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Complete set of modes and the Hadamard function are constructed for a scalar field inside and outside a
sphere in (D + 1)-dimensional de Sitter spacetime foliated by negative constant curvature spaces. We
assume that the field obeys Robin boundary condition on the sphere. The contributions in the Hadamard
function induced by the sphere are explicitly separated and the vacuum expectation values (VEVs) of the
field squared and energy-momentum tensor are investigated for the hyperbolic vacuum. In the flat
spacetime limit the latter is reduced to the conformal vacuum in the Milne universe and is different from the
maximally symmetric Bunch-Davies vacuum state. The vacuum energy-momentum tensor has a nonzero
oft-diagonal component that describes the energy flux in the radial direction. The latter is a purely sphere-
induced effect and is absent in the boundary-free geometry. Depending on the constant in Robin boundary
condition and also on the radial coordinate, the energy flux can be directed either from the sphere or
towards the sphere. At early stages of the cosmological expansion the effects of the spacetime curvature on
the sphere-induced VEVs are weak and the leading terms in the corresponding expansions coincide with
those for a sphere in the Milne universe. The influence of the gravitational field is essential at late stages of
the expansion. Depending on the field mass and the curvature coupling parameter, the decay of the sphere-
induced VEVs, as functions of the time coordinate, is monotonic or damping oscillatory. At large distances
from the sphere the falloff of the sphere-induced VEVs, as functions of the geodesic distance, is

exponential for both massless and massive fields.
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I. INTRODUCTION

The quantum field-theoretical effects in background of de
Sitter (dS) spacetime (for geometrical properties and coor-
dinate systems see, for instance, [1,2]) continue to be the
subject of active research. There are several motivations for
that. First of all, the high symmetry of dS spacetime allows
us to obtain closed analytic solutions in numerous physical
problems with important applications in cosmology of the
early Universe. On the basis of this, one can reveal the
features of the influence of gravitational fields on quantum
effects in more complicated geometries, including those
describing a more general class of cosmological models and
black hole physics. The most inflationary models for the
expansion of the early Universe are based on an approx-
imately dS geometry sourced by slowly evolving scalar
fields. The short period of the corresponding quasiexpo-
nential expansion provides a natural solution to a number of
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problems in big bang cosmology [3,4]. An important effect
of the rapid expansion during the inflation is the magnifi-
cation of quantum fluctuations of fields, including those for
inflaton, to macroscopic scales. The related inhomogeneities
in the distribution of the energy density act as seeds for
subsequent large-scale structure formation in the Universe.
This mechanism for the galaxy formation has been sup-
ported by the observational data on the temperature anisot-
ropies of the cosmic microwave background radiation.
Another important discovery based on those data, in
combination with observations of high redshift supernovae
and galaxy clusters, is the accelerated expansion of the
Universe at the present epoch. The observational data are
well approximated by the Lambda-cold dark matter model
with a positive cosmological constant responsible for the
accelerated expansion. The dS spacetime is the future
attractor of this model. In addition to the above, interesting
topics related to the physics in dS geometry are the string-
theoretical models of dS inflation and the holographic
duality between quantum gravity on dS spacetime and a
quantum field theory living on its timelike infinity (dS/CFT
correspondence, see [5—7] and references therein).

In the present paper we consider the effect of a spherical
boundary on dS bulk, foliated by negative constant
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curvature spaces, on the local properties of quantum
vacuum for a massive scalar field with general curvature
coupling parameter. The influence of the sphere originates
from the modification of the spectrum for the vacuum
fluctuations, induced by the boundary condition on the
field operator. This type of boundary-induced effects are
widely investigated in the literature for different bulk and
boundary geometries and are known under the general
name of the Casimir effect (see for reviews [8—12]). For
quantum fields in a given curved background, closed
analytic expressions for the characteristics of the vacuum
[such as the vacuum energy, the Casimir forces and vacuum
expectation values (VEVs) of the energy-momentum ten-
sor] are obtained for geometries with high symmetry. In
particular, motivated by radion stabilization and generation
of the cosmological constant on branes, the investigation of
boundary-induced quantum effects in anti—de Sitter space-
time has attracted a great deal of attention (see references
given in [13,14]).

The Casimir effect for planar boundaries in dS spacetime
has been discussed in [15-21] for scalar and electromag-
netic fields. It has been shown that the influence of the
gravitational field on the local characteristics of the vacuum
state is essential at distance from the boundaries larger than
the curvature radius of the background geometry. The
VEVs of the field squared and energy-momentum tensor
for scalar and electromagnetic fields induced by a cylin-
drical boundary in dS bulk have been investigated in
[22,23]. Another class of exactly solvable problems cor-
respond to spherical boundaries. The corresponding
Casimir densities were discussed in [24,25] for a con-
formally coupled massless scalar field and in [26] for a
massive field with general coupling to the curvature. In the
conformally coupled massless case the VEVs in the dS
spacetime are obtained from the corresponding results for a
spherical boundary in the Minkowski bulk by a conformal
transformation. By using the conformal relation between
dS (described in static coordinates) and Rindler spacetimes,
the vacuum densities for a more complicated boundary
have been studied in [27]. The VEVs in geometries with
spherical dS bubbles have been investigated in [28]. The
topological Casimir effect induced by toroidal compacti-
fication of a part of spatial dimensions and by the presence
of topological defects in locally dS spacetime was dis-
cussed in [29-37].

An important step to quantize fields in curved spacetimes
is the choice of a coordinate system and related complete
set of mode functions being solutions of the classical field
equations. In general, the different sets of mode functions
will lead to different Fock spaces, in particular, to inequi-
valent vacuum states. A well-known example of this kind in
flat spacetime is the quantization of fields in Cartesian
coordinates, relevant for inertial observers, and in Rindler
coordinates, adapted for uniformly accelerated observers.
These two ways of quantization give rise to different

vacuum states, the Minkowski and Fulling-Rindler vacua
for inertial and uniformly accelerated observers, respec-
tively. In dS spacetime, depending on the specific physical
problem, different coordinate systems have been used. The
global coordinates, with spatial sections being spheres,
cover the whole dS spacetime. In planar (or inflationary)
coordinates the spatial sections are flat and they only cover
half of dS spacetime. These coordinates are the most
suitable for cosmological applications, in particular, in
models of inflation. Though the dS spacetime has timelike
isometries, the metric tensor in both the global and planar
coordinates is time dependent. The existence of time
isometries is explicit in static coordinates with time-
independent metric tensor. These coordinates are analog
of the Schwarzschild coordinates for black holes and cover
the region in dS spacetime accessible to a single observer.
They are well-adapted for discussions of thermal aspects of
dS spacetime. Another coordinate system with spatial
sections having constant negative curvature has been
employed in recent investigations of the entanglement
entropy in dS spacetime (see [38—42] and references
therein). These hyperbolic coordinates provide a natural
setup to discuss long range quantum correlations between
causally disconnected regions (L and R regions in the
discussion below) separated by another finite region
(region C below).

In the present paper we investigate the influence of a
spherical boundary on the vacuum fluctuations of a massive
scalar field in background of (D + 1)-dimensional dS
spacetime with negative curvature spatial foliation for
the general curvature coupling. The paper is organized
as follows. In Sec. II we describe the bulk and boundary
geometries and the boundary condition imposed on the
scalar field operator. The general form of the mode
functions is obtained by solving the field equation. In
Sec. III the mode functions are specified for the special case
of the hyperbolic vacuum. It is shown that the Ilatter
coincides with the conformal vacuum. In Sec. IV the
Hadamard functions for the boundary-free geometry and
for the regions outside and inside a spherical boundary are
evaluated. The eigenvalues of the radial quantum number
are specified inside the spherical shell. The sphere-induced
contributions in the Hadamard function are separated
explicitly for both the exterior and interior regions. In
the case of the hyperbolic vacuum, representations for those
contributions, well adapted for the investigation of local
VEVs, are provided. The VEVs of the field squared inside
and outside a spherical shell are studied in Sec. V. The
results of numerical analysis are presented. The corre-
sponding investigations for the VEVs of the energy-
momentum tensor are presented in Sec. VI. The main
results of the paper are summarized in Sec. VII. In the
Appendix A the coordinates in different regions of the dS
spacetime, foliated by negative curvature spaces, and their
relations to the global and inflationary coordinates are
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discussed. In Appendix B the expression for the Hadamard
function in the boundary-free dS spacetime with negative
curvature spatial foliation is presented without specifying
the vacuum state.

II. PROBLEM SETUP AND THE
SCALAR MODES

We consider (D + 1)-dimensional dS spacetime with
negative curvature spatial foliation. The relations between
the coordinates realizing the foliation and the global
conformal coordinates (1,.x.9,¢) = (1, .01, ...0,.$),
n = D -2, are discussed in Appendix A. Here, (9, ¢) =
(61, ...0,, @) are the angular coordinates on a sphere SP~!.
The corresponding Penrose diagram, mapped on the square
(0< ng/a<m0<y< 7), is presented in Fig. 1. The five
regions designated by LI, LII, RI, RII and C are separated
by the line segments n,/a = /2 &y, n,/a =3x/2 -y,
ng/a =y —n/2. In what follows the discussion will be
presented for the LI region defined by (A10). The corre-
sponding line element reads
ds* = dt* — @? sinh? (t/a)(dr? + sinh? rdQ3,_|),  (2.1)
where 0 <7 <oo, 0<r<oo and dQ7_, is the line
element on a sphere SP~! with unit radius. The metric
tensors in the regions LII, RI, RII have similar forms. Note
that the radial coordinate r is dimensionless. The line
element (2.1) is conformally related to the line element of
static spacetime with negative constant curvature space. In
order to see that we introduce a new time coordinate 7,
—oo0 < n <0, in accordance with

e"* = tanh (t/2a). (2.2)

t=const r=const

T
Ll'region Rl region
C region
7
a
Lil'region 5
Il region
0
0 X Ved
FIG. 1. The Penrose diagram for dS spacetime covered by the

coordinates corresponding to the negative curvature spatial
foliation.

The line element takes the form

dn* — a*(dr* + sinh? rdQj, ;)
sinh? (/)

ds? = (2.3)

Note that we have the relations sinh(y/a) =
—1/sinh (¢/a) and coth (n/a) = —cosh (t/a) between
the conformal and synchronous time coordinates.

We are interested in effects of a spherical boundary with
radius r = ry on the local characteristics of the vacuum
state for a scalar field @(x) with curvature coupling
parameter £ The corresponding field equation has the form

(V, V¥ +m*+ER)p = 0, (2.4)

where Vﬂ is the covariant derivative operator and the Ricci
scalar is given by R = D(D + 1)/a*. On the sphere the
field obeys the Robin boundary condition

(A=63B0,)p(x) =0, r=r, (2.5)
where j =1 and j = e correspond to the interior (r < r)
and exterior (r > ry) regions with §;) = 1 and §) = —1. It
is of interest to have the radius of the sphere ryy in
inflationary coordinates. By using the relations (A19),
we can see that

rro/@ = coth ry — \/sinh‘2r0 +e/a(2.6)
As seen, in inflationary coordinates the radius of the sphere
is time dependent. One has rjp =0 for # =0. With
increasing t; the radius ryy increases and in the limit #; —
co it tends to the value lim, 79 = a tanh(ry/2).

The VEVs of the physical quantities bilinear in the field
operator are obtained from the two-point functions or their
derivatives in the coincidence limit of the arguments. As a
two-point function we will consider the Hadamard function
G(x,x") = (0|lp(x)p(x') + @(x")p(x)|0), where |0) stands
for the vacuum state and x = (¢, r, 9, ¢). For the evaluation
of the Hadamard function we will employ the mode sum
formula

G(x,x) =D [0 ()05 () + 0o (x)s(x)],

o

(2.7)

where {@,(x),9:(x')} is a complete set of solutions to
the classical field equation obeying the boundary condition
and the collective index o specifies the quantum numbers.
The symbol > includes the summation over discrete
quantum numbers and the integration over the continuous
ones. Given the Hadamard function, the VEVs of the
field squared, (0]g?(x)|0) = (¢?*(x)), and of the energy-
momentum tensor, (0|7 (x)|0) = (T;(x)), are found in
the coincidence limit of the arguments as follows:
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(p*(x)) zllimG(x, X,

1. 1
(Ti(x)) = Ei}gai’akG(x’ x') + (f - Z) 9V, VP (p?)

= EViVi{@?) = ERu(0?), (2.8)
where R;; is the Ricci tensor. Of course, the expressions in
the right-hand sides diverge and a renormalization is
required. Here we are interested in the contributions to
the VEVs induced by the spherical boundary. In the
discussion below the corresponding contribution in the
Hadamard function will be extracted explicitly. The diver-
gences are determined by the local geometry and for points
away from the sphere they are the same in the problems
without and with spherical boundary. This means that for
those points the renormalization in (2.8) is reduced to the
one in the problem where the spherical boundary is absent.
As the first step we need to specify the mode functions
¢ (x). In accordance with the symmetry of the problem the
solution of the field equation (2.4) can be presented in the
form (for a discussion of the scalar field mode function in
D = 3 dS spacetime with negative curvature spatial sec-
tions see also [43,44])
= f(t/a)g(r)Y(mp; 8. ).

o(x) (2.9)

where Y (m ;9. ¢) are hyperspherical harmonics of degree

1 =0,1,2,.... For the set of quantum numbers m, one has
m, = (my=1my,....m,), with m;, my, ....,m, being
integers such that —m,,_; < m, <m,_; and
0<m,_1<m,_, <---<m <L (2.10)
The angular part in (2.9) obeys the equation
AgpY(my:8,¢) = =11 +n)Y(m,;9,¢), (2.11)

with Ay 4 being the Laplace operator on a unit sphere.
Substituting (2.9) into the field equation we get separate
equations for the functions f(z/a) and g(r):

0, [sinhP 70, f (7)] - 7? B
— D, T |™@ +<§D(D+1)+sinh21 f(z)=0,
0, [sinh®1rd,g(r)] [, I(l+n) B
sinh?~1r + { " sinh?r ] 9(r) =0,
(2.12)

where 7 = t/a and y? is the separation constant.

The equations (2.12) have the same structure and
the corresponding solutions are expressed in terms of the
associated Legendre functions Py (u) and Qy(u) (for the
properties of the associated Legendre functions see
[45,46]). The solutions are presented in the form

~ X[(cosh 7)

~ sinh®@P-1/2¢°
zZ ", (cosh r)
iz—1/2
== 2.13
9(r) sinhP/2-1p (2.13)
with the functions
Xi(y) = d\ P 12(0) + sziz—l/z(w’
Zi_zlil/z(”) = Clpiz—l/Z(u) + CzQi_;il/z(”)’ (2-14)
and notations
D
=[+—-1,
H + 5
D’ 2.2
v= T—éD(D—J—l)—ma. (2.15)

The separation constant is expressed in terms of z as
y? = 22 + (D — 1)?/4. The parameter v can be either real
or purely imaginary.

On the base of (2.13), the mode functions are presented
in the form

Xi(cosh(t/a)) Z; 1, 5(cosh 1)
sinhP=1/2(¢/q)  sinh?/2=1r

Y(m,:9,¢),

(2.16)

Ps(x) =

where the set of quantum numbers is specified by
o = (z,m,). The coefficients ¢, ¢,, d;, d, in the linear
combinations of the associated Legendre functions are
determined by the choice of the vacuum state and by the
boundary and normalization conditions. The latter is
given by

<>
[ @xldlod0)D ) = e @217)
where J,, is understood as Kronecker delta for discrete
quantum numbers and Dirac delta function for continuous
ones. Note that we can also present the function X*(y) as a
linear combination of the functions P )

XEO) = D biPL p0y)

=t

(2.18)

By using the relation between the functions Q' | /2( ) and
Pf_lzl /2( y), for the corresponding coefficients one gets

ire ™ d

2 sinh (nz) *
_ime™ T(v+iz+1/2)
2 sinh (72) T(v — iz + 1/2)

b, =d, -

dr,  (2.19)
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where I'(x) is the gamma function. Note that one has the
relation

PR p(v) = P (), (2.20)
for both real and purely imaginary v.
We impose an additional condition
W{f(@).f*(0)} = f(2)0:f"(7) = 0:f (2)f* (2)
! (2.21)

sinh? 7

on the function f(z) in (2.13), where W{f (1), f2(7)}
stands for the Wronskian. This imposes a constraint on the
coefficients of the linear combination of the associated
Legendre functions in the expression for the function
Xi#(y). In order to obtain that constraint it is convenient
to employ the representation (2.18). By using (2.20) and the
Wronskian

2isinh (7z)

W{Pu 1/2( )s P;izl/z(J’)} 7 V-1

, (2.22)
the following relation is obtained for the coefficients in
(2.18):

T

b.|? —_—
b+~ 2sinh (7z) "

b_|? = (2.23)

In deriving this relation we have assumed that z is real. In
the case of purely imaginary z the condition (2.21) is
reduced to

T

b, b* —.
N 2sinh (7z)

—bib = (2.24)

Having the condition (2.21) and by taking into account
the formula

(2.25)

[ 41y 8.0)* (i 8.9) = N, ),
for the integral over the angular coordinates, the normali-
zation condition (2.17) is written in terms of the radial
functions:

al—D

/ WL T 0] = 5B (226

Here, the integration goes over the region [1, cosh ry] for
the mode functions inside the sphere and over the region
[cosh 7, 00) for the exterior modes. The explicit expression
for N(m,,) is not required in the following discussion and
can be found, for example, in [47].

An alternative representation of the time-dependent part
in the mode functions is obtained by using the relation

\/2/7re’””Q]FlZ 12 (coth(z/a))
I'(1/2 —v F iz)y/sinh(z/a)
(2.27)

P55 5 (cosh(t/a)) =

between the associated Legendre functions. For the func-
tion in (2.16) this gives

z/ﬂell/ﬂ'

\/sinh(t/a) ;5

Xz (cosh(t/a)) =

b; 05,12 (coth(t/a))
Z r(1/2-v—jiz)

(2.28)

Equivalently, we can use the formula

O () =~ [P;11/2<y>

2sin(zv)
T(tiz-v+1/2)
I(tiz+v+1/2)

Py )] (2.29)

in order to express the modes in terms of the functions
+
Pt /2()/ ),

) 2 P; t/a
Xi(cosh(t/a)) = 7/ chj c-12(Cothl?/))
sin (7v) fll sinh(¢/a)
(2.30)
with the coefficients
b
J . (2.31)

=)
j,

 T(1/2+£v - jiz)

III. VACUUM STATES

The coefficients in the linear combination (2.18) are
related by (2.23) and (2.24) for modes with real and purely
imaginary z, respectively. The remaining degree of freedom
is fixed by the choice of the vacuum state. In order to
discuss the vacuum states let us consider special and
limiting cases. For a conformally coupled massless scalar
fieldonehas ¢ = &, = (D —1)/(4D) andv = 1/2. For the
associated Legendre functions in the expressions of the
scalar modes we get

e eFizn/a 31
Pt h(t/a —_— .
0 (COS ( / )) F(l T lZ) ( )
and, hence,
| be~iian/a
X5, (cosh (t/a) = S (32
I/Z(COS (/ )) el (1 ]lZ) ( )
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where the conformal time # is defined by (2.2). The modes
realizing the conformal vacuum are related to the mode

functions cp,(ft) (x) in static spacetime with a negative

constant curvature space [with the line element given by
the expression in the square brackets of (2.3)] by the

1-D)/ 24;,(,50 (x) with the conformal fac-

formula ¢, (x) = Q!
tor Q% = sinh™2 (/).
For a conformally coupled massless field the static

spacetime positive energy mode functions are expressed as
Zl._z”_ 12 (coshr)
sinh?/2=1 p
with the energy E = z/a > 0. Comparing (3.3) with (3.2),
we see that for the conformal vacuum the quantum number

zisreal and b_ = 0. The other coefficient b, is found from
the relation (2.23):

o (x) = Y(my 9. p)e= /e, (3.3)

/4
b =—1—. 34
1B+ 2sinh (z7) (3.4)
The corresponding mode functions in dS spacetime are
given by

zZF h
(P(;(t, r, 9, ¢) = sinh% (\77|/a)e‘iz'7/a 11_1/2(COS r)

sinh?/2=1

X Y(m,:9,¢), (3.5)
where we have used 1/ sinh(¢/a) = — sinh (17/a) and have
excluded the factor b, /I'(1 — iz) by redefining the coef-
ficients ¢ and ¢, in (2.14). For a massive field with general
curvature coupling the mode functions corresponding to the
conformal vacuum are obtained from (2.16) with b_ =0
and b, given by (3.4). The corresponding eigenvalues of
the quantum number z are real.

In order to discuss the adiabatic vacuum we introduce the
function %(n) of the conformal time in accordance with
h(n) = sinh®®=V/2(t/a)f(t/a), where the function t=
t(n) is given by (2.2). This function obeys the equation

d2h(n) + @*(z.n)h(n) =0, (3.6)
with time-dependent frequency
1 v —1/4 712
) == ————| . 3.7
e =y {Z sinhzm/a)} &7

From here it follows that the limit # - —oco corresponds to
asymptotically static region (static in-region). In terms of
the proper time ¢ this corresponds to the region f/a < 1. In
the zeroth adiabatic order, for the modes realizing the in-
vacuum one has 7% () ~ e~/ — —co. Let us consider
the behavior of the mode functions (2.16) in that region. By
using the asymptotics for the associated Legendre functions
one gets

bje—jizn/a

Xiz(cosh(t/a)) = Z T1—jio)

=+

t/la<k1l. (3.8)

From here it follows that for the mode functions that are
reduced to the positive energy modes in static spacetime we
should take 5_ = 0 and, hence, the conformal and adiabatic
vacua coincide. The corresponding state is also known as
hyperbolic vacuum. Note that the latter is different from the
maximally symmetric Bunch-Davies vacuum state (for the
relation between the hyperbolic and Bunch-Davies vacua in
the special case of D = 3 boundary-free dS spacetime see
also [43.,44]).

Now let us consider the flat spacetime limit @ — co. The
line element takes the form

ds®> = di* — *(dr® + sinh? rdQ3,_,), (3.9)

which corresponds to the Milne universe. In order to find
the limiting form of the scalar mode functions (2.16) we
note that in the limit under consideration v ~ ima and |v] is
large. We can use the relation

lim [(ma)iisz,’;;_l/z(cosh(t/a))] = Jyi,(mt), (3.10)

a—0o

where J,(x) is the Bessel function. For the scalar modes

one gets lim,_ ¢, (x) = (pS,Milne) (x), where the mode

functions in the Milne universe are given by

(Milne) () cl~7+f—iz(mt) +b_J; (mt) Pi.Z jp(cosh )
v P72 sinh?/2~1r
X Y(m,: 9. ), (3.11)
sinh
c? :Zi(ﬂz)|l“(iz+u+ 1/2).  (3.12)

aN(m,)

These mode functions have been discussed in [48]. In the
Milne universe the conformal and adiabatic vacua are
different. The conformal vacuum corresponds to the special
case b_ =0 with |b,|> =x/[2sinh(7z)] and for the
adiabatic vacuum in the Milne universe

g me™/?

= s ~_ = —E —rz,
© 7 2sinh (7z) e

(3.13)

For the adiabatic vacuum the time dependence in the
corresponding mode function (3.11) is expressed in terms

of the function r!=2)2H? (ms) with the Hankel func-
tion H 522) (x).
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IV. HADAMARD FUNCTION

Having specified the general structure of the mode
functions we turn to the construction of the Hadamard
function in accordance with (2.7). The boundary-free,
exterior and interior geometries will be considered
separately.

A. Boundary-free geometry

We start with the problem where the sphere is absent.
For the modes regular at the origin » = 0 one should take
¢, = 01in (2.14) and the corresponding mode functions take
the form

0) () — Xi#(cosh(t/a)) P;Z;(coshr)

’ Y(m,;9,¢),
’ Osinh<D—1>/2(,/a) sinh?/2-1 r (my: 9, )

(4.1)

with 0 < r < 0. The spectrum of the quantum number z is
continuous, 0 < z < oo, and in the right-hand side of the
normalization condition (2.26) we take §., = 8(z —7/)

|

al~

Golx.¥') = anSp &

XEQIXEOT + XEGXEW)] Pl p ()Pl o ()

with the integration range u € [1,00). By using the

result
_ 76(z—7)
duP’; P
/1 “Pi1n (P ()= zsinh (zz)|C(iz +p+1/2)
(4.2)
for the normalization coefficient one gets
z sinh (7z) [T(u + iz + 1/2)
o — 280 ) I E o us)

zN(m,) aP~!

Substituting the mode functions (4.1) into the corre-
sponding mode sum formula (2.7) and by using the
addition theorem

Y(my:9.9),
2" Nimy) N(m,)

e

21
Y (my ) == " (44)

C;’/z(cos 0),
D

for spherical harmonics, for the Hadamard function in the
boundary-free geometry we find

ZuC”/ (cos 9)/ dz z sinh (zz)|T(p + iz + 1/2)?
0

[sinh(¢/a) sinh(¢ /a)]’T

with y defined in (2.15) and

y = cosh(t/a), y' = cosh(? /a),

u = cosh r, u' = cosh r'. (4.6)

In this expression, S;, = 2z°/2/T"(D/2) is the surface area
of the unit sphere in D-dimensional space, C?/ 2(cos 0) is

the Gegenbauer polynomial and @ is the angle between the
directions determined by (9, ¢) and (&', ¢').
For the hyperbolic vacuum

XEG) =\ [P p0),

4.7
2 sinh (zz7) *~!/? (47)

and the function (4.5) is reduced to

D © 0
—ZuC';p(cosG)/ dzz|T(u+iz+1/2)
D 1= 0

XPi_zlil/2(u)Pi_inl/2(u/)
(sinh rsinh /)7~
XZj:Jr,—Pil—zuz(Y)P;ilf/z(y/)
[sinh(7/a)sinh(¢ /a)]’T

, 4.5
(sinh r sinh 7/)7"! (4.5)

|

The further transformation of the Hadamard function in the
boundary-free geometry is presented in Appendix B. In
particular, the corresponding expression for the hyperbolic
vacuum is obtained from (B3) with the function X*(y)

from (4.7):
, al=P o D—-1 \|?
Go(x, x') :W/ dzz F<T+ tz)
o Zi=Pap 0PI Pa(®)
[sinh(z/a) sinh(7 /a)]T (2 —1)%
(4.9)
where

i = cosh r cosh #/ —sinh r sinh # cos 6. (4.10)

In the limit @ — o0, by using the relation (3.10), from (4.9)
we obtain the Hadamard function for the conformal
vacuum in the Milne universe:

065017-7



A.A. SAHARIAN and T. A. PETROSYAN

PHYS. REV. D 104, 065017 (2021)

iIne t)(1=P)/2 foo D-1 2
GO )(H,)_L/ d“F(T“Z)
0

2(27)Pr?
PN ()
mjz;_fﬂz mt)J_j;.(mt').

iz—1/2

(4.11)

It can be checked that this formula is obtained from the
corresponding expression in [48] by making use of the
addition theorem (B2).

B. Region outside the sphere

In the region outside the sphere, r > ry, the mode
functions have the form (2.16) where the function
zr, /2(u) is given by (2.14). For the exterior region it is
more convenient to take the linear combination of the
functions Q;”, ,(u) and Q) _, ,(u) by using the relation

el

PEl6) = e 2 dsls 0T

7 sinh (nz

(4.12)

For the modes with real values of z the ratio of
the coefficients in that combination is determined by
the boundary condition (2.5) and is expressed as

_Q:!ilz—l/Z(uO)/Qi_;il/z(u()) with
uy = cosh ry. (4.13)

Here and below, for a given function F(u), the notation
with bar is defined as

F(u) = [B(u)0, + A(u)|F(u),

where the functions A(u) and B(u) are expressed in terms
of the Robin coefficients:

(4.14)

Alu) = AV u —1+<§—1>50)

B(u) = =54 B(u? — 1). (4.15)

2a'~P  (sinh r sinh //)'~2

7nSp [sinh(t/a)sinh(¢ /a)]

G(x,x')=

We can also write this expression in terms of the function

Y2 () =

by using the relation

Qi_;il/z(uo)Pi_zﬂ_l/z(u)

Here, j = e and j = i for the regions outside and inside the
sphere, respectively, with 6,y = —1 and 6;) = 1. For the
corresponding scalar modes one obtains

Xi(cosh(t/a)) W;/'(coshr)
© sinh®=D72(¢/q) sinh?/2~1

Y(mp;t‘), P),
(4.16)

where we have defined the function

W (u) = Qi_z,ﬂ—l/2(u0)Q:lilz—1/2(u)

- Q:’i‘z_l/z(uo)Qi_z”_l/z(u). (4.17)
Similar to the case of the boundary-free geometry, in the
exterior region the eigenvalues for z are continuous.

From (2.26) the following orthonormalization condition
is obtained in terms of the function (4.17):

8(z—7)

PN (4.18)

Col? / W2 (W)W ()] =
Uy

The u-integral diverges in the upper limit for z = 7' and,
hence, the contribution from the integration range with
large u dominates. So, in order to evaluate this integral, we
can replace the associated Legendre functions Q7% _, /2(u)
in (4.17) by their asymptotic expressions for large values of
the argument

[(1/2 £ iz —p) e

—# ~ —iurm . (4.19
Qi1 p(u) » Ve Mt vaa Y
This leads to the following result:
5 z|F(l/2+iZ—ﬂ)Qi_zlil/z(“0>|_2
|Ce)l* = DT ‘ » o (420)
7aP~'N(m,) sinh (7z)

which is for the normalization coefficient.

With the mode functions (4.16), from the mode sum
formula (2.7), by using the addition theorem (4.4), the
following representation is obtained for the Hadamard
function in the exterior region:

S o XE() W () [XE G W )]+ { () 2 ()}
DTZ 9/ dez s1nh<nz>\r<1/z+zz WP Hlug) P
(4.21)

=Pl ()0 o (u), (4.22)

065017-8



CASIMIR DENSITIES INDUCED BY A SPHERE IN THE ...

PHYS. REV. D 104, 065017 (2021)

The corresponding expression takes the form

Glx,x) = nSp

ime~#" ginh (77)

Depending on the ratio of the coefficients in the Robin

W = Y 4.23
iz (M) COS[ (/,t—l—lZ)] iz— 1/2( ) ( )
20! P & 0 r [ 1/2)?
Z,MC"/2 cos6)/ dzz sinh(ﬂz)| (/4_—_};114— /2)|
1=0 Q32212 (uo)
XXLZ(y)Y,Z”I/z( )[X’Z(y)y,zﬂl/z( )]+ {(yu) 2 (v, u')} (4.24)
[sinh(¢/a) sinh(¢ /a)]"T (sinh 7 sinh #/)2~! ' '
|
with z = =iy, it will be assumed that f < ﬂ(()e)(uo). Note

boundary condition, in addition to the modes with real z,
one can have exterior modes with purely imaginary
z = +iy, y > 0. The radial dependence of the correspond-
ing normalizable mode functions is expressed in terms of
the function Q. ”, ,(u)/ sinh?/2~! r and they correspond to
bound states. From the boundary condition (2.5) we get the
equation Q;f | /z(uo) = 0 that determines the eigenvalues
for y. As it has been already discussed in [49], one has a
critical value ﬂ,@ (ug) for the ratio § = A/B such that there
are no roots for this equation in the range f < ﬂge) (up) and a
single root exists in the region g > ﬂge)(uo). In [49] it has

been shown that ﬁ;e) (ug) is an increasing function of / and a
decreasing function of uy. In addition, we have

ﬂ§e>(u0) > (D —1)/2. For the hyperbolic vacuum the
corresponding function X’(y) is given by (4.7) and the
allowed values for z are real. In order to exclude the modes
|

that the Neumann boundary condition (f = 0) belongs to
this range. In the special case D = 3, by using

\/ﬂ/Ze‘WO
)(\/smh ro

0717 (ug) = (4.25)

for the bound state corresponding to the mode [ = 0 we get

y = —coth ry. From here it follows that ﬂée)(uo) =
coth ry for D = 3.

We are interested in the effects of the sphere on the
properties of the hyperbolic vacuum. The corresponding
Hadamard function outside the sphere is given by (4.24)
with the function (4.7). By taking into account the
expression (4.8) for the boundary-free geometry, the
corresponding sphere-induced contribution G(x,x") =
G(x,x") — Go(x,x’) is presented as

al-D & 00
AN n/ . 2
Gs(x,x)—mz,uc cos&)/0 dzz|U(u + iz +1/2)]
P% P" v’ +{y,u)2 o
v 1/2().’) v 1/2( UZ 1/2(D 1 u') +{(y,u) 2 (v, )}’ (4.26)
[sinh(¢/a) sinh(¢ /a))’z (sinh r sinh 7)2!
with the notation
Yl p @)Y 2 ()]
U () = 2o BB D prt ()P (). (4.27)
z—1/2 |Qizﬂ—1/2(u0)|2 z—1/2 z—1/2
For the further transformation of the function (4.26) it is convenient to use the relation
e P alko)
—u ’ ie T iz=1/23 00 —u /
Uicmap () = 7 sinh (7z2) ZJCOS I G ) 0 1/2(u0) e (1)L 1) (4.28)

The term with j =

— (j = +) exponentially decreases in the upper (lower) half-plane of the complex variable z in the limit

Imz — +oo (Imz - —o0). On the base of these properties, in (4.26), with the substitution (4.28), we can rotate the contour
of the integration in the complex plane z by the angles z/2 and —z/2 for the terms with j = — and j = +, respectively. This

leads to the representation
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2 1-D &
Gy(x,x") =

=0

o QW)@ () 3oy P ]Z1/2( )Piz_l/z(y/)

n/ o0
s, ZyC 0059)/ dz

zewm PY, ) (uo)
sin (nz) Q7_, /,(uo)

(sinh r sinh /)21

Hence, the Hadamard function in the region outside the
sphere is presented as

G(x,x') = Go(x,x') + Gg(x,x'), (4.30)

where the boundary-free contribution for the hyperbolic
vacuum is given by (4.9). In the flat spacetime limit,
corresponding to & — oo, by using the relation

B (P75 ()P, 2 ()] = Ty (me) I (). (4:31)

from (4.29) the boundary-induced Hadamard function is
obtained outside the sphere in the Milne universe [48].

C. Hadamard function inside the sphere

For the interior region, r < r, the regularity condition at
the sphere center fixes ¢, = 0 in (2.14). The corresponding
mode functions are expressed as

X (cosh(t/a)) Py p(cosh r)
U sinh®>=D72(t/a)  sinhP/2-1
X Y(m,;9, ).

o 1.7.0.4) -
(4.32)

From the boundary condition (2.5) with j = i we obtain the
equation that determines the allowed values of the quantum
number z:

Pi_z"_l/z(uo) =0, (4.33)
with u, defined by (4.13). For the region under consid-
eration the notation with bar in (4.33) is defined by (4.14)
where now & =65 =1 in (4.15). Hence, unlike the
exterior region, inside the sphere the eigenvalues of z form
a discrete set. The positive solutions of the eigenvalue
equation (4.33) we will denote as z =1z, k=1,2,...,
assuming that z;,; > z;. These solutions do not depend on
|

4 1-D
G(x,x') =

nSD

XX,’f(y)[ SOOI+ X ()

(4.29)
[sinh(z/a) sinh(' /)] =

the curvature coupling parameter and on the field mass. In
the special case D = 3, by taking into account that

1/2( )_\/g sin (zrg)
Pieipa o mzy/sinh 7y’

the eigenvalue equation for the mode / = 0 is simplified to

(4.34)

(p + coth ry) sin (zrg)/z = cos (zrg), (4.35)

with the notation f = A/B.

The normalization coefficient C ;) in (4.32) is determined
by the condition (2.26) with Z;" | ,(u) = C»P1, (),
z = z, where the integration goes over the region [1, u)
and in the right-hand side o, = dy. The corresponding
procedure is similar to that considered in [49]. By using the
integral

ug —1 _ _
[ Pty (w0 =R 0P )0, P ()

- Pi_zﬂ—l/Z(MO)azauPi_zﬂ—l/z(”O)]’
(4.36)

and the eigenvalue equation (4.33), we can show that

Co P =22 N 4 1/ DPT o). (437)
O N,y U e
with z = z,. Here we have introduced the notation
QL1 )(u)
T,(z,u) = == V22" cos[n(u—iz)]. (4.38)

0Py ()

With (4.37), the scalar mode functions inside the sphere are
completely determined. Substituting the modes (4.32) into
the mode sum (2.7) and making use of (4.4), the Hadamard
function inside the sphere is presented in the form

0

ZMC/ cosd) WZT/‘(Z up)z|l(u + iz +1/2)
k=1

iz— 1/2(”)Pi_z”—1/2(“/)

[sinh(z/a) sinh(7 /a)]"

5711( 2l 1 (4.39)

(sinh 7 sinh /)2~ —
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As in the previous discussion for the exterior region, we
will assume that the field is prepared in the hyperbolic
vacuum state with the function (4.7). It has been already
emphasized that for the hyperbolic vacuum the eigenvalues
of the quantum number z are real. However, depending on
the ratio § = A/B, the eigenvalue equation (4.33) may have
purely imaginary roots. The conditions for the presence of
those roots have been specified in [49]. For given values of
uy and [ there exists a critical value of f, denoted here by

ﬂgi)(uo), such that all the roots are real for f < ﬂgi>(”0) and a
pair of purely imaginary roots z. = =+i|z.| appears for
B> ﬂgl)(uo). For the critical value one has ﬂgl)(uo) >

—(D —1)/2 and it is an increasing function of / and a
J

20
Glx.x') = nSp
=0

Pi_zﬂ—l/Z(u)Pi_zﬂ—l/Z(M/) zj:+,—Pilf1/2(y)P;‘—]az/z(yl)

decreasing function of u. For the critical values of the
Robin coefficient in the exterior and interior regions one

has the relation /)’§e> (ug) > ﬂgi) (up). In the case D = 3 from
(4.35) we get

1
= — — coth ry.
o

By (o) (4.40)

In the discussion below, for the interior region we will

assume the values of  in the range f < ,B(()l ) (ug), where all
the roots of the equation (4.33) are real.

For the Hadamard function corresponding to the hyper-
bolic vacuum we get the representation

P& e C(u+iz+1/2)
Z’ucl/Z(cose)emnzzTﬂ(z’uo)| (/’l : 174 /)‘
— =1

sinh (7z7)

(sinh 7 sinh /)2~

, (4.41)

=2

I [sinh(¢/a) sinh(7 /a)]*="

where the relation (2.20) has been used. The summation in this formula goes over the eigenvalues z; that are defined
implicitly, as roots of the equation (4.33). A more convenient representation is found by using the formula [48]

ki:o; T, (2 w)h(zi) = e‘z””’ A“’ dx sinh (zx)h(x) + zk: cos [m(p — x;)] %]_;_RGSZJ’M}I(Z)
L[ dchos [m(x — )] Z h(xei™i/2) (4.42)

o Pl

with a function 4(z) analytic in the half-plane Re z > 0. In (4.42), the points +ix; are possible poles of the function /(z) on
the imaginary axis. In the presence of these poles, it is assumed that the last integral is convergent in the sense of the
principal value. The corresponding formula in the case when the poles on the imaginary axis are absent has been derived in
[49,50] by using the generalized Abel-Plana formula [51]. Additional conditions on the function 4(z) can be found in those
references. The function /(z) corresponding to the representation (4.41) of the Hadamard function is real for real values of z
and is expressed as

D(u+ iz +1/2)

h(z) =z sinh (77)

= i+ 2P 0P o) Y P OPZG). (48

==

It is an even function of z and has simple poles at z = £ix; = +izk with k = 1,2, .... In this special case the residue term in
the right-hand side of (4.42) vanishes. Note that the poles coming from the gamma function in the integrand of the last
integral are canceled by the zeros of the function cos [z(x — u)].

The contribution to the Hadamard function coming from the first term in the right-hand side of (4.42) gives the
corresponding function in the boundary-free geometry and the Hadamard function inside the sphere is decomposed as
(4.30). The sphere-induced part comes from the last integral in (4.42) and is given by the expression

2 1-D & 00 —ipm Qﬂ_ u
Z”CH/Z cosa)/ 4z 28 _i”l/2( 0)
nSp “= 0 sin (zz) P, »(uo)

L P () 3 L PL l/z(y)P/i/z(y’)
[sinh(z/a) sinh(¢' /a)] T

Gi(x,¥) =

(4.44)
(sinh r sinh 7/)2"!
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with r, ¥ < ry. Here, for the transformation of the inte-
grand, the relation

Dp+z+1/2)0(u—z+1/2)Q7, ,(uo)
_21/4an 1/2(u0)

= = (4.45)

has been used. By taking into account the asymptotics of
the functions P*, ,(u), Q) ,(u), P ;2(¥) (see, for
instance, [46]) it can be seen that for large values of z
the integrand in (4.44) behaves as e+ +hn=nl/a=2r] /7
From here it follows that the representation (4.44) is valid
in the range r+ ' + | —n|/a < 2ry. We recall that the
integral in (4.44) is understood in the sense of the principal
value. Comparing with (4.29), we see that the sphere-
induced contributions inside and outside the sphere are
obtained from each other by the replacements
QL pw) 2 P (W), w=uuy (4.46)

of the associated Legendre functions.

In the limit ry — oo for the associated Legendre func-
tions in the integrand of (4.44) one has the asymptotics

x—u—l/Zerox

V2r sinh 7y’

ﬂ.ei;mx—ﬂ—l/Ze—rox
v/2m sinh r

From here it follows that in that limit, as expected, the part
G,(x, x) tends to zero. In the limit of large curvature radius
for the background spacetime, by making use of (4.31), the
sphere-induced contribution (4.44) is reduced to the cor-
responding two-point function inside the sphere in the
Milne universe, given in [48].

P;fuz(”o) ~

Q;fl/z(uo) ~ (4.47)

V. VEV OF THE FIELD SQUARED

We start the consideration of the local characteristics of
the vacuum state from the VEV of the field squared. By
using (2.8) and (4.30), the VEV is presented in the
decomposed form

(@) = (@) + (¢°)s, (5.1)
where (¢?), is the VEV in the boundary-free geometry and
(p*) = limy_,, G,(x,x')/2 is the contribution induced by
the sphere. For the part depending on the angular coor-

dinates one has lim,_, 2,uC;’/ 2(cos 0) = D;, where
2L+ n)C(I+n)
D=7 7 5.2
! IT(n+1) (52)

determines the degeneracy of the angular mode with fixed /.
We consider the properties of the VEVs outside and inside
the sphere separately.

A. Interior region

For the region inside the sphere from (4.44) we get

1-D ¢inh2-D 00 —iurm
N a'~Psinh“"r /00 xe
=M T NTp, [ Ta
@) SDsinhD"(t/a); 'Jo xsin(ﬂx)
Qﬁ—1 z(“ ) _
xS 0P WP )P (5.3)

P;fl/Z(uO) vl

As it has been already mentioned, for r < ry (1 < ugy), the
renormalization is required for the part (¢?), only. The
integral in (5.3) (understood in the sense of the principal
value) can be presented in the form where the integrand has
no poles. That is done by using the formula (see [48])

> f(x 2°°/ f(X)—kf(k)
A sm ;Zo

x*—k?

where the prime on the sign of summation means that the
term k = 0 is taken with an additional coefficient 1/2. This
replacement is convenient in the numerical evaluations of
the sphere-induced VEVs. In the flat spacetime limit,
corresponding to @ — oo, by using the relation (4.31) with
¥ = t, from (5.3) the VEV of the field squared is obtained
inside a sphere in background of the Milne universe [48].

For a conformally coupled massless field one has v =
1/2 and, by using (3.1) with z = ix, we get

, (54)

2\ (st)
2\ _ <(P >s 55
(@7)s sinh®~!(t/a)’ (5:5)
where
1-D
(@) = =L 3" eminep, / dx
ﬂ'SD =0 0
NH u P—ﬂ u 2
% Qx_]/z( 0)[ x-]/z( )] (5.6)

P;fl/z(uo) sinh?~2r

is the VEV for a massless conformally coupled scalar field
induced by a sphere with radius ry in a static negative
constant curvature space with the curvature radius a (see
[49]). Equation (5.5) is the standard relation between two
conformally related problems.

The general formula (5.3) is rather complicated and in
order to clarify the behavior of the sphere-induced VEV we
consider asymptotic regions of the parameters. We start
with the region #/a < 1. In this region the argument of the
functions P, /2(¥) in the integrand of (5.3) is close to 1

and for ¢ # 1,2, ... we use the asymptotic formula
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P ! 2\ 0 k1 5.7
p()’)~m<yj , <y-lxl (5.7)

For the time-dependent part in (5.3) this gives

Pi—l/z(Y)P;fl/z(y) N
aPsinh®~ 1 (t/a) ~

sin (7x)

(5.8)

axtP~t"
Substituting this into (5.3), to the leading order we get

Z.IDoo

e [Faf

(008 1/2 >[P;51/2(”>]2'

hP-2r

Pz 1/2 Uup) sin

(5.9)

The expression in the right-hand side coincides with the
VEV of the field squared for the conformal vacuum of a
massless scalar field in the Milne universe [48]. Of course,
this result is natural, because, for a given ¢, the limit under
consideration corresponds to large values of the curvature
radius a and the effects of gravity are weak. Comparing
(5.9) with (5.6), we see that in the limit /@ < 1 one has the
relation (?), ~ (/)P (> with () being the
corresponding VEV for a conformally coupled massless
field in static spacetime with negative constant curva-
ture space.

The late stages of the expansion correspond to the
opposite limit #/a > 1 and the argument of the functions
P /2( ) is large. In this case we use the asymptotic

T(v)(2y) "2
Ty —06+1/2)°

Py 1/2( )~ (5.10)

with v >0 and 6 —v+1/2#1,2,....
induced VEV this gives

For the sphere-

2Da1—De—Dt/a © IS
<¢2>s~—.7_ZD1A dx

D-2
nSpsinh”~"r =

(7e])

—u coth
<P ({0

where we have introduced the notation
¢(t,x) =2[v|t/a+ ¢, (x). (5.17)

The functions B,(x) > 0 and ¢,(x) are defined by the
relation

2D-112(y, e—(D—Zv)t/a © 0 Yo~ iun

(97 ~— D_1< ). . ZDI/ ="

ma” " Spsinh? =2 r 4= " Jy sin (7zx)
Qﬁ—l/z(”O) [PXMI/Z( u))?

Py (ug) D(v=x+1/2)0(v+x+1/2) (5.11)

For v =0 by using the asymptotic expression of the

function P, , (y) for large y one gets

2 cos (zx)
n*y

With this result from (5.3) we obtain

Pty (0P (0) & In%y.  (5.12)

D412 ,—Dt/a ©_ —i
2D+ 42 =D1/ e "D,

D+1
—0 SD(X

2 ~
()~ w2sinhP~2r

0 oy -
XA dxxcot(zzx)/l//j(())[f’xfl/z(uﬂ%

(5.13)

for t/a > 1. In the same limit and for imaginary values of v
we need the asymptotic of the function P§(y) for large
values of y and for Rep = —1/2, Imp > 0. In [46] the
asymptotics are given for Re p = —1/2. In order to find the
required estimate we use the asymptotic formula

Vae" T(p +x+1)
L(p+3/2)2yy*t

The asymptotic expression for the function Pj(y) is
obtained by using the formula that relates this function
with the functions Qj(y) and Q% _, (). In this way we can
see that for large y

AR (5.14)

~——=Re
ClpFx+1)

Nz

By using this result in (5.3), for t/a>1 and v = i|y|
one gets

(5.15)

xem Oy (o)
sin (zx) P*) 5 (uo)

cos (mx) + B, (x) cos [¢(t. x)]}, (5.16)

I
()
C(1/2+x+v)(1/2—x+v)

B,(x)ei®¥) = (5.18)

In this case one has an oscillatory damping behavior.
Now let us consider the asymptotic regions with respect
to the radial coordinate. For points near the sphere center
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one has r <1 and the argument of the function P *, , (u)
is close to 1. By using the asymptotic relation (5.7) we can
see that the contribution of term with a given / to the VEV
(5.3) is of the order r'. The dominant contribution comes
from the / = 0 mode with the leading term

e—izz(D/Z—l)(za)l—D
#P’T(D/2)sinh?~! (t/a)
~D/2-1

* x O (u) ~
“Jy P en ) 7 PE )P ():
A sin (7x) P,lv:?//zz(uo) PRYASILARYAC)

(@)~

(5.19)

Note that in the special case D = 3, for a non-Dirichlet
boundary condition (i.e., B # 0), this expression is further
simplified as

D [ PO 0)
T2 S in () (e 2o )
(5.20)
where we have used the notation
9
vy = \/Z—m2a2—12§. (5.21)

In the same spatial dimension and for the Dirichlet
boundary condition near the sphere center one gets

2 _sinh(t/a) [
)= [T

2o’

szfo_l/z(y)P;[f_l/z(y)
sin (7x)(e*"0 — 1)

(5.22)

The boundary-induced contribution (5.3) diverges on the
sphere. For points near the sphere the dominant contribu-
tion to the integral comes from large values of x. By using
the asymptotic expressions for the functions Pf_xl /2()’) [46]

it can be seen that

sin (zx)

Pf_l/z()’) ;fl/z()’)“ .

x> 1. (5.23)

Substituting this into (5.3), to the leading order we get

(Y
<f/’2>s ~ m» (5.24)

(st)

where (@?)s" is given by (5.6). Taking the near-sphere

asymptotic for ((p2)§St) from [49], we find the leading order
term in the corresponding asymptotic expansion for (5.3):

<(p2>s ~ D(]1 22603)r((D ])/2) —. (525)
(47)P+V/2[q sinh (t/a)(ry — 1)]
Note that a sinh (¢/a)(ro — r) is the proper distance from
the sphere. The leading term (5.25) coincides with the
corresponding term for a sphere in Minkowski spacetime
with the distance from the sphere replaced by the proper
distance. As seen from (5.24), near the sphere the
boundary-induced VEV is negative for Dirichlet boundary
condition and positive for non-Dirichlet boundary condi-
tions. From the problem symmetry we expect the renor-
malized VEV (¢?), for the boundary-free geometry will
depend on the time coordinate only and near the sphere the

total VEV is dominated by the sphere-induced part.

B. Exterior region

Similar to the interior region, the VEV of the field
squared outside the sphere is decomposed into the boun-
dary-free and sphere-induced contributions [see (5.1)]. For
points r > rq the latter is directly obtained from (4.29) in
the coincidence limit X’ — x and is expressed as

1-Dginpy2-D,. —iun
) a' ~Psinh~"r /00 xe
= D dx——
@) Spsinh?~1(t/a) ; "y “in (mx)
1—3;,_41/2(”0>

mPf—l/z(Y)PZi‘l/z(y)[Q’;_l/z(u)]%

(5.26)

For a conformally coupled massless field this VEV is
related to the corresponding VEV outside a spherical
boundary in static spacetime with a negative constant
curvature space by the formula (5.5), where the expression

for <¢2>£St> is obtained from (5.6) by the replacements
(4.46). The VEV outside a sphere in the Milne universe is
obtained from (5.26) in the limit @ — oco. The latter limit is
reduced to the replacements (4.31) and « sinh (z/a) — 1.

At early stages of the expansion, corresponding to
t/a < 1, the leading order term in the expansion of
(5.26) coincides with the boundary-induced VEV for a
massless scalar field in the conformal vacuum outside the
sphere in the Milne universe and the influence of the
gravitational field is weak. The corresponding expression is
given by the right-hand side of (5.9) with the replacements
(4.46). The effect of gravity is essential at late stages of the
expansion, corresponding to f/a > 1. The time depend-
ence in the sphere-induced VEVs for the interior and
exterior regions appears through the same functions and
the investigation of the behavior of the VEV (5.26) is
similar to that presented in the previous subsection for the
region inside the sphere. The asymptotic behavior for (¢p?),
in the cases v >0, v =0 and v = i|v| is given by the
formulas (5.11), (5.13) and (5.16), respectively, with the
replacements (4.46). Note that in the last case the falloff of
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the sphere-induced VEV, as a function of ¢/a, is damped
oscillatory.

The leading term in the asymptotic expansion of (5.26)
with respect to the distance from the sphere is given by
(5.25) with the replacement rq — r — r — r(. In the oppo-
site limit of large distances from the sphere, r > 1, we use
the asymptotic

" _V/meM T (x +pu+1/2)
Q)1 ja(cosh r) ~ T(x + 1)er172r

(5.27)

for the associated Legendre function. With this asymptotic,
the integral in (5.26) is dominated by the contribution
coming from the region near the lower limit and to the
leading order we get

2031 P[P0 (y)]?
Sp sinh®~!(t/a) reP=1r
Dlp:lf/z(uo)

- Ze_mQ’il/z(MO)

=0

(@)~

(u+1/2).  (5.28)

Thus, for large values of r the sphere-induced VEV is
exponentially small. Note that for large » and for a fixed ¢,
the geodesic distance from the sphere is proportional to ar
[see (B5)]. The exponential suppression takes place for
both massive and massless fields. Note that for a spherical
boundary in flat spacetime the decay of the boundary-
induced VEVs at large distances from the sphere is power-
law for a massless field. At large distances, the total
renormalized VEV (¢?) is dominated by the boundary-
free contribution (¢?),. By using the relations (A19), we
can see that in the limit » — oo, for fixed ¢, one has r; - a

0.15
0.10f

0.05F

0.00f

aP " <p?sg

-0.05f

-0.10}

-0.15f
00 05 10 15 20 25

r

and this corresponds to the near-horizon limit for an
observer located at r = 0.

It is of interest to compare the sphere-induced VEVs in
the problem under consideration with the VEVs for a
sphere having constant radius r; = rﬁo) in inflationary
coordinates (see Appendix A). The corresponding problem
for the Bunch-Davies vacuum state has been considered in
[26]. Due to the maximal symmetry of the Bunch-Davies
vacuum, the VEVs in the latter problem depend on the
sphere radius and on the time and radial coordinates in the

form of the ratios rgo) /ny and 7y /i, where i = —ae™/% is
the corresponding conformal time coordinate. Note that
r1/ |ni] is the proper distance from the sphere, in units of the
curvature radius, measured by an observer with fixed ry.
The hyperbolic vacuum is not maximally symmetric and
the mentioned feature does not take place for the VEVs
in the problem under consideration. An essential difference
between two problems is seen also in the behavior of the
VEVs at large distances from the sphere. For the problem in
[26], at large distances the sphere-induced VEV of the field
squared behaves as (ry/|n])>=>72P for real v and like
(ri/Im])?22 cos[2]u] In(ry/Im]) + o] for imaginary . In
the second case the decay of the VEV, as a function of the
radial coordinate, is damping oscillatory. In the problem we
consider here the decay of the VEV is always monotonic,
as =) /.

C. Numerical analysis

In the discussion below the numerical results will be
presented for the most important special cases of D =3
minimally and conformally coupled fields. In Fig. 2, we
have plotted the sphere-induced contributions in the VEV
of the field squared inside and outside a spherical shell
versus the radial coordinate r for Dirichlet boundary

0.10}
0.05}

0.00}

@l <p?sg

-0.05/"

-0.10L

FIG. 2. The sphere-induced VEV of the field squared for D = 3 scalar field as a function of the radial coordinate in the cases of
minimally (left panel) and conformally (right panel) coupled fields for Dirichlet boundary condition and for Robin conditions with
p = —3,-0.5. The graphs are plotted for ry = 1.5, ma =1, t/a = 1.
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The sphere-induced VEV of the field squared for D = 3 scalar field as a function of the time coordinate in the cases of minimal

(left panel) and conformal (right panel) couplings. The graphs are plotted for ry = 1.5, ma = 1 and the numbers near the curves
correspond to the values of the radial coordinate. The full and dashed curves present the cases of Dirichlet and Robin (with = —0.5)

boundary conditions, respectively.

condition (curve Dir) and for Robin boundary conditions
with f = —3,-0.5 (the numbers near the curves). The
graphs are plotted for ry = 1.5, ma = 1, t/a = 1. The left
and right panels correspond to minimal and conformal
couplings, respectively. In accordance with the asymptotic
analysis given above, near the sphere the boundary-induced
VEV of the field squared behaves as (r—ry)~2. It is
negative for Dirichlet boundary condition and positive
for non-Dirichlet boundary conditions. At large distances
from the sphere, the VEV (¢?), is suppressed by the factor
e~2" and is negative for all graphs in Fig. 2. Near the sphere
center the leading terms in the asymptotic are given by
(5.20) and (5.22).

Figure 3 displays the time dependence of the sphere-
induced contribution in the VEV of the field squared for
fixed r (numbers near the curves) and for ry= 1.5,

3r ]
2 ]
N/(’ 1L ]
S 0 ]
h\I L
, [
Q
y O ]
N r 4
(=) F 2 ]
S ]
-1t ]
2 ’ |
-8 -6 -4 -2

ma = 1. The full curves correspond to Dirichlet boundary
condition and the dashed curves correspond to Robin
boundary condition with # = —0.5. The graphs for minimal
and conformal couplings are presented on the left and right
panels, respectively. According to the asymptotic analysis
given above, for D =3 and in the region t/a < 1 the
boundary-induced VEV of the field squared behaves as 2.
In the opposite limit 7/a > 1 the corresponding approxi-
mation for minimal coupling (left panel) is obtained from
(5.11), according to which (g?); behaves as nearly

e~(3-V)/a, Contrary to this, in the case of conformal
coupling (right panel) the parameter v is purely imaginary,
v =1iy/3/2, and the late time asymptotic is found from
(5.16). In this case the field squared decays oscillatory and
this behavior is displayed on the right panel as inset
for 10%a”~1{p?)..

F———— T

1.0

-8 -6 -4

FIG. 4. The sphere-induced contribution in the VEV of the field squared for D = 3 scalar field versus the Robin coefficient in the cases
of minimal (left panel) and conformal (right panel) couplings. The graphs are plotted for ma = t/a = 1, ry = 1.5 and the numbers near

the curves are the values of the coordinate r.
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The dependence of the sphere-induced VEV on the
coefficient f in Robin boundary condition is displayed
in Fig. 4 for minimally (left panel) and conformally (right
panel) coupled fields. The graphs are plotted for D = 3,
ma =t/a =1, ro = 1.5 and the numbers near the curves
correspond to the values of the coordinate r. The vertical

dashed lines correspond to the critical values ,B(()i>(u0) and

ﬂ(()e>(u0) for the Robin coefficient. As seen, depending on
the values of the Robin coefficient, the boundary-induced
VEV changes the sign. For f <« —1 (ff = —oo corresponds
to Dirichlet boundary condition) (¢?) is negative and it
becomes positive with increasing f. The VEV increases

rapidly when /8 approaches the critical values ﬂ(()i)(uo) and

/}(()e>(u0) for the interior and exterior regions, respectively.
For f near the critical values of f the main contribution to
the VEV (¢?), comes from the mode [ = 0.

VI. VEV OF THE ENERGY-MOMENTUM
TENSOR

For the evaluation of the VEV of the energy-momentum
tensor we use the formula (2.8). On the base of (4.30) the
VEV is decomposed as

(Tu) = (Tir)o + (Tir)s:
with the boundary-free and sphere-induced contributions
(Tit)o and (T),. For points away from the sphere the
sphere-induced part is finite and is obtained directly by
using the formula that is the analog of (2.8) for sphere-
induced contributions. From the symmetry of the problem
we expect that the angular stresses are isotropic:

6.1)

In addition, we have the trace relation
(Tp), = [D(E = &p)ViVE+ m)(9?),.  (6.3)

In the case of a conformally coupled massless field the
sphere-induced energy-momentum tensor is traceless. The
trace anomaly is contained in the boundary-free part (T';;),.

From the symmetry of the problem we expect that the
renormalized VEV (T;), is diagonal with isotropic
stresses, (T1), = (T3)o == (T8),, and the compo-
nents (T%), are functions of the time coordinate only.
The continuity equation V;(T*), = 0 leads to the relation

at/a' [SinhD (t/a) <T8>0]

(Ti)o = Dsinh”~!(t/a) cosh (t/a)”

(6.4)

between the energy density and stress. For the Bunch-

Davies vacuum state one has (T%)®™) = const - 5¢. The
divergences are determined by the local geometry of the
background spacetime and are the same in the unrenor-

malized VEVs (T%), and (T%){*™ for the hyperbolic and
Bunch-Davies vacua. From here it follows that the differ-
ence A(TK), = (T%), — (T){®®) needs no renormalization
and can be directly evaluated by applying the procedure
similar to (2.8) for G(x, x') — Ggp(x, x"), where Ggp(x, x)
is the Hadamard function for the Bunch-Davies vacuum. In
this way, the renormalization of the VEV (T*), is reduced
to the one for the Bunch-Davies vacuum. The Ilatter
procedure has been widely discussed in the literature.
For a conformally coupled massless field the tensor
A(T*%), is traceless and from (6.4) it follows that

diag(1,-1/D,...,—1/D)
aP*1sinhP+1(t/a)

A(T¥), = const (6.5)

A special case of (6.5) for D=3, with const=
—1/(4807?), is considered in [52]. Here, we are mainly
interested in the sphere-induced effects and they will be
discussed for the interior and exterior regions separately.

A. Interior region
By making use of the expression (4.44) for the sphere-
induced Hadamard function in (2.8), after long but straight-
forward calculations, for the diagonal components of the
sphere-induced vacuum energy-momentum tensor in the
interior region one finds (no summation over k)

xe=inn O (o)
*sin (zx) PF) ) (uo)

sinh=2 (/) & “
<Tll§>s =~ D+1S ZD /
=0

x [F0 () = B ()] FO(x, y, u), (6.6)
where the notation
F(i)(x,y, W) = Pf—l/z()’)P;fl/z(y) [Pxﬂl/2( u)? (6.7)

(yz _ 1)(D—1)/2 (u _ 1)D/2 1

is introduced. The operators F (()O) (y) and F }({0) (y),
k=1,2,...D, are defined as
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7-(0) 2 ! 2.2 2 (D-1?_,
Fo'(v) = 07 = 1) 02 = D5 + | D+ &p) + y3y+ma +HED? o b=
~ (0 1 1 D —1)?
F‘](< )(y> = (y2 - 1){ (5 _Z) (y2 - 1)83 + |:D(§ - éD) —§:| yay - fD} + 511{ |:X2 —% . (68)
[
The operators F* ,(Cl)(u) act on the functions of the argument DoE(syy = —a sinh (t/a)S,( r(TY) =5
u and are given by the expressions b
1 + cosh (1/a) / Carsy(n Y (Th,. (6.12)
Fy(u) = <f - 1) [(u? = 1)0; + Dud,), ! -
This relation shows that the quantity
. 1 D (1
H W) = g2 = 03+ 60 - 1)+ 2 ud, - T2, N
LK) - (T}), = a sinh (t/a)(T}), (6.13)
A (1) . _ +n
i (u) = Eud, + D—-1u-1" (6.9) is the energy flux density per unit proper surface area. The
latter can be written as (T}), = n;(T%),, where n; is the
where k=2,3,...D. As an additional check for the for-

mula (6.6) we can see that the trace relation (6.3) is obeyed.
The only nonzero off-diagonal component of the vacuum
energy-momentum tensor corresponds to (7)), which
describes energy flux directed along the radial direction.
The corresponding expression reads
xe —ipx Qx 1/2( )

sinh=3(¢/a) & «
T D
< 0> D+2S Z l/ xsm JZ'X) Px 1/2( )

X[(1/4_§)(y - )6)*+£y]arF (xvyv”)‘

(6.10)

With this result, it can be seen that the components given by
(6.6) and (6.10) obey the covariant conservation equation
Vi (T*), = 0. For the geometry described by (2.1) the latter
is reduced to the following equations:

> OTE), + (D= 1)(T.

k=0.1

o) coth r

+=[(D+ 1)(T8), — (T%) ] coth (t/a) = 0,

R

0,{TH), + 2 (T9),coth (1/a0)

k=0,1

+(D = 1)((T}), -

The vacuum energy induced by the sphere in volume V is
expressed as Ey = [, d”x+/|g|(T{),. For the spherical
layer r; < r < r, it is presented in the form

(T3),) coth r = 0. (6.11)

Egyy =a sinh(¢/a) /r2 dr Sp(r)<T8>s,

r

where S,(r) = Spla sinh (¢/a)sinh r]P~" is the proper
surface area of the sphere with radius r. From the first
equation (6.11) it follows that

unit spatial vector normal to the sphere (external with
respect to the volume V). For the spherical layer corre-
sponding to (6.12) one has n, = +5.a sinh (z/a), where
the upper and lower signs stand for the spheres r = r, and
r = ry, respectively.

Let us consider some limiting cases of the general result
for the sphere-induced VEV of the energy-momentum
tensor. In the flat spacetime limit @ — oo, by using the
relation (4.31) for the product of the associated Legendre
functions, it can be seen that from (6.6) and (6.10) the
boundary-induced VEV for the conformal vacuum inside a
sphere in background of the Milne universe is obtained
(see [48]).

Another special case corresponds to a conformally
coupled massless scalar field. In this case one has
v = 1/2 and the function (6.7) is simplified to

sin (7x)/ (zx) [Py o ()]
(yz _ 1)(D—1)/2 (uz _ I)D/Z—l :

FO(x,y,u) = (6.14)

With this function, the off-diagonal component (6.10)
vanishes for & = &p. For the diagonal components we find
(no summation over k)

()"
TH = Y k& 6.15
(T sinh®*+1(t/a) (6.15)
where
@, e, foo O, (up)
<Tk>(st) ZE :/ dy == 7
- = ma”"1Sp P 5 (uo)
Pt (u )]2
~(st) [ x—l/2

with the operators
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2

SS[)(M)=—M4D 02——8 + 22,
) = Lo E DR
+ (D4—Dl)3 _ lilztfi) e
R
PEvt o1

The quantity (6.16) is the boundary-induced VEV of the
energy-momentum tensor for a conformally coupled mass-
less scalar field inside a sphere with radius r; in back-
ground of a static negative constant curvature space with
the curvature radius a. It is obtained from the more general
result in [49] in the special case m = 0 and & = &p (see
also [48]).

Let us consider the asymptotics with respect to the ratio
t/a. At the early stages of the expansion, corresponding to
t/a < 1, by using the relation (5.8) we find (no summation
over k)

st
aSptP+! P (o)

=

D [Px— (u)]Z
Rk(u)(uz—l/lﬁ’ (6.18)
where the operators f\’k(u) are defined by
Ro(u) = <~f - i) [(1? = 1)2 + Dud,] + x>
+D(D - 1)(¢-¢p),
R 1 ;
Ry(u) = 7 (u? = 1)0 + [( —1)E+ ] ud, — i t’;)

D-1
—x2—T(4§—D+1),

Rot) = (5= 1) 2 = 025 + | (0= D=2,

[l I+n

PR (6.19)

We note that the sphere-induced VEV of the energy-
momentum tensor for a scalar field in the static spacetime
with negative constant curvature spatial sections is
expressed in terms of the operators (6.19) as (see [49],
no summation over k)

o b e
SR Py I a2z
”SDa X Px—l/Z(uo)

kk(“) —m a252 P;fuz(”)
X b
2 _ x%n (u2 _ 1)D/2—1

(6.20)

where x,, = \/m?a® — —1)(£=¢&p). For & = &), the
operators (6.19) are reduced to the ones in (6.17):
Ry(u) = I:’,(ft)(u). In the same limit, t/a < 1, for the off-
diagonal component we get

© e-intp, foo Oy (up)
<T6>S%D(§—§D)Z”SDP+§A dxp—ﬂ/i

1=0 x—1/2(”0)
P ”l 2 :
x ar%. (6.21)

The energy flux density per unit proper surface area is
given as (T}), ~#(T}), and for nonconformally coupled
fields it is of the same order as the diagonal components.
The expressions in the right-hand sides of (6.18) and (6.21)
coincide with the leading terms in the expansions of the
corresponding VEVs for a sphere in the Milne universe at
early stages mt < 1. This is related to the fact that the
effects of curvature of dS spacetime are weak in the
range t/a < 1.

At late stages of the expansion, 7/a > 1, we use the
asymptotic (5.10). In the case v > 0, to the leading order,
for the diagonal components we get (no summation over k)

(Tos~ 5 (@)

. (6.22)

where the VEV of the field squared is estimated as (5.11)
and

D
ag :Z[D—Zz/—4§(D—|— 1 —2v)],
2v
ap = a, = an. (623)
In this limit the sphere-induced VEV is suppressed by the
factor e~(P=2)// The corresponding asymptotic for the
off-diagonal component has the form

4a0

Da — —2t/aa< >

(Th), (6.24)

and the suppression is stronger by the factor e~(P+2-2)1/«,
Note that at late stages of the expansion we have the
relation

~ 2
<T(1)>5 = Be_t/aar<T8>s (625)
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between the energy and the energy flux densities. The  and we have (no summation over k) |(T%) | < [(T9),],

asymptotics (6.22) and (6.24) are also valid for v = 0, but where k =1,2,....D

now the behavior of {¢?), is described by (5.13). Note that For t/a > 1 and purely imaginary v, v = i|v|, we use the

in this case the leading terms in the vacuum stresses vanish, asymptotic formula (5.15). To the leading order this gives
|

2D|l/ e—Dt/a © 0 xe —iurw Qx 12( )
1) =t + 2 0TS by [ i

zSpalt!t sin (7x )Px—1/2( up)

X wB (x)<2D| & - ! sin [ (1, x)] + |v| cos [p(1, x)] (6.26)
sinh?=2p 4
for the energy density and
" 2P|y|ePr/a & w  xe T _x_l/z(uo)[ @)
(T~ =——p 2 D[ dx b, Bu(x)
aSpa — 0 sin (zx) P 1/2(“0) sinh

X {(1 —4&)|v| cos [p(t, x)] + 2[ ] } (6.27)
for the stresses (no summation over k) k = 1,2, ..., D. Here, the phase ¢(z,x) is defined in (5.17). The asymptotic

expression for the energy flux density takes the form

ND—4(D+1)§

3 20|y (4E=1) & xe T
1 2 _
(To) Sl H#7)s 7aP 1S e+ t/aZDZ/ sin (7x)
AH u P_ll u 2
% Qx 1/2( 0) 9 [ x—1/2< )} BD(X) sin [¢(t, X)] (628)

P;"l/z( uy) ' sinhP=2r

The expression for {¢?), in (6.26) and (6.28) is given by (5.16), and B,(x), ¢,(x) are defined by (5.18). For purely
imaginary v the decay of the vacuum energy-momentum tensor at late stages is the damping oscillatory.

Now we turn to the asymptotics with respect to the radial coordinate. Near the center the dominant contributions come
from the terms with / = 0, 1 and to the leading order we get (no summation over k)

7 2 sinh=2(t/a) /oo N e Qi) o Py (NP5 () (6.29)
YsT (4m)Pl2aPHIT(D/2) Esin (2x) PF o (ug) - W' (2 =002 -
where F (K0 = F 5{0) (v), with the operators from (6.8), and
F 28 !
(O)] - 2 )
. . 2 D-2
Fap=Fop =5 [(D— 1)5—7} (6.30)
The dominant contribution to the off-diagonal component comes from / = 1 term and one finds
. . D/2 X —x
<T1> e P2 rsinh=3(t/a) [ 5 X Qx 1/2( 0) (1= 48)(52 — 1)0, + 48] P,,_1/2(Y)Py_1/2()’) (6.31)
" (4n)PR2aPT2DU(D/2) Jo  sin (zx) P2 (o) Y (2= 1)@e-bz e '

and it linearly vanishes at the sphere center.
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For points near the sphere the main contribution to the
integral and series in (6.6) comes from large [ and x. By
using the large x asymptotic (5.23) we see that the
dependence on y in the function (6.7) appears in the form
(y? = 1)(1=P)/2 and the derivatives in (6.8) with respect to y
are easily evaluated. Keeping the leading terms in x we can
see that for the components (T’,§>s, k=0,2,....D, the
leading terms in the asymptotic expansions over
the distance from the sphere are expressed in terms of
the corresponding components (7% ) Y fora sphere in static
spacetime with negative constant curvature space as
(TK) ~ (T’,§>§St)/ sinh®*! (¢/a). By using the asymptotics

for <T’,§)§St) from [49] we find (no summation over k)

(2605 = 1)DI'((D +1)/2)(£ = £p)
2P 7PN2[q sinh(t/a)(rg — r)]P+!

(TK) ~ (6.32)

for k =0,2,...,D. In order to find the asymptotics for the
radial stress and the off-diagonal component, it is more
convenient to use the covariant conservation equa-
tions (6.11). From the first equation it follows that

(T}),~ ot (1/a)(ro = ){TH). (633)

With this result, from the second equation in (6.11) we get

D -1

(T), = coth(ry)(ro = r)(T(),. (6.34)

The leading terms do not depend on the mass. For a
conformally coupled field they vanish and one needs to
keep the next-to-leading order terms. Note that the leading
terms in the VEVs of the field squared and of the diagonal
components, given by (5.25) and (6.32), are obtained from
the corresponding terms for a sphere in the Minkowski bulk
(see [53]) replacing the distance from the sphere by the
proper distance asinh(t/a)(ro—r) for the geometry
at hand.

B. Exterior region

The VEV of the energy-momentum tensor outside the
sphere is decomposed as (6.1), where the sphere-induced
contribution is obtained from (2.8) and (4.29). The expres-
sion for the diagonal components reads (no summation
over k):

inh~2 (¢ © . —iux P;ﬁ‘ u
<T£>s __sin (/a)ZDl/ dx e X _” 1/2( 0)
) o S (0) O, ()

(6.35)

with the function

Py 0P (0[O0 (w)]?

FO(x,y,u) = ,
(x.y,u) sinh?~! (t/a)  sinhP2r

(6.36)

and the operators ,({0) (v) and F ,El)(u) are defined by (6.8)
and (6.9). The nonzero off-diagonal component is

expressed as
—iyn PH
xe~mr P T 1/2(”0)

sinh= (¢/a) 0
(To)s= oPi2s), ZD’/ xsm(ﬂx)Qx 1/2(tt0)

x[(1/4=&)(y* = 1)8,+&y]0,F ) (x.y.u).

(6.37)

Recall that the energy flux density per unit proper surface
area is given by (6.13). One can check that the components
(6.35) and (6.37) obey the trace relation (6.3) and covariant
conservation equations (6.11).

For a conformally coupled massless field the off-diago-
nal component is zero and for the diagonal components we
have the relation (6.15), where the VEV outside a sphere in
static spacetime with a constant negative curvature space is
given by [49]

© —t/mD
k !
5 Z D+1 S /

S« Fs0 [Ql;—l/z(“)]z

k (u2 _ 1)D/2—1 ’

» p;fl/z(uo)
Ql;—l/z("‘o)

(6.38)

with the operators F ,(ft) defined in (6.17). In the limit a —
oo and for the case of a massive field with general curvature
coupling parameter, from (6.35) and (6.37) we obtain the
corresponding VEVs for the conformal vacuum outside a
spherical boundary in the Milne universe.

At early stages of the expansion, f/a < 1, the leading
terms of the asymptotic expansion of the sphere-induced
VEV (T¥), in the exterior region are obtained from (6.18)
and (6.21) by the replacements (4.46). For a conformally
coupled scalar field, to the leading order, we have the
relation (T%), ~ (a/H)P+(TYY, with (TFEY given by
(6.38). At late stages, t/a > 1, and for v > 0, the asymp-
totic expressions for the components of the energy-momen-
tum tensor are related to the corresponding asymptotic for
the VEV of the field squared by the formulas (6.22) and
(6.24). For purely imaginary v, the behavior of the sphere-
induced parts in the VEV of the energy-momentum tensor
is described by the formulas (6.26)—(6.28) with the replace-
ments (4.46). In this limit, to the leading order, the stresses
are isotropic.

For points near the sphere the leading terms in the
asymptotic expansions of the energy density and stresses
<T£>S, k=0,2,...,D, are given by (6.32) with the replace-
ment rq—r — r —ry. For points near the sphere these
components have the same sign in the interior and exterior
regions. The relations (6.33) and (6.34) for the off-diagonal
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component and the radial stress remain the same and,
hence, near the sphere these components have opposite
signs outside and inside the sphere. For large distances
from sphere the diagonal components of sphere-induced
VEV of energy-momentum tensor and the energy flux
density are approximately given by (no summation over k)

iy GO
kls ™ a*sinh?(t/a)’
(18, o

k=0,1,....D,

1/4 - 5)@2 - l)ay + é:y] <(p2>s7
(6.39)

where (¢p?), is described by the asymptotic expression
(5.28). The operators in (6.39) are defined as

Gol O (5o,

Gi(3) = FY(5)|,og + (D = 12(E— 1/4),
Gk()’) o

<

S—
Il
~y

FOO)o— (D-1)&, k=2,....D.

(6.40)

Hence, at large distances from the sphere we have an
exponential suppression of the sphere-induced VEVs by
the factor e~(P~D"/r. For a conformally coupled massless
field the leading terms vanish. The corresponding behavior
is obtained by using the conformal relation (6.15) and the
results from [49] for static background. In this special case
the energy flux vanishes and the decay of the sphere-
induced VEVs in the diagonal components is stronger,
like e~(P=Dr/¢2,

C. Numerical results

As before, the numerical results for the sphere-induced
energy density and energy flux will be presented for D = 3
minimally and conformally coupled scalar fields. In Fig. 5,

aPH<TP>s

FIG. 5.

the boundary-induced energy (left panel) and energy flux
(right panel) densities are displayed as functions of the
radial coordinate for a minimally coupled scalar field. The
graphs are plotted for ma = t/a = 1, ry = 1.5 in the cases
of Dirichlet boundary condition and for Robin conditions
with = =3, —0.5 (the numbers near the curves). The same
graphs for a conformally coupled scalar field are presented
in Fig. 6. For both minimally and conformally coupled
fields, the energy flux in the interior and exterior regions is
directed from the boundary for Dirichlet boundary con-
dition and towards the boundary for Robin conditions.

The leading term for the energy density in the expansion
near the sphere center is given by (6.29). The energy flux
linearly vanishes at the center as a function of the radial
coordinate [see (6.31)]. For a minimally coupled field the
leading term in the asymptotic expansion of the energy
density near the sphere is given by (6.32) and the sphere-
induced VEV behaves as (r — ry)~*. Near the sphere it has
the same sign for the interior and exterior regions. The
leading term for the energy flux is obtained from (6.33) and
it has opposite signs inside and outside the sphere. The
corresponding divergence on the sphere is weaker, like
(r — ry)~>. The same is the case for the radial stress [see
(6.34)]. For a conformally coupled field the leading terms
in the near-sphere expansions vanish and the energy density
and energy flux diverge as (r—ry)™> and (r—ry)~2,
respectively. At large distances from the sphere, the
boundary-induced contributions in both the energy density
and energy flux are suppressed by the factor e=2".

Figure 7 displays the time dependence of the sphere-
induced VEVs in the energy density (left panel) and energy
flux (right panel) for a minimally coupled scalar field. The
graphs are plotted for ry = 1.5, ma = 1 and the numbers
near the curves are the values of the radial coordinate r. The
full curves correspond to Dirichlet boundary condition and
the dashed curves correspond to Robin boundary condition
with # = —0.5. The same graphs for a conformally coupled

T

L L

1.5 2.0 2.5

The sphere-induced energy density and the flux density as functions of the radial coordinate for D = 3 minimally coupled

scalar field with Dirichlet and Robin boundary conditions (f = —3, —0.5). The graphs are plotted for ma =t/a =1, ry = 1.5.
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1.5 1.5 2.0 2.5

FIG. 6. The same as in Fig

6f 6f
4f 4f
£ 2r & 2f
P W
yoo v oo
X [ 3 [
S _of 8 _of
~t 4t
-6f -6f
0.2 0.4 0.6 0.8 1.0

tla

ta

FIG. 7. The sphere-induced energy density (left panel) and the energy flux (right panel) for a minimally coupled field versus the time

coordinate at fixed values of the radial coordinate (the numbers near the curves). For the sphere radius we have taken r, = 1.5 and for the
field mass ma = 1.

03 | T A
\ 4 1 H 3j‘\‘
‘ 1
\ 2 2t 11 [\
0.2p ‘| x107 ] Y
i\ 2\
[ \ A ' A
A L 2\ = o \,
e 070 TN Y
Y z [
< [
a N [
0.0 [
N ‘\é 0
—0.1F [
-1t '/2
0.2 L
e N Y
0.2 0.2 0.4 0.6 0.8 1.0 1.2
tla tla
FIG. 8.

The same as in Fig. 7 for a conformally coupled scalar field.
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field are depicted in Fig. 8. According to (6.18), the
boundary-induced contribution in the energy density is
nearly proportional to 1/¢* for t/a < 1. For the energy flux
density and for a minimally coupled field one has the
behavior (T}), o 1/*. For a conformally coupled field the
leading term in the corresponding asymptotic expansion
vanishes and |[(T}),| < [(T9),| in the range #/a < 1. This
is seen from Fig. 8. In the opposite limit, #/a > 1, the
corresponding approximation for minimal coupling is
obtained from (6.22), according to which (T9),, as a
function of ¢, behaves similar to the sphere-induced
VEV of the field squared. The corresponding approxima-
tion for a conformally coupled scalar field is given by
(6.26). The oscillatory damping of the sphere-induced
VEVs in the case of a conformally coupled field is
separately displayed as insets (for 107a?*(T9), and
1081 (T3),).

5k 4
Q/{n [
'S L
F\/ L
g 0
[\ L
o
S |
[ 2
_5} 4
r 1
-8 -6 -4

Figure 9 presents the dependence of the sphere-induced
VEV in the energy density (left panel) and energy flux
(right panel) on the coefficient f# in Robin boundary
condition for a minimally coupled scalar fields. The graphs
are plotted for D=3, ma=t/a=1, ry=1.5. The
numbers near the curves represent the values of the radial
coordinate r. For the interior region we have taken r = 1
and for the exterior region r = 2. The vertical dashed lines
correspond to the critical values of the Robin coefficient in
the interior and exterior regions. The same graphs for a
conformally coupled field are presented in Fig. 10. For the
values of the parameter f close to the critical values the
sphere-induced energy density is positive. For large values
of —f, the VEVs tend to the values corresponding to
Dirichlet boundary condition and the energy density is
negative. For some intermediate value of f the sphere-
induced contribution vanishes.

T T T T T T T
6f R
[ ! !
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FIG. 9. The boundary-induced energy density (left panel) and energy flux (right panel) for D = 3 minimally coupled scalar field as
functions of the coefficient £ in Robin boundary condition. The graphs are plotted for ma = 1, t/a = 1, ry = 1.5 and the numbers near

the curves correspond to the values of r.
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FIG. 10.

The same as in Fig. 9 for a conformally coupled field.
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VII. CONCLUSION

For a given spacetime geometry, the quantum field
theoretical vacuum is an observer dependent notion.
Among the interesting directions in the investigations of
the Casimir effect is the dependence of the physical
characteristics on the choice of the vacuum state. The
previous studies of the boundary and topology induced
effects in dS spacetime mainly consider the dS invariant
Bunch-Davies vacuum state. The present paper concerns
the boundary induced effects on the local VEVs of a scalar
field with general curvature coupling for the hyperbolic
vacuum in dS spacetime. As a boundary we have consid-
ered a spherical shell with a constant comoving radius in
hyperbolic spatial coordinates. In inflationary coordinates
this corresponds to a spherical shell with time dependent
radius, given by (2.6). Note that the Casimir effect for a
spherical boundary with constant comoving radius in
inflationary coordinates and for the Bunch-Davies vacuum
state has been investigated in [26].

As the first step in the investigation of the local VEVs we
have constructed the complete set of mode functions in
hyperbolic coordinates without specifying the vacuum
state. Then, the mode functions are specified for the
conformal (hyperbolic) vacuum. It has been shown that
the latter coincides with the adiabatic vacuum. By using the
complete set of mode functions, the Hadamard functions
are evaluated in the boundary-free geometry, outside the
spherical shell and inside the shell. For both regions in the
problem with a sphere, the contributions in the Hadamard
function induced by the boundary are separated explicitly.
Inside the sphere, the eigenvalues of the quantum number z
are given implicitly, as roots of Eq. (4.33), and for the
extraction of the sphere-induced part we have used the
summation formula (4.42). The corresponding contribution
in the Hadamard function is given by (4.44) and the explicit
knowledge of the eigenvalues for z is not required. Similar
representations can be obtained for other two-point func-
tions (for example, for the Wightman function).

As a local characteristic of the hyperbolic vacuum, the
VEV of the field squared is considered. The latter is
obtained taking the coincidence limit of the arguments
in the Hadamard function. In that limit divergences arise
and a renormalization is required. Having the decomposed
representation of the Hadamard function, for points away
from the sphere the renormalization is reduced to the one in
the boundary-free geometry. The VEVs of the field squared
inside and outside the sphere are expressed as (5.3) and
(5.26). The corresponding expressions for the VEVs of the
diagonal components of the energy-momentum tensor are
given by the expressions (6.6) and (6.35). Note that the
expressions for the interior and exterior regions are
obtained from each other by the replacements (4.46). An
interesting feature in the problem under consideration is the
presence of the vacuum energy flux along the radial
direction. The latter is described by the off-diagonal

component of the energy-momentum tensor, given by
(6.10) and (6.37). Depending on the value of the Robin
coefficient and also on the radial coordinate, that compo-
nent may change the sign. This shows that the energy flux
can be directed either from the sphere or towards the
sphere.

The general formulas for the VEVs are complicated and
in order to clarify the qualitative features we have consid-
ered limiting cases and various asymptotic regions of the
parameters. In the flat spacetime limit, corresponding to
a — oo, the line element (2.1) is reduced to the line element
(3.9) for the Milne universe. It is checked that, in this limit,
from the results given above the corresponding VEVs are
obtained for a sphere in the Milne universe (see [48]),
assuming that the scalar field is prepared in the conformal
vacuum. For a conformally coupled massless scalar field
the problem under consideration is conformally related to
the problem with a spherical boundary in static spacetime
with constant negative curvature space. As another check,
we have shown that the VEVs in those problems are
connected by the standard conformal relation. Note that in
this special case the energy flux vanishes.

In early stages of the expansion, corresponding to
t/a < 1, the effects of the spacetime curvature on the
sphere-induced VEVs are weak and, to the leading order,
they coincide with the corresponding VEVs for a sphere in
the Milne universe. The effects of gravity are essential for
t/a Z 1. In particular, at late stages, ¢/a > 1, the behavior
of the VEVs is qualitatively different for positive and
purely imaginary values of the parameter v in (2.15). For
v > 0 the decay of the sphere-induced VEVs, as functions
of the time coordinate, is monotonic, as e~ (P=2))1/a for
(%), (TF),, and like e~(P+1=2)1/@ for the energy flux
density (T}).. For imaginary v the decay is oscillatory with
the leading terms given by (5.16) and (6.26)—(6.28) in the
interior region. The corresponding asymptotics outside the
sphere are obtained by the replacements (4.46).

For points near the sphere the dominant contribution to
the VEVs comes from the modes with large values of the
angular momentum. The influence of the gravitational field
on those modes is weak and the leading terms in the
expansions of the VEVs for the field squared and for the
energy density and azimuthal stresses coincide with
those for a spherical boundary in flat spacetime with the
distance from the sphere replaced by the proper distance
a sinh (t/a)|r — ry| in dS bulk. They behave as |r — ry|' =P
for the field squared and as |r — ro|~P~! for the energy
density and azimuthal stresses. Near the sphere these VEVs
have the same sign in the exterior and interior regions. The
leading terms for the energy flux and radial stress are
obtained by using the relations (6.33) and (6.34). These
components behave like |r — ry| ™ and have opposite signs
inside and outside the sphere. The leading terms do not
depend on the mass. In the case of the energy-momentum
tensor they vanish for a conformally coupled field. In the
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exterior region, at large distances from the sphere, the
sphere-induced VEVs are suppressed by the factor
e~(P=Dr/r._ For a conformally coupled massless field the
leading terms vanish and the suppression at large distances
is stronger, like e=(P=17 /72,
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APPENDIX A: COORDINATE SYSTEMS
IN DS SPACETIME

The dS spacetime is defined as a hyperboloid

VIMNZMZN:—GQ, M,NZO,I,...,D+1, (Al)
in (D + 2)-dimensional Minkowski spacetime with
the line element ds}., = nyndZMdZ", where nyy =
diag(1,—1,...,—1). The global coordinates (tg,;(,
0,,...,0,,¢) on the hyperboloid are defined by the

relations

Z° = a sinh(1,/a),
Z' = a cosh(t,/a) cos y,

7l = aw'~! cOSh(tg/O!> sin y, (A2)

where i =2,3,...D+1, —c0o<t;,<+0o0, 0<y<m,
0<0,<mk=1,2,...,n,0< ¢ <27 and

w! = cos ), w? = siné, cos s, ...,
wP=2 =sin @, sinf, - - -sinOp_3 cos §,,
wP~l = sin@, sin@, - - - sin G, cos ¢,
wP = sin @, sin, - - - sin @, sin ¢p. (A3)
The line element on the hyperboloid takes the form
ds* = dr; — o cosh?(1,/a)(dy* + sin® ydQ3,_|).  (A4)

The spatial sections with the global coordinates are
spheres SP~1.

Introducing the conformal time coordinate 7, in accor-
dance with

cosh(z,/a) = 0<ny/a<m (AS)

sin(n,/a)

the line element is written in a conformally static form

_ dn — a* (dy* + sin? ydQ3,_,)

d 2
s sin? (n,/a)

(A6)

The Penrose diagram for the dS spacetime is presented by
the square

0<n,/a<zm, O0Ly<nm (A7)

in the plane (y,7,/a).
The coordinates (¢, 7,0, ...,0,,¢) corresponding to the
negative curvature spatial foliation are defined as
7% = a sinh(t/a) cosh r,
Z' = a cosh(t/a),

Z! = aw~! sinh(t/a) sinh r,

(A8)

withi = 2,3, ..., D 4 1. The corresponding line element is
presented as (2.1) or in a conformally static form (2.3). In
order to clarify the region in the Penrose diagram corre-
sponding to the coordinates (A8) it is useful to have the
relations with conformal global coordinates:

cos y
cosh(t/a) = ——=2—,
(t/a) s1n(ng/a)
sin y
tanh r = ———=—. A9
cos (n,/a) (A9)

Two separate regions are obtained. The region LI corre-
sponds to 0 < r < oo and is given by

LI = {(x.,ny/a):x € (0,7/2),n,/a € (n/2, ),

Ng/a >y + m/2}. (A10)
From the relation
. cot (n,/a)
h(t =———2 - All
sinh(t/ ) cosh r ( )

it follows that for this region 0 < ¢ < oo. The region LII,
corresponding to —oo < r < 0, is presented as

LIl = {(r,ny/a):x € (0,7/2),ny/a € (0,7/2),

ng/a < m/2 =y}, (A12)

and in this region —co < t < 0. The other two triangular
regions of the Penrpose diagram, RI and RII, are covered by
the coordinates (rg,rg,0,-..,0,,¢), defined in accor-
dance with

7% = asinh(tg /a) cosh rg,
Z! = —a cosh(ty/a),

Z! = aw'~! sinh(tz /a) sinh ry, (A13)
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with —o0 < 1y < 400, —0 < rg < +o0. The relations to
the global conformal coordinates are given as

cosy
h(te/a) = ———2—,
cosh(tg/a) Sin(n, /)
siny
tanh =—-> Al4
antl 7R cos (ng/a) ( )

The regions RI and RII in the Penrose diagram correspond
to the ranges 0 < rg < oo and —o0 < rg < 0, respectively,
and are defined by

RI={(x.ny/a):x € (n/2,7),ny/a € (n/2, ),
ﬂq/az 3”/2_)(}’
RII = {(y.n,/a):x € (x/2.7).n,/a € (0,7/2),

ny/a <y —n/2}. (A15)
For the time coordinate in those regions we have the
relation (A11) with ¢ replaced by g and r replaced by rg.
From here it follows that 0 < fg < co and —oc0 < fg < 0in
the RI and RII regions, respectively.

The remaining region (C region) of the Penrose diagram
is covered by the coordinates

7Y = a cos(tc/a) sinh re,

Z' = a sin(tc/a),
Z! = aw'~! cos(t¢/a) cosh r¢,

with  i=2,3,....D+1 and -z/2<tc/a<n/2,
—00 < rc < +o00. The corresponding line element takes
the form

ds® =—dtz+a*cos*(tc/a)(drk —cosh?redQ3_,).  (A16)
We have the following relations with the global conformal
coordinates:

. COSy
Sln(tc/a) = m s
g
tanh re = — /). (A17)
Siny

The coordinate lines in all the regions of the Penrose
diagram discussed above are depicted in Fig. 1.

It is also of interest to have the relations between
the coordinates (¢,r,d,¢) and inflationary coordinates
(t1, 11,9, ¢), with the line element

ds® = dff — e*/%(dr} + r}dQ3 ). (A18)
These relations are given by
— = In|[cosh(¢/a) + sinh(z/a) cosh r],
a
U _ ¢=t/e sinh(t/a) sinh r. (A19)
(04

One has t; =0, r; =0 for t = 0.

APPENDIX B: TRANSFORMATION OF
THE HADAMARD FUNCTION IN THE
BOUNDARY-FREE GEOMETRY

In this section we will further transform the expression
(4.5) for the Hadamard function in the boundary-free
geometry. In [54] the following addition theorem was
proved for the associated Legendre functions of the first
kind [there is a misprint in formula (80) of [54]: instead of

P;#!(z) should be P} (¢)]:

P;y(Pl) 27F
pfly o ’77

x(I+ 7)C§(ﬂ)P7_1(ﬂ)PI (),

- Z( DA +y+1),(r =)

(B1)

where (a), is Pochhammer’s symbol, p; = pz + p'7/ff and
7 = (> =12 for y = p,,p,. Taking in this formula
y=n/2,A=ix—1/2,p=u, t=u', and f = —cos¥, it
can be rewritten in the form

= n D—-1 . : - —n —l—n
Z(z+ ) /2 cosH)’F(z +l+1x>‘ P )P ()
1=

2—n/2 5

7 _ 1)}n/4

/2
2 Ptxn I/Z(M)

(RN >

r(2=1,,
2 X

where i is defined by (4.10). The summation over / in formula (4.5) can be done by using the addition theorem (B2) with

n=D -2 and [ + n/2 = pu. This gives
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(Xl_D

Go(x,x) = ——~— ooa’zz sinh (7z
ol ) 2D/27[D/2+1A (72)

This function depends on the spatial coordinates through
the combination (4.10). This property is a consequence of
the maximal symmetry of the spatial geometry. For the
adiabatic vacuum one should take the function Xi?(y) in the
form (4.7) and the Hadamard function is expressed as (4.9).
Note that the geodesic distance d(x,x’) between the
points x and x’ is expressed in terms of #. Considering
the inner product 17,,yZM Z'N between the points Z and Z’ in
the embedding space, the geodesic distance is given by
cosh [d(x,x")/a] = nyunZMZ'N /o or by cos [d(x, ') /a] =
nunZMZ'N /o?, depending on the separation between x and
x'. In the hyperbolic coordinates, by using (A8), we get

nunZMZ'N Ja* = sinh(t/a) sinh(? /a)it

— cosh(t/a) cosh(?'/a).  (B4)
For the special case of the maximally symmetric Bunch-
Davies vacuum, the function Gy(x, x") depends on x and x’
through the geodesic distance (see, for example, the
discussion in [43] for D = 3). In general, this is not the
case for (B3). For points with t = ¢, 8 = 0 we get

nunZMZ'N Ja? = 2sinh?(t/a)sinh?[(r — ¥')/2] =1 (BS)

and for large radial separations e?*)/ r sinh?(t/a)e’" .

r(2=1,,
_— l
2 Z

)

2 XE () [XEQ)) + XEG)XEW)) Pitta(a

sinh(1/) sinh(7 /)T (@ — 1%

(B3)

|

For a conformally coupled massless field one hasv = 1/2
and the functions P} j2(cosh (#/a)) are given by (3.1).
In the special case D = 3, by taking into account that

- 2 si
P = 2 20

7 Z4/sinh (BS)

with { defined by &# = cosh ¢, from (4.9) for the Hadamard
function one gets

,, _ sinh(n/a) sinh(1'/a) ¢
Go((x. x') = 2r*a*sinh ¢ 2 —(n—-1n)?)a*’

(B7)

Note that in this expression ¢ = In(iz + Vit — 1). For
points with & = 0 we have { = r — ' and the expression
(B7) is specified as

sinh(n/a)sinh(y' /a) r—r
Go(x,X')|gep = :
O(X X )|970 Zﬂzsinh(r—r’) 0{2(}’—7’/)2— (17_’1/)2

(B8)

This expression is conformally related (with the conformal
factor sinh(n/a) sinh(yy'/a)) to the corresponding result in
static hyperbolic universes found in [55].
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