the following algebra:

i½Lm; Ln� ¼ ðm − nÞLmþn þ
cR
12

m3δnþm;0;

i½Lm;Mn� ¼ −mMmþn;

i½Mm;Mn� ¼
kKM
2

mδnþm;0; ð11Þ

where the charges are given as follows:

cR ¼ 3l
2G

�
σ̄ þ 1

μl
þ s
4m2l2

þ γ

4μ2l2

�
;

kKM ¼ −4
�
σ̄ þ s

4m2l2
−

1

μl
þ γ

4μ2l2

�
Δ: ð12Þ

Observe that the commutators are that of a Virasoro-Kac-
Moody algebra as in [34]. As an explicit example, let us
now compute the entropy of the BTZ black hole via
counting the degeneracy of states in the dual 2-dimensional
warped CFT. In this regard, let us first note that the rotating
BTZ metric is

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðNdtþ dϕÞ2; ð13Þ

where the existing functions are

fðrÞ ¼ r2

l2
− 8GM þ 16G2J2

r2
; N ¼ −

4GJ
r2

: ð14Þ

As is well known, the black hole horizons are located at the
following radii:

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GlðlM þ JÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GlðlM − JÞ

p
: ð15Þ

Notice that the BTZ entropy in GMMG has been computed
in [9] as follows:

S ¼ 4π

��
σ̄ þ γ

2μ2l2
þ s
2m2l2

�
rþ −

r−
μl

�
: ð16Þ

We expect this to be reproduced by counting the degen-
eracy of states in the dual warped CFT. The warped Cardy
formula takes the form

SWCFT ¼ 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M0M0vac

p
þ 4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−L0L0vac

p
: ð17Þ

Note that, in this expression, the subscript vac refers to the
charges of the vacuum, M ¼ −1=8G and J ¼ 0 for
vacuum. For the BTZ black hole, one gets the zero modes
as follows:

L0 ¼
�
σ̄ þ 1

μl
þ γ

4μ2l2
þ s
4m2l2

��
lM − J

2

�
;

M0 ¼
�
σ̄ −

1

μl
þ γ

4μ2l2
þ s
4m2l2

��
lM þ J

2

�
; ð18Þ

which, for the vacuum, reduce to
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M0vac ¼ −
ðσ̄ − 1

μl þ γ
4μ2l2 þ s

4m2l2Þl
16G

;

L0vac ¼ −
ðσ̄ þ 1

μl þ γ
4μ2l2 þ s

4m2l2Þl
16G

:

Plugging these in (17) one finds that S ¼ SWCFT. Further-
more, the energy of BTZ black hole turns out to be as
follows [9]:

E ¼
�
σ̄ þ γ

2μ2l2
þ s
2m2l2

�
r2þ þ r2−

l2
−
2rþr−
μl3

; ð19Þ

which, at the critical points where ðkKM ¼ 0; cR ¼ 0Þ,2
become

E¼
�

2

μl3
ðr2þ þ r2− − rþr−Þ−

σ̄

l2
ðr2þ þ r2−Þ

�
; at kKM ¼ 0;

ð20Þ

E¼ −
�

2

μl3
ðr2þ þ r2− þ rþr−Þ þ

σ̄

l2
ðr2þ þ r2−Þ

�
; at cR ¼ 0:

ð21Þ

III. THE ENERGY OF GRAVITONS

In this part, we will obtain the energy of the linearized
gravitons in global AdS background. To this end, we will
consider the following 2þ 1-dimensional AdS spacetime
in global coordinates:

ds2 ¼ −
l2

4
½−4dρ2 þ dxþ2 þ 2 coshð2ρÞdxþdx− þ dx−2�:

ð22Þ

By defining the linearized excitations around the AdS
background metric as

gμν ¼ ḡμν þ hμν; ð23Þ

wherein ḡμν and hμν respectively are the background
metric and an adequately small perturbation, one gets
the linearized equations of motion belonging to GMMG
as follows [6]:

σ̄GðLÞ
μν þ Λ0hμν þ

1

μ
CðLÞμν þ γ

μ2
J ðLÞ

μν þ s
2m2

KðLÞ
μν ¼ 0; ð24Þ

where L represents linearized. Here, the linearized
tensors are

GðLÞμν ¼ RðLÞμν −
1

2
gμνRðLÞ − 2Λhμν;

CðLÞμν ¼ 1ffiffiffiffiffiffi
−ḡ

p ϵμαβḡβσ∇̄α

�
RðLÞσν −

1

4
ḡσνRðLÞ þ 2Λhσν

�
;

KðLÞ
μν ¼ 2□̄GðLÞμν þ 1

2
ḡμν□̄R̄ðLÞ −

1

2
∇̄μ∇̄νRðLÞ

− 5ΛGðLÞμν − ΛḡμνR̄ðLÞ þ 1

2
Λ2hμν;

J ðLÞ
μν ¼ −

1

2
ΛGðLÞ

μν −
1

4
Λ2hμν; ð25Þ

with

RðLÞ
μν ¼ 1

2
½−∇̄2hμν − ∇̄μ∇̄νhþ ∇̄μ∇̄σhσν þ ∇̄ν∇̄σhσμ�;

RðLÞ ¼ −∇̄2hþ ∇̄ρ∇̄σhρσ − 2Λh: ð26Þ

Moreover, in transverse and traceless gauge

∇̄μhμν ¼ h ¼ 0; ð27Þ

together with the definition of similar mutually orthonor-
mal operators as in [3], the equations of motion turn out to
be [6]

�
∇̄2 þ 2

l2

��
hμν þ

sm̃2

μ̃
ϵαβμ ∇̄αhβν þ

�
sm̃2 þ 5

2l2

�
hμν

�
¼ 0;

ð28Þ

where the relevant parameters are defined respectively as
follows:

m̃2 ¼ μ̃

μ
m2; μ̃ ¼ σ̄μþ γ

2μl2
: ð29Þ

As is substantiated in [34], the solution to the equations of
motion in (28) takes the following structure:

hμν ¼ e−iðhxþþpx−Þfμν; ð30Þ

where h and p are weight of primary states as

L0jhμνi ¼ hjhμνi; P0jhμνi ¼ pjhμνi; ð31Þ

with the operators

L0 ¼ i∂þ; P0 ¼ i∂−: ð32Þ

By use of the transverse, traceless, and highest-weight
conditions, one can obtain fμν, whose components will
depend on p, h and integration constants α and β. So, the
components of fμν in the Fefferman-Graham coordinates
are given as [34]

2Note that either the Virasoro algebra or the Kac-Moody
algebra vanish at the particular points μlðσ̄ þ γ

4μ2l2 þ s
4m2l2Þ ¼ �1.
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fþþ ¼ 1

4
cosh4−2HρtanhP−Hρð4βtanh2ρþ αtanh4ρÞ;

fþ− ¼ 1

2
cosh2ð1−HÞρtanhP−Hρðβtanh2ρÞ;

fþρ ¼
i
32

sinh−1ρcosh−ð1þ2HÞρtanhP−Hρð4ð2β − αÞ cosh 2ρ − 8β þ 3αþ α cosh 4ρÞ;
f−− ¼ 0;

f−ρ ¼ −
i
4
cosh−1ρsinh−1ρsinh−H2ρtanhP−HρðsinhH2ρcosh−2Hρð−β cosh 2ρþ βÞÞ;

fρρ ¼ sinh−2−H2ρtanhP−Hρðcosh4−2HρsinhH2ρðð4β − αÞtanh4ρÞÞ: ð33Þ

Using all those setups, one can easily show that the
energy of the right photon, right and graviton modes hP;R;Mμν

become as follows [6]:

EP;R;M ¼ −
1

4πG

�
σ̄ þ γ

2μ2l2
þ s
2m2l2

�

×
Z

d2x
ffiffiffiffiffiffi
−g

p ∇̄0hP;R;Mμν _hμνP;R;M: ð34Þ

Then, by inserting Eqs. (30) and (33) into (34) and
regularity of fμν, one ultimately gets

EM ¼ α2

8Gl4

�
σ̄ þ γ

2μ2l2
þ s
2m2l2

��ðpþ 1Þ2
2pþ 3

�
ð35Þ

for massive mode (β ¼ 0, h ¼ pþ 2, p ¼
1
4
ð−2þ sm̃2l

μ̃ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 4sm̃2l2 þ s2m̃4l2

μ̃2

q
Þ). For the right grav-

iton mode (h ¼ 2, p ¼ 0, β ¼ 0) and right photon mode
(p ¼ α ¼ 0, h ¼ 1), the energies respectively become as
follows:

ER ¼ α2

24Gl4

�
σ̄ þ γ

2μ2l2
þ s
2m2l2

�
;

EP ¼ 3β2

Gl4

�
σ̄ þ γ

2μ2l2
þ s
2m2l2

�
: ð36Þ

Note that the left graviton mode does not exist; rather there
comes a right photon mode in the CSS boundary con-
ditions. Observe that one gets the energies of the modes of
MMG in the limits as 1=m2 → 0 in (35) and (36) for the
CSS boundary conditions, while the limits μ → ∞ and
γ → 0 yield that of NMG whose derivation is also given in
the Appendix. Now, let us discuss the energies of the
dynamical modes at the chiral points: first of all, for the
chiral point where kKM ¼ 0, we have

EM ¼ α2

8Gl4
ð2 − σ̄μlÞ

�ðpþ 1Þ2
2pþ 3

�
;

ER ¼ α2ð2 − σ̄μlÞ
24Gμl5

;

EP ¼ 3β2ð2 − σ̄μlÞ
Gμl5

: ð37Þ

Observe that as σ̄ < 2=μl, the energies of right graviton and
photon modes are positive. Moreover, the energy of the
massive graviton is positive if σ̄ < 2=μl and p > −3=2.
Secondly, for the other chiral point where cR ¼ 0, we get

EM ¼ −
α2

8Gl4
ð2þ σ̄μlÞ

�ðpþ 1Þ2
2pþ 3

�
;

ER ¼ −
α2ð2þ σ̄μlÞ
24Gμl5

;

EP ¼ −
3β2ð2þ σ̄μlÞ

Gμl5
: ð38Þ

Notice that as σ̄ < −2=μl, the energies of the right graviton
and photon modes are positive. Moreover, the energy of the
massive graviton is positive if σ̄ < −2=μl and p > −3=2.
Finally, observe that as σ̄ ¼ −2=μl, all the energies of the
modes become zero.

IV. CONCLUSION

In this paper, we have studied the GMMG in the CSS
boundary conditions where in the asymptotic symmetry
group it turns out to be a semiproduct of a Virasoro algebra
and a ûð1Þ Kac-Moody current algebra. By making use of
the representations of the algebra ûð1Þ × SLð2; RÞR, we
have calculated the linearized energy excitations. Here, we
have noted that the model has intriguing properties at two
special points in the parameter space: more precisely, in the
first case where

μl

�
σ̄ þ γ

4μ2l2
þ s
4m2l2

�
¼ þ1; ð39Þ
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we only have a Virasoro algebra as the asymptotic
symmetry group. In this case, the energies of right graviton
and photon modes turn out to be positive if σ̄ < 2=μl, while
the energy of massive graviton excitation becomes positive
for σ̄ < 2=μl and p > −3=2 and finally the energies of BTZ
black holes are positive for σ < 0. On the other side, for the
second case where

μl

�
σ̄ þ γ

4μ2l2
þ s
4m2l2

�
¼ −1; ð40Þ

the ûð1Þ Kac-Moody current algebra turns out to be the
associated asymptotic symmetry group. Here, the energies
of right graviton and photon excitations become positive
for σ̄ < −2=μl, the energy of massive graviton mode is
positive if σ̄ < −2=μl and p > −3=2 and also the energies
of BTZ black holes become positive for σ < 0. Notice that
the central charges (12) are different from the central
charges of GMMG with Brown-Henneaux boundary con-
ditions. So, unlike TMG [34] at the chiral point (39) and
(40) for GMMG the energy of massive graviton, a right-
moving graviton or photon does not vanish, but rather they
vanish at the points σ̄μl ¼ �2 for both chiral points,
respectively. We have also observed that one easily gets
the energies of the modes of MMG in the limits as 1=m2→0
in (35) and (36), whereas the limits μ → ∞ and γ → 0
yield that of NMG in the context of CSS boundary
conditions. These observations imply that imposing the
CSS boundary conditions to GMMG may provide a
legitimate 3-dimensional gravity model in the holographic
context where the dual field theory becomes a 2-dimension
warped CFT. Now that we have shown that GMMG in the
CSS boundary conditions has potential to procure a holo-
graphically legitimate 2þ 1-dimensional gravity theory,
one shall analyze it in all the prominent perspectives as
future projects. Here, showing that the BTZ black hole
solutions are the only stationary ones that have axial
symmetry seems to particularly be more compelling at
the first place in the parallel line with new chiral gravity
[34]. Of course, there is the question of whether there
emerge logarithmic solutions at these chiral points or
not and if so, whether or not they bring any new
information to our previous information about the chiral
points in usual TMG seems to be also an indispensable
future direction.
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APPENDIX: NMG IN THE CSS BOUNDARY
CONDITIONS

One can find the asymptotic algebra and thus the
energies of the dynamical dofs for NMG directly by taking
the limits μ → ∞ and γ → 0 in the related results for the
GMMG, we shall explicitly tackle the NMG in the CSS
boundary conditions to ascertain the consequences in this
part. To this end, let us first remember that the Lagrangian
of the NMG model is [35]

I ¼ 1

16πG

Z
d3x

ffiffiffiffiffiffi
−g

p �
R − 2Λ −

1

m2

�
RμνRμν −

3

8
R2

��
;

ðA1Þ

which leads to the field equations

Gμν þ Λgμν þ
1

2m2
Kμν ¼ 0; ðA2Þ

where

Kμν ¼ −
1

2
∇2Rgμν −

1

2
∇μ∇νRþ 2∇2Rμν þ 4RmanbRab

−
3

2
RRμν − RαβRαβgμν þ

3

8
R2gμν; ðA3Þ

andGμν is the Einstein tensor. The metric (5) is a solution to
the NMG field equations provided

Λ0 ¼
�
σ̄ þ Λ

4m2

�
Λ: ðA4Þ

The conserved charges associated with the Killing vectors
(8) in the limit r → ∞ read as follows:

Qϵ¼eimxþ ¼ 1

2π

Z
2π

0

dϕeimxþ
�
1þ 1

4m2

�
ðL̄ − Δð∂þP̄Þ2Þ;

Qσ¼eimxþ ¼ 1

2π

Z
2π

0

dϕeimxþ
�
1þ 1

4m2

�
ðΔþ 2Δ∂þP̄Þ:

ðA5Þ

The generators L, M of the asymptotic symmetry group
satisfy the Kac-Moody algebra (11) with

cR ¼ 3

2G

�
1þ 1

4m2l2

�
;

kKM ¼ −4Δ
�
1þ 1

4m2l2

�
: ðA6Þ

The BTZ metric is a solution for NMG with the entropy as

S ¼ 4π

�
1þ 1

2m2l2

�
rþ; ðA7Þ
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by using the warped Cardy formula (17) and M ¼ −1=8G,
J ¼ 0 for vacuum and for BTZ black hole

M0 ¼
�
1þ 1

4m2

��
lM þ J

2

�
;

L0 ¼
�
1þ 1

4m2

��
lM − J

2

�
; ðA8Þ

and for vacuum

M0vac ¼ −
ð1þ 1

4m2Þl
16G

; L0vac ¼ −
ð1þ 1

4m2Þl
16G

; ðA9Þ

one ultimately arrives at S ¼ SWCFT.
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