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We describe a simple model for quantum interference of a single photon in the Mach-Zehnder
interferometer using the Heisenberg picture. Our purpose is to show that the description in the Heisenberg
picture is local just like in the case of the classical electromagnetic field, the only difference being that the
electric and the magnetic fields are, in the quantum case, operators representing quantum observables. We
then consider a simple model for a single-electron Mach-Zehnder interferometer and explain what the
appropriate Heisenberg picture treatment is in this case. Interestingly, the parity superselection rule that
arises in fermions due to the different spin statistics forces us to describe the electron in a radically different
way to the photon in order to preserve the account in terms of local observables. A model using only local
quantum observables of fermionic modes (such as the current operator) is nevertheless still viable to
describe phase acquisition. We discuss how to extend this local analysis to coupled fermionic and bosonic
fields within the same local formalism of quantum electrodynamics as formulated in the Heisenberg
picture.
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I. INTRODUCTION

The superposition principle of quantum theory has an
immediate expression in the Schrödinger picture. If two
different state vectors satisfy the Schrödinger equation then
their linear sum also does. Thus the Schrödinger picture
lends itself naturally to the description of quantum inter-
ference. For example, if the state j0i of a qubit acquires a
phase ϕ0 and the state j1i acquires a phase ϕ1, then
according to the Schrödinger equation the superposed state
of the qubit evolves into eiϕ0 j0i þ eiϕ1 j1i. This phase
difference can then be detected by performing a measure-
ment in the j�i ¼ 1ffiffi

2
p ðj0i � j1iÞ basis.

By contrast, in the Heisenberg picture, the initial state
vector (the so-called Heisenberg state) never changes. It can
always be assumed to be a fixed state ρ0 without any loss of
generality. How then is the interference phenomenon
manifested? The explanation of interference lies in the
dynamics of operators which evolve unitarily, consistent
with the dynamical evolution of the state vectors in the
Schrödinger picture. The consistency condition is given by
the requirement that the Heisenberg and Schrödinger
pictures must be empirically equivalent. For any given
observable Ô of a physical system, the empirically acces-
sible quantity at any one time is given by the expected value
TrðÔρðtÞÞ ¼ TrðÔðtÞρ0Þ, where ÔðtÞ ¼ UðtÞ†ÔUðtÞ and
ρðtÞ ¼ UðtÞρ0U†ðtÞ. Hence the empirical content of the

two pictures is the same. But the mode of explanation is
different, especially regarding locality [1].
Herewe study a simple model of spatial interference in the

Heisenberg picture of quantum field theory, showing that
this picture provides a fully local account of it, both for
bosons and for fermions. First, we illustrate how the
Heisenberg picture provides local elements of reality in
terms of q-numbered descriptors (quantum observables) for
bosonic and fermionic fields, both free and interacting, much
as in classical field theory. However, the local elements of
reality are in the quantum case operators (q-numbers) and
not c-numbers (the usual complex numbers, that all com-
mute with each other).
These q-numbered descriptors satisfy the principle of

no-action at a distance: given a partition of the whole
universe into subsystems, operations (unitaries or CP-
maps in general) involving the descriptors of a given
subsystem cannot modify the descriptors of other non-
overlapping subsystems. In [1] the proof of this fact is
presented for an N-qubit system and extended to any other
physical system via the universality of quantum compu-
tation. However, there are some outstanding points to
clarify in the case of quantum fields. For instance,
fermionic fields lack crucial qubit properties (such as
local tomography [2]); hence the proof of locality by the
universality of computation may not directly apply
to them.
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II. BOSONIC MACH-ZEHNDER
INTERFEROMETRY

Consider a simple example of bosonic interferometry.
A single-photon going through a Mach-Zehnder interfer-
ometer has been the foremost way of thinking about
interference in quantum information, and computation
[3]. It is analogous to the double-slit experiment, which
in the words of Feynman contains “the only mystery” in
quantum physics [4]. We shall imagine that an additional
phase ϕ is introduced locally in one of the arms. How it is
applied depends on the physics of the system undergoing
interference and is irrelevant for our discussion about
locality. So is the analysis of fluctuations in the phase,
[5,6], so without loss of generality we shall consider a
simple minimal model for the interference, as follows.
We consider the standard quantization procedures of the

electromagnetic field, which lead to introducing the crea-
tion and annihilation bosonic operators at mode x, denoted
by ax; a

†
x. These operators satisfy the following constraints:

½ax; ay� ¼ 0, ½ax; a†y� ¼ δx;y, and axj0i ¼ 0, where j0i is the
chosen vacuum state of the global Fock space and ½A;B� ¼
AB − BA is the commutator of the two operators A and B.
For simplicity of exposition, we shall assume that x
represents a region of space where the photon can be
confined to arbitrarily high accuracy; in this case, x can be
either L (a region around the left arm of the interferometer)
or R (a region around the right arm of the interferometer).
These two regions are nonoverlapping (their separation
being much larger than their respective extents). The details
of the free evolution of the photons are not relevant for
present purposes. Also, we do not consider the polarization
of the photons, since it is irrelevant for the locality
discussion.
In the Schrödinger picture, the quantum state of the

photon changes after the first beam splitter ðUBSÞ, then
acquires the additional phase in one arm (say the left one)

via UðϕÞ
L , and finally undergoes another change at the final

beam splitter ðU†
BSÞ. Labeling the quantum state where the

photon is on the left or right arm of the interferometer
respectively as jLi ≐ a†Lj0i and jRi ≐ a†Rj0i, the dynamical
evolution of the photon is given by

jLi⟶UBS 1ffiffiffi
2

p ðjLiþjRiÞ⟶U
ðϕÞ
L 1ffiffiffi

2
p ðjRiþeiϕjLiÞ⟶UBS 1ffiffiffi

2
p ðjþi

þeiϕj−iÞ¼ sinϕ=2jLiþcosϕ=2jRi; ð1Þ

where j�i ¼ 1ffiffi
2

p ðjLi � jRiÞ are equally weighted super-

positions of the left and right path.
In the Heisenberg picture, we see how the phase affects

the dynamical evolution of photonic quantum observables.
We can consider for instance the operator representing the
vector potential field of each position mode x, which is
proportional to Ax ¼ ax þ a†x. (The same analysis could be

done with the electric or magnetic field.) Since we have two
arms of the interferometer, x ¼ L (left) and x ¼ R (right),
we shall specify the field in both of these (which we think
of as modes of the electromagnetic field). We will use the
ordered pair notation t∶⟦aLðtÞ þ aLðtÞ†; aRðtÞ þ aRðtÞ†⟧
to denote the descriptors of the left and right modes at time
t, where the left mode descriptor occupies the first slot of
the ordered pair and right mode occupies the second slot.
(Note that in general, due to unitarity, it is possible to
retrieve the dynamical evolution of all relevant observables
of a composite system by merely tracking the dynamical
evolution of the generators of the algebra of observables of
each subsystem [7]. In this case, the generators would
be aLðtÞ; aRðtÞ.)
At the start, let the field operators be

t0∶⟦aL þ a†L; aR þ a†R⟧

and the Heisenberg state jΨi ¼ j1L0Ri. This simply rep-
resents the quantum photon field operators in the left and
the right modes at time t0, with one photon existing in mode
L. The unitary beam splitter UBS applied at time t acts as
Bogoliubov transformations on the creation and annihila-

tion operators: aLðtÞ⟶
UBSðtÞ

aLðtþ dtÞ ¼ 1ffiffi
2

p ðaLðtÞ þ aRðtÞÞ
and aRðtÞ⟶

UBSðtÞ
aRðtþ dtÞ ¼ 1ffiffi

2
p ðaLðtÞ − aRðtÞÞ.

So the photon field operator descriptors after the first
beam splitter, expressed as functions of the initial descrip-
tors, are

t1∶ ⟦
1ffiffiffi
2

p ðaLþaRþa†Lþa†RÞ;
1ffiffiffi
2

p ðaL−aRþa†L−a†RÞ⟧: ð2Þ

The phase shiftUðϕÞ
L ðtÞ acts only on the left arm. That is, it

is a function of the operators aLðtÞ only. Hence, it induces a
change in the left modes only: aLðtÞ⟶

UðϕÞ
L ðtÞ

aLðtþ dtÞ ¼
eiϕaLðtÞ and aRðtÞ⟶

UðϕÞ
L ðtÞ

aRðtþ dtÞ ¼ aRðtÞ. The new field
operators after the phase shift are therefore

t2∶ ⟦
1ffiffiffi
2

p ðeiϕðaL þ aRÞ þ e−iϕða†L þ a†RÞÞ;
1ffiffiffi
2

p ðaL − aR þ a†L − a†RÞ⟧: ð3Þ

The property of no-action at a distance is the crux of
quantum field theory in the Heisenberg picture: changes
induced by a phase shift acting locally on one mode do not
affect operators pertaining to the other modes. In our
example, only the field operators of the left mode (the
first slot of the ordered pair above) contain the phase, while
the field operators of the right mode do not. Hence by
simple inspection of the descriptors of the two modes, we
can tell where the phase shift was applied. Note also that a
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state tomography of the left mode would not at this stage
reveal the phase (the expected value of the number operator
of the left mode does not depend on the phase). Hence the
phase is at this stage encoded in the left mode, but it is
locally inaccessible. We need a phase reference in order to
compare the phase induced in the left arm. This is precisely
what the second beam splitter does. It makes the left and
right arm interact in such a way that one arm is a phase
reference for the other.
The final step is the second beam splitter, which induces

once more a mixing of modes, and hence allows one to
recover the phase. The field operators at the output of the
interferometer are then

t3∶ ⟦cos

�
ϕ

2

�
aL þ i sin

�
ϕ

2

�
aR þ H:c:; cos

�
ϕ

2

�
aR

− i sin

�
ϕ

2

�
aL þ H:c:⟧: ð4Þ

The usual interference is directly manifested in the
expected value of the number operator N̂xðtÞ ¼ a†xðtÞaxðtÞ
at time t3, in the Heisenberg state jΨi ¼ j1L0Ri. This value
can be calculated from hA2

xðt3ÞijΨi ¼ 1þ 2hN̂xðt3ÞijΨi.
Thus the phase that we have tracked with AxðtÞ is now
manifested in a direct observation. For the output left mode,
we obtain

hN̂Lðt3ÞiΨ ¼ cos2
ϕ

2
: ð5Þ

The expected value of the output mode R could be
calculated in the same fashion (and it would yield the value
of sin2 ϕ=2). Hence the expected values at the end of the
interferometry are the same in the Heisenberg and
Schrödinger pictures, as they are empirically equivalent.
The significant difference in the explanation for the inter-
ference is that in the Heisenberg picture the phase introduced
by the phase shift on one mode is only manifested in that
mode and not others, locally. In the Schrödinger picture this
would not be the case as thewave function does not allow for
a separable description and the phase difference due to the
beam splitter acting on mode L could equally well have been
introduced by a beam splitter acting on mode R. Note that
here we consider the Schrödinger picture as it is usually
interpreted, with the wave function completely describing
the system (see e.g., [3,8]). In [1], this fact is pointed out in
regard to the quantum teleportation protocol with qubits. The
key advantage of the Heisenberg picture is that it is
manifestly local (i.e., it satisfies no action at a distance as
well as no signaling; of course, the Schrödinger picture does
not allow signaling either and, in this sense, it is also local, or
microcausal in the language of field theory). If one were to
expand the usual interpretation of the Schrödinger picture to
also include the unitary transformations that have been
applied to the system, then the physical situation where

the phase shift is in the left arm could be distinguished from
the opposite shift being applied to the right arm, by
considering the two unitary transformations that apply such
transformations, since they are manifestly different. In the
Heisenberg picture this information is fully contained in the
local descriptors.
Any bosonic field (say pertaining to a Bose condensate

of atoms) has precisely the same description as above in
the Heisenberg picture. We can interfere condensates
applying this Mach-Zehnder interferometer implementa-
tion, and the operator description of this interference
would be identical to the one presented above. The same is
true of fermionic fields, but with one significant subtlety,
due to the presence of superselection rules. To expose this
subtlety, we will now proceed to describe a single electron
Mach-Zehnder interferometer.

III. FERMIONIC MACH-ZEHNDER
INTERFEROMETRY

For a single electron, one could naively expect that the
model for interferometry is the same as in the bosonic
case, replacing the descriptors with fermionic creation and
annihilation operators fx and f†x at mode x. This strategy,
however, is not possible. Fermionic operators anticom-
mute at spacelike separated points ffx; f†yg ¼ δx;y and
ffx; fyg ¼ 0, where the curly brackets represent the
anticommutator, fA;Bg ≐ ABþ BA. Hence, the operator
fx þ f†x is not an observable. The term observable is used
here in an operational sense, to refer to the class of
operators with real eigenvalues, whose corresponding
eigenvectors are physical states, i.e., they can be prepared
and distinguished by a physically allowed process. If that
operator were an observable, then one would be able to
signal. To explain why, we present a simple argument
which is originally due to Wigner [9]. It leads us to have to
impose a superselection rule (the parity superselection
rule), ruling out superpositions of even- and odd-num-
bered fermionic states.
The thrust of the argument is that, if one could super-

pose even and odd numbers of fermions, such as by
preparing an eigenstate of fx þ f†x, one would violate the
no-signaling principle. For instance, one could send
messages between two spacelike separated regions by
the following protocol.
Consider two spacelike separated regions, A and B.

Suppose that fA is a fermionic mode at A, and fB is one
at B. First, let us consider the Schrödinger picture. Let us
assume that 1ffiffi

2
p ðj0i þ j1iÞB (eigenstate of fB þ f†B with

eigenvalue 1) is an allowed fermionic state. This state can be
interpreted physically as a superposition of a state with no
fermions in mode B (state j0iB, even) and of a state with one
fermion in mode B (state j1iB, odd). Then, let us prepare the
product state j0iAðj0i þ j1iÞB. Assuming no restrictions on
the allowed quantum observables, iðf†A − fAÞ is an allowed
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Hamiltonian, hence the unitary UA ¼ expðπ
2
ðf†A − fAÞÞ is

also permitted. UA creates a fermion in the mode A when
applied to the vacuum, and annihilates a fermion in the mode
A if there is one. In other words, UAj0iA ¼ j1iA and
UAj1iA ¼ −j0iA. (This action defines a class of unitaries
up to a phase, all of which are equivalent for the sake of this
proof.) Now, let us either leave A’s state as the vacuum or
create one electron in A, by not applying or applying UA. If
the state remains the vacuum, B’s state remains unchanged:
the expected value of fB þ f†B is þ1 at the end of the
protocol. If an electron is created in the region A by applying
UA, the state becomes j1iAðj0i þ j1iÞB. Now, the expected
value of the observable fB þ f†B at B is−1 in this state. Thus
an observer at B, if they were able to prepare and distinguish
superpositions of the vacuum and one electron state, they
could tell whether an electron had or had not been created at
A, despite A being spacelike separated from B. Generalizing
the argument, it follows that any superposition of even and
odd numbers of fermions is prohibited.
An equivalent argument exists in the Heisenberg

picture. Assume that the Heisenberg state is jψHi ¼
j0iAðj0i þ j1iÞB. We can see what happens to the observ-
able fB þ f†B when acted upon by UA—corresponding to
the action of creating a superposition of even and odd
numbers of particles. We can see by algebraic calculation
and by the action of UA to the vacuum and excited states
j0iA, j1iA that UA ¼ f†A − fA. One obtains U†

AðfBþ
f†BÞUA ¼ −ðfB þ f†BÞ. This is due to the fact that the
fA; f

†
A anticommute with the fB; f

†
B. This expression is a

violation of the principle of no-action at a distance
because quantum observables at B’s location can be
modified instantaneously by the action of a unitary UA,
which is only operating on A. Taking the expected value of
the field operators at B at the end of the protocol,
U†

AðfB þ f†BÞUA, using the Heisenberg state jψHi, we
obtain −1, reaching the same conclusion as in the
Schrödinger picture.
Following this line of argument, one imposes a parity

superselection rule: fermionic observables of a givenmode x
must commute with the parity operator expð−iπf†xfxÞ;
which implies that they have to consist of quadratic forms
of fermionic operators, such as the electric charge density
operator: j0ðxÞ ¼ −ef†xfx. The quadratic forms of fermionic
operators at different spacelike points commute (just like in
the bosonic case), so there is no problem with locality.
However, there is more. Quadratic forms of fermionic

operators alone cannot keep track of the phase in the Mach-
Zehnder experiment in the same way as bosonic operators
can. So not only would the phase not be registered in the
local density operator (or any other local quadratic observ-
able), but even in the Heisenberg picture, it would not be
registered in any local quadratic fermionic descriptor.
Luckily, the second-quantized Dirac field does not contain

just the electron operators; it also contains the positron
operators. So in the Heisenberg picture, it is still possible to
track local observables of the Dirac field pertaining to each
mode, in order to give an entirely local account of the
interferometry.
In the bosonic case, any unitary process can be

fully described by tracking observables, since the alge-
bra generators can be found from observables by
ax ¼ 1

2
ððax þ a†xÞ − iðiðax − a†xÞÞÞ. However, for fermions,

this is not entirely the case (in [10] a detailed local
mathematical analysis of general fermionic systems that
goes beyond the scope of the current paper shall be
presented).
Going back to the fermionic Mach-Zehnder interfero-

meter, the proper second-quantized Dirac field is described
by the four-spinor operator (see [11])

ψðxÞ ¼ bðxÞ þ d†ðxÞ: ð6Þ

This involves the electron annihilation operator bðxÞ and
the creation operator of a positron d†ðxÞ at point x.
Once more, here we deliberately omit the spinor details

and the momentum representation as it is not relevant for
the following argument–for details see e.g., [8]. This
fermionic Dirac field descriptor is not Hermitian and thus
is not an observable. Also, the superselection rules prohibit
superposing odd and even numbers of fermions. Thus, no
linear combination of creation and annihilation operators is
allowed to represent a physical variable.
To describe the Mach-Zehnder electronic experiment we

need to construct a quadratic operator out of the
fundamental descriptor of the Dirac field. Consider for
instance the charge density operator pertaining to each arm
mode ðj0ðxLÞ; j0ðxRÞÞ, where j0ðxÞ ¼ −e∶ψðxÞ†ψðxÞ ≔
−eðb†xbx − bxdx þ b†xd

†
x − d†xdxÞ (we would in general have

to use the four-vector, including the current density, but, in
this case, the other three components do not add to our
analysis). We denote by ∶AB∶ the normal ordering of the
fermionic operators A and B. Even though dx, bx are
spinors with some orthogonality properties imposed, all the
four terms are nonzero in general. We will also assume, for
simplicity of exposition, that the Heisenberg state is
jΨiep ¼ 1ffiffi

2
p ðj0L1Rie þ j1L0RieÞj0L0Rip, so we describe

the interferometry just after having applied the first beam
splitter.
Tracking now the time evolution of the density operator

⟦j0ðLÞ; j0ðRÞ⟧ in the Heisenberg picture, we see that a
phase rotation applied on the left mode now does manifest
itself in the quantum observables of the Dirac field, by
modifying the charge density operator. The reason is

that the field transforms under the phase rotation UðϕÞ
L at

time t as bLðtÞ þ d†LðtÞ⟶UðϕÞ
L bLðtþ dtÞ þ d†Lðtþ dtÞ ¼

eiϕbLðtÞ þ e−iϕd†LðtÞ and bRðtÞþd†RðtÞ⟶UðϕÞ
L bRðtþdtÞþ

d†RðtþdtÞ¼bRðtÞþd†RðtÞ. Then, after applying the phase
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rotation UðϕÞ
L , one obtains that the charge density of the

Dirac field in the left mode is

j0ðLÞ¼−eðb†LbLþe−2iϕb†Ld
†
L−e2iϕbLdL−d†LdLÞ; ð7Þ

while the right mode charge density stays unchanged.
We see that the phase is present in the charge density

operator of the left mode after applying the phase shift. So a
perfectly valid observable, even under superselection rules,
can keep track of the phase locally to each mode of the
Dirac field. The positronic part of the Dirac field allows one
to have a phase reference for the electron field. The
different action of the phase shift on the electron and
positron field operators is what allows one to keep track of
the phase. It does so by providing a local phase reference to
the left arm between the fermionic and positronic field. We
emphasize that if, as in the case of the interferometer we are
studying, the Heisenberg state consists of an electron
superposed across the left and the right modes and no

positrons, then the expected value of j0 will be phase
independent—the phase is locally inaccessible via empiri-
cal observation as in the bosonic case. So, in the absence of
superposed positrons, or another superposed electron that
acts as a reference, the phase is at this point unobservable
(all we can observe is whether the electron is in the mode L
or mode R). However, the local picture of quantum field
theory, when considering the Dirac field in its entirety as a
q-number, allows us to tell that the phase has been applied
on one mode and not the other, by tracking the electron and
positron field current operator of each mode.
Moreover, in the Mach-Zehnder case, we can do so by

tracking a physical observable, and not requiring the
tracking of the Dirac field itself. In the Mach-Zehnder
interferometer, the final beam splitter mixes the left and the
right modes in exactly the way to the phase to be observable
in the output charge densities (or currents in general). After
the final beam splitter, the density operator in the left
mode is

j0ðLÞ ¼ −
e
2
∶ðe−iϕb†L þ b†R þ eiϕdL þ dRÞðeiϕbL þ bR þ e−iϕd†L þ d†RÞ∶ ¼

¼ −
e
2
½ðe−iϕb†L þ b†RÞðeiϕbL þ bR þ e−iϕd†L þ d†RÞ − ðeiϕbL þ bR þ e−iϕd†L þ d†RÞðeiϕdL þ dRÞ�: ð8Þ

Now, considering the expected value in the Heisenberg state jΨie ¼ 1ffiffi
2

p ðj0L1Rie þ j1L0RieÞj0L0Rip, we see that only
four components of the density survive, i.e., b†LbL þ b†RbR þ e−iϕb†LbR þ eiϕb†RbL. Two of these contain the phase
information. Concretely, we obtain

hΨjej0ðLÞjΨie ¼ −
e
2
hΨje½ðe−iϕb†L þ b†RÞðeiϕbL þ bR þ e−iϕd†L þ d†RÞ − ðeiϕbL þ bR þ e−iϕd†L þ d†RÞðeiϕdL þ dRÞ�jΨie

¼ −
e
2

1ffiffiffi
2

p h0L0Rjpðh0L1Rje þ h1L0RjeÞ½ðe−iϕb†L þ b†RÞðeiϕbL þ bRÞ�
�

1ffiffiffi
2

p ðj0L1Rie þ j1L0RieÞj0L0Rip
�

¼ −
e
4
ðh0L1Rje þ h1L0RjeÞ½ðe−iϕb†L þ b†RÞðeiϕbL þ bRÞ�ðj0L1Rie þ j1L0RieÞ

¼ −
e
4
h0L0Rje½ðe−iϕ þ 1Þðeiϕ þ 1Þ�j0L0Rie

¼ −
e
2
ð1þ cosðϕÞÞ ¼ −e cos2

�
ϕ

2

�
: ð9Þ

The expected value in the state jΨie therefore is
−e cos2 ϕ=2, as expected, completely analogously to the
bosonic case. As a side remark, we note that the operator
b†LbR þ b†RbL quantifies coherence between the L and R
modes (or what could be called a single particle entangle-
ment between the two modes [12]). It is therefore not
surprising that it emerges as the key observable in the
Heisenberg treatment of interference.

IV. DISCUSSION

What have we achieved? We are able to describe the
locality of spatial interference of both bosonic and

fermionic fields in terms of the relevant local elements
of reality, the q-numbered valued observables of the local
fields pertaining to each mode, in the Heisenberg picture.
The local elements of reality are in each case, the operators
that are physically allowed observables, so considering the
parity superselection rules for fermions. For bosons, it is
sufficient to keep track of the photon field, while for
fermions we need to use the current operator (or some other
quadratic operator) of the full Dirac field.
Nevertheless, one could ask if this scheme can be

applied to interacting fields. The answer is yes. In
QED, for example, we have to combine the quantized
electromagnetic field AμðxÞ with the Dirac field ψðxÞ
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through the charge current vector jμðxÞ ¼ e
2
½ψ̄ ; γμψðxÞ�. In

this case we have the quantum electrodynamics equations,
that show the dependence of AμðxÞ with Aμðx0Þ and jμðx0Þ,
and vice versa [13]. Therefore we could follow the same
strategy, tracking how the quantum observables
AμðxÞ; jμðxÞ change. Since they only change through
interactions local in position, all observed phases and
phenomena can be explained in a nonaction at a distance
way using these observables as descriptors.
Using this scheme, it is possible to describe the

Aharanov-Bohm effect in an entirely local way [14] by
quantizing the electromagnetic field and the Dirac field
entirely and then using jμðxÞ and AμðxÞ as descriptors that
track the local changes of the system? This can be done by
generalizing the Heisenberg picture treatment presented in
[15], using the picture of the full quantum field theory. We
leave the details of this to a future work.
We have previously questioned whether the fermionic

phase due to anticommutation is also acquired locally [16].
Here, instead, we embraced the anticommutation of fer-
mions and explored its consequences for a fully local
description of quantum superpositions and interferences in
quantum electrodynamics. The Heisenberg picture proved
to be natural in this context. However, could even more be
said? Could we argue that the Schrödinger picture does not
even exist in some of the scenarios we have considered?
The answer to this exciting question may be yes, since the
operators describing interactions in quantum electro-
dynamics may not have a finite norm, i.e., they may not
transform all state vectors with a finite norm into state

vectors with the same property. Dirac provided an example
of this when he emphasized that the Heisenberg picture
helps us get rid of the deadwood in quantum electrody-
namics arising due to the Schrödinger picture [17]. Our
analysis adds another point in favor of the argument that the
Heisenberg picture may be superior to the Schrödinger
picture when it comes to showing that quantum theory and
general relativity obey the same locality principle, albeit
with different elements of reality: c-numbers for general
relativity, q-numbers for quantum theory.
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