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We study the effects of momentum relaxation on the holographic Weyl semimetal which exhibits a
topological quantum phase transition between the Weyl semimetal phase and a topological trivial phase.
The conservation of momentum in the field theory is broken by the axion fields in holography. The
topological Weyl semimetal phase is characterized by a nontrivial anomalous Hall conductivity. We find
that the critical value of the phase transition decreases when we increase the momentum relaxation strength
up to a special value, above which it goes to zero. This indicates that the Weyl semimetal phase shrinks and
finally disappears as the momentum relaxation strength is increased, which is consistent with the weakly
coupled field theory predictions. We also study the behavior of transverse and longitudinal conductivities
and low-temperature dependence of the dc resistivities with respect to momentum relaxation strength.
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I. INTRODUCTION

Weyl semimetal is an interesting and important gapless
state of matter in which the low-energy excitations can be
described by the Weyl equation. The system inherits lots of
exotic transport properties due to the chiral anomaly, which
has attracted lots of theoretical and experimental interest
[1–3]. As a topological quantum matter, the description of
Weyl semimetal goes beyond the Landau-Ginzburg para-
digm in terms of symmetry breaking. The same as graphene
[4], the effective fine structure constant is very large due to
the smallness of the Fermi velocity compared to the speed of
light. This means that the Weyl semimetal can exist in a
strongly interacting region with no quasiparticles, where the
perturbed quantum field theory and topological band theory
description break down [5]. Therefore, it is an important and
challenging question to find a proper theoretical description
of the strongly coupled Weyl semimetal.
Holographic duality (or AdS/CFT correspondence) relates

the d-dimensional strongly coupled field theory to a dþ 1-
dimensional weakly coupled classical gravitational theory,
which is a powerful tool to tackle problems arising in field
theory. This method has been applied to solve various
problems in condensed matter physics and yielded invalu-
able insights [6–8]. Recently, the holographic model of
strongly coupled Weyl semimetal has been constructed in
Refs. [9,10], where the Weyl semimetal phase is charac-
terized by a nonzero anomalous Hall conductivity. The
system undergoes a topological quantum phase transition
from the Weyl semimetal phase to a topological trivial phase
with vanishing anomalous Hall conductivity. Since then,

many issues related to holographic Weyl semimetal have
been studied, including odd viscosity [11], surface state [12],
optical conductivity [13], axial Hall conductivity [14],
topological invariants [15], and nodal line semimetal
[16,17]. Other studies can be found in Refs. [18–28], and
see [29] for a recent review on this topic.
So far, the investigations of the holographic Weyl semi-

metal are mainly focused on translational invariant systems
where the momentum is conserved. In real materials, the
momentum of electrons is dissipated due to scattering with
the background ion lattice or disorder. In the weakly coupled
field theory, the Weyl points can be destroyed by breaking
the translational symmetry [30], which means that the
momentum relaxation may have nontrivial physical effects
on the properties of the Weyl semimetal. At a strongly
coupled region, the Weyl semimetal still exists, and it is
important to explore the effects of momentum relaxation on
the system [9,10]. This motivates us to study momentum
relaxation in the holographic Weyl semimetal by breaking
the translational symmetry along the spatial directions.
We will use the linear axion models [31,32] to implement

the momentum dissipation in the holographic Weyl semi-
metal. This enables us to break the translational symmetry
while retaining the homogeneity of the background geom-
etry. We will focus on low-temperature physics. The reason
is twofold. First, the zero-temperature ground state is
difficult to construct in the presence of the axion fields.
Second, the absolute zero temperature cannot be physically
reached in experiments. Because of the existence of the
quantum critical region, the nature of the quantum phase
transition manifests at low temperature. Therefore, it is
suitable to study low-temperature physics to investigate
the behavior of the critical point of the phase transition*junkunzhao@buaa.edu.cn

PHYSICAL REVIEW D 104, 066003 (2021)

2470-0010=2021=104(6)=066003(9) 066003-1 © 2021 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.066003&domain=pdf&date_stamp=2021-09-02
https://doi.org/10.1103/PhysRevD.104.066003
https://doi.org/10.1103/PhysRevD.104.066003
https://doi.org/10.1103/PhysRevD.104.066003
https://doi.org/10.1103/PhysRevD.104.066003


under momentum dissipation, which is the main focus of
this paper.
This paper is organized as follows. In Sec. II, we

introduce the holographic model of Weyl semimetal
including axion fields. In Sec. III, we calculate the dc
conductivities of the vector gauge field fluctuations and
investigate their behavior with respect to the momentum
relaxation strength. Section IV is devoted to the conclusion
and discussion. The Appendix presents the details of the
equations of motion and asymptotic expansions.

II. HOLOGRAPHIC WEYL SEMIMETAL WITH
MOMENTUM RELAXATION

In this section, we begin our setup of the holographic
Weyl semimetal with momentum relaxation which is
induced by the axion fields. The action for the model reads

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

2κ2

�
Rþ 12

L2

�
−
1

4
F2 −

1

4
F 2

þ α

3
ϵabcdeAaðFbcFde þ 3F bcF deÞ

− ðDaΦÞ�ðDaΦÞ − VðΦÞ − 1

2

X3
I¼1

ð∂ψ IÞ2
�

þ SGH þ Sc:t:; ð2:1Þ

where κ2, L, and α are the gravitational constant, AdS radius,
and Chern-Simons coupling, respectively. According to the
holographic dictionary, the vector gauge field Va corre-
sponds to vector current in the dual field theory with field
strength F ab ¼ ∂aVb − ∂bVa. The axial gauge field Aa
corresponds to axial current in the dual field theory with field
strength Fab ¼ ∂aAb − ∂bAa. The scalar field Φ is charged
under the axial gauge transformation, and the covariant
derivative is DaΦ ¼ ð∂a − iqAaÞΦ. We choose the scalar
field potential VðΦÞ ¼ m2Φ2 þ λ

2
Φ4 with the scalar field

mass m2 ¼ −3. Therefore, the operator dual to the scalar
field has conformal dimension 3, and its source has con-
formal dimension 1. Note that the scalar field ψ IðI ¼ 1; 2; 3Þ
is massless and its total number is equal to the spatial
dimension of the dual system. SGH is the Gibbons-Hawking
boundary term, and Sc:t: is the counterterm to demand that
the physical observable is finite. Without loss of generality,
we will focus on the cases of q ¼ 1 and λ ¼ 1=10 in the
following.
The finite-temperature ansatz for the background fields

reads

ds2 ¼ −udt2 þ dr2

u
þ fðdx2 þ dy2Þ þ hdz2;

A ¼ Azdz; Φ ¼ ϕðrÞ; ψ I ¼ βIjxj; ð2:2Þ

where the fields u, f, h, Az, and ϕ are functions of the radial
coordinate r. The corresponding equations of motion can

be found in the Appendix. Near the UV boundary, r → ∞,
we demand that the background geometry is asymptotically
to AdS5 with u; f; h ∼ r2. The asymptotic behavior for the
axial gauge field and the scalar field reads

Az ¼ bþ � � � ; ϕ ¼ M
b
þ � � � ; ð2:3Þ

where M and b correspond to the mass parameter and the
time-reversal symmetry-breaking parameter in the field
theory, respectively. The scalar fields ψ I (I ¼ 1, 2, 3)
depend linearly on the spatial coordinate ðxj ¼ x; y; zÞ,
where βIj ¼ β is a positive real constant. Similar to the
particle physics, the scalar fields ψ I are often called axions,
as they have a shift symmetry. The spatial translational
symmetry xa → xa þ ξa is broken due to the spatially
dependent sources of ψ I . More precisely, the axion fields
will contribute to the Ward identity of the boundary energy-

momentum tensor ∇ihTiji ¼ ∇jψ ð0Þ
I hOIi, which indicates

the nonconservation of boundary momentum. Therefore,
the axion fields give us a simple holographic approach to
dissipate the momentum in the dual field theory, where β
represents the strength of momentum dissipation.

A. Holographic Weyl semimetal without axion fields

For β ¼ 0, the translational symmetry is recovered, and
the axion fields drop out of the equations of motion. The
holographic Weyl semimetal has been studied in this case
[9,10], which we will review briefly in this subsection. We
will summarize the zero-temperature as well as the finite-
temperature physics and discuss how to probe the critical
point of the phase transition at low temperature.
At zero temperature, the dual field theory preserves the

Lorentz invariance in the ðt; x; yÞ direction, which corre-
sponds to u ¼ f. We have only one controllable dimen-
sionless parameter: M=b. There exist three different kinds
of IR solutions, which correspond to different value of
M=b, (I) theWeyl semimetal phase forM=b < ðM=bÞc, (II)
the Lifshitz critical point for M=b ¼ ðM=bÞc ¼ 0.744, and
(III) the topological trivial phase for M=b > ðM=bÞc. At
zero temperature, the critical point ðM=bÞc is uniquely
determined by the Lifshitz critical point. The near-horizon
value Azð0Þ is nonzero in the Weyl semimetal phase, while
it always vanishes in the topological trivial phase. By
tuning the parameter M=b, the system undergoes a topo-
logical quantum phase transition from the Weyl semimetal
phase to a topological trivial phase. The order parameter is
anomalous Hall conductivity, which is proportional to the
near-horizon value of Az:

σAHE ∝ Azð0Þ: ð2:4Þ

At finite temperature, the background solutions admit a
regular expansion near the black hole horizon r ¼ rh with
uðrhÞ ¼ 0. We have two dimensionless parameters: M=b
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and T=b. At finite and low temperature, the sharp quantum
phase transition becomes a crossover due to the thermal
fluctuations, where the anomalous Hall conductivity remains
a very small value in the topological trivial phase. Figure 1
shows the anomalous Hall conductivity as a function of the
M=b at different temperatures for the holographic Weyl
semimetal without momentum relaxation.
As the temperature is decreased, the anomalous Hall

conductivity approaches that of the ground state, which can
be used to probe the location of the critical point of the
quantum phase transition. At zero temperature, the critical
point is equal to the point with divergent j ∂σAHE∂ðM=bÞ j. At finite
temperature, we locate the position of the critical point as
the point with maximum j ∂σAHE∂ðM=bÞ j. For example, the critical

value obtained at T=b ¼ 0.02 is 0.722 with a relative error
within 3% for the holographic Weyl semimetal without
momentum dissipation. Therefore, the probe of the critical
point is accurate at low temperature, and we will use this
method to determine the critical point of phase transition in
momentum relaxed holographic Weyl semimetal.

B. Holographic Weyl semimetal with axion fields

In the presence of axion fields with β ≠ 0, the holo-
graphic Weyl semimetal is supposed to still exhibit a
quantum phase transition between the Weyl semimetal
phase and the topological trivial phase. At zero temper-
ature, the theory is characterized by two dimensionless
parameters: M=b and β=b. Different from the minimal
model [9], the zero-temperature solutions have u ≠ f,
which can also be observed from the background equations
of motion in the Appendix. Therefore, it is difficult to find
the ground state of the holographic Weyl semimetal in the

presence of axion fields, and we will leave it for fur-
ther work.
At finite temperature, we have three dimensionless

parameters: M=b, T=b, and β=b. The asymptotic expan-
sions for the background fields change slightly compared
with the minimal model; see the Appendix for more details.
We focus on the low-temperature physics and fix the
temperature of the system to be T=b ¼ 0.02. Therefore,
using the shooting method, we can obtain a series of
numerical solutions of the background equations of motion
which depends on the remaining two dimensionless
parameters (M=b and β=b). In the next section, we will
study the effects of momentum relaxation on the order
parameter and various dc conductivities.

III. MOMENTUM RELAXATION EFFECTS ON
THE PHASE TRANSITION

To explore the effects of momentum relaxation, we study
the conductivities, i.e., the response of the background
system under the gauge field fluctuations. In the following,
we will obtain the phase diagram of the holographic Weyl
semimetal from the anomalous Hall conductivity. We will
compute the longitudinal and transverse dc conductivities.
We will also study the behavior of dc resistivity as a
function of temperature in the two phases.
The conductivities of the dual field system are related to

the retarded current-current correlation via the Kubo
formula:

σij ¼ lim
ω→0

1

iω
hJiJjiRðω;k ¼ 0Þ: ð3:1Þ

In holography, the retarded Green’s functions can be
obtained from the dual gauge fields fluctuations above
the background solutions, where the infalling boundary
conditions are imposed at the black hole horizon.
We turn on the vector gauge field fluctuations along the

spatial directions

δVx ¼ vxðrÞe−iωt; δVy ¼ vyðrÞe−iωt;
δVz ¼ vzðrÞe−iωt: ð3:2Þ

Note that, since the vector field perturbations decouple
from that of the axion fields, we do not need to consider the
fluctuations of the axion fields like Ref. [31]. Generally, the
axion fields affect the physical system in two aspects. First,
they alter the background solution and its thermodynamics.
Second, they cause the momentum relaxation by directly
coupling to the perturbation fields. For the model we
studied here, the absence of axion fields in the vector field
fluctuations indicates that their effects on the transports
arise from their effects on the equilibrium solution.
Plugging the above ansatz into the vector field equations,

we find
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FIG. 1. The anomalous Hall conductivity as a function of the
M=b without momentum relaxation for different temperatures
[9]. The black line is for zero temperature, and the colored lines
are for finite temperature with T=b ¼ 0.05 (blue), 0.03 (purple),
and 0.02 (green), respectively. There is a sharp quantum phase
transition at zero temperature which becomes a crossover at finite
temperature.
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h
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where we have defined v� ¼ vx � ivy to get the last
equation.
The full frequency conductivities can be obtained

numerically by solving the above equations with an ingoing
boundary condition at the horizon. However, since we are
interested in only the dc conductivities, we will alterna-
tively use the near-far matching method to obtain the
desired results, following Ref. [9]. This method treats
the above equations semianalytically, and its final results
can be expressed in terms of data on the black hole horizon
rh. The dc conductivities σxx, σyy, and σxy can be computed
along this procedure as

σT ¼ σxx ¼ σyy ¼
Gþ þ G−

2iω
¼

ffiffiffiffiffiffiffiffiffiffiffi
hðrhÞ

p
;

σxy ¼
Gþ −G−

2ω
¼ 8αðb − AzðrhÞÞ; ð3:5Þ

where G� ¼ ωð�8αðb − AzðrhÞÞ þ i
ffiffiffiffiffiffiffiffiffiffiffi
hðrhÞ

p Þ are the
Green functions of v�. Using the same method, the
longitudinal conductivity σzz is given by

σzz ¼
Gzz

iω
¼ fðrhÞffiffiffiffiffiffiffiffiffiffiffi

hðrhÞ
p : ð3:6Þ

A. Phase diagram

The phase transition is characterized by the anomalous
Hall conductivity, which can be expressed as

σAHE ¼ 8αb − σxy ¼ 8αAzðrhÞ: ð3:7Þ

In Fig. 2, we plot the anomalous Hall conductivity as a
function of M=b for different β=b at temperature
T=b ¼ 0.02. For a fixed value of β=b, the figure shows
that, as we increaseM=b, the anomalous Hall conductivity
decreases monotonically from the Weyl semimetal phase
to a very small value in the topological trivial phase. By
comparing with the results without momentum relaxation
(black dashed curve), we find that the momentum relax-
ation affects the phase transition in an interesting way. For
a small value of momentum relaxation strength (i.e., for
β=b < 1), the anomalous Hall conductivity remains
almost unchanged. As we increase the value of β=b
further, the anomalous Hall conductivity changes dra-
matically, and its value decreases rapidly in the region
M=b < 0.744 (i.e., the original Weyl semimetal phase
with β=b ¼ 0). As the topological Weyl semimetal phase
is characterized by a nontrivial anomalous Hall conduc-
tivity, the behavior of anomalous Hall conductivity may
indicate that the region of Weyl semimetal phase narrows
and finally disappears with the increase of β=b.1

In order to characterize more specifically the effects of
momentum relaxation on the order parameter, we will
study the behavior of the critical point of the phase
transition with respect to β=b. The critical point can be
obtained from the anomalous Hall conductivity, which is
equivalent to the point with maximum j ∂σAHE∂ðM=bÞ j. We show

our main results in Fig. 3, which gives the behavior of
critical point ðM=bÞc as a function of β=b at temperature
T=b ¼ 0.02. As we increase β=b, the value of the critical
point decrease monotonically. There exists a critical
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0.0
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FIG. 2. Left: the normalized anomalous Hall conductivity as a function of theM=b for different β=b at temperature T=b ¼ 0.02. The
black dashed curve is the anomalous Hall conductivities without momentum dissipation, while the colored curves are for β=b ¼ 1 (red),
2 (green), 2.5 (blue), 2.75 (orange), 3 (purple), and 3.5 (cyan), respectively. Right: the 3D version of the anomalous Hall conductivity as
functions of M=b and β=b, where the value of β=b ranges from 0 to 3.5 with an interval 1=4.

1At M=b ¼ 0.01, the numerical results of AHE are less than 1
for β=b > 2.75. This seems inconsistent with the analytical
results atM=b ¼ 0, which we will explain in the next subsection.
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ðβ=bÞc, above which the value of the critical point
becomes zero. The value of the critical point decreases
very slowly for β=b < 2, while it gets smaller rapidly for
2 < β=b < ðβ=bÞc.2 This indicates that the momentum
relaxation can reduce and even destroy the Weyl semi-
metal phase, which is the main findings of this paper. This
is consistent with the field theory predictions, and we will
give a simple explanation as follows. From the dual point
of view, we fix the distance of Weyl points in the
momentum space to be 1. The case of β=b ¼ 0, i.e.,
for a system without momentum relaxation, corresponds
to the width of Brillouin zone kL → ∞. As we increase the
momentum relaxation strength β=b, the value of kL
decreases. There exists a critical β=b to make kL ¼ 1
where the two Weyl points meet and annihilate each other
due to the periodicity of the Brillouin zone. This picture
explains the observed disappearance of the Weyl semi-
metal phase as β=b is increased.

1. Anomalous Hall conductivity at M=b = 0

In this subsection, we will analyze the two possible
solutions of the momentum relaxed system in theM=b → 0
limit and then explain the apparent conflict mentioned in
the footnote of the above subsection. In theM=b → 0 limit,
the background geometry has a simple analytical solution
[31], which reads

u ¼ r2 −
r4h
r2

þ β2

4

�
−1þ r2h

r2

�
; f ¼ h ¼ r2;

Az ¼ b; ϕ ¼ 0; ψ I ¼ βxI: ð3:8Þ

From Eq. (3.7), the normalized anomalous Hall conduc-
tivity is σAHE

8αb jM
b¼0 ¼ 1, which is independent of β=b. In

addition to the analytical solution, we can find a sponta-
neous symmetry-breaking-type solution following
the analysis in Ref. [33]. At zero temperature rh ¼ β

2
ffiffi
2

p ,

the near-horizon limit of Eq. (3.8) is AdS2 ×R3. By
analyzing the linearized equation of motion for ϕ, we find
that its effective mass at the extremal geometry becomes

m2
eff ¼ m2

4
þ 2b2q2

β2
. Therefore, the zero-temperature back-

ground is unstable if m2
eff is below the Breitenlohner-

Freedman (BF) bound of the AdS2: m2
BF ¼ −1=4. At zero

temperature, the condition for instability is β=b > 2
ffiffi
2

p
qffiffiffiffiffiffiffiffi

1−m2
p .

For the particular parameters we studied in this paper, the
new branch of solution becomes more pronounced if
β=b >

ffiffiffi
2

p
. At finite temperature with T=b fixed, there

exists a critical ðβ=bÞn above which the new solution
appears.3

From the above analysis, we know that there exist two
solutions for M=b ¼ 0 at temperature T=b ¼ 0.02.
Therefore, the apparent inconsistency can be understand
as follows. As M=b → 0, the numerical solutions in Fig. 2
approach the spontaneous symmetry-breaking-type solution
more easily when the value of β=b is larger than 2.75. A
detailed analysis of the various phases near this region is
beyond the scope of this paper and needs more further work.

B. dc conductivities and resistivities

Apart from the anomalous Hall conductivity, it is
interesting to study the behavior of the diagonal

0.0 0.5 1.0 1.5

0.05

0.10

0.50

1

FIG. 4. The linear-log plot of the transverse (dashed lines) and
longitudinal (solid lines) conductivities as a function of the M=b
for different β=b at temperature T=b ¼ 0.02. The black lines are
the conductivities of the system without momentum relaxation,
while the colored curves are for β=b ¼ 2 (red), 2.5 (green), and
2.75 (blue), respectively. The dashed gray lines are the positions
of the critical points of the phase transition.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0
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FIG. 3. The critical point of the phase transition as a function of
β=b at temperature T=b ¼ 0.02.

2For 2.5 < β=b < ðβ=bÞc, the j ∂σAHE∂ðM=bÞ j does not show a
sharp peak, which means that critical value ðM=bÞc in this
region may have a relatively large error.

3We conjecture that this critical ðβ=bÞn is equal to the ðβ=bÞc
shown in Fig. 3.
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conductivities as a function of M=b for different β=b at
T=b ¼ 0.02. Figure 4 shows that the transverse (longi-
tudinal) conductivities produce a peak (minimum) at an
intermediate value of M=b, where the location of the peak
(minimum) decreases as β=b is increased. By comparing
the location of the peak (minimum) with the critical value
of the phase transition (vertical lines), we find that they
both have a similar monotonically decreasing behavior
with the increase of β=b. This supports the results of the
shrink and disappearance of the Weyl semimetal phase
under the momentum dissipation observed from the
behavior of anomalous Hall conductivity. As M=b → 0,
we find that the transverse and longitudinal conductivities
have the same value at fixed β=b and the value increases as
β=b is increased. For large M=b, the diagonal conductiv-
ities approach constant values, and their values increase
slightly as β=b is increased.
Figure 5 shows the dc resistivity ρ ¼ 1=σ as a function

of the temperature in the topological trivial phase and the
Weyl semimetal phase. At low temperature, the dc
resistivity decreases as a function of the temperature
for fixed β=b in the two phases. For β=b ¼ 0, the dc
resistivities (black dashed curve) in both phases behave as
ρT=zz ∼ T−1, which corresponds to the linear dependence

of the conductivities σT=zz ∼ ωðω → 0; T ¼ 0Þ in the
ground state [9,13]. As we increase β=b, the behavior
of the dc resistivities changes gradually, and the linear T−1

dependence is inapplicable. In the topological trivial
phase, the dc resistivities have a power law dependence
as ρ ∼ T−1−δ, where the value of δ depends on β=b. This
power law scaling reveals a possible emergent symmetry
of the zero-temperature ground state. In contrast, we
do not find a simple scaling behavior for dc resistivities
at M=b ¼ 0.45 with nonzero momentum relaxation
strength.

IV. CONCLUSION AND DISCUSSION

In this work, we have studied the momentum relaxation
effect in the holographic Weyl semimetal with a topological
quantum phase transition. The momentum relaxation is
induced by the axion fields in holography which break
translational symmetry along spatial directions. The order
parameter of the phase transition is the anomalous
Hall conductivity. By tuning the momentum dissipation
strength, we obtain the behavior of the anomalous Hall
conductivity across the phase transition at finite temperature.
At finite and low temperature, the critical value of the phase
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FIG. 5. Log-log plot of the transverse (left) and longitudinal (right) dc resistivities as a function of the temperature for different β=b,
where the top two panels are for the topological trivial phase with M=b ¼ 1.2 and the bottom two panels are for the Weyl semimetal
phase withM=b ¼ 0.45. The black dashed line is the dc resistivity of the system without momentum relaxation, and the colored curves
are for β=b ¼ 1 (red), 2 (green), and 3 (blue), respectively, in each panel. The resistivity ρ0 is for the normalization of the dc resistivity in
each panel.
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transition can be obtained from the anomalous Hall con-
ductivity. We found that it decreases as the strength of
momentum dissipation is increased up to a special value,
above which the critical value goes to zero. This indicates
that the momentum relaxation can lead to the shrink and
disappearance of the Weyl semimetal phase, which is
consistent with the predictions of the weakly coupled field
theory.
We have also studied the behavior of the transverse and

longitudinal conductivities for different momentum relax-
ation strengths. We found that the maximal (minimal)
value of the transverse (longitudinal) conductivity
approaches zero when we increase the momentum relax-
ation strength, which supports the results of the shrink
and disappearance of the Weyl semimetal phase under the
momentum relaxation. Finally, we have studied the
temperature dependence of the dc resistivity for different
momentum relaxation strengths in the two phases, where
a power law scaling of dc resistivity is observed in the
topological trivial phase.
The momentum relaxation affects the holographic

Weyl semimetal system in an interesting way, and there
are several further questions worthy to explore. First, the
shrink and disappearance of the Weyl semimetal phase
under the momentum relaxation is observed from the
behavior of the critical point of the phase transition.
However, the definition of the critical point at finite
temperature is not exact compared with the result of the
zero-temperature ground state. Therefore, it is important

to explore the zero-temperature physics of the transla-
tional invariant broken Weyl semimetal in order to get
more evidence and an explanation of the phenomenon we
found in this paper. Second, as the momentum relaxation
is induced by the massless axion fields, the results we
found in this paper may depend on the particular trans-
lational symmetry-broken mechanics we used. It would
be interesting to apply other translational invariant break-
ing mechanics, like massive gravity [34,35], to test the
universality of our results.
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APPENDIX: EQUATIONS OF MOTION AND
ASYMPTOTIC EXPANSIONS

We set 2κ2 ¼ L ¼ 1 in this paper. The bulk equations of
motion corresponding to the ansatz (2.2) are

u00

u
−
f00

f
þ h0

2h

�
u0

u
−
f0

f

�
−
β2

uf
¼ 0;

u00

2u
þ f00

f
þ u0f0

uf
−

f02

4f2
−
6

u
−
A0
z
2

4h
þ ϕ2

2u

�
m2 þ λ

2
ϕ2 −

q2A2
z

h

�
þ ϕ02

2
þ β2

2uf
−

β2

4uh
¼ 0;

6

u
−

u0

2u

�
f0

f
þ h0

2h

�
−
f0h0

2fh
−

f02

4f2
þ A0

z
2

4h
−
ϕ2

2u

�
m2 þ λ

2
ϕ2 þ q2A2

z

h

�
þ ϕ02

2
−

β2

2uf
−

β2

4uh
¼ 0;

A00
z þ

�
u0

u
þ f0

f
−

h0

2h

�
A0
z −

2q2ϕ2

u
Az ¼ 0;

ϕ00 þ
�
u0

u
þ f0

f
þ h0

2h

�
ϕ0 −

�
q2A2

z

uh
þm2

u

�
ϕ −

λϕ3

u
¼ 0;

where theprimedenotes thederivativewith respect to r.Note
that the first equation can be written as ð ffiffiffi

h
p ðu0f−

uf0ÞÞ0 ¼ β2
ffiffiffi
h

p
, which is different with the minimal model

[9]. This indicates that the zero-temperature ground state has
a new geometrical configurationwith u ≠ f. Our system has
the following three scaling symmetries:

(I) ðx; yÞ → γðx; yÞ, f → γ−2f, and ψ1;2 → γ−1ψ1;2;
(II) z → γz, h → γ−2h, and ðAz;ψ3Þ → γ−1ðAz;ψ3Þ; and
(III) r → γr, ðt; x; y; zÞ → γ−1ðt; x; y; zÞ, ðu; f; h; Þ →

γ−2ðu; f; hÞ, and ðAz;ψ IÞ → γðAz;ψ IÞ.
At the AdS boundary, i.e., as r → ∞, the fields
behave as
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u ¼ r2 −
M2

3
−
β2

4
þM4ð2þ 3λÞ

18

ln r
r2

þ u2
r2

þ � � � ;

f ¼ r2 −
M2

3
þ −3M2β2 þ 4M4ð2þ 3λÞ

72

ln r
r2

þ f2
r2

þ � � � ;

h ¼ r2 −
M2

3
þ −3M2β2 þ 36q2M2b2 þ 4M4ð2þ 3λÞ

72

ln r
r2

þ h2
r2

þ � � � ;

Az ¼ b − q2M2b
ln r
r2

þ η

r2
þ � � � ;

ϕ ¼ M
r
þ 3β2M − 12q2Mb2 − 4M3ð2þ 3λÞ

24

ln r
r3

þ O
r3

þ � � � :

Near the black hole horizon, we have the expansions

u ¼ 4πTðr − rhÞ þ
�
−2þ β2

2f0
þ β2

4h0
þm2ϕ2

0

6
þ q2Az20ϕ

2
0

2h0
þ λϕ4

0

12

�
ðr − rhÞ2 þ � � � ;

f ¼ f0 −
β2 þ f0ð−8þ 2m2ϕ2

0

3
þ λϕ4

0

3
Þ

4πT
ðr − rhÞ þ � � � ;

h ¼ h0 −
β2 þ 2q2A2

z0ϕ
2
0 þ h0ð−8þ 2m2ϕ2

0

3
þ λϕ4

0

3
Þ

4πT
ðr − rhÞ þ � � � ;

Az ¼ Az0 þ
q2Az0ϕ

2
0

2πT
ðr − rhÞ þ � � � ;

ϕ ¼ ϕ0 þ
ϕ0ðq2A2

z0 þ h0ðm2 þ λϕ2
0ÞÞ

4h0πT
ðr − rhÞ þ � � � :

The independent parameters are T, rh, f0, h0, Az0, ϕ0, and
β. Using the above scaling symmetries, we can reduce these
seven free parameters to T, Az0, ϕ0, and β, which
correspond to three dimensionless parameters (Mb ,

T
b,

β
b) in

the dual field theory. For given (Mb ,
T
b,

β
b), the numerical

solutions of the above equations of motion can be obtained
by the shooting method.
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