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A foundational question in relativistic fluid mechanics concerns the properties of the hydrodynamic
gradient expansion at large orders. We establish the precise conditions under which this gradient expansion
diverges for a broad class of microscopic theories admitting a relativistic hydrodynamic limit, in the linear
regime. Our result does not rely on highly symmetric fluid flows utilized by previous studies of heavy-ion
collisions and cosmology. The hydrodynamic gradient expansion diverges whenever energy density or
velocity fields have support in momentum space exceeding a critical momentum and converges otherwise.
This critical momentum is an intrinsic property of the microscopic theory and is set by branch point
singularities of hydrodynamic dispersion relations.
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I. INTRODUCTION

The goal of relativistic hydrodynamics is to provide an
effective description of long-lived, long-wavelength exci-
tations—hydrodynamic modes—which are generally
expected to dominate nonequilibrium dynamics of collec-
tive states of quantum fields at macroscopic scales and
sufficiently late times [1–4]. Understanding what exact
scales and times these are has been a very active field of
research of the past decade in connection with studies of
collective phases of strong interactions in nuclear collisions
at the Relativistic Heavy Ion Collider and the Large Hadron
Collider, where relativistic hydrodynamics is the frame-
work translating between the observed particle spectra and
microscopic features such as characteristics of the initial
state [5,6]. Related recent developments in relativistic
hydrodynamics go well beyond the realm of nuclear
physics and extend also to astrophysics [7–9], as well as
to studies of strong gravity [10,11].

Much progress occurred recently thanks to the effective
field theory perspective formulated as a spacetime deriva-
tive expansion [12] as well as by using insights from linear
response theory [13]. The effective field theory approach
expresses expectation values of conserved currents in terms
of derivatives of local classical fields such as the energy
density and fluid velocity. The energy-momentum tensor is
represented as a sum of all possible terms graded by the
number of derivatives, starting with the perfect fluid
contribution. By comparing this formal series to the
analogous gradient expansion calculated in a microscopic
theory, one can express the parameters appearing in the
hydrodynamic series—transport coefficients—in terms of
microscopic quantities. Interestingly, the gradient series
evaluated on a solution of the evolution equations can have
a vanishing radius of convergence at least in the case of
highly symmetric flows describing rapidly expanding
matter, as was discovered in holography [14–18], hydro-
dynamic models [19–21], and kinetic theory [22–25].
At the linearized level [26], the dynamics is governed by

sums of harmonic contributions with complex frequencies
which encode Fourier space singularities of retarded
correlators. Imaginary parts of these frequencies capture
effects of dissipation. Terms associated with frequencies
which vanish at small momentum correspond to shear and
sound hydrodynamic modes, while the rest represents
transient phenomena [3]. Their dispersion relations are
usually expressed as expansions in spatial momenta.
Correspondingly, we choose the position space gradient
expansion to be expressed in purely spatial derivatives,
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which can always be done. With this choice, the position
space gradient expansion of the hydrodynamic constitutive
relations is related to the shear and sound mode frequencies
expanded in small spatial momentum. In Ref. [27] and later
in Refs. [28,29], it was observed that the latter series have a
finite nonzero radius of convergence, which reflects the
presence of nonhydrodynamic modes. This parallels the
fact that the Borel transform of the gradient expansion in an
expanding plasma similarly reveals information about the
nonhydrodynamic sectors.
The present article combines these two lines of research,

which allows one to make for the first time generic
statements about the convergence of the hydrodynamic
gradient expansion across microscopic theories and mod-
els. In particular, we show that the convergence of the
position space gradient expansion of the constitutive
relations in the linearized regime is governed by the same
mechanism that yields a finite radius of convergence of
series expansions of hydrodynamic mode frequencies at
small momentum: the radius of convergence of the
dispersion relations is precisely the momentum scale which
defines which flows possess a convergent asymptotic
gradient expansion and which ones do not.

II. HYDRODYNAMICS

The expectation value of the energy-momentum tensor
can be expressed as the perfect-fluid part plus corrections

hTμνi ¼ ðE þ PÞUμUν þ P gμν þ Πμν: ð1Þ

In hydrodynamics, the correction Πμν is represented in
terms of derivatives of the hydrodynamic fields which we
take as the energy density E and flow velocity Uμ with
U · U ¼ −1. The pressure P is related to E via an equation
of state [3,4].
We consider flat d-dimensional spacetime and use the

Landau frame where UμΠμν ¼ 0. We focus on conformal
and parity-invariant theories. Conformal symmetry forces
Πμ

μ ¼ 0 and P ¼ E=ðd − 1Þ. The most general hydrody-
namic Πμν takes now the form [30,31]

Πμν ¼ −η σμν þ τπηDσμν

−
1

2
θ1DαDασμν − θ2DhμDνiDαUα þ � � � ; ð2Þ

where the ellipsis denotes terms higher than third order and
we display only terms surviving linearization. The angle
brackets in (2) denote the tensors made symmetric, trans-
verse, and traceless; D ¼ Uμ∂μ and Dμ ¼ ðgμν þUμUνÞ∂ν

are, respectively, a comoving and a transverse derivative;
σμν ¼ 2DhμUνi denotes the shear tensor; η is the shear
viscosity; τπ is the relaxation time; and θ1, θ2 are third-
order transport coefficients.

We focus on small perturbations away from thermal
equilibrium; i.e., we consider

Uμ ¼ ð1;uÞμ and E ¼ E0 þ ϵ ð3Þ

with jϵ=E0j, jululj ≪ 1. We denote spatial indices with latin
letters and spatial vectors with bold font. It is useful to work
in Fourier space with a plane-wave ansatz,

uiðt;xÞ ¼ ûiðkÞe−iωtþik·x; ð4aÞ

ϵðt;xÞ ¼ ϵ̂ðkÞe−iωtþik·x: ð4bÞ

The perturbations can be decomposed into shear and
sound channel components [1], labeled here by ⊥ and k
subscripts. They are given by

ûk ¼
k · û
k2

k; û⊥ ¼ û − ûk; ð5Þ

with ϵ̂ ¼ 0 vanishing in the shear channel. With no loss of
generality, due to rotational invariance, we take

k ¼ ð0;…; 0; kÞ: ð6Þ

Conservation of the energy-momentum tensor together
with the hydrodynamic constitutive relation (2) determines
the frequencies ω appearing in (4) as functions of k. The
dispersion relations take the form [30,31]

ω̃⊥ ¼ −i
η

sT
k2 − i

�
η2τπ
s2T2

−
θ1

2 s T

�
k4 þ � � � ;

ω̃�
k ¼ �cs k − iΓk2 ∓ Γ

2cs
ðΓ − 2c2sτπÞk3

− i

�
2Γ2τπ −

ðd − 2Þðθ1 þ θ2Þ
2ðd − 1ÞsT

�
k4 þ � � � ; ð7Þ

where the tilde means that these are frequencies in the
hydrodynamic theory rather than in a microscopic theory.
Here, T and s are the temperature and entropy density
associated with E0, cs ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þp
is the speed of sound,

and Γ ¼ ðd − 2Þ=ðd − 1Þη=ðsTÞ.
Calculations in holography [27–29] reveal that the series

(7) have a finite and nonzero radius of convergence, with
evidence going back to the studies of causal second-order
hydrodynamics in Ref. [12]. In physically interesting cases,
linear response theory shows that, apart from the hydro-
dynamic modes, there are additional excitations that are
short lived, i.e., whose complex frequency ωðkÞ has a
nonvanishing imaginary part even as k → 0 [12,13,32,33].
Explicit calculations in several representative cases show
that the radius of convergence of hydrodynamic dispersion
relations is set by the magnitude k� of a (possibly complex)
momentum for which the frequency of a hydrodynamic
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mode coincides with that of a nonhydrodynamic one at a
branch point of ωðkÞ [27–29].

III. CONSTITUTIVE RELATIONS

To exploit the known properties of ωðkÞ, we parametrize
the gradient expansion ofΠμν using only spatial derivatives.
A different choice is explored in Appendix B.
The most general form of Πμν can be constructed from

three elementary tensorial structures that are, respectively,

σjl ¼
�
∂jul þ ∂luj −

2

d − 1
δjl∂rur

�
; ð8aÞ

πϵjl ¼
�
∂j∂l −

1

d − 1
δjl∂2

�
ϵ; ð8bÞ

πujl ¼
�
∂j∂l −

1

d − 1
δjl∂2

�
∂rur: ð8cÞ

The last of these appears already in Refs. [34,35] (see also
Ref. [29]).1 With no loss of generality, we write the
constitutive relations as

Πjl ¼ −Að∂2Þσjl − Bð∂2Þπujl − Cð∂2Þπϵjl ð9Þ

and Πtt ¼ Πti ¼ 0. A;B, and C are infinite series in spatial
Laplacians,

A ¼
X∞
n¼0

anð−∂2Þn; ð10Þ

and the an are transport coefficients, with similar expres-
sions for B and C involving transport coefficients bn and
cn. In principle, A, B, and C could also depend on ∂t, but in
the hydrodynamic gradient expansion, one can use the
conservation equations to replace temporal derivatives by
spatial ones in a systematic way.2

It follows from (9) that each even order in gradients
introduces one new transport coefficient, while each odd
order higher than 1 introduces two. We find it remarkable
that such a simple argument implies that the number of
independent transport coefficients at a given order in the
gradient expansion of linearized hydrodynamics does not
grow with the order but is limited.
An analogous situation occurs in the series expansions of

ω⊥, ω�
k around k ¼ 0. Since ωþ

k , ω
−
k obey the relation

ωþ
k ðkÞ ¼ −ω−

k ðkÞ�, their series coefficients are not

independent. These coefficients are real for odd powers
of k and purely imaginary for even powers of k. ω⊥ is given
by a series expansion in k2 with purely imaginary coef-
ficients. Therefore, each even order in (7) introduces two
new real parameters, while each odd order introduces just
one. This counting matches the number of independent
transport coefficients in (9) and suggests that it is possible
to express an, bn, and cn, see (10), in terms of the
hydrodynamic dispersion relations (7).

IV. MATCHING

We now show explicitly that there is a direct relation
between A, B, and C defined in (9) and the hydrodynamic
dispersion relations (7).
For the shear mode, with the wave vector choice we

made in (6), the only nonzero components of σjl are

σ1;d−1 ¼ σd−1;1 ¼ i k u1; ð11Þ

where we have taken u ¼ ðu1; 0;…; 0Þ with no loss of
generality due to rotational invariance. πujl and πϵjl vanish
identically for this mode since ∂iui ¼ ϵ ¼ 0.
The conservation of the energy-momentum tensor (1), in

combination with the hydrodynamic constitutive relation
(9), predicts the following dispersion relation:

ω̃⊥ðkÞ ¼ −i
1

sT

X∞
n¼0

ank2nþ2: ð12Þ

Demanding that ω̃⊥ðkÞ agrees with the microscopic shear
hydrodynamic mode ω⊥ at every order in an expansion
around k2 ¼ 0 fixes the an coefficients to be

an ¼ ½k2nþ2�ðisTω⊥Þ; ð13Þ

where the notation ½kp�ðfÞ denotes the coefficient of kp in
the series expansion of f around k ¼ 0.
With Að∂2Þ fixed, we determine Bð∂2Þ and Cð∂2Þ by

considering the sound mode. Now, u ¼ ð0;…; 0; ud−1Þ,
ϵ ≠ 0, and

πujl ¼ −
1

2
k2σjl: ð14Þ

Furthermore, the only nonzero components of σjl and πϵjl
are

σjj ¼ −
2

d − 1
ikud−1; j ¼ 1…d − 2; ð15aÞ

σd−1;d−1 ¼
2ðd − 2Þ
d − 1

ikud−1 ð15bÞ

πϵjj ¼
1

d − 1
k2ϵ; j ¼ 1…d − 2; ð15cÞ

1References [34,35] are part of a program studying the stress
tensor of holographic theories in the linear response regime (see
also Refs. [36–38]). In contrast, we study hydrodynamic con-
stitutive relations perturbatively in spatial gradients, and without
restriction to a particular microscopic model.

2See Appendix A of Ref. [30].
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πϵd−1;d−1 ¼ −
d − 2

d − 1
k2ϵ: ð15dÞ

In the end, the conservation equations reduce to

−iωϵþ i k s Tud−1 ¼ 0; ð16aÞ

− iω s T ud−1 þ
1

d − 1
i k ϵ

þ d − 2

d − 1

X∞
n¼0

ð2an − bn−1Þk2nþ2ud−1

þ d − 2

d − 1

X∞
n¼0

i cn k2nþ3 ϵ ¼ 0; ð16bÞ

where we have introduced b−1 ≡ 0 for brevity. Note that the
conservation equation (16a) does not depend on transport
coefficients as a result of our frame choice. Equation (16)
has two solutions, ω̃þ

k ðkÞ and ω̃−
k ðkÞ, given as series

expansions around k ¼ 0, whose coefficients depend on
an, bn, and cn. Demanding that these quantities agree with
the microscopic sound modes ωþ

k ðkÞ and ω−
k ðkÞ, the

matching conditions for bn and cn are

bn ¼ ½k2nþ4�
�
−i

d− 1

d− 2
sTðωþ

k þω−
k Þ þ 2 i sTω⊥

�
; ð17aÞ

cn ¼ ½k2nþ4�
�
−

k2

d − 2
−
d − 1

d − 2
ωþ
k ω

−
k

�
: ð17bÞ

The coefficients an, bn, and cn are directly related to the
transport coefficients defined in the standard way. Up to
third order in gradients, one has

a0 ¼ η; a1 ¼
η2τπ
sT

−
1

2
θ1; c0 ¼

2ητπ
ðd − 1ÞsT ;

b0 ¼ θ2 −
2ðd − 3Þη2τπ
ðd − 1ÞsT : ð18Þ

The explicit relation between hydrodynamic dispersion
relations (7) and hydrodynamic constitutive relations as
encapsulated by (13) and (17) will directly lead to our main
result on the convergence of the gradient expansion in
linearized relativistic hydrodynamics. Its importance stems
from the fact that it connects well-studied hydrodynamic
dispersion relations as series in small k with position-space
hydrodynamic constitutive relations.

V. LARGE-ORDER BEHAVIOR

The analytic properties of the dispersion relations can be
used to constrain the growth of transport coefficients. We
expect that in a microscopic theory which respects rela-
tivistic causality, the hydrodynamic dispersion relations

ω⊥ðkÞ and ω�
k ðkÞ have at least one branch-point singularity

in the complex k-plane. This is realized in theories of causal
hydrodynamics and holography, and in Appendix A, we
provide an additional argument in favor of it. It implies that
ω⊥ðkÞ and ωkðkÞ cannot be polynomials in k, so the
hydrodynamic gradient expansion (9) following from the
matching conditions (13) and (17) must contain an
infinite number of terms. Moreover, the transport coeffi-
cients an, bn, and cn grow geometrically in a manner
controlled by the position of the branch points closest to
k ¼ 0 [39],

lim
n→∞

janj1n ¼ jkðAÞ� j−2; ð19Þ

where jkðAÞ� j denotes the modulus of the branch point
location, and analogous expressions hold for bn and cn.

Note that jkðAÞ� j; jkðBÞ� j; jkðCÞ� j correspond to the closest
branch point between ω⊥ and ωk as dictated by (13) and
(17). The power appearing on the right-hand side of (19) is
due to the fact that the transport coefficients are coefficients
of a Taylor series in k2.

VI. CONVERGENCE

The convergence properties of the series (9) depend on
the behavior of the transport coefficients an, bn, and cn as
well as on the particular solution ϵ and u. Here, we show
that the support in momentum space of the latter plays a
crucial role in determining the radius of convergence of the
gradient expansion. We focus on square-integrable func-
tions, thus excluding trivial cases for which the gradient
expansion truncates.
We assume that the flow is homogeneous in the

x1;…; xd−2 directions and define x≡ xd−1. Furthermore,
we take the Fourier transforms of ϵðt; xÞ and uiðt; xÞ, ϵ̂ðt; kÞ
and ûiðt; kÞ, to vanish for jkj > kmax. In the linearized
regime, the support is time independent, and this condition
is a restriction on the initial data.
According to the Paley-Wiener theorem [40], the Fourier

transform of a square-integrable function f̂ðkÞ supported in
jkj ≤ kmax is an entire function of exponential type kmax.

3

For a function of this kind, it follows that [41]

lim sup
n→∞

jfðnÞðxÞj1n ¼ kmax: ð20Þ

Consider now the A-contribution to (9). For a compactly
supported ûi, σjlðt; xÞ will be of exponential type kmax for
all times. Hence,

lim sup
n→∞

j∂2n
x σjlðt; xÞj1n ¼ k2max: ð21Þ

3See Appendix A for the relevant mathematical background.
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Applying the root test results in the following convergence
criterion for the A-contribution to (9):

lim sup
n→∞

jan∂2n
x σjlðt; xÞj1n ¼

k2max

jkðAÞ� j2
< 1: ð22Þ

Analogous arguments apply to the remaining pieces of (9).
Let us define

k� ¼ minfjkðAÞ� j; jkðBÞ� j; jkðCÞ� j: ð23Þ

We are now ready to state our main result for a generic
excitation: the gradient expansion is a convergent series if
the support of the hydrodynamic perturbations and their
time-derivatives is smaller than the microscopic momentum
scale k�. If the support exceeds k�, then the series is
divergent; this includes the case of data which is not
compactly supported.
It follows that if the hydrodynamic series is convergent,

then its data are compactly supported with support that does
not exceed k�.

4

Even if divergent, the partial sums of the gradient
expansion only grow geometrically as long as the support
of the hydrodynamic fields in k-space does not extend to
infinity. If it does, this geometric divergence is enhanced to
the factorial one known from the studies of expanding
geometries [14,19–21,23,24,42].
For a flow without any symmetry restrictions, we can

argue heuristically that the same convergence conditions
hold. Let us focus again on the A-contribution to (9).
Truncating the series to Nth-order results in

−
Z
Rd−1

dd−1k

�XN
n¼0

anðk2Þn
�
σ̂ijðt;kÞeik·x; ð24Þ

where we have interchanged the order of summation and
integration. According to (19), the partial sums appearing
in (24) are convergent as N → ∞, provided that they are

evaluated at jkj < jkðAÞ� j. Outside this (d − 1)-dimensional
sphere, we get a nonconvergent series. Hence, it seems
natural to assume that the condition for (24) to converge as
N → ∞ is that the hydrodynamic variable û does not have

support past jkðAÞ� j. Analogous arguments would hold also
for the B- and C-pieces, supporting the fact that the
convergence criterion spelled out before is fully general.

VII. ILLUSTRATIVE EXAMPLE

For illustration, we consider a shear channel perturbation
in Müller-Israel-Stewart theory [43–45],

ϵ ¼ 0; u ¼ ðu1ðt; xÞ; 0;…; 0Þ: ð25Þ

We emphasise that our results apply more generally, but
this is a particularly simple model of equilibration com-
patible with relativistic causality featuring a hydrodynamic
regime.
In this case, the only tensor structure contributing to (9)

is the shear tensor, and the only nontrivial independent
component of the constitutive relations is

Π1;d−1ðt; xÞ ¼ −
X∞
n¼0

anð−1Þn∂2nþ1
x u1ðt; xÞ: ð26Þ

The an transport coefficients can be computed in closed
form, since the shear hydrodynamic mode is known
exactly [12],

ω⊥ðkÞ ¼ i
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Dτπk2

p
2τπ

; ð27Þ

where D≡ η=ðsTÞ ¼ ðd − 1Þ=ðd − 2ÞΓ is the diffusion
constant. Müller-Israel-Stewart theory contains also a
single nonhydrodynamic shear mode which differs from
(27) by the sign of the square root. The final result for the
an coefficients is

an ¼ s T CnDnþ1 τnπ; ð28Þ

where Cn are the Catalan numbers. Therefore,

jkðAÞ� j ¼ ðlim supn→∞janj1nÞ−1=2 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
4Dτπ

p
; ð29Þ

which is also the location of the branch points of (27),
where the hydrodynamic and the nonhydrodynamic modes
collide.
The initial state of the system is fully specified by

u1ð0; xÞ and ∂tu1ð0; xÞ. We take u1ð0; xÞ ¼ 0 and

∂tû1ð0; kÞ ¼
1

2π
e−

1
2
γ2k2Θðk2max − k2Þ; ð30Þ

FIG. 1. The key quantity determining whether the gradient
expansion diverges is the support of hydrodynamic fields in
momentum space, kmax, represented in this figure by the intervals.
If the support extends to infinity, the expansion diverges
factorially. If it exceeds k� but truncates at some finite momentum
kmax, it diverges geometrically. If kmax < k�, it converges. See
Fig. 2 for an explicit example illustrating this general behavior.

4In the special case where only the shear channel is excited, the
appropriate notion of k� ¼ jkðAÞ� j.
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whereΘ is the Heaviside step function. As seen in Fig. 2, the
position space gradient expansion is convergent for
k2max < 1=ð4DτπÞ, geometrically divergent for 1=ð4DτπÞ ≤
k2max < ∞, and factorially divergent for kmax → ∞. This is
exactly what is expected on the basis of our general analysis.
For more details, see Ref. [46].

VIII. CONCLUSIONS

Our work reveals that hydrodynamics itself is neither
convergent nor divergent; instead, such statements are
conditional on the particular solution under consideration.
We have provided a rigorous derivation of a general feature
of hydrodynamics which one may phrase heuristically as
“hydrodynamics breaks down when gradients become
large.” Furthermore, we quantified where the hydrody-
namic series fails to converge for a general class of models.
Our detailed calculations reveal that the physics gov-

erning the convergence of position-space constitutive
relations and the convergence of momentum-space
dispersion relations are one and the same. In this way,
we provide a unified perspective on two seemingly dis-
parate lines of research represented by Refs. [14–25] and
[27–29].
There are several important lessons that can be drawn

from our work in relation to Bjorken flow. First, since we

did not impose any particular symmetry, we have shown
that the position space hydrodynamic series can still
diverge even in the absence of the highly constraining
symmetries of boost invariance. Second, while it is con-
ceivable that nonlinear theories diverge due to a factorially
growing number of transport coefficients at each order, here
we show that this is not a necessary condition since we have
at most two transport coefficients at each order and find
divergence. Within an analogy with perturbative expan-
sions in quantum mechanical systems dating back to
Ref. [14], this is similar to renormalon rather than earlier
anticipated instanton-related effects [47]. The continuation
of these results in the presence of nonlinearities will be
discussed in upcoming work [48].
The issue of the convergence of the hydrodynamic

gradient expansion is often conflated with the issue of
applicability of hydrodynamics for modeling microscopic
theories. We have shown that the former is determined by
support in momentum space; however, one can imagine a
situation where nonhydrodynamic modes make a signifi-
cant contribution in a microscopic theory even for states
with support only at low momentum. Such a significant
contribution would render hydrodynamics inapplicable
even if convergent. On the other hand, even if a series
diverges, it can provide a good description when optimally
truncated. These observations suggest that there is no
connection between the two issues at the linear level. It
should be noted that this work enables a comprehensive
study of optimal truncation—as a function of initial
conditions—which we leave to future work.
It is very important that complete information about the

nonhydrodynamic sector is encoded in the gradient series
itself. In the case of an expanding plasma, this is very
beautifully expressed by the phenomenon of resurgence
[49], which makes it possible to extract the form of the full
solution from the asymptotic series [18,19,21]. An analo-
gous encoding of nonhydrodynamic data in the hydro-
dynamic sector is seen in the analytic continuation of
dispersion relations [27]. Generalizations of these ideas
based on developments reported in this article are the
subject of Refs. [46,48].
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FIG. 2. Convergence tests applied to the gradient expansion
(26), where δn denotes the nth contribution. We use γ ¼ 0.1
and consider t ¼ 1, x ¼ 0.5 with s ¼ T ¼ η ¼ τπ ¼ 1

(k� ¼ jkðAÞ� j ¼ 0.5; see footnote 4). Data point colors and top-
bottom ordering correspond to the cases described in Fig. 1.
Upper figure: root test applied to δn when kmax → ∞. The
geometric divergence of the gradient expansion is enhanced to
a factorial one. Lower figure: ratio test applied to the solution
with kmax ¼ 0.55 (top) and 0.45 (bottom). The gradient expan-
sion is convergent for kmax < k� and geometrically divergent
for kmax > k�.
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APPENDIX A: THE DISPERSION RELATIONS
AND RELATIVISTIC CAUSALITY

Our main objective in this Appendix is to provide
additional arguments in favor of the two hypothesis
regarding the behavior of the hydrodynamic dispersion
relations put forward in the main text:
(1) ωðkÞ has at least one singularity in the complex

k-plane.
(2) This singularity is a branch point.
We start by recalling that, under a metric fluctuation

ημν → ημν þ hμν, the response of the energy-momentum
tensor expectation value in the thermal state is controlled by
the retarded two-point function

Gμν;αβðt;xÞ ¼ −iΘðtÞh½Tμ;νðt;xÞ; Tαβð0; 0Þ�i ðA1Þ

as

δhTμνðt;xÞi

¼ −
1

2

Z
R1;d−1

dt0 ddx0 Gμν;αβðt − t0;x − x0Þhαβðt0;x0Þ:

The expectation values are taken in the background thermal
state. Defining

Gμν;αβðt;xÞ ¼
Z
R1;d−1

dω dd−1 k e−iωtþik·xĜμν;αβðω;kÞ;

ðA2Þ

and similarly for hμν, Eq. (A2) can be written as

2ð2πÞ−dδhTμνðt;xÞi

¼ −
Z
R1;d−1

dω dd−1 k e−iωtþik·xĜμν;αβ ðω;kÞĥαβðω;kÞ:

Hydrodynamic and nonhydrodynamic frequencies appear
as poles of Ĝμν;αβðω;kÞ, which, due to rotational invari-
ance, only depend on k2. See Ref. [13] for a detailed
discussion of how rotational invariance constrains the form
of the retarded correlator. To discuss the interplay between
relativistic causality and the analyticity properties of these
frequencies, we consider the following setup: we imagine
that our metric fluctuation is only active at t ¼ 0, and
furthermore, we also assume that it only depends on
xd−1 ≡ x,

hμνðt;xÞ ¼ δðtÞfμνðxÞ: ðA3Þ

In momentum space,

ĥμνðω;kÞ ¼ 1

2π
δðk1Þ…δðkd−2Þf̂μνðkÞ; ðA4Þ

where we have also defined k≡ kd−1. Hence,

2ð2πÞ1−dδhTμνðt; xÞi

¼ −
Z
R1;1

dω dk e−iωtþikxĜμν;αβðω; 0;…; 0; kÞf̂αβðkÞ:

Performing the integral with respect to ω, we obtain

δhT̂μνðt; kÞi ¼
XNH

q¼0

ξμνq ðkÞe−iωqðkÞt

þ
XNNH

q¼0

Ξμν
q ðkÞe−iΩqðkÞt þ b:c: ðA5Þ

In writing the spectral decomposition (A5), we have
deformed our original integration contour along the real
ω-axis to isolate the contributions coming from the sin-
gularities of Ĝμν;αβðω; kÞ in the lower half of the complex
ω-plane. NH and NNH refer, respectively, to the number of
hydrodynamic ωq and nonhydrodynamicΩq modes excited
by the metric fluctuation, while the excitation coefficients
ξμνq and Ξμν

q are determined by the residues of the retarded
correlator at its poles and the initial data. Finally, b.c.
denotes the continuous contributions coming from the
branch cuts that might be present. These contributions
are absent in theories of causal relativistic hydrodynamics
and holography in the semiclassical limit but do appear in
kinetic theory [32,50].
As a final comment about (A5), note that we have also

assumed that any remaining contribution coming from an
integral around infinity can be neglected. This is justified in
the case in which our microscopic theory is a conformal
field theory and t > 0; for jωj → ∞, the retarded correlator
should reduce to the vacuum result, which does not grow
exponentially fast in the same limit.
Imagine now that fμνðxÞ is a square-integrable function

supported only for jxj ≤ R. Relativistic causality demands
that, at t > 0, the support of δhTμνðt; xÞi is at most Rþ t.
Let us assume that δhTμνðt; xÞi is also square integrable at
all times. Then, the Paley-Wiener theorem [40] tells us that
the spatial Fourier transform of δhTμνðt; xÞi, δhTμνðt; kÞi, is
an entire function of exponential type at most Rþ t, also
square-integrable along the real k-axis. We remind the
reader that an entire function fðzÞ is a function analytic
everywhere in the complex z-plane and that an entire
function of exponential type σ is an entire function obeying
the bound

jfðzÞj ≤ Ceσjzj; ∀ z ∈ C; C ∈ Rþ: ðA6Þ
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In the light of the Paley-Wiener theorem, and when the
spectral decomposition (A5) holds, property 1 follows by
contradiction: if the frequency ωðkÞ were entire, its Laurent
series expansion

ωðkÞ ¼
X∞
n¼1

wnkn ðA7Þ

would be convergent ∀ k ∈ C, and the bound (A6), as
applied to δhTμνðt; kÞi, would be violated. This result is in
line with the conclusions of Ref. [51]. Since ω⊥ is given by
a Taylor series in k2, while ω�

k are series in k, the only
possible exception to this behavior would be the case in
which ω⊥ ¼ 0, jω�

k j ∝ jkj, which corresponds precisely to
ideal hydrodynamics.
On the other hand, property 2 can be justified as follows: if

ωðkÞ had a pole, δhTμνðt; kÞi would develop an essential
singularity at the pole location, thus failing to be entire.
Furthermore, as argued in Ref. [51], for systems with a finite
number of modes, a pole in some dispersion relation entails
that the initial value problem does not have a unique solution.
A final consequence of property 2 is that nonhydrody-

namic modes must exist in a theory that respects relativistic
causality. These modes, which in principle could be absent
if the singularities in the hydrodynamic dispersion relations
were poles, appear naturally when analytically continuing
these functions past the branch cuts that are actually
present.

APPENDIX B: THE TEMPORAL FORMULATION
OF THE HYDRODYNAMIC GRADIENT

EXPANSION

Our objective in this Appendix is to provide a formulation
of the gradient-expanded constitutive relations in terms of
time derivatives. The elementary tensor structures this
gradient expansion is built upon are σij and πϵij; since we
are working in the Landau frame, there is no need to include
πuij, as the t-component of the conservation equation∂μTμν ¼
0 allows one to trade ∂iui by ∂tϵ. Hence, we write

Πij ¼ −Ãð∂tÞσij − B̃ð∂tÞπϵij; ðB1Þ

where

Ãð∂tÞ ¼
X∞
n¼0

ãn∂n
t ; ðB2Þ

and similarly for B̃ð∂tÞ.Here and in the rest of this section, the
tildes indicate quantities appearing in this temporal gradient
expansion.
A matching computation analogous to the one presented

in the main text allows one to express the transport
coefficients ãn and b̃n in terms of the hydrodynamic

dispersion relations k2⊥ðωÞ; k2kðωÞ of the microscopic

theory,

ãn ¼ sTinþ1½ωn�
�

ω

k2⊥ðωÞ
�
; ðB3Þ

b̃n ¼ in½ωn�
�
d − 1

d − 2

ω2 −
k2kðωÞ
d−1

k4kðωÞ
−

2ω2

k2kðωÞk2⊥ðωÞ
�
: ðB4Þ

By (7), the low-order transport coefficients in this formu-
lation are

ã0 ¼ η; ã1 ¼
sTθ1
2η

− ητπ; b̃0 ¼
θ1

ðd − 1Þη : ðB5Þ

While the hydrodynamic dispersion relations are typically
provided by expressing ω as a function of k, the formu-
lation we are considering here has also appeared before in
the literature (see Refs. [52,53] for a discussion in the
holographic context).
We observe that, unlike the purely spatial formulation,

the large-order behavior of the transport coefficients in the
temporal gradient expansion is not governed byωðkÞ but by
the functions appearing inside the parentheses in (B3) and
(B4). In cases where there are no branch points, these
functions have poles corresponding to nonhydrodynamic
modes at k ¼ 0, and hence the large-order behavior of the
transport coefficients will be controlled by the nonhydro-
dynamic mode frequency with the smallest absolute value
at k ¼ 0. This indicates that the natural condition for
convergence in this case relies on the support of the
solution in ω being below a certain ω̃�. One may be
tempted to translate this natural formulation from a con-
dition on support in ω to a condition on support in k for the
hydrodynamic fields. However, since this step relies on
using the dispersion relations, the final condition in k will
likely be nonuniversal and potentially not be expressible as
a single inequality. This points to the condition in ω being
the most natural formulation for the temporal expansion,
and we anticipate other natural conditions arising for other
expansions. We leave this issue for future work.
The above analysis is illustrated in the following

example for Müller-Israel-Stewart theory. The dispersion
relation k2⊥ðωÞ is given there by

k2⊥ðωÞ ¼
ωðiþ τπωÞ

D
; ðB6Þ

and therefore an ¼ ð−1Þnτnπη. Moreover, the sound channel
dispersion relation k2kðωÞ is such that b̃n ¼ 0 and hence, in

the temporal formulation, only σij appears in (B1). For the
shear channel, Eq. (B6) gives rise to a pole in the function
appearing in (B3) giving ω̃� ¼ 1=τπ . In this simple
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example, this can be straightforwardly converted into a
condition for support in k, jkmaxj < jk̃�j, where

jk̃�j ¼
1ffiffiffiffiffiffiffiffi
Dτπ

p : ðB7Þ

Note that this is proportional to, but distinct from, the
critical momentum k� arising in the purely spatial

expansion, given by (29). We can analogously define
ω�, which is distinct from ω̃�. For jkmaxj < jk̃�j, the
gradient expansion is convergent, but showing this is
subtle; unless the nonhydrodynamic mode present in the
system is initially turned off, the nth term in the gradient
expansion is not exponentially suppressed with the order
but rather decays as a power law. This is due to the fact that
the nonhydrodynamic mode evaluates to −iω̃� at k ¼ 0.
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