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Complete set of modes and the Hadamard function are constructed for a scalar field inside and outside a
sphere in (Dþ 1)-dimensional de Sitter spacetime foliated by negative constant curvature spaces. We
assume that the field obeys Robin boundary condition on the sphere. The contributions in the Hadamard
function induced by the sphere are explicitly separated and the vacuum expectation values (VEVs) of the
field squared and energy-momentum tensor are investigated for the hyperbolic vacuum. In the flat
spacetime limit the latter is reduced to the conformal vacuum in the Milne universe and is different from the
maximally symmetric Bunch-Davies vacuum state. The vacuum energy-momentum tensor has a nonzero
off-diagonal component that describes the energy flux in the radial direction. The latter is a purely sphere-
induced effect and is absent in the boundary-free geometry. Depending on the constant in Robin boundary
condition and also on the radial coordinate, the energy flux can be directed either from the sphere or
towards the sphere. At early stages of the cosmological expansion the effects of the spacetime curvature on
the sphere-induced VEVs are weak and the leading terms in the corresponding expansions coincide with
those for a sphere in the Milne universe. The influence of the gravitational field is essential at late stages of
the expansion. Depending on the field mass and the curvature coupling parameter, the decay of the sphere-
induced VEVs, as functions of the time coordinate, is monotonic or damping oscillatory. At large distances
from the sphere the falloff of the sphere-induced VEVs, as functions of the geodesic distance, is
exponential for both massless and massive fields.
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I. INTRODUCTION

The quantum field-theoretical effects in background of de
Sitter (dS) spacetime (for geometrical properties and coor-
dinate systems see, for instance, [1,2]) continue to be the
subject of active research. There are several motivations for
that. First of all, the high symmetry of dS spacetime allows
us to obtain closed analytic solutions in numerous physical
problems with important applications in cosmology of the
early Universe. On the basis of this, one can reveal the
features of the influence of gravitational fields on quantum
effects in more complicated geometries, including those
describing a more general class of cosmological models and
black hole physics. The most inflationary models for the
expansion of the early Universe are based on an approx-
imately dS geometry sourced by slowly evolving scalar
fields. The short period of the corresponding quasiexpo-
nential expansion provides a natural solution to a number of

problems in big bang cosmology [3,4]. An important effect
of the rapid expansion during the inflation is the magnifi-
cation of quantum fluctuations of fields, including those for
inflaton, tomacroscopic scales. The related inhomogeneities
in the distribution of the energy density act as seeds for
subsequent large-scale structure formation in the Universe.
This mechanism for the galaxy formation has been sup-
ported by the observational data on the temperature anisot-
ropies of the cosmic microwave background radiation.
Another important discovery based on those data, in
combination with observations of high redshift supernovae
and galaxy clusters, is the accelerated expansion of the
Universe at the present epoch. The observational data are
well approximated by the Lambda-cold dark matter model
with a positive cosmological constant responsible for the
accelerated expansion. The dS spacetime is the future
attractor of this model. In addition to the above, interesting
topics related to the physics in dS geometry are the string-
theoretical models of dS inflation and the holographic
duality between quantum gravity on dS spacetime and a
quantum field theory living on its timelike infinity (dS=CFT
correspondence, see [5–7] and references therein).
In the present paper we consider the effect of a spherical

boundary on dS bulk, foliated by negative constant
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curvature spaces, on the local properties of quantum
vacuum for a massive scalar field with general curvature
coupling parameter. The influence of the sphere originates
from the modification of the spectrum for the vacuum
fluctuations, induced by the boundary condition on the
field operator. This type of boundary-induced effects are
widely investigated in the literature for different bulk and
boundary geometries and are known under the general
name of the Casimir effect (see for reviews [8–12]). For
quantum fields in a given curved background, closed
analytic expressions for the characteristics of the vacuum
[such as the vacuum energy, the Casimir forces and vacuum
expectation values (VEVs) of the energy-momentum ten-
sor] are obtained for geometries with high symmetry. In
particular, motivated by radion stabilization and generation
of the cosmological constant on branes, the investigation of
boundary-induced quantum effects in anti–de Sitter space-
time has attracted a great deal of attention (see references
given in [13,14]).
The Casimir effect for planar boundaries in dS spacetime

has been discussed in [15–21] for scalar and electromag-
netic fields. It has been shown that the influence of the
gravitational field on the local characteristics of the vacuum
state is essential at distance from the boundaries larger than
the curvature radius of the background geometry. The
VEVs of the field squared and energy-momentum tensor
for scalar and electromagnetic fields induced by a cylin-
drical boundary in dS bulk have been investigated in
[22,23]. Another class of exactly solvable problems cor-
respond to spherical boundaries. The corresponding
Casimir densities were discussed in [24,25] for a con-
formally coupled massless scalar field and in [26] for a
massive field with general coupling to the curvature. In the
conformally coupled massless case the VEVs in the dS
spacetime are obtained from the corresponding results for a
spherical boundary in the Minkowski bulk by a conformal
transformation. By using the conformal relation between
dS (described in static coordinates) and Rindler spacetimes,
the vacuum densities for a more complicated boundary
have been studied in [27]. The VEVs in geometries with
spherical dS bubbles have been investigated in [28]. The
topological Casimir effect induced by toroidal compacti-
fication of a part of spatial dimensions and by the presence
of topological defects in locally dS spacetime was dis-
cussed in [29–37].
An important step to quantize fields in curved spacetimes

is the choice of a coordinate system and related complete
set of mode functions being solutions of the classical field
equations. In general, the different sets of mode functions
will lead to different Fock spaces, in particular, to inequi-
valent vacuum states. Awell-known example of this kind in
flat spacetime is the quantization of fields in Cartesian
coordinates, relevant for inertial observers, and in Rindler
coordinates, adapted for uniformly accelerated observers.
These two ways of quantization give rise to different

vacuum states, the Minkowski and Fulling-Rindler vacua
for inertial and uniformly accelerated observers, respec-
tively. In dS spacetime, depending on the specific physical
problem, different coordinate systems have been used. The
global coordinates, with spatial sections being spheres,
cover the whole dS spacetime. In planar (or inflationary)
coordinates the spatial sections are flat and they only cover
half of dS spacetime. These coordinates are the most
suitable for cosmological applications, in particular, in
models of inflation. Though the dS spacetime has timelike
isometries, the metric tensor in both the global and planar
coordinates is time dependent. The existence of time
isometries is explicit in static coordinates with time-
independent metric tensor. These coordinates are analog
of the Schwarzschild coordinates for black holes and cover
the region in dS spacetime accessible to a single observer.
They are well-adapted for discussions of thermal aspects of
dS spacetime. Another coordinate system with spatial
sections having constant negative curvature has been
employed in recent investigations of the entanglement
entropy in dS spacetime (see [38–42] and references
therein). These hyperbolic coordinates provide a natural
setup to discuss long range quantum correlations between
causally disconnected regions (L and R regions in the
discussion below) separated by another finite region
(region C below).
In the present paper we investigate the influence of a

spherical boundary on the vacuum fluctuations of a massive
scalar field in background of (Dþ 1)-dimensional dS
spacetime with negative curvature spatial foliation for
the general curvature coupling. The paper is organized
as follows. In Sec. II we describe the bulk and boundary
geometries and the boundary condition imposed on the
scalar field operator. The general form of the mode
functions is obtained by solving the field equation. In
Sec. III the mode functions are specified for the special case
of the hyperbolic vacuum. It is shown that the latter
coincides with the conformal vacuum. In Sec. IV the
Hadamard functions for the boundary-free geometry and
for the regions outside and inside a spherical boundary are
evaluated. The eigenvalues of the radial quantum number
are specified inside the spherical shell. The sphere-induced
contributions in the Hadamard function are separated
explicitly for both the exterior and interior regions. In
the case of the hyperbolic vacuum, representations for those
contributions, well adapted for the investigation of local
VEVs, are provided. The VEVs of the field squared inside
and outside a spherical shell are studied in Sec. V. The
results of numerical analysis are presented. The corre-
sponding investigations for the VEVs of the energy-
momentum tensor are presented in Sec. VI. The main
results of the paper are summarized in Sec. VII. In the
Appendix A the coordinates in different regions of the dS
spacetime, foliated by negative curvature spaces, and their
relations to the global and inflationary coordinates are
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discussed. In Appendix B the expression for the Hadamard
function in the boundary-free dS spacetime with negative
curvature spatial foliation is presented without specifying
the vacuum state.

II. PROBLEM SETUP AND THE
SCALAR MODES

We consider (Dþ 1)-dimensional dS spacetime with
negative curvature spatial foliation. The relations between
the coordinates realizing the foliation and the global
conformal coordinates ðηg; χ; ϑ;ϕÞ ¼ ðηg; χ; θ1;…θn;ϕÞ,
n ¼ D − 2, are discussed in Appendix A. Here, ðϑ;ϕÞ ¼
ðθ1;…θn;ϕÞ are the angular coordinates on a sphere SD−1.
The corresponding Penrose diagram, mapped on the square
ð0 ≤ ηg=α ≤ π; 0 ≤ χ ≤ πÞ, is presented in Fig. 1. The five
regions designated by LI, LII, RI, RII and C are separated
by the line segments ηg=α ¼ π=2� χ, ηg=α ¼ 3π=2 − χ,
ηg=α ¼ χ − π=2. In what follows the discussion will be
presented for the LI region defined by (A10). The corre-
sponding line element reads

ds2 ¼ dt2 − α2 sinh2 ðt=αÞðdr2 þ sinh2 rdΩ2
D−1Þ; ð2:1Þ

where 0 ≤ t < ∞, 0 ≤ r < ∞ and dΩ2
D−1 is the line

element on a sphere SD−1 with unit radius. The metric
tensors in the regions LII, RI, RII have similar forms. Note
that the radial coordinate r is dimensionless. The line
element (2.1) is conformally related to the line element of
static spacetime with negative constant curvature space. In
order to see that we introduce a new time coordinate η,
−∞ < η ≤ 0, in accordance with

eη=α ¼ tanh ðt=2αÞ: ð2:2Þ

The line element takes the form

ds2 ¼ dη2 − α2ðdr2 þ sinh2 rdΩ2
D−1Þ

sinh2 ðη=αÞ : ð2:3Þ

Note that we have the relations sinh ðη=αÞ ¼
−1= sinh ðt=αÞ and coth ðη=αÞ ¼ − cosh ðt=αÞ between
the conformal and synchronous time coordinates.
We are interested in effects of a spherical boundary with

radius r ¼ r0 on the local characteristics of the vacuum
state for a scalar field φðxÞ with curvature coupling
parameter ξ. The corresponding field equation has the form

ð∇μ∇μ þm2 þ ξRÞφ ¼ 0; ð2:4Þ

where ∇μ is the covariant derivative operator and the Ricci
scalar is given by R ¼ DðDþ 1Þ=α2. On the sphere the
field obeys the Robin boundary condition

ðA − δðjÞB∂rÞφðxÞ ¼ 0; r ¼ r0; ð2:5Þ

where j ¼ i and j ¼ e correspond to the interior (r ≤ r0)
and exterior (r ≥ r0) regions with δðiÞ ¼ 1 and δðeÞ ¼ −1. It
is of interest to have the radius of the sphere rI0 in
inflationary coordinates. By using the relations (A19),
we can see that

rI0=α ¼ coth r0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh−2r0 þ e−2tI=α

q
: ð2:6Þ

As seen, in inflationary coordinates the radius of the sphere
is time dependent. One has rI0 ¼ 0 for tI ¼ 0. With
increasing tI the radius rI0 increases and in the limit tI →
∞ it tends to the value limtI→∞rI0 ¼ α tanhðr0=2Þ.
The VEVs of the physical quantities bilinear in the field

operator are obtained from the two-point functions or their
derivatives in the coincidence limit of the arguments. As a
two-point function we will consider the Hadamard function
Gðx; x0Þ ¼ h0jφðxÞφðx0Þ þ φðx0ÞφðxÞj0i, where j0i stands
for the vacuum state and x ¼ ðt; r; ϑ;ϕÞ. For the evaluation
of the Hadamard function we will employ the mode sum
formula

Gðx; x0Þ ¼
X
σ

½φσðxÞφ�
σðx0Þ þ φσðx0Þφ�

σðxÞ�; ð2:7Þ

where fφσðxÞ;φ�
σðx0Þg is a complete set of solutions to

the classical field equation obeying the boundary condition
and the collective index σ specifies the quantum numbers.
The symbol

P
σ includes the summation over discrete

quantum numbers and the integration over the continuous
ones. Given the Hadamard function, the VEVs of the
field squared, h0jφ2ðxÞj0i≡ hφ2ðxÞi, and of the energy-
momentum tensor, h0jTikðxÞj0i≡ hTikðxÞi, are found in
the coincidence limit of the arguments as follows:

FIG. 1. The Penrose diagram for dS spacetime covered by the
coordinates corresponding to the negative curvature spatial
foliation.
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hφ2ðxÞi ¼ 1

2
lim
x0→x

Gðx; x0Þ;

hTikðxÞi ¼
1

2
lim
x0→x

∂i0∂kGðx; x0Þ þ
�
ξ −

1

4

�
gik∇p∇phφ2i

− ξ∇i∇khφ2i − ξRikhφ2i; ð2:8Þ

where Rik is the Ricci tensor. Of course, the expressions in
the right-hand sides diverge and a renormalization is
required. Here we are interested in the contributions to
the VEVs induced by the spherical boundary. In the
discussion below the corresponding contribution in the
Hadamard function will be extracted explicitly. The diver-
gences are determined by the local geometry and for points
away from the sphere they are the same in the problems
without and with spherical boundary. This means that for
those points the renormalization in (2.8) is reduced to the
one in the problem where the spherical boundary is absent.
As the first step we need to specify the mode functions

φσðxÞ. In accordance with the symmetry of the problem the
solution of the field equation (2.4) can be presented in the
form (for a discussion of the scalar field mode function in
D ¼ 3 dS spacetime with negative curvature spatial sec-
tions see also [43,44])

φðxÞ ¼ fðt=αÞgðrÞYðmp; ϑ;ϕÞ; ð2:9Þ

where Yðmp; ϑ;ϕÞ are hyperspherical harmonics of degree
l ¼ 0; 1; 2;…. For the set of quantum numbers mp one has
mp ¼ ðm0 ≡ l; m1;…; mnÞ, with m1; m2;…; mn being
integers such that −mn−1 ≤ mn ≤ mn−1 and

0 ≤ mn−1 ≤ mn−2 ≤ � � � ≤ m1 ≤ l: ð2:10Þ

The angular part in (2.9) obeys the equation

Δϑ;ϕYðmp; ϑ;ϕÞ ¼ −lðlþ nÞYðmp; ϑ;ϕÞ; ð2:11Þ

with Δϑ;ϕ being the Laplace operator on a unit sphere.
Substituting (2.9) into the field equation we get separate
equations for the functions fðt=αÞ and gðrÞ:

∂τ½sinhDτ∂τfðτÞ�
sinhDτ

þ
�
m2α2þξDðDþ1Þþ γ2

sinh2τ

�
fðτÞ¼ 0;

∂r½sinhD−1r∂rgðrÞ�
sinhD−1r

þ
�
γ2−

lðlþnÞ
sinh2r

�
gðrÞ¼ 0;

ð2:12Þ

where τ ¼ t=α and γ2 is the separation constant.
The equations (2.12) have the same structure and

the corresponding solutions are expressed in terms of the
associated Legendre functions Pμ

νðuÞ and Qμ
νðuÞ (for the

properties of the associated Legendre functions see
[45,46]). The solutions are presented in the form

fðτÞ ¼ Xiz
ν ðcosh τÞ

sinhðD−1Þ=2τ
;

gðrÞ ¼ Z−μ
iz−1=2ðcosh rÞ
sinhD=2−1r

; ð2:13Þ

with the functions

Xiz
ν ðyÞ ¼ d1P

iz
ν−1=2ðyÞ þ d2Q

iz
ν−1=2ðyÞ;

Z−μ
iz−1=2ðuÞ ¼ c1P

−μ
iz−1=2ðuÞ þ c2Q

−μ
iz−1=2ðuÞ; ð2:14Þ

and notations

μ ¼ lþD
2
− 1;

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

4
− ξDðDþ 1Þ −m2α2

r
: ð2:15Þ

The separation constant is expressed in terms of z as
γ2 ¼ z2 þ ðD − 1Þ2=4. The parameter ν can be either real
or purely imaginary.
On the base of (2.13), the mode functions are presented

in the form

φσðxÞ ¼
Xiz
ν ðcoshðt=αÞÞ

sinhðD−1Þ=2ðt=αÞ
Z−μ
iz−1=2ðcosh rÞ
sinhD=2−1r

Yðmp; ϑ;ϕÞ;

ð2:16Þ

where the set of quantum numbers is specified by
σ ¼ ðz;mpÞ. The coefficients c1, c2, d1, d2 in the linear
combinations of the associated Legendre functions are
determined by the choice of the vacuum state and by the
boundary and normalization conditions. The latter is
given by

Z
dDx

ffiffiffiffiffi
jgj

p
φσðxÞ∂

↔

tφ
�
σ0 ðxÞ ¼ iδσσ0 ; ð2:17Þ

where δσσ0 is understood as Kronecker delta for discrete
quantum numbers and Dirac delta function for continuous
ones. Note that we can also present the function Xiz

ν ðyÞ as a
linear combination of the functions P�iz

ν−1=2ðyÞ:

Xiz
ν ðyÞ ¼

X
j¼þ;−

bjP
jiz
ν−1=2ðyÞ: ð2:18Þ

By using the relation between the functions Qiz
ν−1=2ðyÞ and

P�iz
ν−1=2ðyÞ, for the corresponding coefficients one gets

bþ ¼ d1 −
iπe−πz

2 sinh ðπzÞ d2;

b− ¼ iπe−πz

2 sinh ðπzÞ
Γðνþ izþ 1=2Þ
Γðν − izþ 1=2Þ d2; ð2:19Þ
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where ΓðxÞ is the gamma function. Note that one has the
relation

P−iz
ν�−1=2ðyÞ ¼ P−iz

ν−1=2ðyÞ; ð2:20Þ

for both real and purely imaginary ν.
We impose an additional condition

WffðτÞ; f�ðτÞg ¼ fðτÞ∂τf�ðτÞ − ∂τfðτÞf�ðτÞ

¼ i
sinhD τ

; ð2:21Þ

on the function fðτÞ in (2.13), where Wff1ðτÞ; f2ðτÞg
stands for the Wronskian. This imposes a constraint on the
coefficients of the linear combination of the associated
Legendre functions in the expression for the function
Xiz
ν ðyÞ. In order to obtain that constraint it is convenient

to employ the representation (2.18). By using (2.20) and the
Wronskian

WfPiz
ν−1=2ðyÞ; P−iz

ν−1=2ðyÞg ¼ 2i
π

sinh ðπzÞ
y2 − 1

; ð2:22Þ

the following relation is obtained for the coefficients in
(2.18):

jbþj2 − jb−j2 ¼
π

2 sinh ðπzÞ : ð2:23Þ

In deriving this relation we have assumed that z is real. In
the case of purely imaginary z the condition (2.21) is
reduced to

bþb�− − b�þb− ¼ π

2 sinh ðπzÞ : ð2:24Þ

Having the condition (2.21) and by taking into account
the formula

Z
dΩYðmp; ϑ;ϕÞY�ðm0

p; ϑ;ϕÞ ¼ NðmpÞδmpm0
p

ð2:25Þ

for the integral over the angular coordinates, the normali-
zation condition (2.17) is written in terms of the radial
functions:

Z
duZ−μ

iz−1=2ðuÞ½Z−μ
iz0−1=2ðuÞ�� ¼

α1−D

NðmpÞ
δzz0 : ð2:26Þ

Here, the integration goes over the region ½1; cosh r0� for
the mode functions inside the sphere and over the region
½cosh r0;∞Þ for the exterior modes. The explicit expression
for NðmpÞ is not required in the following discussion and
can be found, for example, in [47].
An alternative representation of the time-dependent part

in the mode functions is obtained by using the relation

P�iz
ν−1=2ðcoshðt=αÞÞ ¼

ffiffiffiffiffiffiffiffi
2=π

p
eiνπQ−ν∓iz−1=2ðcothðt=αÞÞ

Γð1=2 − ν ∓ izÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðt=αÞp

ð2:27Þ

between the associated Legendre functions. For the func-
tion in (2.16) this gives

Xiz
ν ðcoshðt=αÞÞ¼

ffiffiffiffiffiffiffiffi
2=π

p
eiνπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinhðt=αÞp X
j¼þ;−

bjQ−ν
−jiz−1=2ðcothðt=αÞÞ
Γð1=2−ν−jizÞ :

ð2:28Þ

Equivalently, we can use the formula

eiπνQ−ν
�iz−1=2ðyÞ ¼ −

π

2 sinðπνÞ
�
P−ν
iz−1=2ðyÞ

−
Γð�iz − νþ 1=2Þ
Γð�izþ νþ 1=2ÞP

ν
iz−1=2ðyÞ

�
ð2:29Þ

in order to express the modes in terms of the functions
P�ν
iz−1=2ðyÞ,

Xiz
ν ðcoshðt=αÞÞ ¼

ffiffiffiffiffiffiffiffi
π=2

p
sin ðπνÞ

X
j¼þ;−

jcj
Pjν
iz−1=2ðcothðt=αÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinhðt=αÞp ;

ð2:30Þ

with the coefficients

c� ¼
X
j¼þ;−

bj
Γð1=2� ν − jizÞ : ð2:31Þ

III. VACUUM STATES

The coefficients in the linear combination (2.18) are
related by (2.23) and (2.24) for modes with real and purely
imaginary z, respectively. The remaining degree of freedom
is fixed by the choice of the vacuum state. In order to
discuss the vacuum states let us consider special and
limiting cases. For a conformally coupled massless scalar
field one has ξ ¼ ξD ¼ ðD − 1Þ=ð4DÞ and ν ¼ 1=2. For the
associated Legendre functions in the expressions of the
scalar modes we get

P�iz
0 ðcosh ðt=αÞÞ ¼ e∓izη=α

Γð1 ∓ izÞ ; ð3:1Þ

and, hence,

Xiz
1=2ðcosh ðt=αÞÞ ¼

X
j¼þ;−

bje−jizη=α

Γð1 − jizÞ ; ð3:2Þ
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where the conformal time η is defined by (2.2). The modes
realizing the conformal vacuum are related to the mode

functions φðstÞ
σ ðxÞ in static spacetime with a negative

constant curvature space [with the line element given by
the expression in the square brackets of (2.3)] by the

formula φσðxÞ ¼ Ωð1−DÞ=2φðstÞ
σ ðxÞ with the conformal fac-

tor Ω2 ¼ sinh−2 ðη=αÞ.
For a conformally coupled massless field the static

spacetime positive energy mode functions are expressed as

φðstÞ
σ ðxÞ ¼ Z−μ

iz−1=2ðcosh rÞ
sinhD=2−1 r

Yðmk;ϑ;ϕÞe−izη=α; ð3:3Þ

with the energy E ¼ z=α ≥ 0. Comparing (3.3) with (3.2),
we see that for the conformal vacuum the quantum number
z is real and b− ¼ 0. The other coefficient bþ is found from
the relation (2.23):

jbþj2 ¼
π

2 sinh ðzπÞ : ð3:4Þ

The corresponding mode functions in dS spacetime are
given by

φσðt; r;ϑ;ϕÞ ¼ sinh
D−1
2 ðjηj=αÞe−izη=α Z

−μ
iz−1=2ðcosh rÞ
sinhD=2−1 r

× Yðmp; ϑ;ϕÞ; ð3:5Þ

where we have used 1= sinhðt=αÞ ¼ − sinh ðη=αÞ and have
excluded the factor bþ=Γð1 − izÞ by redefining the coef-
ficients c1 and c2 in (2.14). For a massive field with general
curvature coupling the mode functions corresponding to the
conformal vacuum are obtained from (2.16) with b− ¼ 0
and bþ given by (3.4). The corresponding eigenvalues of
the quantum number z are real.
In order to discuss the adiabatic vacuumwe introduce the

function hðηÞ of the conformal time in accordance with
hðηÞ ¼ sinhðD−1Þ=2ðt=αÞfðt=αÞ, where the function t ¼
tðηÞ is given by (2.2). This function obeys the equation

∂2
ηhðηÞ þ ω2ðz; ηÞhðηÞ ¼ 0; ð3:6Þ

with time-dependent frequency

ωðz; ηÞ ¼ 1

α

�
z2 −

ν2 − 1=4
sinh2ðη=αÞ

�
1=2

: ð3:7Þ

From here it follows that the limit η → −∞ corresponds to
asymptotically static region (static in-region). In terms of
the proper time t this corresponds to the region t=α ≪ 1. In
the zeroth adiabatic order, for the modes realizing the in-
vacuum one has hð0ÞðηÞ ∼ e−izη=α, η → −∞. Let us consider
the behavior of the mode functions (2.16) in that region. By
using the asymptotics for the associated Legendre functions
one gets

Xiz
ν ðcoshðt=αÞÞ ≈

X
j¼þ;−

bje−jizη=α

Γð1 − jizÞ ; t=α ≪ 1: ð3:8Þ

From here it follows that for the mode functions that are
reduced to the positive energy modes in static spacetime we
should take b− ¼ 0 and, hence, the conformal and adiabatic
vacua coincide. The corresponding state is also known as
hyperbolic vacuum. Note that the latter is different from the
maximally symmetric Bunch-Davies vacuum state (for the
relation between the hyperbolic and Bunch-Davies vacua in
the special case of D ¼ 3 boundary-free dS spacetime see
also [43,44]).
Now let us consider the flat spacetime limit α → ∞. The

line element takes the form

ds2 ¼ dt2 − t2ðdr2 þ sinh2 rdΩ2
D−1Þ; ð3:9Þ

which corresponds to the Milne universe. In order to find
the limiting form of the scalar mode functions (2.16) we
note that in the limit under consideration ν ≈ imα and jνj is
large. We can use the relation

lim
α→∞

½ðmαÞ�izP∓iz
imα−1=2ðcoshðt=αÞÞ� ¼ J�izðmtÞ; ð3:10Þ

where JνðxÞ is the Bessel function. For the scalar modes

one gets limα→∞ φσðxÞ ¼ φðMilneÞ
σ ðxÞ, where the mode

functions in the Milne universe are given by

φðMilneÞ
σ ðxÞ ¼ c

b̃þJ−izðmtÞ þ b̃−JizðmtÞ
tðD−1Þ=2

P−μ
iz−1=2ðcosh rÞ
sinhD=2−1r

× Yðmp; ϑ;ϕÞ; ð3:11Þ

with jb̃jj ¼ jbjj and

jcj2 ¼ z sinhðπzÞ
πNðmpÞ

jΓðizþ μþ 1=2Þj: ð3:12Þ

These mode functions have been discussed in [48]. In the
Milne universe the conformal and adiabatic vacua are
different. The conformal vacuum corresponds to the special
case b̃− ¼ 0 with jb̃þj2 ¼ π=½2 sinh ðπzÞ� and for the
adiabatic vacuum in the Milne universe

b̃þ ¼
ffiffiffi
π

p
eπz=2

2 sinh ðπzÞ ; b̃− ¼ −b̃þe−πz: ð3:13Þ

For the adiabatic vacuum the time dependence in the
corresponding mode function (3.11) is expressed in terms

of the function tð1−DÞ=2Hð2Þ
iz ðmtÞ with the Hankel func-

tion Hð2Þ
iz ðxÞ.
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IV. HADAMARD FUNCTION

Having specified the general structure of the mode
functions we turn to the construction of the Hadamard
function in accordance with (2.7). The boundary-free,
exterior and interior geometries will be considered
separately.

A. Boundary-free geometry

We start with the problem where the sphere is absent.
For the modes regular at the origin r ¼ 0 one should take
c2 ¼ 0 in (2.14) and the corresponding mode functions take
the form

φð0Þ
σ ðxÞ ¼ C0

Xiz
ν ðcoshðt=αÞÞ

sinhðD−1Þ=2ðt=αÞ
P−μ
iz−1=2ðcosh rÞ
sinhD=2−1 r

Yðmp; ϑ;ϕÞ;

ð4:1Þ

with 0 ≤ r < ∞. The spectrum of the quantum number z is
continuous, 0 ≤ z < ∞, and in the right-hand side of the
normalization condition (2.26) we take δzz0 ¼ δðz − z0Þ

with the integration range u ∈ ½1;∞Þ. By using the
result

Z
∞

1

duP−μ
iz−1=2ðuÞP−μ

iz0−1=2ðuÞ¼
πδðz−z0Þ

z sinhðπzÞjΓðizþμþ1=2Þj2
ð4:2Þ

for the normalization coefficient one gets

jC0j2 ¼
z sinh ðπzÞ
πNðmpÞ

jΓðμþ izþ 1=2Þj2
αD−1 : ð4:3Þ

Substituting the mode functions (4.1) into the corre-
sponding mode sum formula (2.7) and by using the
addition theorem

X
mk

Yðmp;ϑ;ϕÞ
NðmpÞ

Y�ðmp;ϑ
0;ϕ0Þ ¼ 2lþn

nSD
Cn=2
l ðcosθÞ; ð4:4Þ

for spherical harmonics, for the Hadamard function in the
boundary-free geometry we find

G0ðx; x0Þ ¼
2α1−D

πnSD

X∞
l¼0

μCn=2
l ðcos θÞ

Z
∞

0

dz z sinh ðπzÞjΓðμþ izþ 1=2Þj2

×
Xiz
ν ðyÞ½Xiz

ν ðy0Þ�� þ Xiz
ν ðy0Þ½Xiz

ν ðyÞ��
½sinhðt=αÞ sinhðt0=αÞ�D−1

2

P−μ
iz−1=2ðuÞP−μ

iz−1=2ðu0Þ
ðsinh r sinh r0ÞD2−1 ; ð4:5Þ

with μ defined in (2.15) and

y ¼ coshðt=αÞ; y0 ¼ coshðt0=αÞ;
u ¼ cosh r; u0 ¼ cosh r0: ð4:6Þ

In this expression, SD ¼ 2πD=2=ΓðD=2Þ is the surface area
of the unit sphere in D-dimensional space, Cn=2

l ðcos θÞ is
the Gegenbauer polynomial and θ is the angle between the
directions determined by ðϑ;ϕÞ and ðϑ0;ϕ0Þ.
For the hyperbolic vacuum

Xiz
ν ðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2 sinh ðπzÞ
r

Piz
ν−1=2ðyÞ; ð4:7Þ

and the function (4.5) is reduced to

G0ðx;x0Þ¼
α1−D

nSD

X∞
l¼0

μCn=2
l ðcosθÞ

Z
∞

0

dzzjΓðμþ izþ1=2Þj2

×
P−μ
iz−1=2ðuÞP−μ

iz−1=2ðu0Þ
ðsinh r sinh r0ÞD2−1

×

P
j¼þ;−P

jiz
ν−1=2ðyÞP−jiz

ν−1=2ðy0Þ
½sinhðt=αÞsinhðt0=αÞ�D−1

2

: ð4:8Þ

The further transformation of the Hadamard function in the
boundary-free geometry is presented in Appendix B. In
particular, the corresponding expression for the hyperbolic
vacuum is obtained from (B3) with the function Xix

ν ðyÞ
from (4.7):

G0ðx; x0Þ ¼
α1−D

2ð2πÞD=2

Z
∞

0

dz z

����Γ
�
D − 1

2
þ iz

�����
2

×

P
j¼þ;−P

jiz
ν−1=2ðyÞP−jiz

ν−1=2ðy0Þ
½sinhðt=αÞ sinhðt0=αÞ�D−1

2

P1−D=2
iz−1=2ðūÞ

ðū2 − 1ÞD−2
4

;

ð4:9Þ

where

ū ¼ cosh r cosh r0 − sinh r sinh r0 cos θ: ð4:10Þ

In the limit α → ∞, by using the relation (3.10), from (4.9)
we obtain the Hadamard function for the conformal
vacuum in the Milne universe:
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GðMilneÞ
0 ðx; x0Þ ¼ ðtt0Þð1−DÞ=2

2ð2πÞD=2

Z
∞

0

dz z

����Γ
�
D − 1

2
þ iz

�����
2

×
P1−D=2
iz−1=2ðūÞ

ðū2 − 1ÞD−2
4

X
j¼þ;−

JjizðmtÞJ−jizðmt0Þ:

ð4:11Þ

It can be checked that this formula is obtained from the
corresponding expression in [48] by making use of the
addition theorem (B2).

B. Region outside the sphere

In the region outside the sphere, r > r0, the mode
functions have the form (2.16) where the function
Z−μ
iz−1=2ðuÞ is given by (2.14). For the exterior region it is

more convenient to take the linear combination of the
functions Q−μ

iz−1=2ðuÞ and Q−μ
−iz−1=2ðuÞ by using the relation

P−μ
iz−1=2ðuÞ ¼

ieiμπ

π sinh ðπzÞ
X
j¼þ;−

j cos ½πðμ − jizÞ�Q−μ
jiz−1=2ðuÞ:

ð4:12Þ

For the modes with real values of z the ratio of
the coefficients in that combination is determined by
the boundary condition (2.5) and is expressed as
−Q̄−μ

−iz−1=2ðu0Þ=Q̄−μ
iz−1=2ðu0Þ with

u0 ¼ cosh r0: ð4:13Þ

Here and below, for a given function FðuÞ, the notation
with bar is defined as

F̄ðuÞ ¼ ½BðuÞ∂u þ AðuÞ�FðuÞ; ð4:14Þ

where the functions AðuÞ and BðuÞ are expressed in terms
of the Robin coefficients:

AðuÞ ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 1

p
þ
�
D
2
− 1

�
δðjÞBu;

BðuÞ ¼ −δðjÞBðu2 − 1Þ: ð4:15Þ

Here, j ¼ e and j ¼ i for the regions outside and inside the
sphere, respectively, with δðeÞ ¼ −1 and δðiÞ ¼ 1. For the
corresponding scalar modes one obtains

φðeÞ
σ ðxÞ ¼ CðeÞ

Xiz
ν ðcoshðt=αÞÞ

sinhðD−1Þ=2ðt=αÞ
W−μ

iz ðcosh rÞ
sinhD=2−1 r

Yðmp; ϑ;ϕÞ;

ð4:16Þ

where we have defined the function

W−μ
iz ðuÞ ¼ Q̄−μ

iz−1=2ðu0ÞQ−μ
−iz−1=2ðuÞ

− Q̄−μ
−iz−1=2ðu0ÞQ−μ

iz−1=2ðuÞ: ð4:17Þ

Similar to the case of the boundary-free geometry, in the
exterior region the eigenvalues for z are continuous.
From (2.26) the following orthonormalization condition

is obtained in terms of the function (4.17):

jCðeÞj2
Z

∞

u0

duW−μ
iz ðuÞ½W−μ

iz0 ðuÞ�� ¼
δðz − z0Þ

αD−1NðmpÞ
: ð4:18Þ

The u-integral diverges in the upper limit for z ¼ z0 and,
hence, the contribution from the integration range with
large u dominates. So, in order to evaluate this integral, we
can replace the associated Legendre functions Q−μ

�iz−1=2ðuÞ
in (4.17) by their asymptotic expressions for large values of
the argument

Q−μ
�iz−1=2ðuÞ ≈

ffiffiffi
π

p
e−iμπ

Γð1=2� iz − μÞ
Γð1� izÞ

e∓iz ln ð2uÞffiffiffiffiffiffi
2u

p : ð4:19Þ

This leads to the following result:

jCðeÞj2 ¼
zjΓð1=2þ iz − μÞQ̄−μ

iz−1=2ðu0Þj−2
παD−1NðmpÞ sinh ðπzÞ

; ð4:20Þ

which is for the normalization coefficient.
With the mode functions (4.16), from the mode sum

formula (2.7), by using the addition theorem (4.4), the
following representation is obtained for the Hadamard
function in the exterior region:

Gðx;x0Þ ¼ 2α1−D

πnSD

ðsinh r sinh r0Þ1−D
2

½sinhðt=αÞ sinhðt0=αÞ�D−1
2

X∞
l¼0

μCn=2
l ðcosθÞ

Z
∞

0

dzz
Xiz
ν ðyÞW−μ

iz ðuÞ½Xiz
ν ðy0ÞW−μ

iz ðu0Þ�� þ fðy;uÞ⇄ ðy0; u0Þg
sinh ðπzÞjΓð1=2þ iz− μÞj2jQ̄−μ

iz−1=2ðu0Þj2
:

ð4:21Þ

We can also write this expression in terms of the function

Y−μ
iz−1=2ðuÞ ¼ Q̄−μ

iz−1=2ðu0ÞP−μ
iz−1=2ðuÞ − P̄−μ

iz−1=2ðu0ÞQ−μ
iz−1=2ðuÞ; ð4:22Þ

by using the relation
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W−μ
iz ðuÞ ¼

iπe−iμπ sinh ðπzÞ
cos ½πðμþ izÞ� Y−μ

iz−1=2ðuÞ: ð4:23Þ

The corresponding expression takes the form

Gðx; x0Þ ¼ 2α1−D

πnSD

X∞
l¼0

μCn=2
l ðcos θÞ

Z
∞

0

dz z sinh ðπzÞ jΓðμþ izþ 1=2Þj2
jQ̄−μ

iz−1=2ðu0Þj2

×
Xiz
ν ðyÞY−μ

iz−1=2ðuÞ½Xiz
ν ðy0ÞY−μ

iz−1=2ðu0Þ�� þ fðy; uÞ ⇄ ðy0; u0Þg
½sinhðt=αÞ sinhðt0=αÞ�D−1

2 ðsinh r sinh r0ÞD2−1 : ð4:24Þ

Depending on the ratio of the coefficients in the Robin
boundary condition, in addition to the modes with real z,
one can have exterior modes with purely imaginary
z ¼ �iχ, χ > 0. The radial dependence of the correspond-
ing normalizable mode functions is expressed in terms of
the function Q−μ

χ−1=2ðuÞ= sinhD=2−1 r and they correspond to
bound states. From the boundary condition (2.5) we get the
equation Q̄−μ

χ−1=2ðu0Þ ¼ 0 that determines the eigenvalues
for χ. As it has been already discussed in [49], one has a

critical value βðeÞl ðu0Þ for the ratio β ¼ A=B such that there

are no roots for this equation in the range β ≤ βðeÞl ðu0Þ and a
single root exists in the region β > βðeÞl ðu0Þ. In [49] it has

been shown that βðeÞl ðu0Þ is an increasing function of l and a
decreasing function of u0. In addition, we have

βðeÞl ðu0Þ ≥ ðD − 1Þ=2. For the hyperbolic vacuum the
corresponding function Xiz

ν ðyÞ is given by (4.7) and the
allowed values for z are real. In order to exclude the modes

with z ¼ �iχ, it will be assumed that β ≤ βðeÞ0 ðu0Þ. Note
that the Neumann boundary condition (β ¼ 0) belongs to
this range. In the special case D ¼ 3, by using

Q−1=2
χ−1=2ðu0Þ ¼ −i

ffiffiffiffiffiffiffiffi
π=2

p
e−χr0

χ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh r0

p ; ð4:25Þ

for the bound state corresponding to the mode l ¼ 0we get

χ ¼ β − coth r0. From here it follows that βðeÞ0 ðu0Þ ¼
coth r0 for D ¼ 3.
We are interested in the effects of the sphere on the

properties of the hyperbolic vacuum. The corresponding
Hadamard function outside the sphere is given by (4.24)
with the function (4.7). By taking into account the
expression (4.8) for the boundary-free geometry, the
corresponding sphere-induced contribution Gsðx; x0Þ ¼
Gðx; x0Þ −G0ðx; x0Þ is presented as

Gsðx; x0Þ ¼
α1−D

nSD

X∞
l¼0

μCn=2
l ðcos θÞ

Z
∞

0

dz zjΓðμþ izþ 1=2Þj2

×
Piz
ν−1=2ðyÞP−iz

ν−1=2ðy0ÞU−μ
iz−1=2ðu; u0Þ þ fðy; uÞ ⇄ ðy0; u0Þg

½sinhðt=αÞ sinhðt0=αÞ�D−1
2 ðsinh r sinh r0ÞD2−1 ; ð4:26Þ

with the notation

U−μ
iz−1=2ðu; u0Þ ¼

Y−μ
iz−1=2ðuÞ½Y−μ

iz−1=2ðu0Þ��
jQ̄−μ

iz−1=2ðu0Þj2
− P−μ

iz−1=2ðuÞP−μ
iz−1=2ðu0Þ: ð4:27Þ

For the further transformation of the function (4.26) it is convenient to use the relation

U−μ
iz−1=2ðu; u0Þ ¼

−ieiμπ

π sinh ðπzÞ
X
j¼þ;−

j cos ½πðμ − jizÞ� P̄
−μ
iz−1=2ðu0Þ

Q̄−μ
jiz−1=2ðu0Þ

Q−μ
jiz−1=2ðuÞQ−μ

jiz−1=2ðu0Þ: ð4:28Þ

The term with j ¼ − (j ¼ þ) exponentially decreases in the upper (lower) half-plane of the complex variable z in the limit
Im z → þ∞ (Im z → −∞). On the base of these properties, in (4.26), with the substitution (4.28), we can rotate the contour
of the integration in the complex plane z by the angles π=2 and −π=2 for the terms with j ¼ − and j ¼ þ, respectively. This
leads to the representation
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Gsðx; x0Þ ¼ −
2α1−D

nSD

X∞
l¼0

μCn=2
l ðcos θÞ

Z
∞

0

dz
ze−iμπ

sin ðπzÞ
P̄−μ
z−1=2ðu0Þ

Q̄μ
z−1=2ðu0Þ

×
Qμ

z−1=2ðuÞQμ
z−1=2ðu0Þ

ðsinh r sinh r0ÞD2−1
P

j¼þ;−P
−jz
ν−1=2ðyÞPjz

ν−1=2ðy0Þ
½sinhðt=αÞ sinhðt0=αÞ�D−1

2

: ð4:29Þ

Hence, the Hadamard function in the region outside the
sphere is presented as

Gðx; x0Þ ¼ G0ðx; x0Þ þGsðx; x0Þ; ð4:30Þ

where the boundary-free contribution for the hyperbolic
vacuum is given by (4.9). In the flat spacetime limit,
corresponding to α → ∞, by using the relation

lim
α→∞

½P−jz
ν−1=2ðyÞPjz

ν−1=2ðy0Þ� ¼ JjzðmtÞJ−jzðmt0Þ; ð4:31Þ

from (4.29) the boundary-induced Hadamard function is
obtained outside the sphere in the Milne universe [48].

C. Hadamard function inside the sphere

For the interior region, r < r0, the regularity condition at
the sphere center fixes c2 ¼ 0 in (2.14). The corresponding
mode functions are expressed as

φðiÞ
σ ðt; r; ϑ;ϕÞ ¼ CðiÞ

Xiz
ν ðcoshðt=αÞÞ

sinhðD−1Þ=2ðt=αÞ
P−μ
iz−1=2ðcosh rÞ
sinhD=2−1r

× Yðmp; ϑ;ϕÞ: ð4:32Þ

From the boundary condition (2.5) with j ¼ i we obtain the
equation that determines the allowed values of the quantum
number z:

P̄−μ
iz−1=2ðu0Þ ¼ 0; ð4:33Þ

with u0 defined by (4.13). For the region under consid-
eration the notation with bar in (4.33) is defined by (4.14)
where now δðjÞ ¼ δðiÞ ¼ 1 in (4.15). Hence, unlike the
exterior region, inside the sphere the eigenvalues of z form
a discrete set. The positive solutions of the eigenvalue
equation (4.33) we will denote as z ¼ zk, k ¼ 1; 2;…,
assuming that zkþ1 > zk. These solutions do not depend on

the curvature coupling parameter and on the field mass. In
the special case D ¼ 3, by taking into account that

P−1=2
iz−1=2ðu0Þ ¼

ffiffiffi
2

π

r
sin ðzr0Þ
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh r0

p ; ð4:34Þ

the eigenvalue equation for the mode l ¼ 0 is simplified to

ðβ þ coth r0Þ sin ðzr0Þ=z ¼ cos ðzr0Þ; ð4:35Þ
with the notation β ¼ A=B.
The normalization coefficientCðiÞ in (4.32) is determined

by the condition (2.26) with Z−μ
iz−1=2ðuÞ ¼ CðiÞP

−μ
iz−1=2ðuÞ,

z ¼ zk, where the integration goes over the region ½1; u0�
and in the right-hand side δzz0 ¼ δkk0 . The corresponding
procedure is similar to that considered in [49]. By using the
integral
Z

u0

1

du½Pμ
iz−1=2ðuÞ�2 ¼

u20 − 1

2z
½∂zP

−μ
iz−1=2ðu0Þ∂uP

−μ
iz−1=2ðu0Þ

− P−μ
iz−1=2ðu0Þ∂z∂uP

−μ
iz−1=2ðu0Þ�;

ð4:36Þ
and the eigenvalue equation (4.33), we can show that

jCðiÞj2 ¼
2α1−Deiμπz
πNðmpÞ

jΓðμþ izþ 1=2Þj2Tμðz; u0Þ; ð4:37Þ

with z ¼ zk. Here we have introduced the notation

Tμðz; uÞ ¼
Q̄−μ

iz−1=2ðuÞ
∂zP̄

−μ
iz−1=2ðuÞ

cos ½πðμ − izÞ�: ð4:38Þ

With (4.37), the scalar mode functions inside the sphere are
completely determined. Substituting the modes (4.32) into
the mode sum (2.7) and making use of (4.4), the Hadamard
function inside the sphere is presented in the form

Gðx; x0Þ ¼ 4α1−D

πnSD

X∞
l¼0

μCn=2
l ðcos θÞeiμπ

X∞
k¼1

Tμðz; u0ÞzjΓðμþ izþ 1=2Þj2

×
Xiz
ν ðyÞ½Xiz

ν ðy0Þ�� þ Xiz
ν ðy0Þ½Xiz

ν ðyÞ��
½sinhðt=αÞ sinhðt0=αÞ�D−1

2

P−μ
iz−1=2ðuÞP−μ

iz−1=2ðu0Þ
ðsinh r sinh r0ÞD2−1

����
z¼zk

: ð4:39Þ
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As in the previous discussion for the exterior region, we
will assume that the field is prepared in the hyperbolic
vacuum state with the function (4.7). It has been already
emphasized that for the hyperbolic vacuum the eigenvalues
of the quantum number z are real. However, depending on
the ratio β ¼ A=B, the eigenvalue equation (4.33) may have
purely imaginary roots. The conditions for the presence of
those roots have been specified in [49]. For given values of
u0 and l there exists a critical value of β, denoted here by

βðiÞl ðu0Þ, such that all the roots are real for β ≤ βðiÞl ðu0Þ and a
pair of purely imaginary roots z� ¼ �ijz�j appears for

β > βðiÞl ðu0Þ. For the critical value one has βðiÞl ðu0Þ >
−ðD − 1Þ=2 and it is an increasing function of l and a

decreasing function of u0. For the critical values of the
Robin coefficient in the exterior and interior regions one

has the relation βðeÞl ðu0Þ > βðiÞl ðu0Þ. In the case D ¼ 3 from
(4.35) we get

βðiÞ0 ðu0Þ ¼
1

r0
− coth r0: ð4:40Þ

In the discussion below, for the interior region we will

assume the values of β in the range β ≤ βðiÞ0 ðu0Þ, where all
the roots of the equation (4.33) are real.
For the Hadamard function corresponding to the hyper-

bolic vacuum we get the representation

Gðx; x0Þ ¼ 2α1−D

nSD

X∞
l¼0

μCn=2
l ðcos θÞeiμπ

X∞
k¼1

zTμðz; u0Þ
jΓðμþ izþ 1=2Þj2

sinh ðπzÞ

×
P−μ
iz−1=2ðuÞP−μ

iz−1=2ðu0Þ
ðsinh r sinh r0ÞD2−1

P
j¼þ;−P

jiz
ν−1=2ðyÞP−jiz

ν−1=2ðy0Þ
½sinhðt=αÞ sinhðt0=αÞ�D−1

2

����
z¼zk

; ð4:41Þ

where the relation (2.20) has been used. The summation in this formula goes over the eigenvalues zk that are defined
implicitly, as roots of the equation (4.33). A more convenient representation is found by using the formula [48]

X∞
k¼1

Tμðzk; wÞhðzkÞ ¼
e−iμπ

2

Z
∞

0

dx sinh ðπxÞhðxÞ þ
X
k

cos ½πðμ − xkÞ�
Q̄−μ

xk−1=2ðwÞ
P̄−μ
xk−1=2ðwÞ

X
j¼þ;−

Resz¼jixkhðzÞ

−
1

2π

Z
∞

0

dx
Q̄−μ

x−1=2ðwÞ
P̄−μ
x−1=2ðwÞ

cos ½πðx − μÞ�
X
j¼þ;−

hðxejπi=2Þ; ð4:42Þ

with a function hðzÞ analytic in the half-plane Re z > 0. In (4.42), the points�ixk are possible poles of the function hðzÞ on
the imaginary axis. In the presence of these poles, it is assumed that the last integral is convergent in the sense of the
principal value. The corresponding formula in the case when the poles on the imaginary axis are absent has been derived in
[49,50] by using the generalized Abel-Plana formula [51]. Additional conditions on the function hðzÞ can be found in those
references. The function hðzÞ corresponding to the representation (4.41) of the Hadamard function is real for real values of z
and is expressed as

hðzÞ ¼ z
Γðμþ izþ 1=2Þ

sinh ðπzÞ Γðμ − izþ 1=2ÞP−μ
iz−1=2ðuÞP−μ

iz−1=2ðu0Þ
X
j¼þ;−

Pjiz
ν−1=2ðyÞP−jiz

ν−1=2ðy0Þ: ð4:43Þ

It is an even function of z and has simple poles at z ¼ �ixk ¼ �iπkwith k ¼ 1; 2;…. In this special case the residue term in
the right-hand side of (4.42) vanishes. Note that the poles coming from the gamma function in the integrand of the last
integral are canceled by the zeros of the function cos ½πðx − μÞ�.
The contribution to the Hadamard function coming from the first term in the right-hand side of (4.42) gives the

corresponding function in the boundary-free geometry and the Hadamard function inside the sphere is decomposed as
(4.30). The sphere-induced part comes from the last integral in (4.42) and is given by the expression

Gsðx; x0Þ ¼ −
2α1−D

nSD

X∞
l¼0

μCn=2
l ðcos θÞ

Z
∞

0

dz
ze−iμπ

sin ðπzÞ
Q̄μ

z−1=2ðu0Þ
P̄−μ
z−1=2ðu0Þ

×
P−μ
z−1=2ðuÞP−μ

z−1=2ðu0Þ
ðsinh r sinh r0ÞD2−1

P
j¼þ;−P

jz
ν−1=2ðyÞP−jz

ν−1=2ðy0Þ
½sinhðt=αÞ sinhðt0=αÞ�D−1

2

; ð4:44Þ
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with r; r0 < r0. Here, for the transformation of the inte-
grand, the relation

Γðμþ zþ 1=2ÞΓðμ − zþ 1=2ÞQ−μ
z−1=2ðu0Þ

¼ π
e−2iμπQμ

z−1=2ðu0Þ
cos ½πðμ − zÞ� ð4:45Þ

has been used. By taking into account the asymptotics of
the functions P−μ

z−1=2ðuÞ, Qμ
z−1=2ðuÞ, P�z

ν−1=2ðyÞ (see, for
instance, [46]) it can be seen that for large values of z
the integrand in (4.44) behaves as ez½rþr0þjη0−ηj=α−2r0�=z.
From here it follows that the representation (4.44) is valid
in the range rþ r0 þ jη0 − ηj=α < 2r0. We recall that the
integral in (4.44) is understood in the sense of the principal
value. Comparing with (4.29), we see that the sphere-
induced contributions inside and outside the sphere are
obtained from each other by the replacements

Qμ
z−1=2ðwÞ ⇄ P−μ

z−1=2ðwÞ; w ¼ u; u0; ð4:46Þ

of the associated Legendre functions.
In the limit r0 → ∞ for the associated Legendre func-

tions in the integrand of (4.44) one has the asymptotics

P−μ
x−1=2ðu0Þ ∼

x−μ−1=2er0xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sinh r0

p ;

Q−μ
x−1=2ðu0Þ ∼

πeiμπx−μ−1=2e−r0xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sinh r0

p : ð4:47Þ

From here it follows that in that limit, as expected, the part
Gsðx; x0Þ tends to zero. In the limit of large curvature radius
for the background spacetime, by making use of (4.31), the
sphere-induced contribution (4.44) is reduced to the cor-
responding two-point function inside the sphere in the
Milne universe, given in [48].

V. VEV OF THE FIELD SQUARED

We start the consideration of the local characteristics of
the vacuum state from the VEV of the field squared. By
using (2.8) and (4.30), the VEV is presented in the
decomposed form

hφ2i ¼ hφ2i0 þ hφ2is; ð5:1Þ

where hφ2i0 is the VEV in the boundary-free geometry and
hφ2is ¼ limx0→x Gsðx; x0Þ=2 is the contribution induced by
the sphere. For the part depending on the angular coor-
dinates one has limx0→x 2μC

n=2
l ðcos θÞ ¼ Dl, where

Dl ¼
ð2lþ nÞΓðlþ nÞ

l!Γðnþ 1Þ ð5:2Þ

determines the degeneracy of the angular mode with fixed l.
We consider the properties of the VEVs outside and inside
the sphere separately.

A. Interior region

For the region inside the sphere from (4.44) we get

hφ2is¼−
α1−Dsinh2−Dr

SD sinhD−1ðt=αÞ
X∞
l¼0

Dl

Z
∞

0

dx
xe−iμπ

sinðπxÞ

×
Q̄μ

x−1=2ðu0Þ
P̄−μ
x−1=2ðu0Þ

Px
ν−1=2ðyÞP−x

ν−1=2ðyÞ½P−μ
x−1=2ðuÞ�2: ð5:3Þ

As it has been already mentioned, for r < r0 (u < u0), the
renormalization is required for the part hφ2i0 only. The
integral in (5.3) (understood in the sense of the principal
value) can be presented in the form where the integrand has
no poles. That is done by using the formula (see [48])

Z
∞

0

dx
fðxÞ

sinðπxÞ¼
2

π

X0∞

k¼0

ð−1Þk
Z

∞

0

dx
xfðxÞ−kfðkÞ

x2−k2
; ð5:4Þ

where the prime on the sign of summation means that the
term k ¼ 0 is taken with an additional coefficient 1=2. This
replacement is convenient in the numerical evaluations of
the sphere-induced VEVs. In the flat spacetime limit,
corresponding to α → ∞, by using the relation (4.31) with
t0 ¼ t, from (5.3) the VEVof the field squared is obtained
inside a sphere in background of the Milne universe [48].
For a conformally coupled massless field one has ν ¼

1=2 and, by using (3.1) with z ¼ ix, we get

hφ2is ¼
hφ2iðstÞs

sinhD−1ðt=αÞ ; ð5:5Þ

where

hφ2iðstÞs ¼ −
α1−D

πSD

X∞
l¼0

e−iμπDl

Z
∞

0

dx

×
Q̄μ

x−1=2ðu0Þ
P̄−μ
x−1=2ðu0Þ

½P−μ
x−1=2ðuÞ�2
sinhD−2r

; ð5:6Þ

is the VEV for a massless conformally coupled scalar field
induced by a sphere with radius r0 in a static negative
constant curvature space with the curvature radius α (see
[49]). Equation (5.5) is the standard relation between two
conformally related problems.
The general formula (5.3) is rather complicated and in

order to clarify the behavior of the sphere-induced VEV we
consider asymptotic regions of the parameters. We start
with the region t=α ≪ 1. In this region the argument of the
functions P�x

ν−1=2ðyÞ in the integrand of (5.3) is close to 1
and for σ ≠ 1; 2;… we use the asymptotic formula
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Pσ
ρðyÞ ≈

1

Γð1 − σÞ
�

2

y − 1

�
σ=2

; 0 < y − 1 ≪ 1: ð5:7Þ

For the time-dependent part in (5.3) this gives

Px
ν−1=2ðyÞP−x

ν−1=2ðyÞ
αD−1sinhD−1ðt=αÞ ≈

sin ðπxÞ
πxtD−1 : ð5:8Þ

Substituting this into (5.3), to the leading order we get

hφ2is≈−
t1−D

πSD

X∞
l¼0

e−iμπDl

Z
∞

0

dx
Q̄μ

x−1=2ðu0Þ
P̄−μ
x−1=2ðu0Þ

½P−μ
x−1=2ðuÞ�2
sinhD−2r

:

ð5:9Þ

The expression in the right-hand side coincides with the
VEV of the field squared for the conformal vacuum of a
massless scalar field in the Milne universe [48]. Of course,
this result is natural, because, for a given t, the limit under
consideration corresponds to large values of the curvature
radius α and the effects of gravity are weak. Comparing
(5.9) with (5.6), we see that in the limit t=α ≪ 1 one has the

relation hφ2is ≈ ðα=tÞD−1hφ2iðstÞs with hφ2iðstÞs being the
corresponding VEV for a conformally coupled massless
field in static spacetime with negative constant curva-
ture space.
The late stages of the expansion correspond to the

opposite limit t=α ≫ 1 and the argument of the functions
P�x
ν−1=2ðyÞ is large. In this case we use the asymptotic

Pσ
ν−1=2ðyÞ ≈

ΓðνÞð2yÞν−1=2
π1=2Γðν − σ þ 1=2Þ ; ð5:10Þ

with ν > 0 and σ − νþ 1=2 ≠ 1; 2;…. For the sphere-
induced VEV this gives

hφ2is≈−
2D−1Γ2ðνÞe−ðD−2νÞt=α

παD−1SDsinhD−2r

X∞
l¼0

Dl

Z
∞

0

dx
xe−iμπ

sinðπxÞ

×
Q̄μ

x−1=2ðu0Þ
P̄−μ
x−1=2ðu0Þ

½P−μ
x−1=2ðuÞ�2

Γðν−xþ1=2ÞΓðνþxþ1=2Þ : ð5:11Þ

For ν ¼ 0 by using the asymptotic expression of the
function Px

−1=2ðyÞ for large y one gets

Px
−1=2ðyÞP−x

−1=2ðyÞ ≈
2 cos ðπxÞ

π2y
ln2y: ð5:12Þ

With this result from (5.3) we obtain

hφ2is ≈ −
2Dþ1t2e−Dt=α

π2sinhD−2r

X∞
l¼0

e−iμπDl

SDαDþ1

×
Z

∞

0

dx x cot ðπxÞ Q̄
μ
x−1=2ðu0Þ

P̄−μ
x−1=2ðu0Þ

½P−μ
x−1=2ðuÞ�2;

ð5:13Þ
for t=α ≫ 1. In the same limit and for imaginary values of ν
we need the asymptotic of the function Pσ

ρðyÞ for large
values of y and for Re ρ ¼ −1=2, Im ρ > 0. In [46] the
asymptotics are given for Re ρ ¼ −1=2. In order to find the
required estimate we use the asymptotic formula

Qx
ρðyÞ ≈

ffiffiffi
π

p
eixπΓðρþ xþ 1Þ

Γðρþ 3=2Þð2yÞρþ1
: ð5:14Þ

The asymptotic expression for the function Px
ρðyÞ is

obtained by using the formula that relates this function
with the functions Qx

ρðyÞ and Qx
−ρ−1ðyÞ. In this way we can

see that for large y

P�x
ρ ðyÞ ≈ 2ffiffiffi

π
p Re

�
Γðρþ 1=2Þð2yÞρ
Γðρ ∓ xþ 1Þ

�
: ð5:15Þ

By using this result in (5.3), for t=α ≫ 1 and ν ¼ ijνj
one gets

hφ2is ≈ −
2Dα1−De−Dt=α

πSDsinhD−2r

X∞
l¼0

Dl

Z
∞

0

dx
xe−iμπ

sin ðπxÞ
Q̄μ

x−1=2ðu0Þ
P̄−μ
x−1=2ðu0Þ

× ½P−μ
x−1=2ðuÞ�2

�
coth ðπjνjÞ

jνj cos ðπxÞ þ BνðxÞ cos ½ϕðt; xÞ�
	
; ð5:16Þ

where we have introduced the notation

ϕðt; xÞ ¼ 2jνjt=αþ ϕνðxÞ: ð5:17Þ

The functions BνðxÞ > 0 and ϕνðxÞ are defined by the
relation

BνðxÞeiϕνðxÞ ¼ Γ2ðνÞ
Γð1=2þ xþ νÞΓð1=2 − xþ νÞ : ð5:18Þ

In this case one has an oscillatory damping behavior.
Now let us consider the asymptotic regions with respect

to the radial coordinate. For points near the sphere center
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one has r ≪ 1 and the argument of the function P−μ
x−1=2ðuÞ

is close to 1. By using the asymptotic relation (5.7) we can
see that the contribution of term with a given l to the VEV
(5.3) is of the order rl. The dominant contribution comes
from the l ¼ 0 mode with the leading term

hφ2is ≈ −
e−iπðD=2−1Þð2αÞ1−D

πD=2ΓðD=2ÞsinhD−1ðt=αÞ

×
Z

∞

0

dx
x

sin ðπxÞ
Q̄D=2−1

x−1=2 ðu0Þ
P̄1−D=2
x−1=2 ðu0Þ

Px
ν−1=2ðyÞP−x

ν−1=2ðyÞ:

ð5:19Þ

Note that in the special case D ¼ 3, for a non-Dirichlet
boundary condition (i.e., B ≠ 0), this expression is further
simplified as

hφ2is ≈−
sinh−2ðt=αÞ

2πα2

Z
∞

0

dx
x2Px

ν0−1=2ðyÞP−x
ν0−1=2ðyÞ

sinðπxÞ


β−xþcothr0
βþxþcothr0

e2xr0 − 1
� ;

ð5:20Þ

where we have used the notation

ν0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−m2α2 − 12ξ

r
: ð5:21Þ

In the same spatial dimension and for the Dirichlet
boundary condition near the sphere center one gets

hφ2is ≈ −
sinh−2ðt=αÞ

2πα2

Z
∞

0

dx
x2Px

ν0−1=2ðyÞP−x
ν0−1=2ðyÞ

sin ðπxÞðe2xr0 − 1Þ :

ð5:22Þ

The boundary-induced contribution (5.3) diverges on the
sphere. For points near the sphere the dominant contribu-
tion to the integral comes from large values of x. By using
the asymptotic expressions for the functions P�x

ν−1=2ðyÞ [46]
it can be seen that

Px
ν−1=2ðyÞP−x

ν−1=2ðyÞ ≈
sin ðπxÞ

πx
; x ≫ 1: ð5:23Þ

Substituting this into (5.3), to the leading order we get

hφ2is ≈
hφ2iðstÞs

sinhD−1ðt=αÞ ; ð5:24Þ

where hφ2iðstÞs is given by (5.6). Taking the near-sphere

asymptotic for hφ2iðstÞs from [49], we find the leading order
term in the corresponding asymptotic expansion for (5.3):

hφ2is ≈
ð1 − 2δ0BÞΓððD − 1Þ=2Þ

ð4πÞðDþ1Þ=2½α sinh ðt=αÞðr0 − rÞ�D−1 : ð5:25Þ

Note that α sinh ðt=αÞðr0 − rÞ is the proper distance from
the sphere. The leading term (5.25) coincides with the
corresponding term for a sphere in Minkowski spacetime
with the distance from the sphere replaced by the proper
distance. As seen from (5.24), near the sphere the
boundary-induced VEV is negative for Dirichlet boundary
condition and positive for non-Dirichlet boundary condi-
tions. From the problem symmetry we expect the renor-
malized VEV hφ2i0 for the boundary-free geometry will
depend on the time coordinate only and near the sphere the
total VEV is dominated by the sphere-induced part.

B. Exterior region

Similar to the interior region, the VEV of the field
squared outside the sphere is decomposed into the boun-
dary-free and sphere-induced contributions [see (5.1)]. For
points r > r0 the latter is directly obtained from (4.29) in
the coincidence limit x0 → x and is expressed as

hφ2is ¼ −
α1−Dsinh2−Dr
SDsinhD−1ðt=αÞ

X∞
l¼0

Dl

Z
∞

0

dx
xe−iμπ

sin ðπxÞ

×
P̄−μ
x−1=2ðu0Þ

Q̄μ
x−1=2ðu0Þ

Px
ν−1=2ðyÞP−x

ν−1=2ðyÞ½Qμ
x−1=2ðuÞ�2:

ð5:26Þ

For a conformally coupled massless field this VEV is
related to the corresponding VEV outside a spherical
boundary in static spacetime with a negative constant
curvature space by the formula (5.5), where the expression

for hφ2iðstÞs is obtained from (5.6) by the replacements
(4.46). The VEV outside a sphere in the Milne universe is
obtained from (5.26) in the limit α → ∞. The latter limit is
reduced to the replacements (4.31) and α sinh ðt=αÞ → t.
At early stages of the expansion, corresponding to

t=α ≪ 1, the leading order term in the expansion of
(5.26) coincides with the boundary-induced VEV for a
massless scalar field in the conformal vacuum outside the
sphere in the Milne universe and the influence of the
gravitational field is weak. The corresponding expression is
given by the right-hand side of (5.9) with the replacements
(4.46). The effect of gravity is essential at late stages of the
expansion, corresponding to t=α ≫ 1. The time depend-
ence in the sphere-induced VEVs for the interior and
exterior regions appears through the same functions and
the investigation of the behavior of the VEV (5.26) is
similar to that presented in the previous subsection for the
region inside the sphere. The asymptotic behavior for hφ2is
in the cases ν > 0, ν ¼ 0 and ν ¼ ijνj is given by the
formulas (5.11), (5.13) and (5.16), respectively, with the
replacements (4.46). Note that in the last case the falloff of
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the sphere-induced VEV, as a function of t=α, is damped
oscillatory.
The leading term in the asymptotic expansion of (5.26)

with respect to the distance from the sphere is given by
(5.25) with the replacement r0 − r → r − r0. In the oppo-
site limit of large distances from the sphere, r ≫ 1, we use
the asymptotic

Qμ
x−1=2ðcosh rÞ ≈

ffiffiffi
π

p
eiμπΓðxþ μþ 1=2Þ
Γðxþ 1Þeðxþ1=2Þr ð5:27Þ

for the associated Legendre function. With this asymptotic,
the integral in (5.26) is dominated by the contribution
coming from the region near the lower limit and to the
leading order we get

hφ2is ≈ −
2D−3α1−D½P0

ν−1=2ðyÞ�2
SD sinhD−1ðt=αÞreðD−1Þr

×
X∞
l¼0

DlP̄
−μ
−1=2ðu0Þ

e−iμπQ̄μ
−1=2ðu0Þ

Γ2ðμþ 1=2Þ: ð5:28Þ

Thus, for large values of r the sphere-induced VEV is
exponentially small. Note that for large r and for a fixed t,
the geodesic distance from the sphere is proportional to αr
[see (B5)]. The exponential suppression takes place for
both massive and massless fields. Note that for a spherical
boundary in flat spacetime the decay of the boundary-
induced VEVs at large distances from the sphere is power-
law for a massless field. At large distances, the total
renormalized VEV hφ2i is dominated by the boundary-
free contribution hφ2i0. By using the relations (A19), we
can see that in the limit r → ∞, for fixed t, one has rI → α

and this corresponds to the near-horizon limit for an
observer located at r ¼ 0.
It is of interest to compare the sphere-induced VEVs in

the problem under consideration with the VEVs for a
sphere having constant radius rI ¼ rð0ÞI in inflationary
coordinates (see Appendix A). The corresponding problem
for the Bunch-Davies vacuum state has been considered in
[26]. Due to the maximal symmetry of the Bunch-Davies
vacuum, the VEVs in the latter problem depend on the
sphere radius and on the time and radial coordinates in the

form of the ratios rð0ÞI =ηI and rI=ηI, where ηI ¼ −αe−tI=α is
the corresponding conformal time coordinate. Note that
rI=jηIj is the proper distance from the sphere, in units of the
curvature radius, measured by an observer with fixed rI.
The hyperbolic vacuum is not maximally symmetric and
the mentioned feature does not take place for the VEVs
in the problem under consideration. An essential difference
between two problems is seen also in the behavior of the
VEVs at large distances from the sphere. For the problem in
[26], at large distances the sphere-induced VEVof the field
squared behaves as ðrI=jηIjÞ2−2ν−2D for real ν and like
ðrI=jηIjÞ2−2D cos½2jνj lnðrI=jηIjÞ þ ϕ0� for imaginary ν. In
the second case the decay of the VEV, as a function of the
radial coordinate, is damping oscillatory. In the problem we
consider here the decay of the VEV is always monotonic,
as eð1−DÞr=r.

C. Numerical analysis

In the discussion below the numerical results will be
presented for the most important special cases of D ¼ 3
minimally and conformally coupled fields. In Fig. 2, we
have plotted the sphere-induced contributions in the VEV
of the field squared inside and outside a spherical shell
versus the radial coordinate r for Dirichlet boundary

FIG. 2. The sphere-induced VEV of the field squared for D ¼ 3 scalar field as a function of the radial coordinate in the cases of
minimally (left panel) and conformally (right panel) coupled fields for Dirichlet boundary condition and for Robin conditions with
β ¼ −3;−0.5. The graphs are plotted for r0 ¼ 1.5, mα ¼ 1, t=α ¼ 1.
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condition (curve Dir) and for Robin boundary conditions
with β ¼ −3;−0.5 (the numbers near the curves). The
graphs are plotted for r0 ¼ 1.5, mα ¼ 1, t=α ¼ 1. The left
and right panels correspond to minimal and conformal
couplings, respectively. In accordance with the asymptotic
analysis given above, near the sphere the boundary-induced
VEV of the field squared behaves as ðr − r0Þ−2. It is
negative for Dirichlet boundary condition and positive
for non-Dirichlet boundary conditions. At large distances
from the sphere, the VEV hφ2is is suppressed by the factor
e−2r and is negative for all graphs in Fig. 2. Near the sphere
center the leading terms in the asymptotic are given by
(5.20) and (5.22).
Figure 3 displays the time dependence of the sphere-

induced contribution in the VEV of the field squared for
fixed r (numbers near the curves) and for r0 ¼ 1.5,

mα ¼ 1. The full curves correspond to Dirichlet boundary
condition and the dashed curves correspond to Robin
boundary condition with β ¼ −0.5. The graphs for minimal
and conformal couplings are presented on the left and right
panels, respectively. According to the asymptotic analysis
given above, for D ¼ 3 and in the region t=α ≪ 1 the
boundary-induced VEVof the field squared behaves as t−2.
In the opposite limit t=α ≫ 1 the corresponding approxi-
mation for minimal coupling (left panel) is obtained from
(5.11), according to which hφ2is behaves as nearly

e−ð3−
ffiffi
5

p Þt=α. Contrary to this, in the case of conformal
coupling (right panel) the parameter ν is purely imaginary,
ν ¼ i

ffiffiffi
3

p
=2, and the late time asymptotic is found from

(5.16). In this case the field squared decays oscillatory and
this behavior is displayed on the right panel as inset
for 106αD−1hφ2is.

FIG. 3. The sphere-induced VEVof the field squared forD ¼ 3 scalar field as a function of the time coordinate in the cases of minimal
(left panel) and conformal (right panel) couplings. The graphs are plotted for r0 ¼ 1.5, mα ¼ 1 and the numbers near the curves
correspond to the values of the radial coordinate. The full and dashed curves present the cases of Dirichlet and Robin (with β ¼ −0.5)
boundary conditions, respectively.

FIG. 4. The sphere-induced contribution in the VEVof the field squared forD ¼ 3 scalar field versus the Robin coefficient in the cases
of minimal (left panel) and conformal (right panel) couplings. The graphs are plotted for mα ¼ t=α ¼ 1, r0 ¼ 1.5 and the numbers near
the curves are the values of the coordinate r.
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The dependence of the sphere-induced VEV on the
coefficient β in Robin boundary condition is displayed
in Fig. 4 for minimally (left panel) and conformally (right
panel) coupled fields. The graphs are plotted for D ¼ 3,
mα ¼ t=α ¼ 1, r0 ¼ 1.5 and the numbers near the curves
correspond to the values of the coordinate r. The vertical

dashed lines correspond to the critical values βðiÞ0 ðu0Þ and
βðeÞ0 ðu0Þ for the Robin coefficient. As seen, depending on
the values of the Robin coefficient, the boundary-induced
VEV changes the sign. For β ≪ −1 (β ¼ −∞ corresponds
to Dirichlet boundary condition) hφ2is is negative and it
becomes positive with increasing β. The VEV increases

rapidly when β approaches the critical values βðiÞ0 ðu0Þ and
βðeÞ0 ðu0Þ for the interior and exterior regions, respectively.
For β near the critical values of β the main contribution to
the VEV hφ2is comes from the mode l ¼ 0.

VI. VEV OF THE ENERGY-MOMENTUM
TENSOR

For the evaluation of the VEVof the energy-momentum
tensor we use the formula (2.8). On the base of (4.30) the
VEV is decomposed as

hTiki ¼ hTiki0 þ hTikis; ð6:1Þ

with the boundary-free and sphere-induced contributions
hTiki0 and hTikis. For points away from the sphere the
sphere-induced part is finite and is obtained directly by
using the formula that is the analog of (2.8) for sphere-
induced contributions. From the symmetry of the problem
we expect that the angular stresses are isotropic:

hT2
2is ¼ hT3

3is ¼ � � � ¼ hTD
Dis: ð6:2Þ

In addition, we have the trace relation

hTk
kis ¼ ½Dðξ − ξDÞ∇k∇k þm2�hφ2is: ð6:3Þ

In the case of a conformally coupled massless field the
sphere-induced energy-momentum tensor is traceless. The
trace anomaly is contained in the boundary-free part hTiki0.
From the symmetry of the problem we expect that the

renormalized VEV hTiki0 is diagonal with isotropic
stresses, hT1

1i0 ¼ hT2
2i0 ¼ � � � ¼ hTD

Di0, and the compo-
nents hTk

i i0 are functions of the time coordinate only.
The continuity equation ∇khTk

i i0 ¼ 0 leads to the relation

hT1
1i0 ¼

∂t=α½sinhDðt=αÞhT0
0i0�

DsinhD−1ðt=αÞ cosh ðt=αÞ ; ð6:4Þ

between the energy density and stress. For the Bunch-

Davies vacuum state one has hTk
i iðBDÞ0 ¼ const · δki . The

divergences are determined by the local geometry of the
background spacetime and are the same in the unrenor-

malized VEVs hTk
i i0 and hTk

i iðBDÞ0 for the hyperbolic and
Bunch-Davies vacua. From here it follows that the differ-

ence ΔhTk
i i0 ¼ hTk

i i0 − hTk
i iðBDÞ0 needs no renormalization

and can be directly evaluated by applying the procedure
similar to (2.8) for Gðx; x0Þ − GBDðx; x0Þ, where GBDðx; x0Þ
is the Hadamard function for the Bunch-Davies vacuum. In
this way, the renormalization of the VEV hTk

i i0 is reduced
to the one for the Bunch-Davies vacuum. The latter
procedure has been widely discussed in the literature.
For a conformally coupled massless field the tensor
ΔhTk

i i0 is traceless and from (6.4) it follows that

ΔhTk
i i0 ¼ const

diagð1;−1=D;…;−1=DÞ
αDþ1 sinhDþ1ðt=αÞ : ð6:5Þ

A special case of (6.5) for D ¼ 3, with const ¼
−1=ð480π2Þ, is considered in [52]. Here, we are mainly
interested in the sphere-induced effects and they will be
discussed for the interior and exterior regions separately.

A. Interior region

By making use of the expression (4.44) for the sphere-
induced Hadamard function in (2.8), after long but straight-
forward calculations, for the diagonal components of the
sphere-induced vacuum energy-momentum tensor in the
interior region one finds (no summation over k)

hTk
kis ¼ −

sinh−2ðt=αÞ
αDþ1SD

X∞
l¼0

Dl

Z
∞

0

dx
xe−iμπ

sin ðπxÞ
Q̄μ

x−1=2ðu0Þ
P̄−μ
x−1=2ðu0Þ

× ½F̂ð0Þ
k ðyÞ − F̂ð1Þ

k ðuÞ�FðiÞðx; y; uÞ; ð6:6Þ

where the notation

FðiÞðx; y; uÞ ¼ Px
ν−1=2ðyÞP−x

ν−1=2ðyÞ
ðy2 − 1ÞðD−1Þ=2

½P−μ
x−1=2ðuÞ�2

ðu2 − 1ÞD=2−1 ð6:7Þ

is introduced. The operators F̂ð0Þ
0 ðyÞ and F̂ð0Þ

k ðyÞ,
k ¼ 1; 2;…D, are defined as
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F̂ð0Þ
0 ðyÞ ¼ ðy2 − 1Þ

�
1

4
ðy2 − 1Þ∂2

y þ
�
Dðξþ ξDÞ þ

1

2

�
y∂y þm2α2 þ ξD2

	
þ ðD − 1Þ2

4
− x2;

F̂ð0Þ
k ðyÞ ¼ ðy2 − 1Þ

��
ξ −

1

4

�
ðy2 − 1Þ∂2

y þ
�
Dðξ − ξDÞ −

1

2

�
y∂y − ξD

	
þ δ1k

�
x2 −

ðD − 1Þ2
4

�
: ð6:8Þ

The operators F̂ð1Þ
k ðuÞ act on the functions of the argument

u and are given by the expressions

F̂ð1Þ
0 ðuÞ ¼

�
ξ −

1

4

�
½ðu2 − 1Þ∂2

u þDu∂u�;

F̂ð1Þ
1 ðuÞ ¼ 1

4
ðu2 − 1Þ∂2

u þ
�
ξðD − 1Þ þD

4

�
u∂u −

lðlþ nÞ
u2 − 1

;

F̂ð1Þ
k ðuÞ ¼ F̂ð1Þ

0 − ξu∂u þ
1

D − 1

lðlþ nÞ
u2 − 1

; ð6:9Þ

where k¼2;3;…D. As an additional check for the for-
mula (6.6) we can see that the trace relation (6.3) is obeyed.
The only nonzero off-diagonal component of the vacuum

energy-momentum tensor corresponds to hT1
0is, which

describes energy flux directed along the radial direction.
The corresponding expression reads

hT1
0is¼

sinh−3ðt=αÞ
αDþ2SD

X∞
l¼0

Dl

Z
∞

0

dx
xe−iμπ

sinðπxÞ
Q̄μ

x−1=2ðu0Þ
P̄−μ
x−1=2ðu0Þ

× ½ð1=4−ξÞðy2−1Þ∂yþξy�∂rFðiÞðx;y;uÞ: ð6:10Þ

With this result, it can be seen that the components given by
(6.6) and (6.10) obey the covariant conservation equation
∇khTk

i is ¼ 0. For the geometry described by (2.1) the latter
is reduced to the following equations:

X
k¼0;1

∂khTk
0is þ ðD − 1ÞhT1

0is coth r

þ 1

α
½ðDþ 1ÞhT0

0is − hTk
kis� coth ðt=αÞ ¼ 0;

X
k¼0;1

∂khTk
1is þ

D
α
hT0

1is coth ðt=αÞ

þ ðD − 1ÞðhT1
1is − hT2

2isÞ coth r ¼ 0: ð6:11Þ

The vacuum energy induced by the sphere in volume V is
expressed as EðsÞV ¼ R

V d
Dx

ffiffiffiffiffijgjp hT0
0is. For the spherical

layer r1 ≤ r ≤ r2 it is presented in the form

EðsÞV ¼ α sinhðt=αÞ
Z

r2

r1

dr SpðrÞhT0
0is;

where SpðrÞ ¼ SD½α sinh ðt=αÞ sinh r�D−1 is the proper
surface area of the sphere with radius r. From the first
equation (6.11) it follows that

∂0EðsÞV ¼ −α sinh ðt=αÞSpðrÞhT1
0isjr¼r2

r¼r1

þ cosh ðt=αÞ
Z

r2

r1

dr SpðrÞ
XD
k¼1

hTk
kis: ð6:12Þ

This relation shows that the quantity

hT̃1
0is ¼ α sinh ðt=αÞhT1

0is ð6:13Þ

is the energy flux density per unit proper surface area. The
latter can be written as hT̃1

0is ¼ nkhTk
0is, where nk is the

unit spatial vector normal to the sphere (external with
respect to the volume V). For the spherical layer corre-
sponding to (6.12) one has nk ¼ �δ1kα sinh ðt=αÞ, where
the upper and lower signs stand for the spheres r ¼ r2 and
r ¼ r1, respectively.
Let us consider some limiting cases of the general result

for the sphere-induced VEV of the energy-momentum
tensor. In the flat spacetime limit α → ∞, by using the
relation (4.31) for the product of the associated Legendre
functions, it can be seen that from (6.6) and (6.10) the
boundary-induced VEV for the conformal vacuum inside a
sphere in background of the Milne universe is obtained
(see [48]).
Another special case corresponds to a conformally

coupled massless scalar field. In this case one has
ν ¼ 1=2 and the function (6.7) is simplified to

FðiÞðx; y; uÞ ¼ sin ðπxÞ=ðπxÞ
ðy2 − 1ÞðD−1Þ=2

½P−μ
x−1=2ðuÞ�2

ðu2 − 1ÞD=2−1 : ð6:14Þ

With this function, the off-diagonal component (6.10)
vanishes for ξ ¼ ξD. For the diagonal components we find
(no summation over k)

hTk
kis ¼

hTk
kiðstÞs

sinhDþ1ðt=αÞ ; ð6:15Þ

where

hTk
kiðstÞs ¼

X∞
l¼0

e−iμπDl

παDþ1SD

Z
∞

0

dx
Q̄μ

x−1=2ðu0Þ
P̄−μ
x−1=2ðu0Þ

× F̂ðstÞ
k ðuÞ ½P−μ

x−1=2ðuÞ�2
ðu2 − 1ÞD=2−1 ð6:16Þ

with the operators
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F̂ðstÞ
0 ðuÞ ¼ −

u2 − 1

4D
∂2
u −

u
4
∂u þ x2;

F̂ðstÞ
1 ðuÞ ¼ u2 − 1

4
∂2
u þ

D2 −Dþ 1=2
2D

u∂u

þ ðD − 1Þ3
4D

−
lðlþ nÞ
u2 − 1

− x2;

F̂ðstÞ
2 ðuÞ ¼ −

u2 − 1

4D
∂2
u −

2D − 1

4D
u∂u −

ðD − 1Þ2
4D

þ l
D − 1

lþ n
u2 − 1

: ð6:17Þ

The quantity (6.16) is the boundary-induced VEV of the
energy-momentum tensor for a conformally coupled mass-
less scalar field inside a sphere with radius r0 in back-
ground of a static negative constant curvature space with
the curvature radius α. It is obtained from the more general
result in [49] in the special case m ¼ 0 and ξ ¼ ξD (see
also [48]).
Let us consider the asymptotics with respect to the ratio

t=α. At the early stages of the expansion, corresponding to
t=α ≪ 1, by using the relation (5.8) we find (no summation
over k)

hTk
kis ≈

X∞
l¼0

e−iμπDl

πSDtDþ1

Z
∞

0

dx
Q̄μ

x−1=2ðu0Þ
P̄−μ
x−1=2ðu0Þ

× R̂kðuÞ
½P−μ

x−1=2ðuÞ�2
ðu2 − 1ÞD=2−1 ; ð6:18Þ

where the operators R̂kðuÞ are defined by

R̂0ðuÞ ¼
�
ξ −

1

4

�
½ðu2 − 1Þ∂2

u þDu∂u� þ x2

þDðD − 1Þðξ − ξDÞ;

R̂1ðuÞ ¼
1

4
ðu2 − 1Þ∂2

u þ
�
ðD − 1ÞξþD

4

�
u∂u −

lðlþ nÞ
u2 − 1

− x2 −
D − 1

4
ð4ξ −Dþ 1Þ;

R̂2ðuÞ ¼
�
ξ −

1

4

�
ðu2 − 1Þ∂2

u þ
�
ðD − 1Þξ −D

4

�
u∂u

þ l
D − 1

lþ n
u2 − 1

− ξðD − 1Þ: ð6:19Þ

We note that the sphere-induced VEV of the energy-
momentum tensor for a scalar field in the static spacetime
with negative constant curvature spatial sections is
expressed in terms of the operators (6.19) as (see [49],
no summation over k)

hTk
i iðstÞs ¼ δki

X∞
l¼0

e−iμπDl

πSDαDþ1

Z
∞

xm

dx x
Q̄μ

x−1=2ðu0Þ
P̄−μ
x−1=2ðu0Þ

×
R̂kðuÞ −m2a2δ0kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 − x2m
p P−μ

x−1=2ðuÞ
ðu2 − 1ÞD=2−1 ; ð6:20Þ

where xm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2α2 −DðD − 1Þðξ − ξDÞ

p
. For ξ ¼ ξD the

operators (6.19) are reduced to the ones in (6.17):

R̂kðuÞ ¼ F̂ðstÞ
k ðuÞ. In the same limit, t=α ≪ 1, for the off-

diagonal component we get

hT1
0is ≈Dðξ − ξDÞ

X∞
l¼0

e−iμπDl

πSDtDþ2

Z
∞

0

dx
Q̄μ

x−1=2ðu0Þ
P̄−μ
x−1=2ðu0Þ

× ∂r

½P−μ
x−1=2ðuÞ�2

ðu2 − 1ÞD=2−1 : ð6:21Þ

The energy flux density per unit proper surface area is
given as hT̃1

0is ≈ thT1
0is and for nonconformally coupled

fields it is of the same order as the diagonal components.
The expressions in the right-hand sides of (6.18) and (6.21)
coincide with the leading terms in the expansions of the
corresponding VEVs for a sphere in the Milne universe at
early stages mt ≪ 1. This is related to the fact that the
effects of curvature of dS spacetime are weak in the
range t=α ≪ 1.
At late stages of the expansion, t=α ≫ 1, we use the

asymptotic (5.10). In the case ν > 0, to the leading order,
for the diagonal components we get (no summation over k)

hTk
kis ≈

ak
α2

hφ2is; ð6:22Þ

where the VEV of the field squared is estimated as (5.11)
and

a0 ¼
D
4
½D − 2ν − 4ξðDþ 1 − 2νÞ�;

a1 ¼ a2 ¼
2ν

D
a0: ð6:23Þ

In this limit the sphere-induced VEV is suppressed by the
factor e−ðD−2νÞt=α. The corresponding asymptotic for the
off-diagonal component has the form

hT1
0is ≈

4a0
Dα3

e−2t=α∂rhφ2is; ð6:24Þ

and the suppression is stronger by the factor e−ðDþ2−2νÞt=α.
Note that at late stages of the expansion we have the
relation

hT̃1
0is ¼

2

D
e−t=α∂rhT0

0is ð6:25Þ
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between the energy and the energy flux densities. The
asymptotics (6.22) and (6.24) are also valid for ν ¼ 0, but
now the behavior of hφ2is is described by (5.13). Note that
in this case the leading terms in the vacuum stresses vanish,

and we have (no summation over k) jhTk
kisj ≪ jhT0

0isj,
where k ¼ 1; 2;…; D.
For t=α ≫ 1 and purely imaginary ν, ν ¼ ijνj, we use the

asymptotic formula (5.15). To the leading order this gives

hT0
0is ≈m2hφ2is þ

2Djνje−Dt=α

πSDαDþ1

X∞
l¼0

Dl

Z
∞

0

dx
xe−iμπ

sin ðπxÞ
Q̄μ

x−1=2ðu0Þ
P̄−μ
x−1=2ðu0Þ

×
½P−μ

x−1=2ðuÞ�2
sinhD−2r

BνðxÞ
�
2D

�
ξ −

1

4

�
sin ½ϕðt; xÞ� þ jνj cos ½ϕðt; xÞ�

	
ð6:26Þ

for the energy density and

hTk
kis ≈ −

2Djνje−Dt=α

πSDαDþ1

X∞
l¼0

Dl

Z
∞

0

dx
xe−iμπ

sin ðπxÞ
Q̄μ

x−1=2ðu0Þ
P̄−μ
x−1=2ðu0Þ

½P−μ
x−1=2ðuÞ�2
sinhD−2r

BνðxÞ

×

�
ð1 − 4ξÞjνj cos ½ϕðt; xÞ� þ 2

�
ðDþ 1Þξ −D

4

�
sin ½ϕðt; xÞ�

	
; ð6:27Þ

for the stresses (no summation over k) k ¼ 1; 2;…; D. Here, the phase ϕðt; xÞ is defined in (5.17). The asymptotic
expression for the energy flux density takes the form

hT̃1
0is ≈

D − 4ðDþ 1Þξ
2α2et=α

∂rhφ2is þ
2Djνjð4ξ − 1Þ

παDþ1SDeðDþ1Þt=α
X∞
l¼0

Dl

Z
∞

0

dx
xe−iμπ

sin ðπxÞ

×
Q̄μ

x−1=2ðu0Þ
P̄−μ
x−1=2ðu0Þ

∂r

½P−μ
x−1=2ðuÞ�2
sinhD−2r

BνðxÞ sin ½ϕðt; xÞ�: ð6:28Þ

The expression for hφ2is in (6.26) and (6.28) is given by (5.16), and BνðxÞ, ϕνðxÞ are defined by (5.18). For purely
imaginary ν the decay of the vacuum energy-momentum tensor at late stages is the damping oscillatory.
Now we turn to the asymptotics with respect to the radial coordinate. Near the center the dominant contributions come

from the terms with l ¼ 0, 1 and to the leading order we get (no summation over k)

hTk
kis ≈

2 sinh−2ðt=αÞ
ð4πÞD=2αDþ1ΓðD=2Þ

Z
∞

0

dx
X
l¼0;1

xe−iμπ

sin ðπxÞ
Q̄μ

x−1=2ðu0Þ
P̄−μ
x−1=2ðu0Þ

F̂ðkÞl
Px
ν−1=2ðyÞP−x

ν−1=2ðyÞ
ðy2 − 1ÞðD−1Þ=2 ; ð6:29Þ

where F̂ðkÞ0 ¼ F̂ð0Þ
k ðyÞ, with the operators from (6.8), and

F̂ð0Þ1 ¼ 2ξ −
1

2
;

F̂ð1Þ1 ¼ F̂ð2Þ1 ¼
2

D

�
ðD − 1Þξ −D − 2

4

�
: ð6:30Þ

The dominant contribution to the off-diagonal component comes from l ¼ 1 term and one finds

hT1
0is ≈

e−iπD=2r sinh−3ðt=αÞ
ð4πÞD=2αDþ2DΓðD=2Þ

Z
∞

0

dx
x

sin ðπxÞ
Q̄D=2

x−1=2ðu0Þ
P̄−D=2
x−1=2ðu0Þ

½ð1 − 4ξÞðy2 − 1Þ∂y þ 4ξy�P
x
ν−1=2ðyÞP−x

ν−1=2ðyÞ
ðy2 − 1ÞðD−1Þ=2 ; ð6:31Þ

and it linearly vanishes at the sphere center.
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For points near the sphere the main contribution to the
integral and series in (6.6) comes from large l and x. By
using the large x asymptotic (5.23) we see that the
dependence on y in the function (6.7) appears in the form
ðy2 − 1Þð1−DÞ=2 and the derivatives in (6.8) with respect to y
are easily evaluated. Keeping the leading terms in x we can
see that for the components hTk

kis, k ¼ 0; 2;…; D, the
leading terms in the asymptotic expansions over
the distance from the sphere are expressed in terms of

the corresponding components hTk
kiðstÞs for a sphere in static

spacetime with negative constant curvature space as

hTk
kis ≈ hTk

kiðstÞs = sinhDþ1 ðt=αÞ. By using the asymptotics

for hTk
kiðstÞs from [49] we find (no summation over k)

hTk
kis ≈

ð2δ0B − 1ÞDΓððDþ 1Þ=2Þðξ − ξDÞ
2DπðDþ1Þ=2½α sinhðt=αÞðr0 − rÞ�Dþ1

ð6:32Þ

for k ¼ 0; 2;…; D. In order to find the asymptotics for the
radial stress and the off-diagonal component, it is more
convenient to use the covariant conservation equa-
tions (6.11). From the first equation it follows that

hT1
0is ≈

1

α
coth ðt=αÞðr0 − rÞhT0

0is: ð6:33Þ

With this result, from the second equation in (6.11) we get

hT1
1is ≈

D − 1

D
cothðr0Þðr0 − rÞhT0

0is: ð6:34Þ

The leading terms do not depend on the mass. For a
conformally coupled field they vanish and one needs to
keep the next-to-leading order terms. Note that the leading
terms in the VEVs of the field squared and of the diagonal
components, given by (5.25) and (6.32), are obtained from
the corresponding terms for a sphere in the Minkowski bulk
(see [53]) replacing the distance from the sphere by the
proper distance α sinhðt=αÞðr0 − rÞ for the geometry
at hand.

B. Exterior region

The VEV of the energy-momentum tensor outside the
sphere is decomposed as (6.1), where the sphere-induced
contribution is obtained from (2.8) and (4.29). The expres-
sion for the diagonal components reads (no summation
over k):

hTk
kis ¼ −

sinh−2 ðt=αÞ
αDþ1SD

X∞
l¼0

Dl

Z
∞

0

dx
e−iμπx
sin ðπxÞ

P̄−μ
x−1=2ðu0Þ

Q̄μ
x−1=2ðu0Þ

× ½F̂ð0Þ
k ðyÞ − F̂ð1Þ

k ðuÞ�FðeÞðx; y; uÞ; ð6:35Þ

with the function

FðeÞðx; y; uÞ ¼ Px
ν−1=2ðyÞP−x

ν−1=2ðyÞ
sinhD−1 ðt=αÞ

½Qμ
x−1=2ðuÞ�2
sinhD−2 r

; ð6:36Þ

and the operators F̂ð0Þ
k ðyÞ and F̂ð1Þ

k ðuÞ are defined by (6.8)
and (6.9). The nonzero off-diagonal component is
expressed as

hT1
0is¼

sinh−3ðt=αÞ
αDþ2SD

X∞
l¼0

Dl

Z
∞

0

dx
xe−iμπ

sinðπxÞ
P̄−μ
x−1=2ðu0Þ

Q̄μ
x−1=2ðu0Þ

× ½ð1=4−ξÞðy2−1Þ∂yþξy�∂rFðeÞðx;y;uÞ: ð6:37Þ

Recall that the energy flux density per unit proper surface
area is given by (6.13). One can check that the components
(6.35) and (6.37) obey the trace relation (6.3) and covariant
conservation equations (6.11).
For a conformally coupled massless field the off-diago-

nal component is zero and for the diagonal components we
have the relation (6.15), where the VEVoutside a sphere in
static spacetime with a constant negative curvature space is
given by [49]

hTk
i iðstÞs ¼ δki

X∞
l¼0

e−iμπDl

παDþ1SD

Z
∞

0

dx
P̄−μ
x−1=2ðu0Þ

Q̄μ
x−1=2ðu0Þ

× F̂ðstÞ
k

½Qμ
x−1=2ðuÞ�2

ðu2 − 1ÞD=2−1 ; ð6:38Þ

with the operators F̂ðstÞ
k defined in (6.17). In the limit α →

∞ and for the case of a massive field with general curvature
coupling parameter, from (6.35) and (6.37) we obtain the
corresponding VEVs for the conformal vacuum outside a
spherical boundary in the Milne universe.
At early stages of the expansion, t=α ≪ 1, the leading

terms of the asymptotic expansion of the sphere-induced
VEV hTk

i is in the exterior region are obtained from (6.18)
and (6.21) by the replacements (4.46). For a conformally
coupled scalar field, to the leading order, we have the

relation hTk
i is ≈ ðα=tÞDþ1hTk

i iðstÞs , with hTk
i iðstÞs given by

(6.38). At late stages, t=α ≫ 1, and for ν ≥ 0, the asymp-
totic expressions for the components of the energy-momen-
tum tensor are related to the corresponding asymptotic for
the VEV of the field squared by the formulas (6.22) and
(6.24). For purely imaginary ν, the behavior of the sphere-
induced parts in the VEV of the energy-momentum tensor
is described by the formulas (6.26)–(6.28) with the replace-
ments (4.46). In this limit, to the leading order, the stresses
are isotropic.
For points near the sphere the leading terms in the

asymptotic expansions of the energy density and stresses
hTk

kis, k ¼ 0; 2;…; D, are given by (6.32) with the replace-
ment r0 − r → r − r0. For points near the sphere these
components have the same sign in the interior and exterior
regions. The relations (6.33) and (6.34) for the off-diagonal
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component and the radial stress remain the same and,
hence, near the sphere these components have opposite
signs outside and inside the sphere. For large distances
from sphere the diagonal components of sphere-induced
VEV of energy-momentum tensor and the energy flux
density are approximately given by (no summation over k)

hTk
kis ≈

ĜkðyÞhφ2is
α2sinh2ðt=αÞ ; k ¼ 0; 1;…; D;

hT1
0is ≈

D − 1

α3sinh3ðt=αÞ ½ð1=4 − ξÞðy2 − 1Þ∂y þ ξy�hφ2is;

ð6:39Þ

where hφ2is is described by the asymptotic expression
(5.28). The operators in (6.39) are defined as

Ĝ0ðyÞ ¼ F̂ð0Þ
0 ðyÞjx¼0;

Ĝ1ðyÞ ¼ F̂ð0Þ
2 ðyÞjx¼0 þ ðD − 1Þ2ðξ − 1=4Þ;

ĜkðyÞ ¼ F̂ð0Þ
2 ðyÞjx¼0 − ðD − 1Þξ; k ¼ 2;…; D: ð6:40Þ

Hence, at large distances from the sphere we have an
exponential suppression of the sphere-induced VEVs by
the factor e−ðD−1Þr=r. For a conformally coupled massless
field the leading terms vanish. The corresponding behavior
is obtained by using the conformal relation (6.15) and the
results from [49] for static background. In this special case
the energy flux vanishes and the decay of the sphere-
induced VEVs in the diagonal components is stronger,
like e−ðD−1Þr=r2.

C. Numerical results

As before, the numerical results for the sphere-induced
energy density and energy flux will be presented for D ¼ 3
minimally and conformally coupled scalar fields. In Fig. 5,

the boundary-induced energy (left panel) and energy flux
(right panel) densities are displayed as functions of the
radial coordinate for a minimally coupled scalar field. The
graphs are plotted for mα ¼ t=α ¼ 1, r0 ¼ 1.5 in the cases
of Dirichlet boundary condition and for Robin conditions
with β ¼ −3;−0.5 (the numbers near the curves). The same
graphs for a conformally coupled scalar field are presented
in Fig. 6. For both minimally and conformally coupled
fields, the energy flux in the interior and exterior regions is
directed from the boundary for Dirichlet boundary con-
dition and towards the boundary for Robin conditions.
The leading term for the energy density in the expansion

near the sphere center is given by (6.29). The energy flux
linearly vanishes at the center as a function of the radial
coordinate [see (6.31)]. For a minimally coupled field the
leading term in the asymptotic expansion of the energy
density near the sphere is given by (6.32) and the sphere-
induced VEV behaves as ðr − r0Þ−4. Near the sphere it has
the same sign for the interior and exterior regions. The
leading term for the energy flux is obtained from (6.33) and
it has opposite signs inside and outside the sphere. The
corresponding divergence on the sphere is weaker, like
ðr − r0Þ−3. The same is the case for the radial stress [see
(6.34)]. For a conformally coupled field the leading terms
in the near-sphere expansions vanish and the energy density
and energy flux diverge as ðr − r0Þ−3 and ðr − r0Þ−2,
respectively. At large distances from the sphere, the
boundary-induced contributions in both the energy density
and energy flux are suppressed by the factor e−2r.
Figure 7 displays the time dependence of the sphere-

induced VEVs in the energy density (left panel) and energy
flux (right panel) for a minimally coupled scalar field. The
graphs are plotted for r0 ¼ 1.5, mα ¼ 1 and the numbers
near the curves are the values of the radial coordinate r. The
full curves correspond to Dirichlet boundary condition and
the dashed curves correspond to Robin boundary condition
with β ¼ −0.5. The same graphs for a conformally coupled

FIG. 5. The sphere-induced energy density and the flux density as functions of the radial coordinate for D ¼ 3 minimally coupled
scalar field with Dirichlet and Robin boundary conditions (β ¼ −3;−0.5). The graphs are plotted for mα ¼ t=α ¼ 1, r0 ¼ 1.5.
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FIG. 6. The same as in Fig. 5 for a conformally coupled field.

FIG. 7. The sphere-induced energy density (left panel) and the energy flux (right panel) for a minimally coupled field versus the time
coordinate at fixed values of the radial coordinate (the numbers near the curves). For the sphere radius we have taken r0 ¼ 1.5 and for the
field mass mα ¼ 1.

FIG. 8. The same as in Fig. 7 for a conformally coupled scalar field.
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field are depicted in Fig. 8. According to (6.18), the
boundary-induced contribution in the energy density is
nearly proportional to 1=t4 for t=α ≪ 1. For the energy flux
density and for a minimally coupled field one has the
behavior hT̃1

0is ∝ 1=t4. For a conformally coupled field the
leading term in the corresponding asymptotic expansion
vanishes and jhT̃1

0isj ≪ jhT0
0isj in the range t=α ≪ 1. This

is seen from Fig. 8. In the opposite limit, t=α ≫ 1, the
corresponding approximation for minimal coupling is
obtained from (6.22), according to which hT0

0is, as a
function of t, behaves similar to the sphere-induced
VEV of the field squared. The corresponding approxima-
tion for a conformally coupled scalar field is given by
(6.26). The oscillatory damping of the sphere-induced
VEVs in the case of a conformally coupled field is
separately displayed as insets (for 107αDþ1hT0

0is and
108αDþ1hT̃1

0is).

Figure 9 presents the dependence of the sphere-induced
VEV in the energy density (left panel) and energy flux
(right panel) on the coefficient β in Robin boundary
condition for a minimally coupled scalar fields. The graphs
are plotted for D ¼ 3, mα ¼ t=α ¼ 1, r0 ¼ 1.5. The
numbers near the curves represent the values of the radial
coordinate r. For the interior region we have taken r ¼ 1
and for the exterior region r ¼ 2. The vertical dashed lines
correspond to the critical values of the Robin coefficient in
the interior and exterior regions. The same graphs for a
conformally coupled field are presented in Fig. 10. For the
values of the parameter β close to the critical values the
sphere-induced energy density is positive. For large values
of −β, the VEVs tend to the values corresponding to
Dirichlet boundary condition and the energy density is
negative. For some intermediate value of β the sphere-
induced contribution vanishes.

FIG. 9. The boundary-induced energy density (left panel) and energy flux (right panel) for D ¼ 3 minimally coupled scalar field as
functions of the coefficient β in Robin boundary condition. The graphs are plotted for mα ¼ 1, t=α ¼ 1, r0 ¼ 1.5 and the numbers near
the curves correspond to the values of r.

FIG. 10. The same as in Fig. 9 for a conformally coupled field.
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VII. CONCLUSION

For a given spacetime geometry, the quantum field
theoretical vacuum is an observer dependent notion.
Among the interesting directions in the investigations of
the Casimir effect is the dependence of the physical
characteristics on the choice of the vacuum state. The
previous studies of the boundary and topology induced
effects in dS spacetime mainly consider the dS invariant
Bunch-Davies vacuum state. The present paper concerns
the boundary induced effects on the local VEVs of a scalar
field with general curvature coupling for the hyperbolic
vacuum in dS spacetime. As a boundary we have consid-
ered a spherical shell with a constant comoving radius in
hyperbolic spatial coordinates. In inflationary coordinates
this corresponds to a spherical shell with time dependent
radius, given by (2.6). Note that the Casimir effect for a
spherical boundary with constant comoving radius in
inflationary coordinates and for the Bunch-Davies vacuum
state has been investigated in [26].
As the first step in the investigation of the local VEVs we

have constructed the complete set of mode functions in
hyperbolic coordinates without specifying the vacuum
state. Then, the mode functions are specified for the
conformal (hyperbolic) vacuum. It has been shown that
the latter coincides with the adiabatic vacuum. By using the
complete set of mode functions, the Hadamard functions
are evaluated in the boundary-free geometry, outside the
spherical shell and inside the shell. For both regions in the
problem with a sphere, the contributions in the Hadamard
function induced by the boundary are separated explicitly.
Inside the sphere, the eigenvalues of the quantum number z
are given implicitly, as roots of Eq. (4.33), and for the
extraction of the sphere-induced part we have used the
summation formula (4.42). The corresponding contribution
in the Hadamard function is given by (4.44) and the explicit
knowledge of the eigenvalues for z is not required. Similar
representations can be obtained for other two-point func-
tions (for example, for the Wightman function).
As a local characteristic of the hyperbolic vacuum, the

VEV of the field squared is considered. The latter is
obtained taking the coincidence limit of the arguments
in the Hadamard function. In that limit divergences arise
and a renormalization is required. Having the decomposed
representation of the Hadamard function, for points away
from the sphere the renormalization is reduced to the one in
the boundary-free geometry. The VEVs of the field squared
inside and outside the sphere are expressed as (5.3) and
(5.26). The corresponding expressions for the VEVs of the
diagonal components of the energy-momentum tensor are
given by the expressions (6.6) and (6.35). Note that the
expressions for the interior and exterior regions are
obtained from each other by the replacements (4.46). An
interesting feature in the problem under consideration is the
presence of the vacuum energy flux along the radial
direction. The latter is described by the off-diagonal

component of the energy-momentum tensor, given by
(6.10) and (6.37). Depending on the value of the Robin
coefficient and also on the radial coordinate, that compo-
nent may change the sign. This shows that the energy flux
can be directed either from the sphere or towards the
sphere.
The general formulas for the VEVs are complicated and

in order to clarify the qualitative features we have consid-
ered limiting cases and various asymptotic regions of the
parameters. In the flat spacetime limit, corresponding to
α → ∞, the line element (2.1) is reduced to the line element
(3.9) for the Milne universe. It is checked that, in this limit,
from the results given above the corresponding VEVs are
obtained for a sphere in the Milne universe (see [48]),
assuming that the scalar field is prepared in the conformal
vacuum. For a conformally coupled massless scalar field
the problem under consideration is conformally related to
the problem with a spherical boundary in static spacetime
with constant negative curvature space. As another check,
we have shown that the VEVs in those problems are
connected by the standard conformal relation. Note that in
this special case the energy flux vanishes.
In early stages of the expansion, corresponding to

t=α ≪ 1, the effects of the spacetime curvature on the
sphere-induced VEVs are weak and, to the leading order,
they coincide with the corresponding VEVs for a sphere in
the Milne universe. The effects of gravity are essential for
t=α≳ 1. In particular, at late stages, t=α ≫ 1, the behavior
of the VEVs is qualitatively different for positive and
purely imaginary values of the parameter ν in (2.15). For
ν > 0 the decay of the sphere-induced VEVs, as functions
of the time coordinate, is monotonic, as e−ðD−2νÞt=α for
hφ2is, hTk

kis, and like e−ðDþ1−2νÞt=α for the energy flux
density hT̃1

0is. For imaginary ν the decay is oscillatory with
the leading terms given by (5.16) and (6.26)–(6.28) in the
interior region. The corresponding asymptotics outside the
sphere are obtained by the replacements (4.46).
For points near the sphere the dominant contribution to

the VEVs comes from the modes with large values of the
angular momentum. The influence of the gravitational field
on those modes is weak and the leading terms in the
expansions of the VEVs for the field squared and for the
energy density and azimuthal stresses coincide with
those for a spherical boundary in flat spacetime with the
distance from the sphere replaced by the proper distance
α sinh ðt=αÞjr − r0j in dS bulk. They behave as jr − r0j1−D
for the field squared and as jr − r0j−D−1 for the energy
density and azimuthal stresses. Near the sphere these VEVs
have the same sign in the exterior and interior regions. The
leading terms for the energy flux and radial stress are
obtained by using the relations (6.33) and (6.34). These
components behave like jr − r0j−D and have opposite signs
inside and outside the sphere. The leading terms do not
depend on the mass. In the case of the energy-momentum
tensor they vanish for a conformally coupled field. In the
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exterior region, at large distances from the sphere, the
sphere-induced VEVs are suppressed by the factor
e−ðD−1Þr=r. For a conformally coupled massless field the
leading terms vanish and the suppression at large distances
is stronger, like e−ðD−1Þr=r2.
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APPENDIX A: COORDINATE SYSTEMS
IN DS SPACETIME

The dS spacetime is defined as a hyperboloid

ηMNZMZN ¼ −α2; M;N ¼ 0; 1;…; Dþ 1; ðA1Þ

in (Dþ 2)-dimensional Minkowski spacetime with
the line element ds2Dþ2 ¼ ηMNdZMdZN , where ηMN ¼
diagð1;−1;…;−1Þ. The global coordinates ðtg; χ;
θ1;…; θn;ϕÞ on the hyperboloid are defined by the
relations

Z0 ¼ α sinhðtg=αÞ;
Z1 ¼ α coshðtg=αÞ cos χ;
Zi ¼ αwi−1 coshðtg=αÞ sin χ; ðA2Þ

where i ¼ 2; 3;…; Dþ 1, −∞ < tg < þ∞, 0 < χ < π,
0 ≤ θk ≤ π, k ¼ 1; 2;…; n, 0 ≤ ϕ ≤ 2π and

w1 ¼ cos θ1; w2 ¼ sin θ1 cos θ2;…;

wD−2 ¼ sin θ1 sin θ2 � � � sin θD−3 cos θn;

wD−1 ¼ sin θ1 sin θ2 � � � sin θn cosϕ;
wD ¼ sin θ1 sin θ2 � � � sin θn sinϕ: ðA3Þ

The line element on the hyperboloid takes the form

ds2 ¼ dt2g − α2 cosh2ðtg=αÞðdχ2 þ sin2 χdΩ2
D−1Þ: ðA4Þ

The spatial sections with the global coordinates are
spheres SD−1.
Introducing the conformal time coordinate ηg in accor-

dance with

coshðtg=αÞ ¼
1

sinðηg=αÞ
; 0 < ηg=α < π; ðA5Þ

the line element is written in a conformally static form

ds2 ¼ dη2g − α2ðdχ2 þ sin2 χdΩ2
D−1Þ

sin2ðηg=αÞ
: ðA6Þ

The Penrose diagram for the dS spacetime is presented by
the square

0 ≤ ηg=α ≤ π; 0 ≤ χ ≤ π ðA7Þ

in the plane ðχ; ηg=αÞ.
The coordinates ðt; r; θ1;…; θn;ϕÞ corresponding to the

negative curvature spatial foliation are defined as

Z0 ¼ α sinhðt=αÞ cosh r;

Z1 ¼ α coshðt=αÞ;
Zi ¼ αwi−1 sinhðt=αÞ sinh r; ðA8Þ

with i ¼ 2; 3;…; Dþ 1. The corresponding line element is
presented as (2.1) or in a conformally static form (2.3). In
order to clarify the region in the Penrose diagram corre-
sponding to the coordinates (A8) it is useful to have the
relations with conformal global coordinates:

coshðt=αÞ ¼ cos χ
sinðηg=αÞ

;

tanh r ¼ −
sin χ

cos ðηg=αÞ
: ðA9Þ

Two separate regions are obtained. The region LI corre-
sponds to 0 < r < ∞ and is given by

LI ¼ fðχ; ηg=αÞ∶χ ∈ ð0; π=2Þ; ηg=α ∈ ðπ=2; πÞ;
ηg=α ≥ χ þ π=2g: ðA10Þ

From the relation

sinhðt=αÞ ¼ −
cot ðηg=αÞ
cosh r

; ðA11Þ

it follows that for this region 0 < t < ∞. The region LII,
corresponding to −∞ < r < 0, is presented as

LII ¼ fðχ; ηg=αÞ∶χ ∈ ð0; π=2Þ; ηg=α ∈ ð0; π=2Þ;
ηg=α ≤ π=2 − χg; ðA12Þ

and in this region −∞ < t < 0. The other two triangular
regions of the Penrpose diagram, RI and RII, are covered by
the coordinates ðtR; rR; θ1;…; θn;ϕÞ, defined in accor-
dance with

Z0 ¼ α sinhðtR=αÞ cosh rR;
Z1 ¼ −α coshðtR=αÞ;
Zi ¼ αwi−1 sinhðtR=αÞ sinh rR; ðA13Þ
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with −∞ < tR < þ∞, −∞ < rR < þ∞. The relations to
the global conformal coordinates are given as

coshðtR=αÞ ¼ −
cos χ

sinðηg=αÞ
;

tanh rR ¼ −
sin χ

cos ðηg=αÞ
: ðA14Þ

The regions RI and RII in the Penrose diagram correspond
to the ranges 0 < rR < ∞ and −∞ < rR < 0, respectively,
and are defined by

RI ¼ fðχ; ηg=αÞ∶χ ∈ ðπ=2; πÞ; ηg=α ∈ ðπ=2; πÞ;
ηg=α ≥ 3π=2 − χg;

RII ¼ fðχ; ηg=αÞ∶χ ∈ ðπ=2; πÞ; ηg=α ∈ ð0; π=2Þ;
ηg=α ≤ χ − π=2g: ðA15Þ

For the time coordinate in those regions we have the
relation (A11) with t replaced by tR and r replaced by rR.
From here it follows that 0 < tR < ∞ and −∞ < tR < 0 in
the RI and RII regions, respectively.
The remaining region (C region) of the Penrose diagram

is covered by the coordinates

Z0 ¼ α cosðtC=αÞ sinh rC;

Z1 ¼ α sinðtC=αÞ;
Zi ¼ αwi−1 cosðtC=αÞ cosh rC;

with i ¼ 2; 3;…; Dþ 1 and −π=2 ≤ tC=α ≤ π=2,
−∞ < rC < þ∞. The corresponding line element takes
the form

ds2¼−dt2Cþα2cos2ðtC=αÞðdr2C−cosh2rCdΩ2
D−1Þ: ðA16Þ

We have the following relations with the global conformal
coordinates:

sinðtC=αÞ ¼
cos χ

sinðηg=αÞ
;

tanh rC ¼ −
cosðηg=αÞ

sin χ
: ðA17Þ

The coordinate lines in all the regions of the Penrose
diagram discussed above are depicted in Fig. 1.
It is also of interest to have the relations between

the coordinates ðt; r; ϑ;ϕÞ and inflationary coordinates
ðtI; rI;ϑ;ϕÞ, with the line element

ds2 ¼ dt2I − e2tI=αðdr2I þ r2I dΩ2
D−1Þ: ðA18Þ

These relations are given by

tI
α
¼ ln ½coshðt=αÞ þ sinhðt=αÞ cosh r�;

rI
α
¼ e−tI=α sinhðt=αÞ sinh r: ðA19Þ

One has tI ¼ 0, rI ¼ 0 for t ¼ 0.

APPENDIX B: TRANSFORMATION OF
THE HADAMARD FUNCTION IN THE

BOUNDARY-FREE GEOMETRY

In this section we will further transform the expression
(4.5) for the Hadamard function in the boundary-free
geometry. In [54] the following addition theorem was
proved for the associated Legendre functions of the first
kind [there is a misprint in formula (80) of [54]: instead of
P−λ−l
λ ðτÞ should be P−γ−l

λ ðτÞ]:

P−γ
λ ðρ1Þ
ρ0γ1

¼ 2γΓðγÞ
ρ0γτ0γ

X∞
l¼0

ð−1Þlðλþ γ þ 1Þlðγ − λÞl

× ðlþ γÞCγ
l ðβÞP−γ−l

λ ðρÞP−γ−l
λ ðτÞ; ðB1Þ

where ðaÞl is Pochhammer’s symbol, ρ1 ¼ ρτ þ ρ0τ0β and
χ0 ¼ ðχ2 − 1Þ1=2 for χ ¼ ρ; τ; ρ1. Taking in this formula
γ ¼ n=2, λ ¼ ix − 1=2, ρ ¼ u, τ ¼ u0, and β ¼ − cos θ, it
can be rewritten in the form

X∞
l¼0

�
lþ n

2

�
Cn=2
l ðcos θÞ

����Γ
�
D − 1

2
þ lþ ix

�����
2

P−l−n=2
ix−1=2 ðuÞP−l−n=2

ix−1=2 ðu0Þ

¼ 2−n=2

Γðn=2Þ ½ðu
2 − 1Þðu02 − 1Þ�n=4

����Γ
�
D − 1

2
þ ix

�����
2 P−n=2

ix−1=2ðūÞ
ðū2 − 1Þn=4 ; ðB2Þ

where ū is defined by (4.10). The summation over l in formula (4.5) can be done by using the addition theorem (B2) with
n ¼ D − 2 and lþ n=2 ¼ μ. This gives
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G0ðx; x0Þ ¼
α1−D

2D=2πD=2þ1

Z
∞

0

dz z sinh ðπzÞ
����Γ
�
D − 1

2
þ iz

�����
2 Xiz

ν ðyÞ½Xiz
ν ðy0Þ�� þ Xiz

ν ðy0Þ½Xiz
ν ðyÞ��

½sinhðt=αÞ sinhðt0=αÞ�D−1
2

P1−D=2
iz−1=2ðūÞ

ðū2 − 1ÞD−2
4

: ðB3Þ

This function depends on the spatial coordinates through
the combination (4.10). This property is a consequence of
the maximal symmetry of the spatial geometry. For the
adiabatic vacuum one should take the function Xiz

ν ðyÞ in the
form (4.7) and the Hadamard function is expressed as (4.9).
Note that the geodesic distance dðx; x0Þ between the

points x and x0 is expressed in terms of ū. Considering
the inner product ηMNZMZ0N between the points Z and Z0 in
the embedding space, the geodesic distance is given by
cosh ½dðx; x0Þ=α� ¼ ηMNZMZ0N=α2 or by cos ½dðx; x0Þ=α� ¼
ηMNZMZ0N=α2, depending on the separation between x and
x0. In the hyperbolic coordinates, by using (A8), we get

ηMNZMZ0N=α2 ¼ sinhðt=αÞ sinhðt0=αÞū
− coshðt=αÞ coshðt0=αÞ: ðB4Þ

For the special case of the maximally symmetric Bunch-
Davies vacuum, the function G0ðx; x0Þ depends on x and x0
through the geodesic distance (see, for example, the
discussion in [43] for D ¼ 3). In general, this is not the
case for (B3). For points with t ¼ t0, θ ¼ 0 we get

ηMNZMZ0N=α2 ¼ 2sinh2ðt=αÞsinh2½ðr − r0Þ=2� − 1 ðB5Þ

and for large radial separations edðx;x0Þ=α ≈ sinh2ðt=αÞer−r0 .

For a conformally coupledmassless field one has ν ¼ 1=2
and the functions P�iz

ν−1=2ðcosh ðt=αÞÞ are given by (3.1).
In the special case D ¼ 3, by taking into account that

P−1=2
iz−1=2ðūÞ ¼

ffiffiffi
2

π

r
sin ðzζÞ
z

ffiffiffiffiffiffiffiffiffiffiffiffi
sinh ζ

p ; ðB6Þ

with ζ defined by ū ¼ cosh ζ, from (4.9) for the Hadamard
function one gets

G0ðx; x0Þ ¼
sinhðη=αÞ sinhðη0=αÞ

2π2α2 sinh ζ
ζ

ζ2 − ðη − η0Þ2=α2 : ðB7Þ

Note that in this expression ζ ¼ lnðūþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ū2 − 1

p
Þ. For

points with θ ¼ 0 we have ζ ¼ r − r0 and the expression
(B7) is specified as

G0ðx;x0Þjθ¼0¼
sinhðη=αÞsinhðη0=αÞ

2π2 sinhðr− r0Þ
r− r0

α2ðr− r0Þ2− ðη−η0Þ2 :

ðB8Þ

This expression is conformally related (with the conformal
factor sinhðη=αÞ sinhðη0=αÞ) to the corresponding result in
static hyperbolic universes found in [55].
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[47] A. Erdélyi et al., Higher Transcendental Functions
(McGraw Hill, New York, 1953), Vol. 2.

[48] A. A. Saharian and T. A. Petrosyan, The Casimir densities
for a sphere in the Milne universe, Symmetry 12, 619
(2020).

[49] S. Bellucci, A. A. Saharian, and N. A. Saharyan, Wightman
function and the Casimir effect for a Robin sphere in a
constant curvature space, Eur. Phys. J. C 74, 3047 (2014).

[50] A. A. Saharian, A summation formula over the zeros of the
associated Legendre function with a physical application,
J. Phys. A Math. Theor. 41, 415203 (2008).

[51] A. A. Saharian, The Generalized Abel-Plana Formula
with Applications to Bessel Functions and Casimir Effect
(Yerevan State University Publishing House, Yerevan,
2008); Report No. ICTP/2007/082; arXiv:0708.1187.

[52] J. D. Pfautsch, A new vacuum state in de Sitter space, Phys.
Lett. 117B, 283 (1982).

[53] A. A. Saharian, Scalar Casimir effect for D-dimensional
spherically symmetric Robin boundaries, Phys. Rev. D 63,
125007 (2001).

[54] P. Henrici, Addition theorems for teneral Legendre and
Gegenbauer tunctions, J. Ration. Mech. Anal. 4, 983
(1955).

[55] T. S. Bunch, Stress tensor of massless conformal quantum
fields in hyperbolic universes, Phys. Rev. D 18, 1844
(1978).

CASIMIR DENSITIES INDUCED BY A SPHERE IN THE … PHYS. REV. D 104, 065017 (2021)

065017-29

https://doi.org/10.1088/0264-9381/26/19/195004
https://doi.org/10.1088/0264-9381/26/19/195004
https://doi.org/10.1103/PhysRevD.81.124003
https://doi.org/10.1103/PhysRevD.81.124003
https://doi.org/10.1142/S0217751X11054292
https://doi.org/10.1142/S0217751X11054292
https://doi.org/10.1134/S0021364011110026
https://doi.org/10.1088/0031-8949/90/7/074013
https://doi.org/10.1088/0031-8949/90/7/074013
https://doi.org/10.1088/0031-8949/90/6/065304
https://doi.org/10.1088/0264-9381/32/2/025009
https://doi.org/10.1142/S0217751X16501839
https://doi.org/10.1088/0264-9381/18/12/308
https://doi.org/10.1088/0264-9381/18/12/308
https://doi.org/10.1088/0264-9381/18/22/308
https://doi.org/10.1103/PhysRevD.85.064005
https://doi.org/10.1103/PhysRevD.85.064005
https://doi.org/10.1016/j.physletb.2004.01.059
https://doi.org/10.1016/j.physletb.2004.01.059
https://doi.org/10.1103/PhysRevD.89.105006
https://doi.org/10.1103/PhysRevD.89.105006
https://doi.org/10.1016/j.physletb.2007.10.050
https://doi.org/10.1016/j.physletb.2007.10.050
https://doi.org/10.1088/0264-9381/25/16/165012
https://doi.org/10.1088/0264-9381/25/16/165012
https://doi.org/10.1103/PhysRevD.77.124010
https://doi.org/10.1088/1126-6708/2008/12/081
https://doi.org/10.1088/1126-6708/2008/12/081
https://doi.org/10.1142/S0217751X0904539X
https://doi.org/10.1088/1126-6708/2009/04/046
https://doi.org/10.1088/1126-6708/2009/04/046
https://doi.org/10.1088/0264-9381/32/13/135002
https://doi.org/10.1088/0264-9381/32/13/135002
https://doi.org/10.1140/epjc/s10052-017-5047-7
https://doi.org/10.3103/S1068337219010018
https://doi.org/10.3103/S1068337219010018
https://doi.org/10.3103/S1068337219010018
https://doi.org/10.1007/JHEP02(2013)038
https://doi.org/10.1007/JHEP07(2014)072
https://doi.org/10.1007/JHEP07(2014)072
https://doi.org/10.1016/j.nuclphysb.2016.06.024
https://doi.org/10.1007/JHEP03(2017)068
https://doi.org/10.1140/epjc/s10052-019-7319-x
https://doi.org/10.1140/epjc/s10052-019-7319-x
https://doi.org/10.1103/PhysRevD.51.2979
https://doi.org/10.1007/JHEP06(2015)095
https://doi.org/10.3390/sym12040619
https://doi.org/10.3390/sym12040619
https://doi.org/10.1140/epjc/s10052-014-3047-4
https://doi.org/10.1088/1751-8113/41/41/415203
https://arXiv.org/abs/0708.1187
https://doi.org/10.1016/0370-2693(82)90719-5
https://doi.org/10.1016/0370-2693(82)90719-5
https://doi.org/10.1103/PhysRevD.63.125007
https://doi.org/10.1103/PhysRevD.63.125007
https://doi.org/10.1103/PhysRevD.18.1844
https://doi.org/10.1103/PhysRevD.18.1844

