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Chiral symmetries in field theory are typically affected by an anomaly in the quantum theory. This
anomaly emerges when one introduces an interaction with a Yang-Mills or gravitational background.
Physical applications of this quantum effect have been traditionally connected to topological questions of
the background field and the study of instantons. We show here how one can alternatively find situations of
physical interest that only involve ordinary, but dynamical solutions of the background field equations.
More precisely, we show that solutions to the Einstein (Maxwell) equations are able to trigger the chiral
anomaly if and only if they admit a flux of gravitational (electromagnetic) radiation with net circular
polarization. As a consequence, astrophysical systems that admit such radiation spontaneously generate a
flux of particles with net helicity from the quantum vacuum.
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I. INTRODUCTION

It is well-known that strong gravitational fields can affect
the vacuum fluctuations of quantum fields and lead to
important physical phenomena. From the pioneer work of
Parker on particle creation in expanding universes [1], to
the subsequent discovery by Hawking of thermal emission
during a gravitational collapse [2], different phenomena of
quantum origin can arise if a quantum field propagates on a
dynamical, gravitational background. One of these quan-
tum effects is related to the emergence of anomalies due to
spacetime curvature.

An anomaly is understood as the failure of some Noether
symmetry of a classical field theory to persist after the
quantization. More precisely, when the classical conserva-
tion law of a Noether current breaks down in the quantum
theory, the associated symmetry is said to be anomalous
[3]. Their discovery was initiated in the late 1960s with the
fermion axial or chiral anomaly [4,5], motivated with the
aim of understanding the observed phenomenon of the pion
decay into two photons. Since then, the field has grown
enormously, leading to the discovery of many more
anomalous symmetries of diverse nature (conformal,
gauge, etc.), and to a rich interplay with differential
geometry and topology [6]. From a physical viewpoint,
anomalies were found useful to address key conceptual
questions in the standard model of particles [U(1) problem,
strong CP violation in QCD [7]] and cosmology (baryo-
genesis). Our goal in this paper is to point out and develop
an unexplored aspect of chiral anomalies that, remarkably,
turns out to have a simple physical interpretation and
could lead to new physical applications in gravity and
electrodynamics.
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For definiteness, let y(x) be a Dirac field interacting with
a classical Yang-Mills background of field strength F,;, in
Minkowski spacetime (R*,7,,), with coupling constant g.
Let y“ be the Dirac matrices, and let > := iy%y!y%y> be the
chiral matrix. In the massless limit, the standard action of
this theory possesses a (global) Noether symmetry gen-
erated by the transformation y(x) — ¢’ %y (x), 6 € R, that
leads to a Noether current: jé¢(x) = (x)y“y’w(x). This is
the well-known (Abelian) chiral symmetry. This current is
conserved for solutions w(x) of the Dirac equation of
motion, V,j¢(x) ~ 0. In the quantum theory, however, off-
shell contributions yield

-

T TrF,, " F # 0, (1)

(Vajs) =

thus spoiling the classical conservation law. This is the
indication that the classical symmetry is anomalous in the
quantum theory. Denoting by y; = 1/2(I+ y°)¥ andyy =
1/2(I - y°)¥ the right-handed and left-handed chiral sectors
of the Dirac field, respectively, the associated Noether charge
canbe writtenas Qs(1) = [, d®xv/'h(wywg — ), ), which
is a measure of the net difference between right-handed
(positive-helicity particles plus negative-helicity antipar-
ticles) and left-handed fermions (negative-helicity particles
plus positive-helicity antiparticles). While this difference is
preserved by the equation of motion for classical fields,
Qs(t) ~ 0, the emergence of the anomaly indicates that
quantum fluctuations are able to induce a change in time
given by
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if and only if the right-hand side (RHS) of this equation is
nonvanishing. What does the anomalous time dependence of
the chiral charge imply physically? Using S-matrix theory
and Bogoliubov transformations, it can be explicitly shown
[8] that the Yang-Mills field creates and destroys fermions in
such a way that (Qs(#,)) — (Qs(#;)), which is a measure of
asymmetric particle creation, is given precisely by the
amount predicted by the RHS of the previous equation.
Thus, the anomalous temporal evolution of the chiral charge
is physically interpreted as a phenomenon of asymmetric
particle creation by a dynamical background: a nontrivial
gauge field is able to excite spontaneously a net number of
right-handed fermions over left-handed ones from the
quantum vacuum or vice versa.

In a similar fashion, it has recently been shown [9—12] that
the analogous chiral symmetry in electrodynamics, most
popularly known as electric-magnetic duality symmetry of
source-free Maxwell equations, suffers from a similar
anomaly when a nontrivial spacetime background
(R*, g,») is introduced. More precisely, under a chiral
rotation £F(x) — eT*F (x) of the self-dual and anti—self—
dual sectors of the electromagnetic field, *F,, = 1 [F wEt
i*F 3], the usual action for the source-free Maxwell theory
remains invariant. This leads to a Noether current that, for
solutions of the field equations, reads J§ ~ A, F ab _ 7, Fb.
Although classically conserved, it was found in [9-12] that
quantum fluctuations of the electromagnetic field produce

-1
<va‘]g> = WRabcd*Rade’ (3)

if spacetime curvature R, is considered. The associated
Noether charge can be expressed as the difference between
right-handed and left-handed photons, and, while Maxwell
equations guarantee that Qs ~ 0 for the classical function
Qs (1), off-shell contributions can spontaneously make this
quantity change in time if and only if the RHS of

d4x /—_gRabcd*Rabcd

(4)

is different from zero. Again, the physical picture is analo-
gous to the fermion case: a nontrivial gravitational back-
ground would be responsible to create spontaneously a
difference in the number of right- and left-handed circularly
polarized photons from the quantum vacuum.

(05(12)) = (Os(1y)) =
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In general, the physical interpretation of chiral anomalies
is strongly associated with the phenomenon of “level
crossing.” The Hamiltonian of the quantum field, which
determines the energy of field modes, depends on the
background field. Then, a nontrivial temporal evolution of
the latter can make a positive-chirality mode with initial
negative energy transform into a positive-chirality mode
with final positive energy [8,13]. In other words, the
dynamical evolution of the Yang-Mills or gravitational
field can reverse the helicity of field modes, producing as a
result a net creation of helicity from the quantum vacuum:
more particles of one helicity are created than particles of
the opposite helicity.

The questions we want to answer here are as follows:
what are the physical spacetime backgrounds that can
induce this level crossing in the helicity of field modes?
How is this dynamical evolution supposed to be? In the
Yang-Mills case an important historical role has been
played by instantons [14,15]. Instantons are classical
solutions to the Euclidean field equations of a non-
Abelian gauge theory that exhibit a nontrivial topology
in the manifold of field configurations. Physically, they are
interpreted as amplitudes that quantify quantum-mechani-
cal transitions between topologically inequivalent vacua in
the Hilbert space of gauge fields [14,16—18]. Their use
played a fundamental role in the 70-80 in addressing
several problems of the standard model of particles and
QCD, most notably the U(1) problem [19]. But what about
the gravitational case? Analogous solutions of the
Euclidean Einstein’s equations are also known for a long
time [20,21] and were baptized as gravitational instantons.
While mathematically these solutions have a rich structure
[22], their physical interpretation could be regarded as
exotic, since it relies on quantum-gravity issues [23]. If one
is only interested in studying applications of chiral anoma-
lies, it can be more natural to look instead for more realistic
spacetimes, i.e., for ordinary, Lorentzian solutions of
Einstein’s equations directly.

To our knowledge, this problem has not been proposed in
the literature before. Since it is known that the integrand in
(4) is locally a total derivative, a priori one expects that
only nontrivial spacetime topologies can produce non-
vanishing contributions, thereby the historical interest in
instantons. However, in gravity this is not quite true
because, at least for asymptotically flat spacetimes, the
boundary of the spacetime, called null infinity [24], is
nontrivial and can provide a contribution by means of the
flux of gravitational waves (GWs) that enters/exits the
spacetime. The goal of this paper is to fill this gap and to
open a new window for applications of chiral anomalies
that go beyond the realm of topology or instanton calculus.

Our main result will be to show that chiral anomalies are
intimately related to the circular polarization state of
ordinary gravitational radiation in the spacetime back-
ground. More precisely, we shall prove that

065012-2



CHIRAL ANOMALIES INDUCED BY GRAVITATIONAL WAVES

PHYS. REV. D 104, 065012 (2021)

(Qs(scri+)) — (Qs(scri—))

© dow’ .
— [ @) = i)
‘m

= " (@) + ihZ" (@) ], (5)

where A, and h, denote the two GW linear polarization
modes that reach future null infinity, emitted by an isolated
gravitational source that is stationary at both past and future
timelike infinities, but otherwise arbitrary. What this for-
mula is indicating is that the more right(left)-handed
gravitational radiation is emitted by a system, the more
right(left)-handed particles will be excited from the quan-
tum vacuum through the mechanism that produces the
chiral anomaly. This is a realistic gravitational setting, with
a clear and unambiguous physical meaning.

That an asymptotically flat spacetime background must
emit gravitational waves in order to induce the quantum
anomaly is an indication that only dynamical solutions of
Einstein’s equations are relevant in this question.1 This
should come with no surprise in light of the previous
physical interpretation of anomalies in terms of asymmetric
particle creation, since only dynamical gravitational fields
are able to spontaneously create particles (and hence
helicity) from the quantum vacuum. On the other hand,
because the study dynamical solutions of Einstein’s equa-
tions is a rather involved issue that typically requires
numerical techniques, this could explain why only instan-
tonic solutions (which are known in closed form) have only
been considered so far in the study of chiral anomalies.

In a given sense the result that we obtain shares some
parallelisms and interpretations with instantons. Namely,
our result can be understood as tunneling between degen-
erate vacua of the asymptotically flat spacetime (associated
with the degeneracy of gravitational connections at future
null infinity [25,26]), but in this case these transitions are
produced classically simply by a flux of gravitational
waves crossing null infinity (i.e., not through the usual
quantum-mechanical tunneling). However, important con-
ceptual differences exist. For instance, our result indicates
that any spacetime where its manifold is homeomorphic to
R*, but such that its metric is deformed with respect to
Minkowski so as to allow the presence of circularly
polarized gravitational radiation (i.e., to allow for curva-
ture, in a specific form) will be able to induce the quantum
anomaly and hence a level crossing of modes. Thus, our
result has nothing to do with topological or global ques-
tions, but rather to the geometry of the spacetime.

'But not all dynamical spacetimes produce a nonvanishing
Chern-Pontryagin. One can easily check that Friedmann-
Lemaitre-Robertson-Walker metrics produce a zero result.

“In the context of the Atiyah-Patodi-Singer index theorem, this
geometric contribution is essentially the one that must be
subtracted from the Chern-Pontryagin integral in order to recover
a topological quantity for manifolds with a boundary; see [27].

Moreover, it seems unlikely that these results could simply
be obtained by a wick rotation of an instanton solution,
since the former are purely dynamical (gravitational
waves), and hence it does not look that they could be
recovered from “static” Euclidean solutions by any ana-
lytical continuation.

In light of the systematic detections of gravitational
waves by the interferometers LIGO-Virgo in the last years
[28], and given that gravitational backgrounds emitting
these waves are intimately related to chiral anomalies, it is
important to discuss astrophysical settings where these
quantum effects could play a role in the underlying physics.
What is the possible phenomenology that one could
predict? This will be studied in detail in a separate paper.
The present paper is an extended and a detailed discussion
of the theoretical results presented already in [29].

We shall work with four-dimensional spacetimes and the
Levi-Civita connection. We follow Wald’s [30] sign con-
ventions. Namely, the metric signature is (—, +, +, +), the

Riemann tensor is defined by [V, V,]v, =: R4, v, for any
covector field v,, the Ricci tensor is R, :== R¢, ,, and the

scalar curvature is R := g“’R ;. Unless otherwise stated, all
tensor fields will be considered smooth. In Sec. II we use
units in which 2 = ¢ = 1, while in Sec. III we use units in
which G =c¢ = 1.

II. A SIMPLE CASE: THE ELECTROMAGNETIC
ANALOG

Although we are ultimately interested in understanding
the chiral anomaly induced by a gravitational background,
the usual technical complications associated with the
nonlinearities of the gravitational field and Einstein’s
equations makes necessary working first with a simpler
model. Consequently, let us focus in this section on the
original Adler-Bell-Jackiw chiral anomaly [4,5], which is
the electromagnetic analog. The above complications are
avoided due to the simplicity of Maxwell theory. More
importantly, the final result will have such a simple physical
interpretation that will guide us in the gravitational case.

A. Setup and main calculation

The Adler-Bell-Jackiw chiral anomaly is the anomalous
nonconservation of the Noether current associated with the
chiral symmetry of a Dirac spinor ¥(x). This anomaly arises
when the spinor interacts with a background electromagnetic
field F,;,(x). The explicit expression for this anomaly can be
read off from (1) if we identify the gauge group with U(1)
and ¢ — €. As emphasized in the Introduction, the quantity
of major physical interest is the Noether charge, whose
failure to be preserved in time is determined by the integral
over all spacetime M:
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Our goal is to determine which class of electromagnetic
backgrounds (i.e., solutions F,, of Maxwell equations)
produce a nonvanishing chiral anomaly. To achieve this
we need to analyze this integral and to study under which
conditions it is not zero. We assume that this electromagnetic
background F,, is produced by some electromagnetic
sources J that are smooth and with spatial compact support,
but otherwise arbitrary.

First of all, it is not difficult to prove that for stationary
solutions of Maxwell equations, dFF = 0, d*F = *J, Eq. (6)
above is identically zero. To see this, let us take a Cartesian
coordinate system {z,x}. A stationary Maxwell field is a
solution of Maxwell’s equations that remains invariant
under time translations, i.e., a solution that satisfies
LiF . =0, where £, denotes the Lie derivative along
the generator of infinitesimal time translations, k = 9/0t.
This condition is equivalent to k*F,, = V, A, where A is a
function, traditionally called the electrostatic potential. The
integral of interest can now be rewritten as

/ d*x\/=nF ,, F** =—4 / dt / d*xkOF ,pk *FP
M —00 R3

:—4/oodf/ d*xV Ak F

—o R3

[ e,
—o0 R3

where in the first equality we used the 3 + 1 decomposition
of the metric, n°? = —k*k" + h*?, and *F ,;, = L €p.aF? to
write hh4F . *F,; = —2k*F ,,k.*F¢?; while in the third
equality we used Maxwell equation V,*F® = 0. Assuming
standard falloff conditions for the magnetic field and
electrostatic potential at spatial infinity, k**F ., V?r ~ 1/r3,
A ~ 1/r, the final result is zero.

We must look then for nonstationary solutions to
Maxwell’s equations. To guarantee convergence for the
integral in time in Eq. (6), we shall assume that both at early
and late times the solution of Maxwell equations
approaches a stationary conf1gurat1on During the

AL early times the electromagnetic field is stationary
for all X € R* and using the same arguments as above we get
Jps XV, (AkFP) = 0. Atlate times 7 the field is stationary only
in a spacelike open region U(f) C R? of radius r(7) that
does not intersect the electromagnetic waves generated
during the intermediate nonstationary period. Because the
waves propagate to future infinity, r(¢) =7+ const, then
U(t—> o) >R and we find [, d°3V,(AkF?) =
[ dS*r(6)>A(r(2))k.Fe(r(1))Vyr ~ 172 as t > oo, which guar-
antees convergence of the integral.

nonstationarity period, the dynamics of the electromagnetic
sources will generate outgoing radiation propagating to
infinity (we will assume no incoming electromagnetic
radiation for simplicity). The study of outgoing radiation
is most conveniently carried out within the framework of
asymptotically Minkowski spacetimes [31-33]. A detailed
summary of this topic can be found in Appendix B, and we
will provide the key points here. Let (R*, #,,) denote our
physical, Minkowski spacetime, and let (M, 7,,) be the
unphysical spacetime constructed from the physical one by
a standard conformal compactification.” The unphysical
metric is related to the physical one by an ordinary
conformal transformation: 7,, = Q%(x)f,,. On the other
hand, the unphysical manifold is just the physical one
together with additional points attached smoothly to it:
M = R* U J. The set of all these new points constitute a
null hypersurface 7, locally characterized by the condition
Q =0, and with null normal »**V,Q. Physically, they
represent the “points of (null) infinity,” i.e., the points that
can be asymptotically reached in the original spacetime by
following outgoing, null geodesics.

The importance of this construction is that it allows one
to apply ordinary techniques in differential geometry to
study the behavior of fields in a neighborhood of infinity
(which now is just a boundary of the spacetime manifold).
To do the calculation of interest, Eq. (6), one further needs
to carry the tensors of the original spacetime to the
unphysical one. This is straightforward due to the invari-
ance of the electromagnetic field under conformal trans-
formations, F,;, = Fp, A = A,. Thus,

1 A A
——/ d4x\/—f7Fah*F"b:/ F/\F:/ FAF
2 R4 R* M
1
:——/ d*x\/=nF ,,*F. (8)
2 /u

The key point now is to notice that, mathematically,
pi(F) = _8_;112F A F is an invariant polynomial [6]. The
Chern-Weil theorem from the theory of characteristic
classes (see Theorem 11.1 in [6], for instance) states that
the difference between two invariant polynomials,
p1(F) = py(F"), associated with two connection 1-forms,
A and A’, is exact and determined by the transgression term
0(A,A") [6,27]:

Pi(F) = pi(F') = dQ(A. A'). ©)
Because the spacetime (R*,7,,) is trivial from the topo-
logical viewpoint, it admits a global flat connection A’. Due
to conformal invariance and continuity, we have an
electromagnetic potential that is pure gauge globally:

“Because we shall be working with the unphysical spacetime
all the time, we use the hat symbol to denote quantities associated
with the physical spacetime in order to avoid its use later.
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A" = da. Then, the difference § = A — A’ represents the
same physical electromagnetic potential.5 The transgres-
sion term can be evaluated following its definition (see
[6,27] for details) and reads

1
QA.A) == 50 NF. (10)

It is straightforward now to check that p(F') =
p1(0) = 0. Then, by integrating (9) and applying Stokes
theorem we get

1
[ me = [ o)== 10 [ oFenauas
M J 1677: J
(11)

where the boundary of the unphysical manifold is
OM = TJ; i* denotes the pullback of the inclusion map
i:J < M; and dudS? is the canonical integration measure
on J ~R x S?. Note that the RHS is manifestly gauge
invariant, as it must be in view of the left-hand side (LHS).

This result can be further simplified if we work in a
Newman-Penrose basis [34]. The electromagnetic field has
6 physical degrees of freedom per spacetime point that can
be described with 3 complex scalars (these are analogous to
the Weyl scalars in the gravitational case [35]). These
scalars are the components of the tensor F;, in a null tetrad
{£?, n%, m*, m}. Without loss of generality, we can take
n“ such that it equals 7*°V,Q at Q = 0, i.e., such that it is
normal to the hypersurface 7. Then £ is chosen as a null
vector that satisfies £“n, = —1; and m?, m“ are complex
conjugate null vector fields, taken such that their real and
imaginary parts are tangential to 2-spheres (hence orthogonal
to n® and £%), and normalized as m“m, = 1. In this null
tetrad, the metric takes the formn,;, = —2n,&p) + 2m,iny,)
and the three electromagnetic scalars are defined by

q)z = Fabl’laﬁ’lb, (12)
1 b b

@, :E[Fahnal + Fapm®m’], (13)
(1)0 = Fahm“lb. (14)

If we restrict to smooth solutions of Maxwell equations, the
peeling theorem [36] guarantees that in a neighborhood
of J we can expand ®;(u,Q,0,¢) =D (u,0,0,¢)+
Q®! (u,0,0,¢) + ---, where (u,0,¢) are Bondi-Sachs
coordinates adapted to 7 [37,38]. Going back to the physical

The advantage of working with @ rather than with A directly is
that the former is manifestly gauge invariant, while A is not. It is
customary in the literature to set A’ =0, but this can be
misleading during the calculation given that intermediate for-
mulas would not have a manifestly gauge-invariant form.

spacetime, it is not difficult to see that this condition requires
D, ~ %, so @) represents the 2 radiative degrees of freedom of
the electromagnetic field (corresponding to real and imagi-
nary parts of this complex number). If we further assume the
same asymptotic behavior for the electromagnetic potential
[39,40], A, ~ O(1/r), then the 2 radiative degrees of free-
dom are encoded in the component A, := A,m“. Indeed,
using F,, = 2V|,A, and the above definitions for the
scalars, one can see that A,n® = 0 and ¢9 = 9,AY at J.

We are now in position to evaluate (11). The tangent
space  of J is spanned by {n% m“ m%}, so
e?be = i31plambme!. Then,

~ 1622
-2i
" 16x2

+m*n’m)dudS?

—6i
/pl(F) —l/ 0,F . (n*mbin)dudS?
M J

/ 0,F . (n*mPml + memlbn
J

1 o= -
=12 /j dudS?*(0,n“Im®) — Im(AID) — dad))),

2
(15)

where we used A’Y = da. Recalling that A,n® = 0 at 7, we
get

1 _ _
A piF) =15 /j dudS I (A% — 3ad0).  (16)

Notice that the value of « is determined by the choice of
gauge of A9. In other words, under a gauge transformation
AY transforms as A, - A9+ 9f, while a transforms as
a — a + f, so the role of a is to maintain gauge invariance
in the full expression. In a specific gauge, @ can be set
to zero.

B. Physical interpretation: Circularly polarized
electromagnetic waves

Since A9 (or @9) is a complex number that encodes the
2 radiative degrees of freedom of the electromagnetic field,
we see that the chiral anomaly for fermions is intrinsically
related to the emission of electromagnetic waves. Which
properties should these waves have in order to produce a
nontrivial result? To understand the physical meaning of
this result, let us expand the electromagnetic field in Fourier
modes as’

SThe condition ®J(u — +o00) — 0 is required from the finite-
ness of energy flux across 7, fjo‘;" du|®(u, 0, ¢)|> < co. This
condition in turn requires that ®) belongs to L?(C), and its
Fourier transform exists. Notice that A does not necessarily
decay at u — +o0, so its Fourier transform is not defined.
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d d
0.0.0) = [~ 5200417 = [T @n(.0. ) + By (.0, e (17)

where in the second equality we explicitly split the modes in terms of positive and negative definite frequencies: @ (w) :=
®(w) for @ > 0 while ®; (—w) := ®(w) for @ < 0. The electromagnetic potential satisfies A, = ®J, so we can write

Ay (u,0,4) = /Oood_a) [M zwu+M ol 4 B0, p), (18)

2w —iw iw

where the function (6, ¢)) emerges as a constant of integration. Imposing ®, = 0, one concludes that # = da. Plugging
these formulas in (16), we get

/ ey TG V) / ds? / 90 (. 0.9~ 1@, (.0.)2). (19)

Note that this formula is reminiscent of the phenomenon of level crossing, discussed in the Introduction. What is the
physical meaning of these modes, @ and ®; ? The electromagnetic field @) is self-dual, which means that it can be written
as @) = (E + iB), where E, B are the electric and magnetic fields, representing the two possible, linearly independent
polarization directions of the electromagnetic field. Because of this, we can also write

0.0.0) = [~ 52 (E(@.0.9) + iBl0.0. )" (20)

from which we identify
®p(w) = (E(w) + iB(w)),w > 0,
@, (—w) = (E(w) + iB(w)),w < 0. (21)
The second equation implies ®; () = (E(—w) — iB(—w)), for @ > 0. Because E(u) and B(u) are real functions, we must

have then E(—w) = E(w) and B(—w) = B(w), leading to ®; (w) = (E(w) — iB(w)). Taking into account all this, and
expanding the fields in spin-weight spherical harmonics of modes (¢, m), we finally arrive at

(Os(scri)) — (Os(scri—)) = / deoe” Z|Efm ) + B ()2 = |E“(w) — iB™ ().

873w

The RHS represents the difference in intensity between right- and left-handed circularly polarized electromagnetic waves
reaching future null infinity, i.e., the Stokes V parameter. The LHS represents the amount of net helicity spontaneously
created on the fermion field. We conclude that the emission of circularly polarized electromagnetic radiation implies the
spontaneous creation of massless charged fermions (highly energetic electrons, for instance) with net helicity. The more
right- or left-handed electromagnetic radiation the spacetime contains, the more left- or right-handed massless fermions will
be excited from the quantum vacuum.

C. A concrete example: Electric-magnetic oscillating dipole

Consider an electric dipole of moment p, pointing in the z direction, oscillating with frequency w. The electromagnetic
vector potential is [41]

AE = _ poc;) cos(wu)V,,z. (22)
4rer

On top of this, consider a magnetic dipole of moment m,, located in the x — y plane, oscillating with the same frequency @
but in opposite phase. In the radiation-zone approximation, the electromagnetic vector potential yields [41]

12{24 =— 2”00; sin(ewu) sin” OV . (23)
e
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One expects this configuration to provide a nontrivial
Chern-Pontryagin because the magnetic fields of both
the electric and magnetic oscillating dipoles considered
here are entangled, leading to a nonzero magnetic hel-
icity [42].

To calculate (16), let us work in spherical coordinates
(u,r,0,¢). A (conformal) Newman-Penrose basis can be

constructed such that m® = % (V0 + isin OV, ¢p), where

qap = diag{1,sin’> @} is the standard metric on the unit,
homogeneous 2-sphere. The radiative component of the
total electromagnetic potential is

- wsinf
A) = mA, = img sin(wu) + pycos(wu)). (24
z 20 (imysinlan) + pocostn). (24
Then,
3 @’mypo
/+dud§21m(A88MAg)—— ome® (uy —uy), (25)

where u, — uy is the period of (finite) time during which the
system operates (we let @ — 0 for u < u; and u > u,).
This result is gauge invariant, so @ = 0 in (16).

III. THE GRAVITATIONAL CASE

The fact that net fermion helicity can be spontaneously
created from the quantum vacuum in a background of
circularly polarized electromagnetic waves is a physically
interesting result. In particular, it suggests that a similar
phenomenon may occur for photon helicity in a back-
ground of gravitational waves, by simply noticing the
parallelism with the chiral electromagnetic anomaly of
(3). In this section we prove this in detail, following a
similar strategy as in the electromagnetic case.

A. Setup and main calculation

Let (M, §,5) denote our physical, curved spacetime. The
quantity of interest is

(Os(scri+)) — (Qs(scri-))
h . . —h .
=—— [ Tt(RAR)=— | d*x/=gR,, ., R,
48;;2/91 TR AR) = Gg iy @5V IRabea
(26)

where R =1R,,dx* A dx" is the curvature 2-form. Our
goal is to compute this integral in an astrophysically
relevant setting in order to know under which circum-
stances a given gravitational system may generate a flux of
photons with net helicity. In particular, we restrict to
asymptotically flat spacetimes. As in the previous section,
the above integral is identically zero for stationary space-
times. The proof is similar to the electromagnetic case but
technically more tedious, so it is relegated to Appendix A.

We must then focus on dynamical solutions of Einstein’s
equations and, to guarantee convergence, we consider
spacetimes that asymptotically reach stationary regimes
at both future and past timelike infinities. An example of
this is a binary merger of two black holes which, ideally, are
initially separated an infinite distance away, and end up
merging to form a final stationary Kerr black hole.

As in the electromagnetic case, it is convenient to work
instead with a conformally compactified spacetime, (M,
Jap), constructed from the physical one by the standard
procedure: M = M U J, g, = Q2,5 Our physical space-
time will be globally hyperbolic, so that M ~R x £ [30],
and in particular we shall restrict to £ ~ R? (physically one
does not expect more sophisticated spaces). The next step is
to carry the relevant tensors of the physical spacetime to the
unphysical one. It is useful to note that, due to the totally
antisymmetric tensor &4, the Ricci part in the physical

Riemann tensor, R?, , does not contribute in this problem:

~nd  pabmn Hc _ ~d  sabmn fre
\/ERabce Rmnd - \/gcabce Cmnd? (27)

where C,j.4 is the physical Weyl tensor. Using now the

conformal invariance of the Weyl tensor, C¢, = c?,., that

V=0 = Q*,/=g, and that &%¢¢ = Q*¢?>“¢_then the quan-
tity of interest turns out to be conformal invariant:

\/gkabcdéabmnkmndc = \/§Rabcd€abmannd€’ (28)
and therefore

(Qs(scri+)) — (Qs(scri—))
n n

=—— | Tt(RAR)=—— [ Tr(RAR). (2
s [ TRAR) =3 [ TR AR (29

Mathematically, p;(R) = —#Tr(R A R) is another
invariant polynomial. To calculate this quantity we shall
recall again the Chern-Weil theorem. This theorem tells us
that the difference between two invariant polynomials,
p1(R) — pi(R'), associated with any two given connection
1-forms, w and @' in M, is exact and is determined by the
transgression term Q(w, ') [6]:

pi(R) = pi(R') = dQ(w. o). (30)

If we introduce the difference @ = w — @', then the RHS
can be evaluated in the standard way and yields [27]

1 2
Q(w, ') ———2Tr<2¢9/\R+§9/\9/\9
T
—29AwA9—9Ad9). (31)

Because the physical spacetime manifold is M ~ R, it
admits a flat Minkowskian metric 7,,. Its associated
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conformal compactification, (R* U J7,7,,), with 7,, =
Q?ij,,, will represent our auxiliary spacetime in this calcu-
lation. We denote all associated quantities with prime indices.
Given that C'%,, = 0 in (R*,#,,) one has C'?, = 0 at any

point of R*U JT due to conformal invariance and

continuity, and from (27) we deduce p(R) =
p1(C") = p1(0) = 0. Thus, the value of [,, p;(R) is simply
determined by the flux Q(w, @") at future null infinity (i.e., at
Q=0):

1 2
/pl(R):/ "Q(w,0)=—--= [ ITr(20 AR+-0NONO-20 A0 NO—-OAdI ). (32)
M T+ 8 ) 7+ 3

The previous formula can be simplified in a more convenient manner. First, note that A df = 0 A dw — 0 A do’ = 0 A
R-0O0AoAw+0A0 Ao (recall R = do' + o' A @' = 0 for Minkowski). Then

Tr(-20 Ao ANO—O ANdO) =TrtO A (20 N0+ 0 ANw—o ANa@')—Trd AR

=-TOAN(@ANw-20AN0 +& ANa')—Trd AR
=-TrOA (0 —&') A (w0—@') —Tr A R, (33)

where in the last step we noticed that Trd A w A @' = Trf A @' A w. Equation (32) can now be written as

1 1
/pl(R):/ Q) =- [ iT(onrR-Lon0n0). (34)
M J* 8 ) 7+ 3

It is convenient to introduce a 3 + 1 splitting of (M, g,;,) by {Q = const} hypersurfaces in order to simplify the

1

integrand. Let 71, =

N n,, with n, := V,Q, be the normalized transversal vector to the Q = const hypersurfaces. The
gu nanb

induced metric on these hypersurfaces is h,, = —,7;, + 9,5, and its associated Levi-Civita derivative operator will be
denoted by D,. For any two vectors u® and v that are tangent to {Q = const} we can write the decomposition:

uD, v = uh’V,v¢ = u(gb — 1bn, )V,0¢ = uV 0’ + ut (V)b e, (35)

where in the last equality v“71, = 0 was used. This leads to
D,v, = h5V vy + iyv°K,., where K, = D, is the
extrinsic curvature of {Q = const} as a hypersurface
embedded in M (as usual, it satisfies K,. = K,, and
K »n” =0, as can easily be checked). Consider now an
orthonormal frame {ef};_, 5 in (M, g,,); i.e., a set of
four vectors labeled by 7 that at each point x of M satisfy
Gap(x)ed(x)eh(x) = nyy. The dual frame is defined via
€q1 = gape’, and latin indices 1,J,.... can be lowered
and raised with #;;. It is convenient to choose this frame as
a Newman-Penrose tetrad (g, =719 = —13 =—13 = —1,
zero otherwise) such that for © = 0 the tangent space at
future null infinity is spanned by {n“, m“, m“}. Given this
tetrad, a (torsion-free) connection 1-form w, is defined
by the equation Vaelly + ol Jei =0, and the metric-
compatibility condition V,g;,. = 0 gives the antisymmetry
property %/ = —w]!. Taking v, = €/ in (35) we find

hd(wq)1; = —€5D e + K ipel, (36)

where K ;; is shorthand for K ,.¢§. Using the antisymmetry
of @ between I and J, one can deduce hi(w,)! =
—5k(ehD,eX) — K yn' + K. ii;, where 8} and A! are short-
hand for h,,e%’ eb and 7ie!,. Let us introduce the additional
notation (*w, )’ = -8k (et D eX). Thus

(wa)§ = (30)0)5 - Kalﬁl + Kfzﬁl + ﬁaﬁb(wb)g' (37)

Repeating this procedure exactly in the auxiliary
Minkowskian spacetime (R*U J+,1,,) we get (o))} =
Col)h = K 2" + K'LR), + AL’ (w),)], where prime indi-
ces denote quantities defined with respect to the metric
nap- Taking the difference between the two (note that
Wi, = Wil = 0),

h(0)" = (o) 2Kl — k'), (38)
As discussed in [31,32] and summarized in Appendix B,

J = {Q = 0} is a three-dimensional null hypersurface that
is endowed with a universal geometric structure, which
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consists in a collection of pairs (ga b? n“) satisfying a set of
properties. Each pair consists of a degenerate metric g , on
{Q = 0} and the corresponding null normal n®. This geo-
metric structure is common and available for any asymp-
totically flat spacetime. Consequently, we can fix the same
conformal frame (g ,,n¢) for both (R*U J*,g,,) and
(R* U J*,n,,) spacetimes. Furthermore, without loss of
generality we can choose this conformal frame such that
i*(Q2g,,nn?) =1 (i* being the pullback of i: 7 < M),
which will allow some simplifications in the next calculation.

i*Tr0 A O A 0 = i*[(%0,)(30,)% (30X

and

On the other hand, because the specification of the degen-
erate metric g . is equivalent to the specification of two
complex-conjugate vectors m® and m® whose real and
imaginary parts are tangential to the sphere, fixing this
conformal frame ( g n“) is equivalent to fixing a common
basis {n?, m“, m“} for both spacetimes. Consequently, the
two tetrads introduced above, ¢ and €'¢, agree for Q = 0.
Taking this into account and the orthogonality properties,
Cw,)iibe] = (P, )ﬁn/be’i = K ive] = K,i’%e"] =0,
one finds

=300, (Kp — K'p)(K oy — K€"V hdx (39)

1 .
0 AR =5 [C0)IR, = 2(K i) = K'yn') )R} e/ hdPx. (40)

The 1-form (*9,)} can be determmed at Q = 0 from the intrinsic geometry of future null infinity. As discussed in

Appendix B, for any covector ¢} at null infinity, the difference D, —
completely characterized by a traceless, symmetric tensor 6, (D, — D),)el =
,and D,, is tangential to Q = 0, we have (*0,)} = -6k e4(D, — D),)ek atQ = 0,

Q = 0 the tetrad €/, is equal to the tetrad e’/

D, between two (equivalence classes of) connections is
= —opn‘el. Since, as discussed above, at

and hence (%0, )Iefei = —edsk.(D, D’)ee = —e,égaaenyeg at Q=0. Now e{sinIek = ef(nk —n'ng)ndek =
nd —nnipd = n? — %, and since at Q = 0 we have n? = ¢*’V,Q, we conclude
i*[(0,)jefel] = 0, (41)
and we are led to
1 . R
APl(R) = @/m i*[(Kag = K'ad) 71 Ry €7V hdPx). (42)

We obtain now a compact expression for the extrinsic curvature of 7' as a hypersurface of M. First note that

i*(Kuh - K;b) = i*(Duﬁh - Diﬂlh)

where we denoted o =

1
gV ,QV,Q

= i*[(D,a)n, + aD,n, — (Dya' )ny, — o' Dyny)|

= i"(Q 7 (Dyny — Dyny)),  (43)

for brevity and in the last step we took into account that i*(Qa) = i*(Qa’) = 1. The term

inside parentheses vanishes as O(Q) at null infinity but the prefactor diverges as Q~!, so the product is a well-defined,
smooth quantity at null infinity. To calculate its value let us use Eq. (B4) from Appendix B:

QS,, +2V,n, —Q 'nn.g,, = O(Q3). (44)

The pullback of i: 7™ — M on this expression provides us with the value of Q~'V n, at future null infinity,

1 1
"(Q'V,ny) = —§§ab t 580

(@ 2nn,) =

1

1

Repeating the same with the auxiliary Minkowski space, one gets [recall that we fixed the same conformal frame ( 8. n°)

for both spacetimes]:

(Q7V,ny) = (Q7 Viny) =

(Q_l (Danb

- D;nb)) = _%(gab - Sizb)' (46)
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But for Minkowski, S', = p,,, where p,, is the “gauge” part of S,,. The combination S,, — p,, =: N, is manifestly
invariant under conformal gauge transformations of the form Q — w2, and defines what is known as the Bondi News
tensor, N, (see Appendix B). This is the quantity that determines whether an asymptotically flat spacetime contains
nontrivial gravitational radiation. We find

§ 1
l (Kab - K;b) = —ENab. (47)

On the other hand,
(A Rye e Vi) = 1 (0° Q7 (Cpee? + 9o Y = 5, St ) e Vh). (48)

Because ﬁae"”” =0, the second term does not contribute. On the other hand, the third term can be written as
i*(R°S1Gp€9%) = i*(gen€®®Q71)i* (nS") o i*(gpe?®Q71)i* (n?) = i*(e%4)i*(Q 'nbg,.) = 0, where we used S¢n’ o
n® and n%i*(Q?n,) = 1 in the last step. Thus,

i* (ﬁeRbcdeeabC \/E) = j* (neg—l Cbcedeabc \/E)
— (neg—lc;;i edeabc\/ﬁ)

1 ok e — Ik abc
=5 (€7 n Q7 i e Vh),

where * denotes the Hodge dual. Note that e?*¢ = €%, = Q~1e®*dn, but vih = Q,/q, where g, is the metric of the

two-dimensional spheres, so that €?**v/h = €%““n,, /g. Now, the quantity (e/7%¢n,)(e***"n,,)(Q'C}, »g) is smooth in all
M, and thus it exists in 7+ (see Appendix B). Its pullback to null infinity is denoted as *K“?. Taking into account all this and

using *K*» = 2¢r4“D N > [31],
1 1
(K gq = K' 20)i* (A° Ry e/ ) = — ZNm,,*K"m\/a =- 5Nm,,eP‘WD NSV (49)

This expression can be simplified further. The basis {n“ m¢, m®} satisfies 0= L,m* = n?D,m®. Using ¢ =
i3nlembme! and N,,n? =0, D,n® =0, we can get

i*(Kad - Klad)i*(ﬁeRbcdeeabC\/E) = _iNabm[nma]ndDdNZ = _Im(N443uN33)’ (50)

where N33 := N,,m?m? and Ny, = N33, following the usual Newman-Penrose notation.
Taking into account these results, we can rewrite (29) in the final form

) ) 7]
[ =i = =g [ k) =55 [ duastm(vo ) (1)

Note the strong analogy with the electromagnetic case, Eq. (16), and also that this result is manifestly gauge invariant (N,
is invariant under conformal gauge transformations of the form Q — ®<). On the other hand, notice that this result is purely
geometrical. In other words, the topological information encoded in the Chern-Pontryagin is here trivial (zero) because we
are just working with R* with the usual differentiable structure. It is the contribution of the boundary (physically, null
infinity) that contributes nontrivially to the final result, but this contribution is not topological. For manifolds with boundary,
the Chern-Pontryagin is not purely topological, and its utility as a topological invariant is recovered only when a surface
correction is added [27]. This correction is precisely equal to the result that we obtain with a sign reversed.

B. Physical interpretation: Circularly polarized gravitational waves

The result (51) tells us that the electromagnetic duality anomaly (4) is fully determined by the radiative content of the
spacetime. To write the result in terms of the P9 Weyl scalar, widely used in the gravitational-wave literature, we notice that
N33 = 26 and W) = —5, where o is the shear of the gravitational radiation (see Appendix C). Then,
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" h u 5
/ dr/~g V) = s / duds? / du'Tm(P0(ud, 0, ) ¥, 0, ). (52)
Despite its apparent form, the physical interpretation of this result is remarkably simple. Expand in Fourier modes as
0 © dw —iou © dw —iou iou
Vi, 0.9) = | S h@.0.g)e = | o lhe(@.0.4)e + hy (.0, ¢)e™], (53)
where in the second equality we split the modes explicitly in terms of positive and negative definite modes: hg(w) = h(®)
for @ > 0 while 1, (—w) == h(w) for @ < 0. The News scalar satisfies N33 = —2'P9, so we can write
©dw [h;(w,0, , hg(w, 6, ,
N3 (u,0,¢) = 2/ daw [M e—iou +M61wu + (6, ), (54)
0o 21 0] —iw

where the function (0, ¢») emerges as a constant of integration. This function, however, does not contribute to (51) because
the physical requirement of finite GW energy crossing null infinity implies N33(u — +o0) — 0 (this is inferred from the
Bondi mass formula, [31]), and leads to (6, ¢) = 0. From (51),

[ dxvmiai ==y [ 48" [ 3 (hn(w.0.0)F = e (0.0.)P) (55)

What is the physical meaning of these modes, /1 and &, ? Because W) = —6 = —(h, — ih), where h_, h, are the two
standard linear polarization modes of the GWs, we also have

dw
0.0.0) = [~ 520, 0.0.9) = ih.(0.0.4) e, (56)
from which we identify

hg(w) = 0*(hy (@) = ih (@), o > 0,
hy (~o) = @*(h, (0) — ihy (@), 0 < 0. (57)

The second equation implies /; (@) = @w*(h. (—w) + ih,(—w)), for @ > 0. Because i (u) and h, (u) are real functions, we
must have i, (—w) = h. () and h,(—w) = hy(®), leading to h; (0) = @*(h. (@) + ih,(w)), and

(Os(scrit)) — (Qs(scri—)) = h /0 " CZ“Z Z [|h™ (@) + ik ()] = W™ (w) — iR (w)]2). (58)

where we expanded the field variables in spin-weight spherical harmonics of modes (¢, m). The physical interpretation of
this result is again clear: while the LHS represents the net amount of photon circular polarization created, the RHS is the
difference in intensity between right- and left-handed circularly polarized GWs reaching future null infinity, i.e., the Stokes
V parameter of GWs. Thus, we conclude that the emission of chiral gravitational radiation by astrophysical systems implies
the spontaneous creation of photons with net helicity. The more right- or left-handed GWs the spacetime contains, the more
left- or right-handed photons will be excited from the quantum vacuum.

C. An example: Precessing binary black hole systems

Let us consider a binary black hole merger. The system emits GWs, which are analyzed in modes of frequency
@ and angular numbers (£, m). During the inspiral phase the frequency spectrum is determined by the angular
velocity Q as ®,, ~mQ. The shear of the gravitational waves can be decomposed as o(u,0,¢) =
Som(AL Y, (0, p)e ot + Az TV, (0, p)e™"). Self-consistency requires A7, = (—1)"A} ., which is deduced
using Y, = (=1)**"_¥;_,)- Equation (58) gives

(Qs(seri)) — (Qs(scri=)) o« 3w (147, = 147, P). (59)

‘m
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The parameters A7, can be understood as “excitation”
factors for the generation of each GW polarization of mode
(¢,m), and they depend on the details of the physical
system under consideration (initial data). If the binary
system is invariant under mirror symmetry with respect to
some plane, choosing angular coordinates such that 6 =
7/2 represents that plane, this invariance is equivalent to
say that Cp.q(u, 0, ) = Copeq(u, w — 0, ¢p), which implies
o(u,0,¢) =6(u,x—0,¢). Using Y, (x—0,¢p+n7)=
(=1)'_,Y,,(0,¢), the previous condition leads to
Al = A;(_m)(—l)f , which makes (59) vanish. In other
words, the chiral anomaly emerges in binary mergers that
do not have any mirror symmetry.7 Examples of this are
precessing binary systems, in which the individual spins of
the black holes are not aligned with the total angular
momentum [43] and break any potential symmetry under
mirror transformations (see [29] for more details and
implications in astrophysics).

IV. CONCLUSIONS

Chiral anomalies are a long-standing prediction of
quantum field theory that have provided rich physical
consequences along the past decades in several branches
of physics. Despite this, their use has been considerably
restricted to nontrivial topological issues, with instantons
playing a dominant role. While this has been fruitful in
many aspects, as for instance in unraveling the vacuum
structure in Yang-Mills theories and solving problems of
major importance in particle physics, it is not the whole
story, at least in gravity (and electrodynamics). In this paper
we characterized which class of solutions to Einstein’s (and
Maxwell) equations are able to induce the chiral anomaly
on fermion and electromagnetic fields. On the one hand, we
found that stationary solutions cannot trigger this anomaly.
On the other hand, we found that, among all dynamical
solutions, only those which involve radiation with net
circular polarization are able to induce the quantum
anomaly, and we provided specific examples of physical
interest where this occurs. The physical interpretation of
this quantum effect is associated with spontaneous creation
of particles, but in sharp contrast to the familiar Hawking
radiation of black holes, a net amount of helicity can be
originated from the quantum vacuum. This new aspect of
chiral anomalies could be useful in the search for phe-
nomenology, but this is out of the scope of this paper and
will be left for future studies.

"Note that we are neglecting the backreaction of GWs on the
evolution of the inspiral. When this is taken into account, the
radius of the orbit shrinks for any binary merger, and to some
extent this breaks the symmetry under spatial reversals. However,
this process can be considered adiabatic, and its contribution
insignificant.
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APPENDIX A: STATIONARY SPACETIMES

In this Appendix we prove that in stationary, asymptoti-
cally flat spacetimes (M, g,,) with M ~ (t,,t,) x R3 one has

/ d*x\/=gR zpea R4 = 0. (A1)
M

The argument follows in close analogy to the electromag-
netic case (see Sec. II A).

Given a local orthonormal frame (“vierbein”) {ef}, we
can define the curvature 2-form from the Riemann tensor as
Ry = Rypclehe. For notational simplicity we will
frequently omit the internal indices /, J of the curvature
2-form and/or work directly with R =1 R,,dx® A dxb. If
the spacetime is stationary there exists a timelike killing
vector k¢ that leaves the metric invariant along its integral
curves, L£,.g,, = 0. We construct our tetrad basis {e¢} such
that L e{ = 0 as well. The stationarity condition leads to
LR pcq = 0. Together with the previous equation it gives
LiR,, = 0, or equivalently di;R + i,dR = 0. For a general
matrix-valued, p-form V we can introduce the covariant
derivative DV =dV + o AV — (=1)’V A @ [27], under
which the familiar Bianchi identity V,,*R%¢? = ( is equiv-
alent to DR=dR+wow ANR—R AN w=0. Using these
equations we can write i;dR = i)(~o AR+ R A w) =
- AR+ ® AR+ iR AN+ R A ijwand d(iyR) =
D(ixR) — @ A ixR — iyR A w. Joining both results,

D(ixR) = iy®R — Ri®. (A2)
For any matrix A one has D(DA) = —AR + RA, so one
can deduce from the above that iR = —D(i ),
or kaRub = —V;,ika).

On the other hand, let us use the normalized vector
k= ék”, with a = \/—k%,, to make a 3 + 1 decompo-
sition of the metric, g,;, = —lAcalAcb + hygyp,- This decomposi-
tion allows the simplification

/d4x\/__gRubcd*Rabcd
M
:Tr/ d*x\/—gR ;"R
M

——aTr [ axyTgh Ry R, (83)
M
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where in the last equality we used *R,, =€ R to write Trh“’h¢dR,.R,; = —2Trk*R k. *R’. Doing some

2
manipulations one gets

Tr((Dyigw)a "k, R?) = V, Tr(iywa k,*R?) =V, (a k) Tr(*Ri ).

(A4)

It turns out that the second term is identically zero. To see this expand as

A ~ 1 4
Vb(a_]kc) = a_]vbkc - —zkcvba.
a

(AS)

Since Vya = —=1kV k4 and V k;, = =V,k, (k* is a Killing vector field),

A A 1.4 1 A A
Vy(a k) = a! (kac - _kckdvdkb) =—(2V (ko) — Dcky),
(04 a

(A6)

where in the last equality we used kV,a =0 (which can be deduced after expanding k?L;k, = k®g,,Lik? = 0),
IAcalAcb = —gu» + hap, and introduced the spatial covariant derivative DalAcb = hf,hgvcfcd = hﬁVcIAc,,. The RHS is a symmetric
tensor, so when contracting with *R” in (A4) the result will be zero.

We end up with the integral of a total derivative, which can be solved using Stokes theorem. Let us work in coordinates
{t,r,0,¢}, where t is the time measured by static observers at spatial infinity: k — % as r — oo. Then

/ d4x\/—gRubcd*R"””d = lim
M

r—o0

t ~
“dt / dS P Tr(iywk, RV 4r)
h

(A7)

(notice that for asymptotically flat spacetimes @ — 1 as r — o). Using Lie¢ = |k, ¢;]* = 0 one can further deduce that
I

(ixw);; = efefV ky so

/ d*x\/=gR 4pea R? = lim
M

r—o0

At spatial infinity we have V k, =V, V,r=0 so
V. ky, ~O(r7!). Assuming standard falloff conditions at
spatial infinity for the Weyl tensor [44], C,peq ~ O(r73),
we finally see that

/ d*x\ /=GR ypo R*? = 0. (A9)
M

APPENDIX B: ASYMPTOTIC MINKOWSKIAN
SPACETIMES

We summarize here the basic points of [31-33] that are
needed to follow the calculation in the main text.

A spacetime (M, §,,) is called asymptotically flat at null
infinity if there exists a manifold M with boundary [/
endowed with a metric tensor g,,, and a diffeomorphism
from M onto M — I (with which we identify Mand M - 1)
that satisfies the following:

(a) (a) there exists a smooth function Q on M with g,, =
Q2§,, on M; with Q = 0 on I; and with n, := V,Q as
nonvanishing at /.

(b) I is homeomorphic to S? x R.

(c) §,, satisfies Einstein’s equations R, — %Rgab =
872GT,,, and Q 27, has a smooth limit to /.

1
" dr / dS? P2V k,*Revedk NV 1.
51

(A8)

One refers to (M, §,,) as the physical spacetime, and to
(M, g.) as the unphysical one, or the conformal comple-
tion of (M, §,,). Using the known conformal transforma-
tion rules for the Ricci tensor and scalar curvature, it is easy
to find that these conditions imply n“n, = O on I. Thus, I is
a three-dimensional null hypersurface in M.

Notice that within this definition there is freedom to
perform conformal rescalings: if Q is an allowed conformal
factor for a physical spacetime (M, §,,), so is & = wQ,
where @ is a smooth function on M and nonvanishing at /.
Under this conformal gauge transformation, it is easy to
check that g,, = @?gyp, n¢ = 0~ 'n* + ©?QV°w. Using
this freedom, it is always possible to consider a conformal
completion so that V,n® = 0 on I. This gauge fixing will be
preserved under conformal gauge transformations as long as
we restrict consideration to functions @ that satisfy
n‘Voo = L,0=0 on [. This gauge-fixing condition,
together with property (c) above and the formula for the
Ricci tensor under conformal transformations, implies
Vn,=0 on 1[I, or equivalently V,n, =V n, =
%En gap = 0 on I. Furthermore, suppose we have any two
divergence-free conformal frames associated with Q and €.
Because the relative conformal factor @ obeys £, = 0 on
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I, the vector field n® is complete if and only if n'¢ is
complete. An asymptotically flat spacetime is called asymp-
totically Minkowski if / is complete in any divergence-free
conformal frame.
Denote by 7 a diffeomorphic copy of I, and let £: 7 — M
the corresponding smooth map. The pullback, denoted by &,
is defined on all covariant tensor fields in M in a natural way.
It can also be extended to those contravariant tensor fields
such that their contraction of each of their indices with n,
gives zero at [. Set n:=¢&*(n?), g, =& (gap), and
= & (w). It follows from the discussion above that Z is
endowed with the following wuniversal structure. It is
homeomorphic to S x R, and equipped with pairs of fields
(g,,>1¢) such that:
@ g, 1s a degenerate metric of signature 0, 4, + with
g n® =0and £L,g , = 0;

(i1) n? is complete; and

(iii) any two pairs (g ,,n) and (g/,,n’“) in the collec-
tion are related by a conformal rescaling Q — wQ as
g =aw’g 0 =ow'n with £,0 = 0.}

This collection exists in any asymptotically
Minkowskian spacetime, and thereby receives the name
of universal structure. A choice of one element (g_,,n°) of
the collection {(g ,.n°);};c; will be called a choice of
conformal frame. Note that, since 2-spheres carry a unique
conformal structure, every g , in this collection is con-
formal to a unit 2-sphere metric. Because of this, it is
sometimes convenient to restrict the remaining conformal
freedom at [ (i.e., to fully fix the gauge function w) by
demanding that the metric ¢,, on these 2-spheres be the
metric of the unit radius 2-sphere. This is always possible,
and this conformal frame is known as the Bondi frame.

The metric in (M, g,;,) allows the raising and lowering of
indices, introduces an alternating tensor field €% unique
up to a sign, and leads to a preferred derivative operator V,,
and its associated curvature tensor R, . Suppose we are
given a fixed conformal frame. We study now what the
corresponding apparatus is for (Z,g  .n“). This is not a
trivial question since g , is a degenerate metric. In the
following we will define what fields, operations, etc., one
can construct from this conformal frame, and then study
their behavior under a conformal gauge transformation.

First of all, we can lower indices with g ,, but we cannot
raise indices a priori since g , is degenerate and hence it

does not have an inverse. Define a tensor g“b by the property
2.n&" "8 = &
tensor of the form vn®) for any vector field v¢. We will use
this g“” to raise 1ndlces whenever the lack of uniqueness

. This is unique up to the addition of a

$The result £*(n,) = D, (Q) = 0 implies g, n® = 0. On the
other hand, because the pullback commute$ with the Lie
derivative, we automatically inherit ngah =0and £,0 = 0.

does not lead to an ambiguous result. Next, we introduce an
alternating tensor field €, up to a sign, by the equation

€M bpqgmpg =2nn’® and demanding antisymmetry.

Having fixed the sign, we can define uniquely the tensor
€abe DY €9¢€,,. = 6 and the condition of antisymmetry. The
above definition implies that €*¢ = &*(e“*““n,), but note
that €, # €?g g g , = E(€upeqn?) = 0. The usual
identities for €, and €“*° hold.

As commented above, the universal structure of [ is
common to every asymptotic Minkowski spacetime. The
S? x R differentiable structure together with the collection
of pairs (g a0 n°) is called the zeroth order structure of I and
is available in any asymptotic Minkowski spacetime. We
shall describe now higher order geometrical structures that
are not universal and that contain specific physical informa-
tion of the given spacetime. The connection D defined
intrinsically on / in any given conformal completion,
induced by the torsion-free connection V compatible with
Gaps Will be regarded as the first order structure. As we shall
see, it contains the “radiative information” of the physical
spacetime (M, §,,), and consequently it changes from one
spacetime to another.

We define the derivative operator in Z by D,u, :=
& (V,vyp), where p is any 1-form in Z and v, is a 1-form
in M such that u, = £*(v,). This derivative operator is
defined intrinsically in Z. Notice that given any y, in Z, there
exists many v, in M that satisfies u, = £*(v, ). However, it
can be shown that the derivative operator is a well-defined
operation: given two v, and ¢/, that leads to u, in Z, one
actually has & (V) = £*(V,1},). Having seen this, we can
now extend the derivative operator to all tensor fields in the
usual manner. In particular, given that V,g,. =0, and
Vn? =0 on I, we find D,g, =0 and D,n” =0 (it is
also not difficult to prove also that D ,€;,.; = 0, D,€"°¢ = 0).
In other words, this derivative operator is compatible with the
metric 2. However, it should be remarked that this con-

nection is not uniquely defined because g , is degenerate. We
shall now characterize in physical terms the different allowed
derivative operators.

First of all, we need to know how any derivative operator
changes under a conformal gauge transformation Q — @€Q.
For any covector k,, the transformation rule, at points
of 1, is

Diky = Doky =207 k((Dyyw + o~ (V"0)ky,g,,.  (B1)

Notice that, even when w = 1 so that g and n“ are
invariant, D, changes nontrivially as Dk, = D k,+
f(0"k,,)g,,. where we introduced V@ =: fn‘. This shows
that the derivative operator at / is not invariant under
conformal gauge transformations (in analogy to the mag-
netic potential in electrodynamics). Because this residual
transformation of the derivative operator is just pure gauge,
one is motivated to define an equivalence class of
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connections {D,, }, in a given conformal frame (g_,,n‘), by
the equivalence relation
D, ~ Diz iff (Dil - Da)kb = (fBCkc)gab’ (B2)
where f is an arbitrary function on Z. Now, given two
connections D, and D/, belonging to different equivalence
classes, their difference when acting on any covector is
linear, and thus it must be determined by another tensor
c¢,: (D, — D)k, = C¢, k.. The torsion-free derivative V,,
implies that C,,° = C,)° (ust take k, = Dpg in the
previous equation for some function g to find
Cup¢ = Cpy©). On the other hand, the condition D,n® =
D}n’ = 0 implies C¢,n’ = 0, and the metric compatibility
D.,g,. = D’agbc = 0 implies Ca(bdgc)d = 0. Since the only
vector that annihilates the metric is n¢, then
(Da - D;)kb = X0k, <B3)
for some tensor %, with ¥, =X, and 0’ = 0.
Consequently, due to (B2) the difference {D}} —{D,}
between the equivalence classes of connections is fully
characterized by the trace-free tensor:
%Ecdgdgab. The space of equivalence classes {D,} is an

Oab *= Zab_

affine space, we can select any {D%} as an origin, and then
any other {D,} is labeled uniquely by a transverse
(6n” = 0) trace-free symmetric tensor 6, on J.
These properties allow one to write o,, = om,m,; + c.c.,
for some complex function o. In physical terms, the two
independent components of ¢, represent the two radiative
degrees of freedom of the gravitational field in full general
relativity.

We turn now to study the second order structure of an
asymptotically Minkowski spacetime. Let R,,.¢ be the
Riemann tensor of the unphysical spacetime, defined by
Vi Vyke = %Rabcdkd for any covector k.. The Riemann
tensor can be splitinto a totally traceless part (the Weyl tensor
Cupe?) plus a traceful part (the Ricci R, or, alternatively,
Schouten tensor S,) as Ruped = Capea + GajeSap — IveSdja-
Itis a fundamental result [31] that the Weyl tensor vanishes at
I, and consequently all the information about the curvature of
I will be determined by S7. On the other hand, let us introduce

the combination L2 := R" — éf?ég and L, = g,.L§, where
R’ and R denote the Ricci tensor and scalar curvature of the
unphysical spacetime. From the standard formula for the
behavior of the Ricci tensor under conformal transforma-
tions, and using property (c) above, one can find’

QSab + ZVanh - Q_lncncgab = Q_lLah = 0(93) (B4)

The definition of asymptotically Minkowski spacetimes
requires that 7., = O(Q?), and so R, = O(Q?). Then
L, = gpcla = 0(94)

From this equation one deduces that, at points of I,
2V, ny =2V 1y = Lygap = Q7 'n°n.g,,. But remember
that £,,g,,, = 0 at points of 1, so f := Q™ 'nn, = 0 at points
of I, too. Now, contracting the above equation with n® and
rearranging terms, one arrives at
Sapn’ + V, f = 0(Q?). (B5)
Since f vanishes at /, it serves to define this hypersurface, and
so its gradient must be transverse to it. Since the only
transverse covectorto [ is n,, we necessarily have V, f « n,,.
Then, S%n;,  n, and vanishes at /. This means that the
pullback is well-defined on the tensor S%, so we define S% :=
& (S5) and also S, := g, _S;. Notice the properties S,,,n” =
0and S, = S(up)- There is one further property of S, thatis
important to keep in mind. By taking the pullback of the
Riemann tensor, and recalling the vanishing of C ., at I, one
gets
Babcd = gC[QSZ] + §¢[aéi] (B6)
If we define R4 == Rypc°g - then the contraction of any of
its indices with n? is zero. The corresponding Ricci tensor
R, = g°'Rpeq and scalar curvature R := g®/R ., are thus
unambiguous. Since R,,., lives in the two dimensions
orthogonal to n“, it can be reconstructed from its scalar

curvature alone, R,j,.q = Bga[cg b Combining this with

(B6), one finally gets g’S,, = R.

The tensor S,;, carries information of major importance
about gravitational radiation in the given spacetime, but there
is still a small complication. If we change the conformal
frame, this tensor transforms in a complicated way:

S, =Suw —20'D,Dyw + 40D, wD,®

- Q‘z(gm"DmQDnQ)gab. (B7)
Consequently, a portion of this curvature is “gauge” in the
sense that it contains information that is not truly physical.
The goal is to extract information from this curvature tensor
that remains invariant under conformal gauge transforma-
tions. This was successfully done in [31]: given any
conformal frame (g _,,n°), it can be proven that there exists

a unique tensor field p,;, on [ that fulfills

Plab) =0, pabgb =0, pabgab =R, D[apb]c =0, (BS)
and, most importantly, transforms exactly as S,;, does under
a conformal gauge reescaling. Therefore, the combination
Nap = Sap = Pab> (B9)
is conformally gauge invariant. Consequently, the role of

Pap 18 to subtract from S, the pure gauge-dependent
contribution. In a Bondi conformal frame, in particular,
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one has p,, = % g, R. N is referred to as the Bondi news

tensor and is regarded as the second order structure at 7. It

satisfies
N[ab] = 0, Nabﬂb = 0, Nabgab =0. (BIO)
This is all the physical information we can extract from
S,»- Nevertheless, the full information of the curvature of
{D,} is actually contained in S¢, and not in S, (notice that
since g , is not invertible it is not possible to reconstruct Sy
from S,;,). This information is encoded in what we shall call
the third (and last) geometric asymptotic structure, which
can be worked out from the Weyl tensor. Since the Weyl
tensor vanishes at /, the tensor Q~'C,,., is smooth up to

and including /. If we define

Kb .= €amn€bqu* (Q—IC (Bll)

mnpq>’

*Kub = €amn€bpqé:* (Q—l *Cmnpq) , (BlZ)
then we immediately see that they are symmetric and that
K%g ~=*K®g = 0. Taking the curl of (B4), using the
definition of Riemann tensor, expressing it in terms of the
Weyl tensor, and doing some manipulations, it is possible

to show that Dy, SC] = amn*K’”C, which automatically
leads to
1 mn
[ Nb]c = —€umn'K g, (B13)
K =731 = —mPV, L, p =131 = —mmV,t .,
6 = y313 = —m*‘m’V, 2, H= Yoz = m‘m"Vyn,,

_ _ samb _ _ b
A= yous = m*m"Vyn,, T=y31 = —m*n°V, ¢,

V=7 = mn’Vyn,, T =y = m¢"Vyn,,

Note that y311 = 7411, Y314 = 7413, €tc. On the other hand,
the Weyl tensor has ten independent components that are
represented in this framework by five complex scalars:

Wy = —Cia13 = —Cupeal“m" ¢ m* (C1)
W) == —Cip13 = —Cupeat“n"¢“m? (C2)
¥, = =Ciaun = —Capegt “m"mn, (C3)

p=

or, equivalently, *K® =2¢P4“D, N’ Furthermore, a
straightforward calculation shows that *K“” remains invari-
ant under conformal gauge transformations with @ = 1, so
it is a physically meaningful quantity. Because *K“
involves derivatives of S%, it is called the third order
structure at /.

If *K* =0, then N,, = 0, and the associated equiv-
alence class {D,} of connections is said to be trivial. In this
case, the physical spacetime (M, §,,) does not contain
gravitational radiation. In particular, every stationary,
asymptotically flat spacetime produces a trivial connection
on /. Conversely, if N, = 0 (i.e., no gravitational waves),
it can be shown that the spacetime is stationary [45].

APPENDIX C: SPIN-COEFFICIENT FORMALISM
AND ASYMPTOTIC BEHAVIOR

Let (M,g,,) be a spacetime and {£“, n% m* m‘} a
Newman-Penrose basis, i.e., a null tetrad satisfying
n’¢, =1, m*m, = —1, and zero otherwise.'® If we intro-
duce the notation ef = ¢, e§ = n“, e§ = m?, ef = m*,
then this basis of null vectors satisfies g,, = 7; jefle{7 with
Mo =Ny = 1, m34 = n43 = —1. Internal indices (i, j, ...)
are raised and lowered with 7;;, while spacetime indices
(a,b,...) are raised and lowered with g,,.

Given this tetrad we can introduce the connection 1-form
by 7.2, = —elV b, which satisfies y,5. = —¥pqc- In this
basis there are 12 independent (complex) components of
the connection 1-form, which are called spin coefficients.
They are designated by

1

1 _
2(7211 +y341) = ("”’/pbvb?fﬂa - m¢*Vym,),
1 1
=5 (Y212 + 7342) = ) (nnPVy ¢, — m*n®Vym,),
1 1 b b
== (r214 + 73m) = =5 (nm"Vy £, — m*m°Vym,),
2 2
1 1 b b
5(7213 +y343) = 5(” m°Vyt, —m*m°V,m,).
W3 = —Ciop = —Cupealn bmcnd, (C4)
Wy = —Coung = —Cpeanin’n‘me. (Cs)

The remaining components are determined using the
symmetry properties of the Weyl tensor. In particular, it
is not difficult to show that

"In this Appendix and in the next one we follow the Newman-
Penrose [34] notation. In particular, the metric signature will be
(+,—,—,—) in order to use the asymptotic expressions for the
spin-coefficients calculated in [46].
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W) = Ciz34 = Cio315 (Co)
W3 = Cous, (C7)
-1 -1
Re¥, = 5 Chn = 5 Cs434, (C8)
1
ImY¥, = ZC1234, <C9)
Ciz14 = Caz04 = Ci33p = Crugp = 0. (C10)

In asymptotically flat spacetimes, a preferred coordinate
system and an associated null tetrad can always be
considered. Following Bondi and Sachs, we can always
introduce a foliation of the asymptotic region of M by
outgoing null hypersurfaces {u = const}. Denoting the
corresponding geodesic null normal by #¢, we can intro-
duce an affine parameter r of ¢ (i.e., £ = 0—‘1 so that
£?V,r = 1) such that each null surface u = const is
foliated by a family of (spacelike) 2-spheres
{r = const}. The set {u,r,0,¢} is called Bondi-Sachs
coordinates. Let us denote the intrinsic (—,—) metric of
these 2-spheres by ¢,;, and the other null normal to each of
these 2-spheres by n% normalized so that g,,7n® = 1. If
¢ is normal to the {u = const} hypersurfaces, necessarily
% = g°*Vyu, so that £, == g,,¢” = V,u and we can write
n=VEZ+UZL+X"H2: with V=1 (n, is not simply
given by V,r since n“ is not normal to {r = const}
hypersurfaces in general). Finally, introduce a null complex
vector field m“ and its complex conjugate /¢ such that their
real and imaginary parts are tangential to these 2-spheres,
and they are normalized such that g,,m*m” = —1. Thus, at
each point in the asymptotic region we have a null tetrad
{£%,n, m*, im“} for which the only nonzero contractions
are £-n =1 and m-m = —1. In terms of the null tetrad,
the metric takes the form g, = 2n(, &) — 2m,iny).

The spin-coefficient formalism is particularly useful for

asymptotically flat spacetimes. If the Weyl scalars are
smooth functions on the spacetime manifold, their asymp-
totic behavior as r — oo, keeping u,0,¢ constant, is
determined by the Peeling theorem [36]:
Yi(u,r,0,¢) ~¥Y(u,0,9)/r~", i=0,1,2,3,4. (Cl1)
Furthermore, the asymptotic behavior of the spin coeffi-
cients can be systematically obtained by integrating asymp-
totically a set of equations in the Newman-Penrose
framework that are equivalent to Einstein’s field equations
[46]. The results read

A=2/r+0(r?), (C12)

u=u/r+0(r?), W =-1, (C13)

c=20"/r*+0(r ), 0° = free data, (C14)
p=p"/r+p /P +007).  p'=-1

pl = —[c", (C15)
k=0, (C16)

n=0, (C17)

v=1»~"4 00", L =0, (C18)

r=a+p=@ +p)/r+0(7?), (@ +p) =0,

(C19)

and ¥ = —5°.

The relation with the Bondi News Ns;3 = N,,m%m"
introduced in Appendix A can be obtained using (B12)
and the result *K“” = 2¢P4“D ,N}. Using the first equation
we get *KPm m;, = 4in®mPn°m?E (Q7'Cpeq) = —4i'PY;
on the other hand, the second equation yields
*K*mymy, = 2in? D (N 4om*m”) = 2i9,N3;. Combining
both we get N33 = —2‘?2 = 26°. Furthermore, from the
Bondi mass formula [, dudS*|Ns3|* < co one infers
N33 = 0 at u — 00 so N33 = 26°.

APPENDIX D: ALTERNATIVE DERIVATION
USING THE SPIN-COEFFICIENT FORMALISM

In this Appendix we derive the result (51) using the spin-
coefficient formalism and the corresponding asymptotic
behavior summarized in the previous Appendix. Our
starting point is Eq. (42), which in the physical spacetime
(M, §,,) can be rewritten in a similar way (in this Appendix
we only work with the physical spacetime so we will omit
the hat symbol in all associated geometric quantities for
convenience),

/MPI(R)

1 X
= — hm —2/ (Kad - K/ad)ﬁeRbcdg€abcfﬁf'\/Ed3x,
r=ry

rop—00 87[

(D1)

where here 71, = —L—V, r is the normal vector to
b gV iV r b

{r =ry} hypersurfaces and K,, = D,ii, the extrinsic
curvature. In terms of the Newman-Penrose basis con-
structed in Appendix C we must have V,r = a;n, + a,Z,,.
Given that £V, r = 1, then V, r = n, + a,¢,; and squar-
ing n,=V,r—ay, we get a,=3g”" so that
V,r=n,+ %”fa. The asymptotic behavior of ¢ in
Bondi-Sachs coordinates can be found in [37,38] and is
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given by —¢g"=1-24 0(r2). Note that D, =  (97)7"?V,[V,rla R,.% + 0. Finally, if we take the {r =
R W' gy = h¥V i, and €'y, D i, = €1,V i, ro} surface out.side the gravitational sources (we assume
We can also take the prefactor of 7, out of the deriva-  they have spatial compact support), then R pcq = Capea-

tive operator thanks to the antisymmetry of the Riemann  Taking into account all this
tensor, (vuﬁe)ﬁdecde = vu[(grr)_l/zver}ﬁdRhcde =

N ] h rr rr
[ pi(R) = lim / Ld3ng§€“bCh (n;, + % lh> (nd + 97 ld) v, (ne +L
r=rqy

)i roamg (grr)3/2

We have V, (1, +%1,) = —(Y2ea + % V1ea) +21.Vag”". Then, using e = 41illn®mem, we find

-1 [6Vhdx g’ , _a g _ g’
i e |(Cone 5 Coae i em) bt ) (1 + 1

rr v rr
_ : la b—c]_g_[a b ] ll_g
CZI,,Cz(n m’m 21 mm) > ]

We do the calculation term by term:
(A)

1
Coupenl®mbine = 3 Caope[n®mPme + mamlPn! + menlbme)]

1 - 1 )
=3 [n9Caezs + M Crpap + 1 Crp3] = = [19Copay + 2iIm(m? Copn)];

3

(B) same as (A) but changing n* — [¢

1
Czebcl[“mbrhc] = Czebc[l“m[bﬁic] + m”ﬁi[blc] + ﬁ’lal[bmc]]

3
1
3

[19Crp34 + M Crpqy + M Capy3] =

W =

(C) same as (A) but changing C, — Cy .

1
Clehcn[ambmc] — gclebc[nam[bﬁ/lc] + mam[bnc] + man[bmc]}

1 _ 1 ) B
=3 [Ci3a + mCloap + MCipn3] = 3 [n9C o34 + 2iIm(m“C) 045

(D) same as (B) but changing C, — C, .
ambime) = & i)+ memle 1)+ e flme)

CioplmPim® :§C1€bc[l”m m + mm19 + m*1"m)

1 a a q O 1

= g[l Crezq +mCreqy + M Chep3] = 3

(E) same as (A) but changing C,,  — C,;..

1

1
Capen“m? i = 3 [n9Cay134 + 21Im(m* Cay42)] = 3 [~2in“Im¥; + 2iIm(m¥;)];
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(F) same as (B) but changing C,, — G .

1 -
[14Ca34 + 2iIm(m*Ca141)] = [ =2il“Im%¥, — 2iIm(m¥, ). (D9)

W =

CZlel[ambﬁ’lc] =

We now elaborate in detail each of these terms:
(A)

1 H a e grr e
3 [n9Cre3s + 2iIm(m Crpyr)] (J’za + 77164)

g
[722C2e34 + 2ilm(y5;Caean) + 5 S 712Coe3s + g 1Im(yf3C2642)}

L)Jl»—* U)|>—A

[Zzlm 722Ca334) + 2iIm(y35Craap + ¥33Caso)
g .
"‘7 (71,Ca134 + 21Im(y3,Cr334)) + g idm(y}3Ca142 + 713Ca3a0 + 7?3C2442)]

1 - - -
=3 [-2iIm(v¥3) — 2iIm(AY,) + 2iReyIm¥P, g™ + ig" Im(7¥W5) — 2ig"" RefIm(¥;) + ¢'"ilm(c¥,)];  (D10)
(C) similar to (A) changing C, — C; .

1 . . grr .
3 [n9C o34 + 21IM(mC o) <}’2a + 77151)

rr

1
=3 ¥5:Cre3a + 2iIm(y5;C)0a2) + 7/12C12’%4 + ¢ iIm(y53C1a2)

1 . .
=3 [¥3,Ci234 + 2iIm(y3,C1334) + 2iIm(y35C1242 + 735C1342 + ¥33C1a02)

rr

g’
+72llm(7%zcl334) + ¢"iIm(y75C300 + 713C1442)]

1
=3 [4iReyIm¥, — 2iIm(v¥;) — 4iRefIm¥; + 2ilm(u¥;) + ig" Im(z¥;) — ig"Im(p'¥,)]; (DI11)

(B)

1 : . 9.
g [luc2634 + 2lIrn(n'laC2e4l )] <y§a + 2y1a>

rr

1 ) g
= = |751Caesa + 21Im(y53Copuy) + -

3 5 ¥$1Cae3a + 97 iIm(y§3Coa1)

L. )
=3 [2ilm(y3, Ca334) + 2iIm(y35Coza1 + 733Coaa1)

rr

Q

+ (111 Ca13a + 2(m(y3, Coz34)) + ¢ im(y}3Ca1a1 + 773Ca3a1 + 713C2441))]

N |

1 _ _ _ _ _
=3 [-2iIm(7Y3) + 2iIm(u¥,) + 2ig""Reelm¥; + ig”"im(k¥;) + 2ig"RefIm(¥;) — ig”"Im(p¥,)];  (D12)
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(D)
1 a r a e grr e
3 [19C o34 + 2iIm(m Co41)] | 75, +771a
1 e : e grr e rr e
=3 751 Crezs + 2ilm(y5;Coa1) + 7}/11C1e34 + g™ ilm(y§3Cea1)
1 ) .
=3 [¥3,Cia34 + 2iIm(y3, Ci334) + 200m(y35C1041 + 733C 1341 + 733C1a41)
grr ) .
+ 7211111(7?1 Ciz3a) + g7 ilm(y{3C13a1 + 713C1aa1)]
1 _ L _
=3 [4iRecIm¥, — 2iIm(z¥;) + 4iRefIm¥;| — 2i/Im(A¥,) + ig" Im(KY;) + ig" Im(c¥y)]; (D13)
(E)
1 —2i |[-2M 2Mi
3 [2inIm¥; + 27m(m¥5)] V97" = TI [ ~+ 0(r‘3)] eV, rim¥, = 3—’ (140 "))g"Im¥,;  (Dl4)
r r
(F)
1 _ —2i [-2M 2Mi
3 [2inIm, = 2im(m* )|V g = Tt [—2 + 0(r‘3)] eV, rim¥, = 3—’ [1+0( )¢ Im¥,.  (DI5)
r r

We use now the asymptotic properties of the spin coefficients (see Appendix C) in the limit to future null infinity to
simplify all these quantities. Notice that v/ ~ r2, so all terms that decay faster than 1/72 vanish at 7+. On the other hand,
all the spin coefficients decay at least as 1/r, and because all terms above are of the form spin coefficient x Weyl scalar, the
only nonvanishing contributions are those that involve ¥, = 0(%) Among all of them, we have to take the one whose spin

coefficient only decays as O(+), which is A. Doing this we get

1
B

, h - h .0
/d‘*xw/—g(Van) = —EAA/IPI(R) ZW/7+ dudS*Im(5°5°).

(D16)

Recalling that N3 = 26° (see Appendix C), we recover Eq. (51).
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