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We present a free field realization for the vertex operator algebra associated to the genus-two, class S
superconformal field theory of type a1. The free field realization is in the style of recent work by the
authors, and is formulated in terms of a one-dimensional isotropic lattice vertex algebra along with two
pairs of symplectic fermions. Our realization makes manifest an enhanced USp(4) outer automorphism
group of the vertex operator (super)algebra that is inherited from the symplectic fermion system. This
extends an SU(2) outer automorphism that has been observed in recent work of Kiyoshige and Nishinaka
and significantly simplifies the structure of the algebra. Along the way, we also produce a realization of the
generic subregular Drinfel’d-Sokolov W algebra of type c2 in terms of the generic principle W algebra of
type c2 and a one-dimensional isotropic lattice vertex algebra.
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I. INTRODUCTION

To any four-dimensional N ¼ 2 superconformal field
theory (SCFT) one may canonically associate a vertex
operator (super)algebra (VOA) by restriction to the coho-
mology of a particular conformal supercharge [1], or
equivalently, by introducing a certain Ω background that
deforms the holomorphic-topological twist of the theory
[2,3]. These VOAs have proven to be both revealing
windows into the physics of the underlying four-dimensional
SCFTs and interestingmathematical-physical objects in their
own right.
A notable feature of the VOAs that arise via this

correspondence is their relative simplicity. Many four-
dimensional theories whose conformal phases are other-
wise challenging to study (due to being strongly coupled
and not admitting transparent Lagrangian descriptions) turn
out to have associated VOAs of the simplest types, such as
affine current VOAs and rational Virasoro andW algebras.
More generally, an important aspect of the associated
VOAs is their close relationship to the geometry of the
Higgs branch of vacua. This has been formalized in the

Higgs Branch Conjecture of [4], which in particular implies
that these VOAs are all quasi-Lisse [5].
Starting with [6] (see also the earlier work [7] and further

developments in [8]), it has emerged that there often exist
parsimonious descriptions of the associated VOAs through
geometrically motivated free field realizations. Though the
physical principles underlying these free field realizations
have yet to be completely elucidated, the intuitive picture
that has emerged is that the physics of the Higgs branch (as
encoded in the Higgs branch as a holomorphic symplectic
variety and the residual degrees of freedom present in
generic Higgs branch vacua) largely determines the form of
a free field construction of geometrically meaningful
operators (e.g., Higgs branch chiral ring operators), and
the remaining strong generators make themselves known
upon consideration of the singular terms in the operator
product expansions (OPE) among those geometric oper-
ators [9]. In practice, the methodology of this approach
remains a mixture of art and science.
In this note,we present an interesting new instance of such

a free field realization, this time for the VOA associated to
the class S theory of type a1 for a genus-two surfacewith no
punctures. This is a Lagrangian gauge theory [with gauge
group SUð2Þ × SUð2Þ × SUð2Þ], and the formulation of the
VOAas aBRSTquotient received some consideration in [1].
A presentation as a strongly finitely generated vertex algebra
has recently been derived in [10] using a combination of
BRST cohomology and VOA bootstrap methods. The result
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is fairly complicated, with 17 strong generators organized
into 11 irreducible representations of a novel SU(2) outer
automorphism group.
By contrast, the free field realization we find is quite

simple. It utilizes an isotropic lattice vertex subalgebra of a
lattice VOA of signature (1,1), along with two pairs of
symplectic fermions. This choice of ingredients follows,
according to the general calculus of our free field strategy,
from the fact that the Higgs branch of the genus two theory
is the D3 Kleinian singularity (so it has quaternionic
dimension one), and the residual degrees of freedom on
the Higgs branch are a pair of Abelian vector multiplets
(each giving rise to a symplectic fermion pair). The overall
shape of our construction shares a number of qualitative
features with the examples studied in our previous work,
but there are important differences in the details that we
hope point towards broader generalizations of the method.
The organization of the rest of the paper is as follows. In

Sec. II we introduce and review salient aspects of the
genus-two SCFT in question. In Sec. III we motivate and
present the free field realization of the genus-two vertex
algebra. Our realization makes manifest a (surprisingly
large) USp(4) outer automorphism symmetry that extends
the previously identified SU(2) and is inherited directly
from the symplectic fermions. We use this to give a more
compact presentation of the VOA in terms of the OPEs of
strong generators than that of [10]. In Sec. IV we elaborate
on a number of technical aspects of our construction. These
include the existence of a sub-VOA of type W½1; 2; 2; 2�
that is realized in terms of the lattice bosons and a W½2; 4�
subalgebra of the symplectic fermions. We identify this
with a special case of the subregular Drinfel’d-Sokolov W
algebra of type c2, and we find an extension of our
construction that provides a realization of the same
Drinfel’d-Sokolov W algebra at generic level in terms of
the same lattice bosons as well as a genericW½2; 4� algebra.
This construction is in many ways analogous to recent work
on the subregular Drinfel’d-Sokolov W algebra of type a2
[11]. As an application of our results, in Sec. V we describe
the canonical R filtration on our free field vertex algebra

and use it to predict a simple realization of the Higgs branch
and Hall-Littlewood chiral rings of the theory in the style of
[6]. We make additional observations and highlight open
questions in Sec. VI.

II. REVIEW OF THE GENUS-TWO THEORY

The theory of interest in this work is the genus-two
theory of class S in type a1 [12,13]. This theory admits two
S-dual Lagrangian realizations that are represented by
generalized quiver diagrams with two trivalent vertices
corresponding to half-hypermultiplets in the trifundamental
representation of SUð2Þ × SUð2Þ × SUð2Þ, see Fig. 1.
These give rise to two (inequivalent) realizations of the
associated VOA as an suð2Þ × suð2Þ × suð2Þ BRST
quotient of eight copies of the βγ (symplectic boson) VOA.
This Lagrangian perspective was touched upon briefly in

[1] and has more recently been studied in detail in work of
Kiyoshige and Nishinaka [10], which led to a proposal for
the associated VOA presented in terms of the OPEs of a set
of strong generators. For our purposes, the important
features of this theory are not connected directly to its
Lagrangian realization, and instead pertain to the structure
of the Higgs branch of moduli space, the corresponding low
energy moduli space dynamics, and select data that can be
extracted from anomalies and the superconformal index.
We review and collect all of the necessary information in
the remainder of this section.

A. Higgs branch

The Higgs branch of the vacuum moduli space for this
theory has previously been determined to be the Du Val/
Kleinian singularity of type D3 ≅ A3 [14]. This is a
quaternionic-dimension-one hyperkähler cone that is rep-
resented as a hypersurface singularity in C3 according to

MH ¼ fðx; y; zÞ ∈ C3jxy − z4 ¼ 0g: ð1Þ

The coordinate ring of this algebraic variety is identified
with the Higgs branch chiral ring of the genus-two SCFT.
The holomorphic symplectic form on MH induces a
Poisson structure on the coordinate ring, which (with a
particular normalization of our choice) is defined by the
following brackets for the basic coordinate functions,

fx; yg ¼ −8z3; fy; zg ¼ 2y; fz; xg ¼ 2x: ð2Þ

This theory is exceptional amongst the higher-genus
class S theories without punctures in that it has
a(n Abelian) flavor symmetry Uð1ÞF [15]. The holomorphic
moment map for the action of this symmetry on the Higgs
branch is the coordinate function z, which in theHiggs chiral
ring corresponds to the superconformal primary in a B̂1

conserved current multiplet. In the normalizations of (2) we

FIG. 1. Generalized quiver diagrams for the two duality frames
of the genus-two SCFT of type a1. Triangles (depicting trivalent
vertices) correspond to half-hypermultiplets in the trifundamental
representation of SUð2Þ3.
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therefore assign x and y to have Uð1ÞF charges þ2 and −2,
respectively.
Of particular interest for the development of our free

field construction is a Zariski open subset of the Higgs
branch, Ux ⊂ MH, that we define as

Ux ¼ fq ∈ MHjxðqÞ ≠ 0g: ð3Þ

The coordinate ring of Ux is the localization of C½MH� at x,
C½Ux� ≅ C½x; x−1; z� (in this patch, one realizes y as a
composite according to y ¼ z4x−1). We then have the
identification Ux ≅ C� × C, which can be upgraded to an
isomorphism of Poisson varieties,

Ux ≅ T�C�: ð4Þ

If we let p be the coordinate for the cotangent fiber obeying
the canonical Poisson bracket fp; xg ¼ 1, then we make
the identification z ¼ 2p. The Poisson brackets for y
presented in (2) then follow directly from those of x and z.

B. Residual Uð1Þs and an enhanced Higgs branch

The SUð2Þ × SUð2Þ × SUð2Þ gauge symmetry is not
completely broken on the Higgs branch. That this is so can
be seen by simple dimension counting, since the repre-
sentation space of the hypermultiplets has quaternionic
dimension eight and the hyperkähler quotient should
naïvely reduce this by nine. The presence of a one-
quaternionic-dimensional Higgs branch means that there
must be a two-dimensional unbroken gauge group in
generic Higgs branch vacua, namely Uð1Þ × Uð1Þ. The
same conclusion follows quickly when considering the
realization of the theory in terms of a pair of parallel M5
branes wrapping a genus-two curve, where one may go
onto the Higgs branch by separating the two branes in a
transverse R3. The residual U(1) gauge fields then occur as
reductions of the self-dual two form in the Abelian (2,0)
theory.
The presence of this residual gauge symmetry every-

where on the Higgs branch means that the entirety of MH
is, in fact, smoothly embedded into a larger mixed branch,
where the scalars in the vector multiplets associated to the
unbroken gauge symmetry acquire nonvanishing expect-
ation values [16]. We will refer to this larger mixed branch
as an enhanced Higgs branch, in analogy with the enhanced
Coulomb branch terminology of [17]. Due to the local
factorization of the moduli space into Higgs and Coulomb
branch directions, along with the fact that Uð1Þr is
preserved on the Higgs branch and gives a contracting
C� action on the Coulomb branch, the enhanced Higgs
branch has the form of a two-complex-dimensional vector
bundle fibered with flat connection over the regular locus of
the Higgs branch, Mreg

H ⊂ MH (here the regular locus is
just the complement of the conformal point at the tip of
the cone).

We can say more about the global structure of the
enhanced Higgs branch on fairly general grounds. Since
the Coulomb fibration is locally trivial, its global structure
will ultimately be determined by a two-dimensional unitary
representation (the monodromy representation) of the local
fundamental group of the Higgs branch, which can be
inferred from the realization of the Higgs branch as an
orbifold: π1ðMreg

H Þ ≅ Z4. Additionally, the two U(1) fac-
tors in the residual gauge group will come with different
gauge couplings at generic points of the conformal mani-
fold [as they must arise from different subgroups of the
maximal torus of the microscopic gauge group SUð2Þ×
SUð2Þ × SUð2Þ, each simple factor of which has a sepa-
rately marginal gauge coupling]. The fiber bundle describ-
ing the enhanced Higgs branch will consequently be
decomposable as the direct sum of two line bundles, with
the corresponding representation of Z4 being analogously
decomposable as the direct sum of two one-dimensional
representations. (In fact, it must be two copies of the same
one-dimensional representation for symmetry reasons,
though we will not belabor this point here.)
As the U(1) vector multiplets on the enhanced Higgs

branch originate in the gauge group of the microscopic
theory, the nontrivial monodromy action on the Coulomb
fibers factors through the Weyl group WðSUð2Þ3Þ ≅ Z3

2.
Consequently the generator ofZ4 must act either trivially or
by negation on the Coulomb fibers. Which of these two
possibilities is realized could in principle be determined by
a more careful analysis of the equations for the full moduli
space of vacua. Instead, we will pause our analysis here and
will see from the free field realization later that (subject to
our overall scheme for constructing the realization) the only
reasonable option is for it to act by negation. At the level of
the patch Ux, this means that the enhanced Higgs branch
restricts to a two-dimensional Coulomb branch fibration
whose connection has a holonomy of −1 when transported
around the origin in C�.

C. VOA generators

A list of strong generators of the genus two vertex
algebra with two-dimensional conformal weight h ⩽ 3 was
determined in [1] on the basis of an analysis of the
superconformal index. This list was subsequently shown
to constitute a complete set of strong generators in the
analysis of [10]. We reproduce this list in Table I along with
our naming conventions for the generators added.
The B̂-type operators X, Y, and Z descend from the

Higgs branch chiral ring operators in four dimensions that
correspond, respectively, to the coordinate functions x, y,
and z onMH. In particular, Z is related to the moment map

on the Higgs branch and so generates a dglð1Þ affine current
subalgebra. The level of this current algebra (i.e., the
coefficient of the quadratic pole in its self-OPE in the
normalization implied by the charge assignments in
Table I) can be read off from the field content in the
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Lagrangian description of the theory and is given
by l ¼ −2 [18].
The operators bþa and b−a (a ¼ 1, 2) and ω are Hall-

Littlewood chiral ring generators while b̄þa and b̄−a, and ω̄
are their Hall-Littlewood antichiral ring counterparts. T is
the VOA stress tensor, which generates a Virasoro sub-
algebra. Like with the affine current level, the Virasoro
central charge is determined by the Lagrangian field
content of the theory (or alternatively, by the four-dimen-
sional c-type Weyl anomaly coefficient), and is given
by c ¼ −26.
The additional generators P, Q, and R are more exotic

since they are nonstress tensor, Ĉ-type operators. The
existence was deduced in [1] from an analysis of the
superconformal index at relatively low order. In the free
field realization described in the next section, these will be
observed to arise automatically in the b × b̄ OPE.

III. THE FREE FIELD REALIZATION

In this section we derive and present a free field
realization for the genus-two VOA. While an explicit form
for the VOA in terms of strong generators has been given in
[10], we will operate behind a veil of ignorance regarding
results so as to help illustrate how the EFT-motivated free
field ansatz constrains the form of the free field realization,
ultimately leading to a quick and efficient (re)derivation of
the full OPEs. For reference, note that the complete set of
OPEs [in our conventions, and in terms of strong generators
as redefined in Eqs. (19), (23), and (24)] are given by
canonical T and Z OPEs encoding dimensions and Uð1ÞF
charges, Eqs. (20), (21), and (26), and the Z2 trans-
formations of those with respect to the automorphism
given in (25).
We adopt the philosophy developed in our previous work

[6] and introduce ingredients in accordance with the Higgs

branch physics of the theory. To this end, in correspondence
with the Ux patch of MH and the two residual vector
multiplets we introduce the free field VOA,

V free ¼ SFð2Þ ⊗ Π: ð5Þ

The free field ingredients on the right hand side are defined
as follows. The factor SF(2) denotes the VOA of two pairs
of symplectic fermions (denoted here by η),

ηAðzÞηBðwÞ ∼
ΩAB

ðz − wÞ2 ; A; B ¼ 1; 2;…; 4; ð6Þ

where ΩAB is a nondegenerate skew-symmetric matrix (the
symplectic form). Whenever relevant, we will take Ω to
have a canonical form with Ω13 ¼ Ω24 ¼ 1 and other
entries not related by skew-symmetry vanishing. The stress
tensor for the symplectic fermions is given by

Tη ≔ −
1

2
ΩABηAηB; ð7Þ

and has central charge cη ¼ −4. The VOA (6) enjoys a
USp(4) group of outer automorphisms (which accounts for
the name of the algebra) under which the generators
transform in the 4.
The factor Π denotes an “isotropic lattice VOA” (see

[19,20]). This is realized in terms of two chiral bosons δðzÞ,
φðzÞ with nonvanishing OPEs

δðz1Þδðz2Þ ∼ hδ; δi log z12;
φðz1Þφðz2Þ ∼ hφ;φi log z12; ð8Þ

where z12 ¼ z1 − z2 and we take hδ; δi ¼ −hφ;φi, so that
δþ φ is null. The vertex algebra Π is the subalgebra of the
rank (1,1) lattice VOA associated to these bosons where
the lattice momentum is restricted to the null direction
δþ φ [21],

Π ≔ ⨁
∞

n¼−∞
ðV∂φ ⊗ V∂δÞe

nðδþφÞ
2 ; ð9Þ

where Vj; j ∈ f∂φ; ∂δg is the dglð1Þ affine current VOA
associated with the current j [22].
We can distill the requirements that were imposed on

similar free field constructions in [6] and apply them to the
present case. We arrive at the following operational rules
that we will impose on the putative free field realization of
the genus-two VOA in Π ⊗ SFð2Þ:

(i) The affine current Z should be identified with ∂φ up
to an overall rescaling. Uð1ÞF charge is then related
to the lattice momentum appearing in the exponen-
tials in Π [23].

(ii) The four-dimensional Uð1Þr symmetry is identified
with the subgroup of the USp(4) symmetry of the

TABLE I. Chiral algebra generators for the genus two theory.
The first two columns list the four-dimensional multiplet and
name for each generator. The remaining columns list their two-
dimensional quantum numbers.

Multiplet Name h Uð1Þr Uð1ÞF
B̂1

Z 1 0 0

B̂2
X 2 0 þ2

B̂2
Y 2 0 −2

2 ×D1 ð0;0Þ bþ1 , b
þ
2

2 þ 1
2

þ1

2 × D̄1 ð0;0Þ b̄þ1, b̄þ2 2 − 1
2

þ1

2 ×D1 ð0;0Þ b−1 , b
−
2 2 þ 1

2
−1

2 × D̄1 ð0;0Þ b̄−1, b̄−2 2 − 1
2

−1
D3

2
ð0;1

2
Þ ω 3 þ1 0

D̄3
2
ð1
2
;0Þ ω̄ 3 −1 0

Ĉ0ð0;0Þ T 2 0 0

3 × Ĉ1ð0;0Þ P, Q, R 3 0 0
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symplectic fermions under which η1 and η2 have
chargeþ1 and η3 and η4 have charge−1 [24]. This is
an exact symmetry of the VOA.

(iii) The VOA stress tensor is the sum of canonical stress
tensors for the symplectic fermions and for φ, plus a
stress tensor for δ that may include some nonzero
background charge.

(iv) The affine current ∂φ and its derivatives do not
appear in the expression for VOA generators other
than Z and T as prescribed above [25].

(v) The Higgs branch generator X is realized with the
operator eδþφ. This plays the role of an affine version
of the invertible coordinate x in Ux. Requiring the
correct conformal weight for this operator fixes
the value of the background charge for δ in the
stress tensor.

(vi) The symplectic fermions are understood as being
valued in a fermionic vector bundle over C� asso-
ciated to the Coulomb branch fibration of the
enhanced Higgs branch described above. VOA
operators should be constructed from “single-
valued” quantities on Ux, taking account of the
monodromy of the Coulomb fibers.

The details of our theory serve to immediate specialize
some of the above considerations. In order to match Uð1ÞF
charge normalizations with those of Table I, we identify

Z ¼ 2

hφ;φi ∂φ: ð10Þ

Consequently, the level l of the affine current is related to
the bosonic normalization,

Zðz1ÞZðz2Þ ∼
l

ðz12Þ2
; l ¼ 4

hφ;φi : ð11Þ

Charge considerations (in conjunction with the general
scheme presented above) then fixes the form of the
operators with positive Uð1ÞF charges to take extremely
simple forms. In particular, in order to be able to assign the
correct Uð1ÞF charge to the Hall-Littlewood operators bþa

and b̄þa, we must let the symplectic fermions to have Z2

monodromy (resolving the question of the global structure
of the enhanced Higgs branch), which allows (and requires)
odd numbers of symplectic fermions to be accompanied by
half-integer powers of eδþφ. We then have the following
simple realizations of the positive-charge Higgs and Hall-
Littlewood generators,

X ¼ eδþφ; bþa ¼ ηae
δþφ
2 ; b̄þa ¼ ηae

δþφ
2 ; ð12Þ

for a ¼ 1, 2, and where we have introduced raised-index
symplectic fermions ηA ¼ ηBΩBA, so in particular η1 ¼ η3
and η2 ¼ η4.
To assign the correct scaling dimensions to these

operators, the background charge for δ is then fixed in

terms of the normalization of φ, leading to a total stress
tensor of the form

T ¼ Tη þ
1

2hφ;φi ðð∂φÞ
2 − ð∂δÞ2 þ 4∂2δÞ: ð13Þ

The Virasoro central charge for this stress tensor takes the
value c ¼ −2þ 48=hφ;φi. For now we leave the normali-
zation unfixed, though it is already clear that assigning
hφ;φi ¼ −2 will return the correct value for c (and for l).
The subset of strong generators with positive Uð1ÞF

charge fbþa; b̄þb; Xg then obey the simple OPE relation

bþa ðz1Þb̄þbðz2Þ ∼ðv:p:Þ
δbaXðz2Þ
z212

; ð14Þ

with all other OPEs being nonsingular. Here and in the
following, we adopt the convention that in our OPEs, we
only display the Virasoro primary operators. This con-

vention is indicated by the symbol ∼ðv:p:Þ. The full OPE can
then be reconstructed from the given data using Virasoro
symmetry [26].
The expressions for the b− and b̄− operators turn out to

be completely fixed by the requirement that they have the
correct Uð1Þr × Uð1ÞF charges and that the b−a × b−b and
b̄−a × b̄−b OPEs be nonsingular. (This regularity require-
ment can be seen to follow from charge considerations and
the list of strong generators with h ⩽ 3 given in Table I.)
The same requirements fix the normalization of the bosons
to be hφ;φi ¼ −2, so the affine current level and Virasoro
central charges that were predicted by four-dimensional
considerations arise automatically at this point within our
scheme as a consistency condition.
Direct computation then reveals that the b− and b̄−

operators obey an OPE relation analogous to (14) with the
replacement X → Y, i.e.,

b−aðz1Þb̄−bðz2Þ ∼ðv:p:Þ
δbaYðz2Þ
z212

: ð15Þ

Here we have identified the single nontrivial Virasoro
primary operator appearing in this OPE with the Higgs
branch generator Y. This is the only option consistent with
charge assignments given in Table I. In terms of free fields,
we have to this point the following realizations for b−, b̄−,
and Y operators [29],

b−a¼ðηaðð∂δÞ2−∂2δ−2TηÞ−2∂ηað∂δÞþ∂2ηaÞe−1
2
ðδþφÞ;

b̄−a¼ðηaðð∂δÞ2−∂2δ−2TηÞ−2∂ηað∂δÞþ∂2ηaÞe−1
2
ðδþφÞ;

Y¼
�
ð∂δÞ4−4ð∂2δÞð∂δÞ2þð∂2δÞ2þ2ð∂3δÞð∂δÞ

−
1

3
∂4δ−4Tηð∂δÞ2þ4∂Tηð∂δÞþOð4Þ

η

�
e−ðδþφÞ:

ð16Þ
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The operator Oð4Þ
η appearing in the expression for Y

resides entirely in the SF(2) algebra can be expressed as

Oð4Þ
η ¼ 44ðTηTηÞ − 14∂2Tη − 4Wη;

Wη ¼ 12T2
η þ 4ΩABðηA∂2ηBÞ − 3ΩAB∂ηA∂ηB: ð17Þ

Wewill return in the next section to the conceptual status of
the Wη operator.
We are now in position to make an important observa-

tion, which is that the operators bþ and b̄þ and separately
the operators b− and b̄− can be assembled into irreducible
representations of the full USp(4) automorphism group of
the symplectic fermions. Indeed, let us define

χþA ðzÞ ¼ ηAe
δþφ
2 ;

χ−AðzÞ ¼ ðηAðð∂δÞ2 − ∂2δ − 2TηÞ
− 2∂ηAð∂δÞ þ ∂2ηAÞe−1

2
ðδþφÞ; ð18Þ

which are related to our previous generators according to

χ�1;2 ≡ b�1;2; χ�3;4 ≡ b̄�1;2: ð19Þ
The OPEs (14) and (15) can now be rewritten in the
manifestly covariant form,

χþA ðz1ÞχþB ðz2Þ ∼ðv:p:Þ
ΩABXðz2Þ

z212
;

χ−Aðz1Þχ−Bðz2Þ ∼ðv:p:Þ
ΩABYðz2Þ

z212
: ð20Þ

In turn, the operators χ�A weakly generate the entire VOA;
we recover the rest of the strong generators by examining
their singular OPEs (and, in principle, iteratively taking
more OPEs until the algebra closes). Notably, this implies
that the full VOA also inherits the complete USp(4) outer
automorphism symmetry of the symplectic fermions! In
practice, beyond those operators that have already been
defined, we need only study the χþ × χ− OPEs to realize
the full list of strong generators. Directly computing, we
find the following singular OPE,

χþA ðz1Þχ−Bðz2Þ ∼ðv:p:ÞΩAB

�
12

z412
−
6Z
z312

þ
Z2
ðv:p:Þ
z212

�
−
2ϒAB

z12
; ð21Þ

where the new generator ϒAB transforms in the five-
dimensional, two-index antisymmetric tensor representa-
tion of USp(4). It is realized in terms of free fields as

ϒAB ¼ 1

2
ðð∂δÞη⟦AηB⟧ − ∂ðη⟦AηB⟧ÞÞ; ð22Þ

with double brackets denoting antisymmetrization and
removal of the Ω trace [30].
This five-dimensional multiplet combines all of the

remaining strong generators from Table I, namely
fω; P;Q; R; 2ω̄g. Indeed, specializing the indices A, B to

particular values give the VOA operators corresponding to
these different four-dimensional multiplets. The additional
D and D̄ operators are given by

ω ¼ ϒ12 ¼ η1η2ð∂δÞ − ∂ðη1η2Þ;
ω̄ ¼ ϒ34 ¼ η3η4ð∂δÞ − ∂ðη3η4Þ; ð23Þ

while for the trio of Ĉ1ð0;0Þ operators with h ¼ 3 we have

P ¼ ϒ14 ¼ η1η4ð∂δÞ − ∂ðη1η4Þ;
Q ¼ ϒ13 ¼

1

2
ððη1η3 − η2η4Þð∂δÞ − ∂ðη1η3 − η2η4ÞÞ;

R ¼ ϒ23 ¼ η2η3ð∂δÞ − ∂ðη2η3Þ: ð24Þ
With a full complement of strong generators in place, the

defining singular OPEs can now be calculated and they
automatically take a manifestly USp(4) covariant form. To
simplify the presentation, we will exploit the existence of
an additional discrete symmetry (the origin of which lies
with CPT symmetry, or reflection positivity, in four
dimensions) [31]. This manifests for us as a Z2 auto-
morphism that exchanges, amongst other things, D and D̄
operators and reverses Uð1ÞF charges; more precisely the
action on strong generators is as follows,

fX; Y; Z; χ�A ;ϒBCg → fY; X;−Z; χ∓A ;−ϒBCg: ð25Þ
[In retrospect, given this symmetry one could immediately
deduce (15) from (14).]
We will take advantage of this symmetry by giving a

slightly abbreviated list of strong generator OPEs, from
which the remaining OPEs can be recovered by acting with
the Z2 automorphism,

Xðz1ÞYðz2Þ ∼ðv:p:Þ
72

z412
−
72Z
z312

þ
32Z2

ðv:p:Þ
z212

−
8Z3

ðv:p:Þ
z12

;

χ−Aðz1ÞXðz2Þ ∼ðv:p:Þ
6χþA
z212

þ 4ðZχþA Þðv:p:Þ
z12

;

Xðz1ÞϒABðz2Þ ∼ðv:p:Þ
−2ðχþ⟦AχþB⟧Þðv:p:Þ

z12
;

ϒABðz1ÞχþCðz2Þ ∼ðv:p:Þ
3ΩC⟦Aχ

−
B⟧

z312
þ ΩC⟦AðZχ−B⟧Þðv:p:Þ

z212

−
ΩC⟦Aðð∂ZÞχ−B⟧Þðv:p:Þ

z12
;

ϒABðz1ÞϒCDðz2Þ ∼ðv:p:ÞP1
ABCD

�
18

ðz12Þ6
−
Z2
ðv:p:Þ

ðz12Þ4

þ ð∂2ZZÞðv:p:Þ þ 1
2
ðΩABχþA χ

−
BÞðv:p:Þ

ðz12Þ2
�

þ
1
2
ðΩχþ∂χ−ÞABCD

z12
: ð26Þ
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In the above equation, ð∂nO1O2Þðv:p:Þ denotes the
Virasoro primary operator appearing at order ðz12Þn in
the O1 ×O2 OPE [34]. In the final line, P1

ABCD is the
projection tensor from the 5 ⊗ 5 of USp(4) to the singlet,

P1
ABCD ¼ ΩACΩBD −ΩADΩBC −

1

2
ΩABΩCD: ð27Þ

Finally, for a two-index tensor operator OAB we have
defined

ðΩOÞABCD ¼ ΩACOðBDÞ þ ΩBDOðACÞ

− ΩADOðBCÞ −ΩBDOðACÞ; ð28Þ

with parentheses denoting symmetrization (with weight
one).

IV. TECHNICAL OBSERVATIONS

There are a number of remarkable features of this VOA
and the associated free field realization. The first, and
perhaps most striking, is the observation from the previous
section that the full USp(4) symmetry of the symplectic
fermions is inherited by the VOA. This goes beyond the
SU(2) symmetry that was observed in [10], with that
symmetry arising as the subgroup of USp(4) that preserves
the spaces of Hall-Littlewood chiral ring operators and
Hall-Littlewood antichiral ring operators, respectively. [In
our conventions, these are block-diagonal USp(4) matrices
with two blocks of size two. Alternatively, this is the
centralizer of Uð1Þr ⊂ USpð4Þ, whose generator is realized
by the matrix 1

2
diagðþ1;þ1;−1;−1Þ.] This has the sur-

prising consequence of relating VOA operators associated
to D, D̄, and Ĉ multiplets in four dimensions. Indeed, it is
an entertaining consequence of this symmetry that while
the genus-two VOA has strong generators beyond the stress
tensor and Hall-Littlewood chiral ring operators (which
were identified as a somewhat canonical set of generators in
[1]), all of its generators are related to those by outer
automorphism symmetry! Additionally, the rather large

collection of strong generators of the VOA now organize
into just five irreducible representations of the full outer
automorphism group.
A more technical observation is that the Higgs branch

generators and the stress tensor fX; Y; Z; Tg collectively
strongly generate a closed vertex operator subalgebra.
Retrospectively, given the list of generators in Table I,
the existence of this closed subalgebra is guaranteed given
the existence of enhanced USp(4) symmetry [or even the
smaller SU(2) symmetry of [10]], since this precludes the
appearance of the Ĉ1ð0;0Þ generators in the X × Y OPE. This
subalgebra is a W algebra of type W½1; 2; 2; 2�, and one
may verify by direct computation that it can be identified
with (a quotient of) the specialization of the subregular
Drinfel’d-Sokolov W algebra for Lie algebra c2 ≅ uspð4Þ
at level k ¼ − 5

2
[35].

The realization of thisW½1; 2; 2; 2� subalgebra utilizes the
symplectic fermions only through the combinations Tη and
Wη introduced in (7), (17). These composite operators are
precisely the strong generators of a vertex operator sub-
algebra W½2; 4� ≅ SFð2ÞUSpð4Þ [36]. This two-generator
VOA is equivalent to the specialization (and simple quo-
tient) of the principle W algebra of type c2, W−5

2
ðc2; fprinÞ

corresponding to c ¼ −4, see Theorem 5.1 in [37]. In
this sense, ignoring the origins of the operators Tη and
Wη in symplectic fermions, we have a realization of
W−5=2ðc2; fsubregÞ in terms of Π ⊗ W−5=2ðc2; fprinÞ.
Remarkably, this construction can then be generalized

to a realization of the general subregular algebra
Wkðc2; fsubregÞ ⊂ Π ⊗ Wkðc2; fprinÞ. Taking W2 and W4

to generate a (generic-level) Wkðc2; fprinÞ with W2 a
Virasoro operator of central charge

cW½2;4� ¼ −
ð3lþ 2Þð5lþ 8Þ

4þ l
; ð29Þ

we have

X ¼ eδþφ; Z ¼ l
2
∂φ; T ¼ W2 þ Tφ þ Tδ;

Y ¼
�
ð∂δÞ4 − 8ð4þ lÞ

l2
W2ð∂δÞ2 þ 16ð8þ 6lþ l2Þ

l3
W2∂δ − 8ð1þ lÞ

l
∂2δð∂δÞ2 þ 16þ 20lþ 7l2

l2
ð∂2δÞ2

þ 8ð4þ lÞ
l2

∂W2∂δþ 8þ 6l
l

∂3δ∂δ − 2ð4þ 7lþ 3l2Þ
3l2

∂4δþ 4þ l
l4

Oð4Þ
W

�
e−δ−φ;

Oð4Þ
W ¼ 32ð4þ lÞð40þ 79lþ 24l2Þ

75l2 þ 148l − 8
W2

2 −
16ð96þ 212lþ 133l2 þ 59l3 þ 15l4Þ

75l2 þ 148l − 8
∂2W2

þ 1440ð−128 − 112lþ 24l2 þ 26l3 þ 3l4Þ
75l2 þ 148l − 8

W4: ð30Þ

GEOMETRIC FREE FIELD REALIZATION FOR THE GENUS- … PHYS. REV. D 104, 065015 (2021)

065015-7



In this equation, l denotes the level of the Uð1Þ current
in Wkðc2; fsubregÞ, which is related to the level of the c2
affine current algebra by l ¼ 4ðkþ 2Þ and to the normali-
zation of φ by hφ;φi ¼ 4=l.
When specialized to the value l ¼ − 8

5
, the entire

Wkðc2; fprinÞ algebra becomes null and its simple quotient
Wkðc2; fprinÞ becomes trivial. Consequently we recover a
free field realization of W−12=5ðc2; fsubregÞ using only the
lattice degrees of freedom from Π [in fact, only the
subalgebra with even Uð1ÞF charge]. This then gives a
free field realization of precisely the VOA associated to the
ðA1; A7Þ Argyres-Douglas SCFT [4], for which the Higgs
branch is still C2=Z4 but there are no additional residual
degrees of freedom in generic Higgs vacua.
It is natural to ask if there is a more general story of free

field realizations for Drinfel’d-Sokolov W algebras along
these lines, and indeed this example seems to be a particular
instance of a more general (conjectural) construction [38].
We summarize the apparent situation as follows: given a
finite-dimensional, semisimple Lie algebra g and two
nilpotent elements (representing conjugacy classes) f
and f0, such that f0 covers f [39], then (we conjecture)
there exists a realization (sometimes referred to as a
generalized free field realization) of Wkðg; fÞ as a sub-
VOA of V free ⊗ Wkðg; f0Þ where the factor V free is a lattice
VOA. These free fields have a transparent geometric
interpretation as they are associated to the transverse space
to the nilpotent orbit Of in Ōf0 .
In the example above, we have precisely this structure

where g ¼ c2, ðf; f0Þ ¼ ðfsubreg; fprinÞ, and the transverse
space in question is C2=Z4, see [40]. The case of g ¼ a2,
ðf; f0Þ ¼ ðfsubreg; fprinÞ appeared recently in [11] where a
realization of the Bershadsky-Polyakov algebra BPk ≅
Wkða2; fsubreg ¼ fminÞ was given. That same construction,
together with one corresponding to the pair ðf; f0Þ ¼
ð0; fminÞ, was produced independently in [41]. For arbitrary
g and ðf; f0Þ ¼ ð0; fminÞ the realization is obtained by a
simple generalization of the one presented in [6]. For the
most general choices of g and f, f0, some technical
obstacles and conceptual challenges remain. We will return
to this briefly in Sec. VI.

V. RECOVERING HIGGS AND
HALL-LITTLEWOOD CHIRAL RINGS

A simple application of the free field realization given
above is to derive/predict the structure of the Hall-
Littlewood chiral ring by taking a semiclassical limit. As
in [6], the free field vertex algebra used here admits a
canonical, ascending R filtration that we propose to identify
with the R filtration coming from the underlying SUð2ÞR
symmetry of the four-dimensional SCFT (cf. [4]). For the
isotropic lattice algebra Π, the filtration is defined by [here
j� ≔ 1

2
ð∂δ� ∂φÞ],

FRΠ ¼ spanfðj�Þn�0 ð∂j�Þn�1 � � � ð∂kj�Þn�k em
2
ðδþφÞg;

where n−0 þ � � � þ n−k þm ⩽ R: ð31Þ

For the symplectic fermions we have,

FRSFð2Þ ¼ span

�Y4
A¼1

ðηAÞnA0 � � � ð∂kηAÞn
A
kA

�
;

where
X4
A¼1

nA0 þ � � � þ nAkA ⩽
1

2
R: ð32Þ

For both of these, the normally ordered product descends to
a graded (super)commutative multiplication and the sin-
gular terms in the OPE reduce to a vertex Poisson algebra
structure at the level of the associated graded. By further
restricting to the subspace of the associated graded with
h ¼ R we recover the Higgs branch chiral ring as a Poisson
algebra, with the Poisson bracket encoded in simple poles.
In the case at hand, this amounts to replacing j− → 2p,
jþ → 0, e

n
2
ðδþφÞ → e

n
2 and dropping all terms with addi-

tional differentiation as well as the entire symplectic
fermion algebra. Additionally, p and e inherit a canonical
Poisson structure fp; eg ¼ e.
Applying these replacements to the VOA generators, we

set to zero all but fX; Y; Zg, which correspond to B̂
operators, and for those the replacements return a “free-
field realization” of the Higgs branch chiral ring,

X → x ¼ e;

Z → z ¼ 2p;

Y → y ¼ 16p4e−1; ð33Þ

These manifestly reproduce the defining Higgs chiral ring
relation and give us back the expressions in terms of the
coordinate ring on Ux from II A.
In the presence of operators with nonvanishing Uð1Þr

charge, we can instead make a more refined restriction of
the associated graded to components obeying the relation
h ¼ Rþ r. Doing this returns a kind of free-field realiza-
tion of the Hall-Littlewood chiral ring. (Alternatively, one
could restrict to components with h ¼ R − r and recover
the Hall-Littlewood antichiral ring, which is isomorphic.)
At the level of our free field generators, this amounts to
additionally retaining (undifferentiated) η1 and η2 (with
trivial Poisson bracket), while setting to zero η3 and η4 as
well as all derivatives of symplectic fermions. Of course,
this breaks the USp(4) outer automorphism symmetry to
U(2). We are left with the following additional D-type
generators of the Hall-Littlewood chiral ring
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bþa ¼ χþa → χþa ¼ ηae
1
2;

b−a ¼ χ−a → χ−a ¼ 4ηap2e−
1
2;

ω ¼ ϒ12 → ϒ ¼ η1η2p; ð34Þ

where a ¼ 1, 2. From these expressions, one can easily
read off chiral ring relations amongst these generators, as
well as a Poisson bracket for the Hall-Littlewood chiral ring
that extends that of the Higgs branch chiral ring. Indeed, we
have confirmed that these reproduce the chiral ring rela-
tions and Poisson brackets as they are computed directly
from the Lagrangian description [42].

VI. DISCUSSION

The realization of the genus-two VOA presented here
has a number of suggestive qualities that warrant further
comment.
The most prominent feature of the construction is the

manifestation of the large outer automorphism group
USp(4). Even more so than the SU(2) subgroup that was
identified in [10], this is an unlikely looking symmetry
since it mixes four-dimensional multiplets of much differ-
ent types (D, D̄, and Ĉ). Such a phenomenon has been seen
to arise in a few previously studied examples, namely in
the free vector multiplet theory (corresponding to just
symplectic fermions with the attendant symplectic outer
automorphism group), and in N ¼ 4 supersymmetric
Yang-Mills theory, where there is a USp(2) outer auto-
morphism symmetry of the small N ¼ 4 superconformal
algebra that seems to be preserved in the full VOA [1,6,7].
Based on these examples, it seems the existence of such
outer automorphisms may be meaningfully related to the
existence of an enhanced Higgs branch.
It is further interesting to observe that this symmetry

group appears as the flavor symmetry of the three-dimen-
sional Coulomb branch obtained by reducing our genus-
two SCFT on a circle and flowing to the infrared SCFT.
That three-dimensional fixed point has a mirror dual
description as an SU(2) gauge theory with two hyper-
multiplets both transforming in the adjoint representation of
the gauge group [43], a description that renders the USp(4)
symmetry transparent. A (potentially trivial) action of
Coulomb branch symmetries by outer automorphisms
arises for VOAs realized on boundaries of three-dimen-
sional N ¼ 4 SCFTs [44,45], and the present theory can
certainly be realized as such a boundary VOA by com-
pactification on a cigar (or alternatively directly in terms of
the three-dimensional reduction in the H twist). However,
the USp(4) action we have found seems difficult to interpret
in this manner, since it includes as a subgroup the Uð1Þr
symmetry. It would of interest to better understand the
interpretation of this outer automorphism from comple-
mentary perspectives.
It has been proposed in [6,8] that free field realizations of

this type should be thought of in four-dimensional terms as

a kind of inverse Higgsing operation, and the present
example seems to reinforce this idea. In the cases studied
in those previous works, the Higgsing operation in question
could be understood at the level of VOAs as an instance of

quantum Drinfel’d Sokolov reduction for an dslð2Þ affine
subalgebra of the parent VOA. The free field realizations
were then performing an inverse Drinfel’d-Sokolov
reduction.
In the present case, we would interpret the Higgsing

operation that is being inverted amounts as giving x an
expectation value [which preserves a diagðUð1ÞF × Uð1ÞRÞ
symmetry that is interpreted as the infrared Uð1ÞR sym-
metry] leading to the restriction to the patch Ux ⊂ MH. It is
tempting to conjecture that this Higgsing can be imple-
mented at the level of the VOA by introducing a (0,1) bc-
ghost system and passing to the cohomology of a BRST
operator of the form

QBRST ¼
Z

dz
2πi

cðzÞðXðzÞ − 1Þ: ð35Þ

One may quickly check that a modified version of the stress
tensor,

TIR ¼ T þ Tbc þ ∂Z; ð36Þ

isQBRST closed and has c ¼ −4, but we have not attempted
a more detailed analysis. The full BRST cohomology
should be identifiable with the symplectic fermion VOA.
We are not aware of any analysis of precisely this type of
BRST problem in the VOA literature.
As we mentioned in Sec. IV, our realization of the

generic-level Wkðc2; fsubregÞ is in many ways analogous
to the realization of the Bershadsky-Polyakov algebra
Wkða2; fsubregÞ presented in [11]. In that work, the reali-
zation was used to understand the structure of a fairly
general class of representations of the VOA known as
relaxed highest weight modules. It would be interesting to
study the same class of modules in the present case, and
potentially connect with the study of class S surface
operators.
An important problem is to generalize the free-field

methods described in this and previous papers of the
authors to the point where they accommodate the
higher-genus class S theories. At genus g, the Higgs branch
is the Kleinian singularity of type Dgþ1, so in particular for
g ⩾ 3 there are no flavor symmetries. The absence of an
organizing U(1) symmetry is an apparent obstacle to
implementing the same sort of free field scheme used in
this paper. (Indeed, the difficulties associated with the
generalD-type Kleinian singularities arise in the context of
the conjectural Drinfel’d-Sokolov program outlined at the
end of Sec. IV.) However, for the higher-genus theories it is
reasonable to suspect that other features of the present
example may generalize more easily.
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A natural conjecture is that the higher-genus VOAs
will enjoy USpð2gÞ outer automorphism symmetries
and that the USpð2gÞ invariant sub-VOAwill be isomorphic
to W−g−1=2ðcg; fsubregÞ and realized in terms of

SFð2gÞUSpð2gÞ ≃W−g−1=2ðcg; fregÞ and a rank (1,1) lattice
VOA. An analysis of the superconformal index along with
results of [42] suggest that the these theories have D and
D̄-type generators of dimension h ¼ 2 and h ¼ g that
transform in the fundamental ð2gÞ-dimensional represen-
tation of the outer automorphism group (generalizing χ� at
genus two). Hopefully these will (weakly) generate the full
VOA, allowing for a similarly economical derivation of the
full VOAs to what we found here.

We hope to return to all of these points in future work.
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