
Chiral anomalies induced by gravitational waves

Adrian del Rio
Institute for Gravitation and the Cosmos, Physics Department, Penn State,

University Park, Pennsylvania 16802-6300, USA

(Received 29 June 2021; accepted 17 August 2021; published 15 September 2021)

Chiral symmetries in field theory are typically affected by an anomaly in the quantum theory. This
anomaly emerges when one introduces an interaction with a Yang-Mills or gravitational background.
Physical applications of this quantum effect have been traditionally connected to topological questions of
the background field and the study of instantons. We show here how one can alternatively find situations of
physical interest that only involve ordinary, but dynamical solutions of the background field equations.
More precisely, we show that solutions to the Einstein (Maxwell) equations are able to trigger the chiral
anomaly if and only if they admit a flux of gravitational (electromagnetic) radiation with net circular
polarization. As a consequence, astrophysical systems that admit such radiation spontaneously generate a
flux of particles with net helicity from the quantum vacuum.
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I. INTRODUCTION

It is well-known that strong gravitational fields can affect
the vacuum fluctuations of quantum fields and lead to
important physical phenomena. From the pioneer work of
Parker on particle creation in expanding universes [1], to
the subsequent discovery by Hawking of thermal emission
during a gravitational collapse [2], different phenomena of
quantum origin can arise if a quantum field propagates on a
dynamical, gravitational background. One of these quan-
tum effects is related to the emergence of anomalies due to
spacetime curvature.
An anomaly is understood as the failure of some Noether

symmetry of a classical field theory to persist after the
quantization. More precisely, when the classical conserva-
tion law of a Noether current breaks down in the quantum
theory, the associated symmetry is said to be anomalous
[3]. Their discovery was initiated in the late 1960s with the
fermion axial or chiral anomaly [4,5], motivated with the
aim of understanding the observed phenomenon of the pion
decay into two photons. Since then, the field has grown
enormously, leading to the discovery of many more
anomalous symmetries of diverse nature (conformal,
gauge, etc.), and to a rich interplay with differential
geometry and topology [6]. From a physical viewpoint,
anomalies were found useful to address key conceptual
questions in the standard model of particles [U(1) problem,
strong CP violation in QCD [7] ] and cosmology (baryo-
genesis). Our goal in this paper is to point out and develop
an unexplored aspect of chiral anomalies that, remarkably,
turns out to have a simple physical interpretation and
could lead to new physical applications in gravity and
electrodynamics.

For definiteness, let ψðxÞ be a Dirac field interacting with
a classical Yang-Mills background of field strength Fab in
Minkowski spacetime ðR4; ηabÞ, with coupling constant g.
Let γa be the Dirac matrices, and let γ5 ≔ iγ0γ1γ2γ3 be the
chiral matrix. In the massless limit, the standard action of
this theory possesses a (global) Noether symmetry gen-
erated by the transformation ψðxÞ → eiγ

5θψðxÞ, θ ∈ R, that
leads to a Noether current: ja5ðxÞ ¼ ψ̄ðxÞγaγ5ψðxÞ. This is
the well-known (Abelian) chiral symmetry. This current is
conserved for solutions ψðxÞ of the Dirac equation of
motion, ∇aja5ðxÞ ≈ 0. In the quantum theory, however, off-
shell contributions yield

h∇aja5i ¼
−g2

16π2
TrFab

�Fab ≠ 0; ð1Þ

thus spoiling the classical conservation law. This is the
indication that the classical symmetry is anomalous in the
quantum theory. Denoting byψL ¼ 1=2ðI þ γ5ÞΨ andψR ¼
1=2ðI − γ5ÞΨ the right-handed and left-handed chiral sectors
of theDirac field, respectively, the associatedNoether charge
can bewritten asQ5ðtÞ ¼

R
Σ d

3x
ffiffiffi
h

p ðψ†
RψR − ψ†

LψLÞ, which
is a measure of the net difference between right-handed
(positive-helicity particles plus negative-helicity antipar-
ticles) and left-handed fermions (negative-helicity particles
plus positive-helicity antiparticles). While this difference is
preserved by the equation of motion for classical fields,
_Q5ðtÞ ≈ 0, the emergence of the anomaly indicates that
quantum fluctuations are able to induce a change in time
given by
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hQ̂5ðt2Þi − hQ̂5ðt1Þi ¼
Z
½t1;t2�×Σ

d4x
ffiffiffiffiffiffi
−η

p h∇aja5i

¼ −g2

16π2

Z
½t1;t2�×Σ

d4x
ffiffiffiffiffiffi
−η

p
TrFab

�Fab;

ð2Þ

if and only if the right-hand side (RHS) of this equation is
nonvanishing.What does the anomalous time dependence of
the chiral charge imply physically? Using S-matrix theory
and Bogoliubov transformations, it can be explicitly shown
[8] that the Yang-Mills field creates and destroys fermions in
such a way that hQ5ðt2Þi − hQ5ðt1Þi, which is a measure of
asymmetric particle creation, is given precisely by the
amount predicted by the RHS of the previous equation.
Thus, the anomalous temporal evolution of the chiral charge
is physically interpreted as a phenomenon of asymmetric
particle creation by a dynamical background: a nontrivial
gauge field is able to excite spontaneously a net number of
right-handed fermions over left-handed ones from the
quantum vacuum or vice versa.
In a similar fashion, it has recently been shown [9–12] that

the analogous chiral symmetry in electrodynamics, most
popularly known as electric-magnetic duality symmetry of
source-free Maxwell equations, suffers from a similar
anomaly when a nontrivial spacetime background
ðR4; gabÞ is introduced. More precisely, under a chiral
rotation �FðxÞ → e∓iθ�FðxÞ of the self-dual and anti–self-
dual sectors of the electromagnetic field, �Fab ¼ 1

2
½Fab�

i�Fab�, the usual action for the source-free Maxwell theory
remains invariant. This leads to a Noether current that, for
solutions of the field equations, reads Ja5 ≈ Ab

�Fab − ZbFab.
Although classically conserved, it was found in [9–12] that
quantum fluctuations of the electromagnetic field produce

h∇aJa5i ¼
−1
96π2

Rabcd
�Rabcd; ð3Þ

if spacetime curvature Rabc
d is considered. The associated

Noether charge can be expressed as the difference between
right-handed and left-handed photons, and, while Maxwell
equations guarantee that _Q5 ≈ 0 for the classical function
Q5ðtÞ, off-shell contributions can spontaneously make this
quantity change in time if and only if the RHS of

hQ̂5ðt2Þi − hQ̂5ðt1Þi ¼
−1
96π2

Z
½t1;t2�×Σ

d4x
ffiffiffiffiffiffi
−g

p
Rabcd

�Rabcd

ð4Þ

is different from zero. Again, the physical picture is analo-
gous to the fermion case: a nontrivial gravitational back-
ground would be responsible to create spontaneously a
difference in the number of right- and left-handed circularly
polarized photons from the quantum vacuum.

In general, the physical interpretation of chiral anomalies
is strongly associated with the phenomenon of “level
crossing.” The Hamiltonian of the quantum field, which
determines the energy of field modes, depends on the
background field. Then, a nontrivial temporal evolution of
the latter can make a positive-chirality mode with initial
negative energy transform into a positive-chirality mode
with final positive energy [8,13]. In other words, the
dynamical evolution of the Yang-Mills or gravitational
field can reverse the helicity of field modes, producing as a
result a net creation of helicity from the quantum vacuum:
more particles of one helicity are created than particles of
the opposite helicity.
The questions we want to answer here are as follows:

what are the physical spacetime backgrounds that can
induce this level crossing in the helicity of field modes?
How is this dynamical evolution supposed to be? In the
Yang-Mills case an important historical role has been
played by instantons [14,15]. Instantons are classical
solutions to the Euclidean field equations of a non-
Abelian gauge theory that exhibit a nontrivial topology
in the manifold of field configurations. Physically, they are
interpreted as amplitudes that quantify quantum-mechani-
cal transitions between topologically inequivalent vacua in
the Hilbert space of gauge fields [14,16–18]. Their use
played a fundamental role in the 70–80 in addressing
several problems of the standard model of particles and
QCD, most notably the Uð1Þ problem [19]. But what about
the gravitational case? Analogous solutions of the
Euclidean Einstein’s equations are also known for a long
time [20,21] and were baptized as gravitational instantons.
While mathematically these solutions have a rich structure
[22], their physical interpretation could be regarded as
exotic, since it relies on quantum-gravity issues [23]. If one
is only interested in studying applications of chiral anoma-
lies, it can be more natural to look instead for more realistic
spacetimes, i.e., for ordinary, Lorentzian solutions of
Einstein’s equations directly.
To our knowledge, this problem has not been proposed in

the literature before. Since it is known that the integrand in
(4) is locally a total derivative, a priori one expects that
only nontrivial spacetime topologies can produce non-
vanishing contributions, thereby the historical interest in
instantons. However, in gravity this is not quite true
because, at least for asymptotically flat spacetimes, the
boundary of the spacetime, called null infinity [24], is
nontrivial and can provide a contribution by means of the
flux of gravitational waves (GWs) that enters/exits the
spacetime. The goal of this paper is to fill this gap and to
open a new window for applications of chiral anomalies
that go beyond the realm of topology or instanton calculus.
Our main result will be to show that chiral anomalies are

intimately related to the circular polarization state of
ordinary gravitational radiation in the spacetime back-
ground. More precisely, we shall prove that
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hQ̂5ðscriþÞi − hQ̂5ðscri−Þi

¼
Z

∞

0

dωω3

24π3
X
lm

½jhlmþ ðωÞ − ihlm× ðωÞj2

− jhlmþ ðωÞ þ ihlm× ðωÞj2�; ð5Þ
where hþ and h× denote the two GW linear polarization
modes that reach future null infinity, emitted by an isolated
gravitational source that is stationary at both past and future
timelike infinities, but otherwise arbitrary. What this for-
mula is indicating is that the more right(left)-handed
gravitational radiation is emitted by a system, the more
right(left)-handed particles will be excited from the quan-
tum vacuum through the mechanism that produces the
chiral anomaly. This is a realistic gravitational setting, with
a clear and unambiguous physical meaning.
That an asymptotically flat spacetime background must

emit gravitational waves in order to induce the quantum
anomaly is an indication that only dynamical solutions of
Einstein’s equations are relevant in this question.1 This
should come with no surprise in light of the previous
physical interpretation of anomalies in terms of asymmetric
particle creation, since only dynamical gravitational fields
are able to spontaneously create particles (and hence
helicity) from the quantum vacuum. On the other hand,
because the study dynamical solutions of Einstein’s equa-
tions is a rather involved issue that typically requires
numerical techniques, this could explain why only instan-
tonic solutions (which are known in closed form) have only
been considered so far in the study of chiral anomalies.
In a given sense the result that we obtain shares some

parallelisms and interpretations with instantons. Namely,
our result can be understood as tunneling between degen-
erate vacua of the asymptotically flat spacetime (associated
with the degeneracy of gravitational connections at future
null infinity [25,26]), but in this case these transitions are
produced classically simply by a flux of gravitational
waves crossing null infinity (i.e., not through the usual
quantum-mechanical tunneling). However, important con-
ceptual differences exist. For instance, our result indicates
that any spacetime where its manifold is homeomorphic to
R4, but such that its metric is deformed with respect to
Minkowski so as to allow the presence of circularly
polarized gravitational radiation (i.e., to allow for curva-
ture, in a specific form) will be able to induce the quantum
anomaly and hence a level crossing of modes. Thus, our
result has nothing to do with topological or global ques-
tions, but rather to the geometry of the spacetime.2

Moreover, it seems unlikely that these results could simply
be obtained by a wick rotation of an instanton solution,
since the former are purely dynamical (gravitational
waves), and hence it does not look that they could be
recovered from “static” Euclidean solutions by any ana-
lytical continuation.
In light of the systematic detections of gravitational

waves by the interferometers LIGO-Virgo in the last years
[28], and given that gravitational backgrounds emitting
these waves are intimately related to chiral anomalies, it is
important to discuss astrophysical settings where these
quantum effects could play a role in the underlying physics.
What is the possible phenomenology that one could
predict? This will be studied in detail in a separate paper.
The present paper is an extended and a detailed discussion
of the theoretical results presented already in [29].
We shall work with four-dimensional spacetimes and the

Levi-Civita connection. We follow Wald’s [30] sign con-
ventions. Namely, the metric signature is ð−;þ;þ;þÞ, the
Riemann tensor is defined by ½∇a;∇b�vc ≕Rd

abcvd for any
covector field vd, the Ricci tensor is Rab ≔ Rc

acb, and the
scalar curvature is R ≔ gabRab. Unless otherwise stated, all
tensor fields will be considered smooth. In Sec. II we use
units in which ℏ ¼ c ¼ 1, while in Sec. III we use units in
which G ¼ c ¼ 1.

II. A SIMPLE CASE: THE ELECTROMAGNETIC
ANALOG

Although we are ultimately interested in understanding
the chiral anomaly induced by a gravitational background,
the usual technical complications associated with the
nonlinearities of the gravitational field and Einstein’s
equations makes necessary working first with a simpler
model. Consequently, let us focus in this section on the
original Adler-Bell-Jackiw chiral anomaly [4,5], which is
the electromagnetic analog. The above complications are
avoided due to the simplicity of Maxwell theory. More
importantly, the final result will have such a simple physical
interpretation that will guide us in the gravitational case.

A. Setup and main calculation

The Adler-Bell-Jackiw chiral anomaly is the anomalous
nonconservation of the Noether current associated with the
chiral symmetry of a Dirac spinorΨðxÞ. This anomaly arises
when the spinor interacts with a background electromagnetic
fieldFabðxÞ. The explicit expression for this anomaly can be
read off from (1) if we identify the gauge group with Uð1Þ
and g2 → e2. As emphasized in the Introduction, the quantity
of major physical interest is the Noether charge, whose
failure to be preserved in time is determined by the integral
over all spacetime M:

1But not all dynamical spacetimes produce a nonvanishing
Chern-Pontryagin. One can easily check that Friedmann-
Lemaître-Robertson-Walker metrics produce a zero result.

2In the context of the Atiyah-Patodi-Singer index theorem, this
geometric contribution is essentially the one that must be
subtracted from the Chern-Pontryagin integral in order to recover
a topological quantity for manifolds with a boundary; see [27].
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hQ̂5ðscriþÞi − hQ̂5ðscri−Þi ¼ −
e2

8π2

Z
M
F ∧ F

¼ −
e2

16π2

Z
M
d4x

ffiffiffiffiffiffi
−η

p
Fab

�Fab:

ð6Þ
Our goal is to determine which class of electromagnetic
backgrounds (i.e., solutions Fab of Maxwell equations)
produce a nonvanishing chiral anomaly. To achieve this
we need to analyze this integral and to study under which
conditions it is not zero.We assume that this electromagnetic
background Fab is produced by some electromagnetic
sources Ja that are smooth andwith spatial compact support,
but otherwise arbitrary.
First of all, it is not difficult to prove that for stationary

solutions of Maxwell equations, dF ¼ 0, d�F ¼ �J, Eq. (6)
above is identically zero. To see this, let us take a Cartesian
coordinate system ft; x⃗g. A stationary Maxwell field is a
solution of Maxwell’s equations that remains invariant
under time translations, i.e., a solution that satisfies
LkFab ¼ 0, where Lk denotes the Lie derivative along
the generator of infinitesimal time translations, k ¼ ∂=∂t.
This condition is equivalent to kaFab ¼ ∇bΛ, where Λ is a
function, traditionally called the electrostatic potential. The
integral of interest can now be rewritten asZ
M
d4x

ffiffiffiffiffiffi
−η

p
Fab

�Fab¼−4
Z

∞

−∞
dt
Z
R3

d3x⃗kaFabkc�Fcb

¼−4
Z

∞

−∞
dt
Z
R3

d3x⃗∇bΛkc�Fcb

¼−4
Z

∞

−∞
dt
Z
R3

d3x⃗∇bðΛkc�FcbÞ; ð7Þ

where in the first equality we used the 3þ 1 decomposition
of the metric, ηab ¼ −kakb þ hab, and �Fab ¼ 1

2
ϵabcdFcd to

write habhcdFac
�Fbd ¼ −2kaFabkc�Fcb; while in the third

equality we used Maxwell equation∇a
�Fab ¼ 0. Assuming

standard falloff conditions for the magnetic field and
electrostatic potential at spatial infinity, ka�Fab∇br ∼ 1=r3,
Λ ∼ 1=r, the final result is zero.
We must look then for nonstationary solutions to

Maxwell’s equations. To guarantee convergence for the
integral in time in Eq. (6), we shall assume that both at early
and late times the solution of Maxwell equations
approaches a stationary configuration.3 During the

nonstationarity period, the dynamics of the electromagnetic
sources will generate outgoing radiation propagating to
infinity (we will assume no incoming electromagnetic
radiation for simplicity). The study of outgoing radiation
is most conveniently carried out within the framework of
asymptotically Minkowski spacetimes [31–33]. A detailed
summary of this topic can be found in Appendix B, and we
will provide the key points here. Let (R4, η̂ab) denote our
physical, Minkowski spacetime, and let (M, ηab) be the
unphysical spacetime constructed from the physical one by
a standard conformal compactification.4 The unphysical
metric is related to the physical one by an ordinary
conformal transformation: ηab ¼ Ω2ðxÞη̂ab. On the other
hand, the unphysical manifold is just the physical one
together with additional points attached smoothly to it:
M ¼ R4 ∪ J . The set of all these new points constitute a
null hypersurface J , locally characterized by the condition
Ω ¼ 0, and with null normal ηab∇bΩ. Physically, they
represent the “points of (null) infinity,” i.e., the points that
can be asymptotically reached in the original spacetime by
following outgoing, null geodesics.
The importance of this construction is that it allows one

to apply ordinary techniques in differential geometry to
study the behavior of fields in a neighborhood of infinity
(which now is just a boundary of the spacetime manifold).
To do the calculation of interest, Eq. (6), one further needs
to carry the tensors of the original spacetime to the
unphysical one. This is straightforward due to the invari-
ance of the electromagnetic field under conformal trans-
formations, F̂ab ¼ Fab, Âa ¼ Aa. Thus,

−
1

2

Z
R4

d4x
ffiffiffiffiffiffi
−η̂

p
F̂ab

�F̂ab ¼
Z
R4

F̂ ∧ F̂ ¼
Z
M
F ∧ F

¼ −
1

2

Z
M
d4x

ffiffiffiffiffiffi
−η

p
Fab

�Fab: ð8Þ

The key point now is to notice that, mathematically,
p1ðFÞ ¼ − 1

8π2
F ∧ F is an invariant polynomial [6]. The

Chern-Weil theorem from the theory of characteristic
classes (see Theorem 11.1 in [6], for instance) states that
the difference between two invariant polynomials,
p1ðFÞ − p1ðF0Þ, associated with two connection 1-forms,
A and A0, is exact and determined by the transgression term
QðA; A0Þ [6,27]:

p1ðFÞ − p1ðF0Þ ¼ dQðA; A0Þ: ð9Þ

Because the spacetime ðR4; η̂abÞ is trivial from the topo-
logical viewpoint, it admits a global flat connection Â0. Due
to conformal invariance and continuity, we have an
electromagnetic potential that is pure gauge globally:

3At early times the electromagnetic field is stationary
for all x⃗ ∈ R3 and using the same arguments as above we getR
R3 d3x⃗∇bðΛkc�FcbÞ ¼ 0. At late times t the field is stationary only
in a spacelike open region UðtÞ ⊂ R3 of radius rðtÞ that
does not intersect the electromagnetic waves generated
during the intermediate nonstationary period. Because the
waves propagate to future infinity, rðtÞ ¼ tþ const, then
Uðt → ∞Þ → R3, and we find

R
UðtÞ d

3x⃗∇bðΛkc�FcbÞ ¼R
dS2rðtÞ2ΛðrðtÞÞkc�FcbðrðtÞÞ∇br ∼ t−2 as t → ∞, which guar-

antees convergence of the integral.

4Because we shall be working with the unphysical spacetime
all the time, we use the hat symbol to denote quantities associated
with the physical spacetime in order to avoid its use later.
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A0 ¼ dα. Then, the difference θ ¼ A − A0 represents the
same physical electromagnetic potential.5 The transgres-
sion term can be evaluated following its definition (see
[6,27] for details) and reads

QðA; A0Þ ¼ −
1

8π2
θ ∧ F: ð10Þ

It is straightforward now to check that p1ðF0Þ ¼
p1ð0Þ ¼ 0. Then, by integrating (9) and applying Stokes
theorem we get

Z
M
p1ðFÞ ¼

Z
J
i�QðA; A0Þ ¼ −

1

16π2

Z
J
θaFbcϵ

abcdudS2;

ð11Þ

where the boundary of the unphysical manifold is
∂M ¼ J ; i� denotes the pullback of the inclusion map
i∶J ↪ M; and dudS2 is the canonical integration measure
on J ≈R × S2. Note that the RHS is manifestly gauge
invariant, as it must be in view of the left-hand side (LHS).
This result can be further simplified if we work in a

Newman-Penrose basis [34]. The electromagnetic field has
6 physical degrees of freedom per spacetime point that can
be described with 3 complex scalars (these are analogous to
the Weyl scalars in the gravitational case [35]). These
scalars are the components of the tensor Fab in a null tetrad
fla; na; ma; m̄ag. Without loss of generality, we can take
na such that it equals ηab∇bΩ at Ω ¼ 0, i.e., such that it is
normal to the hypersurface J . Then la is chosen as a null
vector that satisfies lana ¼ −1; and ma, m̄a are complex
conjugate null vector fields, taken such that their real and
imaginary parts are tangential to 2-spheres (hence orthogonal
to na and la), and normalized as mam̄a ¼ 1. In this null
tetrad, the metric takes the form ηab ¼ −2nðalbÞ þ 2mðam̄bÞ
and the three electromagnetic scalars are defined by

Φ2 ¼ Fabnam̄b; ð12Þ

Φ1 ¼
1

2
½Fabnalb þ Fabmam̄b�; ð13Þ

Φ0 ¼ Fabmalb: ð14Þ

If we restrict to smooth solutions of Maxwell equations, the
peeling theorem [36] guarantees that in a neighborhood
of J we can expand Φiðu;Ω; θ;ϕÞ ¼ Φ0

i ðu; 0; θ;ϕÞþ
ΩΦ1

i ðu; 0; θ;ϕÞ þ � � �, where ðu; θ;ϕÞ are Bondi-Sachs
coordinates adapted toJ [37,38]. Going back to the physical

spacetime, it is not difficult to see that this condition requires
Φ2 ∼ 1

r, soΦ
0
2 represents the 2 radiative degrees of freedomof

the electromagnetic field (corresponding to real and imagi-
nary parts of this complex number). If we further assume the
same asymptotic behavior for the electromagnetic potential
[39,40], Aa ∼Oð1=rÞ, then the 2 radiative degrees of free-
dom are encoded in the component A2 ≔ Aam̄a. Indeed,
using Fab ¼ 2∇½aAb� and the above definitions for the
scalars, one can see that Aana ¼ 0 and ϕ0

2 ¼ ∂uA0
2 at J .

We are now in position to evaluate (11). The tangent
space of J is spanned by fna;ma; m̄ag, so
ϵabc ¼ i3!n½ambm̄c�. Then,

Z
M
p1ðFÞ¼

−6i
16π2

Z
J
θaFbcðn½ambm̄c�ÞdudS2

¼ −2i
16π2

Z
J
θaFbcðnam½bm̄c� þmam̄½bnc�

þm̄an½bmc�ÞdudS2

¼ 1

4π2

Z
J
dudS2ðθanaImΦ0

1− ImðA0
2Φ̄0

2− ð̄αΦ̄0
2ÞÞ;

ð15Þ

where we used A00
2 ¼ ð̄α. Recalling that Aana ¼ 0 at J , we

get

Z
M
p1ðFÞ ¼ −

1

4π2

Z
J
dudS2ImðA0

2Φ̄0
2 − ð̄αΦ̄0

2Þ: ð16Þ

Notice that the value of α is determined by the choice of
gauge of A0

2. In other words, under a gauge transformation
A0
2 transforms as A2 → A0

2 þ ð̄β, while α transforms as
α → αþ β, so the role of α is to maintain gauge invariance
in the full expression. In a specific gauge, α can be set
to zero.

B. Physical interpretation: Circularly polarized
electromagnetic waves

Since A0
2 (or Φ0

2) is a complex number that encodes the
2 radiative degrees of freedom of the electromagnetic field,
we see that the chiral anomaly for fermions is intrinsically
related to the emission of electromagnetic waves. Which
properties should these waves have in order to produce a
nontrivial result? To understand the physical meaning of
this result, let us expand the electromagnetic field in Fourier
modes as6

5The advantage of working with θ rather than with A directly is
that the former is manifestly gauge invariant, while A is not. It is
customary in the literature to set A0 ¼ 0, but this can be
misleading during the calculation given that intermediate for-
mulas would not have a manifestly gauge-invariant form.

6The condition Φ0
2ðu → �∞Þ → 0 is required from the finite-

ness of energy flux across J ,
Rþ∞
−∞ dujΦðu; θ;ϕÞj2 < ∞. This

condition in turn requires that Φ0
2 belongs to L2ðCÞ, and its

Fourier transform exists. Notice that A0
2 does not necessarily

decay at u → �∞, so its Fourier transform is not defined.
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Φ0
2ðu; θ;ϕÞ ¼

Z
∞

−∞

dω
2π

Φðω; θ;ϕÞe−iωu ¼
Z

∞

0

dω
2π

½ΦRðω; θ;ϕÞe−iωu þ Φ̄Lðω; θ;ϕÞeiωu�; ð17Þ

where in the second equality we explicitly split the modes in terms of positive and negative definite frequencies: ΦRðωÞ ≔
ΦðωÞ for ω > 0 while Φ̄Lð−ωÞ ≔ ΦðωÞ for ω < 0. The electromagnetic potential satisfies _A2 ¼ Φ0

2, so we can write

A2ðu; θ;ϕÞ ¼
Z

∞

0

dω
2π

�
ΦRðω; θ;ϕÞ

−iω
e−iωu þ Φ̄Lðω; θ;ϕÞ

iω
eiωu

�
þ βðθ;ϕÞ; ð18Þ

where the function βðθ;ϕÞ emerges as a constant of integration. Imposing Φ2 ¼ 0, one concludes that β ¼ ð̄α. Plugging
these formulas in (16), we get

Z
d4x

ffiffiffiffiffiffi
−g

p h∇aja5i ¼
e2

4π2

Z
dS2

Z
∞

0

dω
2πω

ðjΦRðω; θ;ϕÞj2 − jΦLðω; θ;ϕÞj2Þ: ð19Þ

Note that this formula is reminiscent of the phenomenon of level crossing, discussed in the Introduction. What is the
physical meaning of these modes,ΦR andΦL? The electromagnetic fieldΦ0

2 is self-dual, which means that it can be written
as Φ0

2 ¼ ðEþ iBÞ, where E, B are the electric and magnetic fields, representing the two possible, linearly independent
polarization directions of the electromagnetic field. Because of this, we can also write

Φ0
2ðu; θ;ϕÞ ¼

Z
∞

−∞

dω
2π

ðEðω; θ;ϕÞ þ iBðω; θ;ϕÞÞe−iωu; ð20Þ

from which we identify

ΦRðωÞ ¼ ðEðωÞ þ iBðωÞÞ;ω > 0;

Φ̄Lð−ωÞ ¼ ðEðωÞ þ iBðωÞÞ;ω < 0: ð21Þ

The second equation implies ΦLðωÞ ¼ ðĒð−ωÞ − iBð−ωÞÞ, for ω > 0. Because EðuÞ and BðuÞ are real functions, we must
have then Ēð−ωÞ ¼ EðωÞ and B̄ð−ωÞ ¼ BðωÞ, leading to ΦLðωÞ ¼ ðEðωÞ − iBðωÞÞ. Taking into account all this, and
expanding the fields in spin-weight spherical harmonics of modes ðl; mÞ, we finally arrive at

hQ̂5ðscriþÞi − hQ̂5ðscri−Þi ¼
Z

∞

0

dωe2

8π3ω

X
lm

½jElmðωÞ þ iBlmðωÞj2 − jElmðωÞ − iBlmðωÞj2�:

The RHS represents the difference in intensity between right- and left-handed circularly polarized electromagnetic waves
reaching future null infinity, i.e., the Stokes V parameter. The LHS represents the amount of net helicity spontaneously
created on the fermion field. We conclude that the emission of circularly polarized electromagnetic radiation implies the
spontaneous creation of massless charged fermions (highly energetic electrons, for instance) with net helicity. The more
right- or left-handed electromagnetic radiation the spacetime contains, the more left- or right-handed massless fermions will
be excited from the quantum vacuum.

C. A concrete example: Electric-magnetic oscillating dipole

Consider an electric dipole of moment p0 pointing in the z direction, oscillating with frequency ω. The electromagnetic
vector potential is [41]

A⃗E
a ¼ −

p0ω

4πe2r
cosðωuÞ∇az: ð22Þ

On top of this, consider a magnetic dipole of moment m0 located in the x − y plane, oscillating with the same frequency ω
but in opposite phase. In the radiation-zone approximation, the electromagnetic vector potential yields [41]

A⃗M
a ¼ −

m0ω

4πe2
sinðωuÞ sin2 θ∇aϕ: ð23Þ
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One expects this configuration to provide a nontrivial
Chern-Pontryagin because the magnetic fields of both
the electric and magnetic oscillating dipoles considered
here are entangled, leading to a nonzero magnetic hel-
icity [42].
To calculate (16), let us work in spherical coordinates

ðu; r; θ;ϕÞ. A (conformal) Newman-Penrose basis can be

constructed such that ma ¼ qabffiffi
2

p ð∇bθ þ i sin θ∇aϕÞ, where
qab ¼ diagf1; sin2 θg is the standard metric on the unit,
homogeneous 2-sphere. The radiative component of the
total electromagnetic potential is

A0
2 ¼ m̄aA⃗a ¼

ω sin θ

4πe2
ffiffiffi
2

p ðim0 sinðωuÞ þ p0 cosðωuÞÞ: ð24Þ

Then,

Z
J þ

dudS2ImðA0
2∂uĀ0

2Þ ¼ −
ω3m0p0

16πe4
ðu2 − u1Þ; ð25Þ

where u2 − u1 is the period of (finite) time during which the
system operates (we let ω → 0 for u < u1 and u > u2).
This result is gauge invariant, so α ¼ 0 in (16).

III. THE GRAVITATIONAL CASE

The fact that net fermion helicity can be spontaneously
created from the quantum vacuum in a background of
circularly polarized electromagnetic waves is a physically
interesting result. In particular, it suggests that a similar
phenomenon may occur for photon helicity in a back-
ground of gravitational waves, by simply noticing the
parallelism with the chiral electromagnetic anomaly of
(3). In this section we prove this in detail, following a
similar strategy as in the electromagnetic case.

A. Setup and main calculation

Let (M̂, ĝab) denote our physical, curved spacetime. The
quantity of interest is

hQ̂5ðscriþÞi − hQ̂5ðscri−Þi

¼ ℏ
48π2

Z
M̂
TrðR̂ ∧ R̂Þ ¼ −ℏ

96π2

Z
M̂
d4x

ffiffiffiffiffiffi
−g

p
R̂abcd

�R̂abcd;

ð26Þ

where R̂ ¼ 1
2
R̂abdxa ∧ dxb is the curvature 2-form. Our

goal is to compute this integral in an astrophysically
relevant setting in order to know under which circum-
stances a given gravitational system may generate a flux of
photons with net helicity. In particular, we restrict to
asymptotically flat spacetimes. As in the previous section,
the above integral is identically zero for stationary space-
times. The proof is similar to the electromagnetic case but
technically more tedious, so it is relegated to Appendix A.

We must then focus on dynamical solutions of Einstein’s
equations and, to guarantee convergence, we consider
spacetimes that asymptotically reach stationary regimes
at both future and past timelike infinities. An example of
this is a binary merger of two black holes which, ideally, are
initially separated an infinite distance away, and end up
merging to form a final stationary Kerr black hole.
As in the electromagnetic case, it is convenient to work

instead with a conformally compactified spacetime, (M,
gab), constructed from the physical one by the standard
procedure:M ¼ M̂ ∪ J , gab ¼ Ω2ĝab. Our physical space-
time will be globally hyperbolic, so that M̂ ≃R × Σ [30],
and in particular we shall restrict to Σ ≃R3 (physically one
does not expect more sophisticated spaces). The next step is
to carry the relevant tensors of the physical spacetime to the
unphysical one. It is useful to note that, due to the totally
antisymmetric tensor ϵ̂abmn, the Ricci part in the physical
Riemann tensor, R̂d

abc, does not contribute in this problem:

ffiffiffî
g

p
R̂d
abcϵ̂

abmnR̂c
mnd ¼

ffiffiffî
g

p
Ĉd
abcϵ̂

abmnĈc
mnd; ð27Þ

where Ĉabcd is the physical Weyl tensor. Using now the
conformal invariance of the Weyl tensor, Ĉd

abc ¼ Cd
abc, thatffiffiffiffiffiffi

−ĝ
p ¼ Ω−4 ffiffiffiffiffiffi−gp

, and that ϵ̂abcd ¼ Ω4ϵabcd, then the quan-
tity of interest turns out to be conformal invariant:

ffiffiffî
g

p
R̂abc

dϵ̂abmnR̂mnd
c ¼ ffiffiffi

g
p

Rabc
dϵabmnRmnd

c; ð28Þ

and therefore

hQ̂5ðscriþÞi − hQ̂5ðscri−Þi

¼ ℏ
48π2

Z
M̂
TrðR̂ ∧ R̂Þ ¼ ℏ

48π2

Z
M
TrðR ∧ RÞ: ð29Þ

Mathematically, p1ðRÞ ¼ − 1
8π2

TrðR ∧ RÞ is another
invariant polynomial. To calculate this quantity we shall
recall again the Chern-Weil theorem. This theorem tells us
that the difference between two invariant polynomials,
p1ðRÞ − p1ðR0Þ, associated with any two given connection
1-forms, ω and ω0 in M, is exact and is determined by the
transgression term Qðω;ω0Þ [6]:

p1ðRÞ − p1ðR0Þ ¼ dQðω;ω0Þ: ð30Þ

If we introduce the difference θ ¼ ω − ω0, then the RHS
can be evaluated in the standard way and yields [27]

Qðω;ω0Þ ¼ −
1

8π2
Tr

�
2θ ∧ Rþ 2

3
θ ∧ θ ∧ θ

− 2θ ∧ ω ∧ θ − θ ∧ dθ

�
: ð31Þ

Because the physical spacetime manifold is M̂ ≃R4, it
admits a flat Minkowskian metric η̂ab. Its associated
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conformal compactification, ðR4 ∪ J þ; ηabÞ, with ηab ¼
Ω2η̂ab, will represent our auxiliary spacetime in this calcu-
lation.Wedenote all associated quantitieswithprime indices.
Given that Ĉ0d

abc ¼ 0 in ðR4; η̂abÞ one has C0d
abc ¼ 0 at any

point of R4 ∪ J þ due to conformal invariance and

continuity, and from (27) we deduce p1ðR0Þ ¼
p1ðC0Þ ¼ p1ð0Þ ¼ 0. Thus, the value of

R
M p1ðRÞ is simply

determined by the fluxQðω;ω0Þ at future null infinity (i.e., at
Ω ¼ 0):

Z
M
p1ðRÞ ¼

Z
J þ

i�Qðω;ω0Þ ¼ −
1

8π2

Z
J þ

i�Tr
�
2θ ∧ Rþ 2

3
θ ∧ θ ∧ θ − 2θ ∧ ω ∧ θ − θ ∧ dθ

�
: ð32Þ

The previous formula can be simplified in a more convenient manner. First, note that θ ∧ dθ ¼ θ ∧ dω − θ ∧ dω0 ¼ θ ∧
R − θ ∧ ω ∧ ωþ θ ∧ ω0 ∧ ω0 (recall R0 ¼ dω0 þ ω0 ∧ ω0 ¼ 0 for Minkowski). Then

Trð−2θ ∧ ω ∧ θ − θ ∧ dθÞ ¼ Trθ ∧ ð−2ω ∧ θ þ ω ∧ ω − ω0 ∧ ω0Þ − Trθ ∧ R

¼ −Trθ ∧ ðω ∧ ω − 2ω ∧ ω0 þ ω0 ∧ ω0Þ − Trθ ∧ R

¼ −Trθ ∧ ðω − ω0Þ ∧ ðω − ω0Þ − Trθ ∧ R; ð33Þ

where in the last step we noticed that Trθ ∧ ω ∧ ω0 ¼ Trθ ∧ ω0 ∧ ω. Equation (32) can now be written as

Z
M
p1ðRÞ ¼

Z
J þ

i�Qðω;ω0Þ ¼ −
1

8π2

Z
J þ

i�Tr
�
θ ∧ R −

1

3
θ ∧ θ ∧ θ

�
: ð34Þ

It is convenient to introduce a 3þ 1 splitting of ðM; gabÞ by fΩ ¼ constg hypersurfaces in order to simplify the
integrand. Let n̂a ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

gabnanb
p na, with na ≔ ∇aΩ, be the normalized transversal vector to the Ω ¼ const hypersurfaces. The

induced metric on these hypersurfaces is hab ¼ −n̂an̂b þ gab, and its associated Levi-Civita derivative operator will be
denoted by Da. For any two vectors ua and va that are tangent to fΩ ¼ constg we can write the decomposition:

uaDavb ¼ uahbc∇avc ¼ uaðgbc − n̂bn̂cÞ∇avc ¼ ua∇avb þ uað∇an̂cÞn̂bvc; ð35Þ

where in the last equality van̂a ¼ 0 was used. This leads to
Davb ¼ hca∇cvb þ n̂bvcKac, where Kac ¼ Dan̂c is the
extrinsic curvature of fΩ ¼ constg as a hypersurface
embedded in M (as usual, it satisfies Kac ¼ Kca and
Kabn̂b ¼ 0, as can easily be checked). Consider now an
orthonormal frame feaI gI¼0;…;3 in ðM; gabÞ; i.e., a set of
four vectors labeled by I that at each point x of M satisfy
gabðxÞeaI ðxÞebJðxÞ ¼ ηIJ. The dual frame is defined via
ea;I ¼ gabebI , and latin indices I; J;…. can be lowered
and raised with ηIJ. It is convenient to choose this frame as
a Newman-Penrose tetrad (η01¼ η10¼−η23¼−η32¼−1,
zero otherwise) such that for Ω ¼ 0 the tangent space at
future null infinity is spanned by fna;ma; m̄ag. Given this
tetrad, a (torsion-free) connection 1-form ωa is defined
by the equation ∇aeIb þ ωI

aJe
J
b ¼ 0, and the metric-

compatibility condition ∇agbc ¼ 0 gives the antisymmetry
property ωIJ

a ¼ −ωJI
a . Taking vb ¼ eIb in (35) we find

hdaðωdÞIJ ¼ −ebJDaebI þ KaIn̂bebJ; ð36Þ

where KaJ is shorthand for KacecJ. Using the antisymmetry
of ωIJ

a between I and J, one can deduce hdaðωdÞIJ ¼
−δIKðebJDaeKb Þ − KaJn̂I þ KI

an̂J, where δIJ and n̂
I are short-

hand for habeaIebJ and n̂
aeIa. Let us introduce the additional

notation ð3ωaÞIJ ≡ −δIKðebJDaeKb Þ. Thus

ðωaÞIJ ¼ ð3ωaÞIJ − KaJn̂I þ KI
an̂J þ n̂an̂bðωbÞIJ: ð37Þ

Repeating this procedure exactly in the auxiliary
Minkowskian spacetime ðR4 ∪ J þ; ηabÞ we get ðω0

aÞIJ ¼
ð3ω0

aÞIJ − K0
aJn̂

0I þ K0I
an̂0J þ n̂0an̂0bðω0

bÞIJ, where prime indi-
ces denote quantities defined with respect to the metric
ηab. Taking the difference between the two (note that
habn̂a ¼ habn̂

0
a ¼ 0),

hdaðθdÞIJ ¼ ð3θaÞIJ − 2ðK½J
a n̂I� − K0½J

a n̂0I�Þ: ð38Þ

As discussed in [31,32] and summarized in Appendix B,
J ¼ fΩ ¼ 0g is a three-dimensional null hypersurface that
is endowed with a universal geometric structure, which
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consists in a collection of pairs ðg
ab
; naÞ satisfying a set of

properties. Each pair consists of a degenerate metric g
ab

on
fΩ ¼ 0g and the corresponding null normal na. This geo-
metric structure is common and available for any asymp-
totically flat spacetime. Consequently, we can fix the same
conformal frame ðg

ab
; naÞ for both ðR4 ∪ J þ; gabÞ and

ðR4 ∪ J þ; ηabÞ spacetimes. Furthermore, without loss of
generality we can choose this conformal frame such that
i�ðΩ−2gabnanbÞ ¼ 1 (i� being the pullback of i∶J ↪ M),
whichwill allow some simplifications in the next calculation.

On the other hand, because the specification of the degen-
erate metric g

ab
is equivalent to the specification of two

complex-conjugate vectors ma and m̄a whose real and
imaginary parts are tangential to the sphere, fixing this
conformal frame ðg

ab
; naÞ is equivalent to fixing a common

basis fna;ma; m̄ag for both spacetimes. Consequently, the
two tetrads introduced above, eaI and e0aI , agree for Ω ¼ 0.
Taking this into account and the orthogonality properties,
ð3ωaÞIJn̂beJb ¼ ð3ω0

aÞIJn̂0be0Jb ¼ KaJn̂beJb ¼ K0
aJn̂

0be0Jb ¼ 0,
one finds

i�Trθ ∧ θ ∧ θ ¼ i�½ð3θaÞIJð3θbÞJKð3θcÞKI − 3ð3θaÞIJðKbI − K0
bIÞðKcJ − K0

cJÞ�ϵabc
ffiffiffi
h

p
d3x ð39Þ

and

i�Trθ ∧ R ¼ 1

2
i�½ð3θaÞJI RI

bcJ − 2ðKaIn̂J − K0
aIn̂0

JÞRI
bcJ�ϵabc

ffiffiffi
h

p
d3x: ð40Þ

The 1-form ð3θaÞIJ can be determined at Ω ¼ 0 from the intrinsic geometry of future null infinity. As discussed in
Appendix B, for any covector eIb at null infinity, the differenceD

0
a −Da between two (equivalence classes of) connections is

completely characterized by a traceless, symmetric tensor σab: ðDa −D0
aÞeIb ¼ −σabnceIc. Since, as discussed above, at

Ω ¼ 0 the tetrad eIa is equal to the tetrad e0Ia, andDa is tangential toΩ ¼ 0, we have ð3θaÞIJ ¼ −δIKebJðDa −D0
aÞeKb atΩ ¼ 0,

and hence ð3θaÞIJedI eJe ¼ −edI δIKðDa −D0
aÞeKe ¼ −edI δIKσaengeKg at Ω ¼ 0. Now edI δ

I
Kn

geKg ¼ edI ðηIK − n̂In̂KÞngeKg ¼
nd − n̂gngn̂d ¼ nd − ng∇gΩgdb∇bΩ

gef∇eΩ∇fΩ
, and since at Ω ¼ 0 we have na ¼ gab∇bΩ, we conclude

i�½ð3θaÞIJedI eJe� ¼ 0; ð41Þ

and we are led to

Z
M
p1ðRÞ ¼

1

8π2

Z
J þ

i�½ðKad − K0
adÞn̂eRbc

d
eϵ

abc
ffiffiffi
h

p
d3x�: ð42Þ

We obtain now a compact expression for the extrinsic curvature of J þ as a hypersurface of M. First note that

i�ðKab − K0
abÞ ¼ i�ðDan̂b −D0

an̂0bÞ ¼ i�½ðDaαÞnb þ αDanb − ðD0
aα

0Þnb − α0D0
anb� ¼ i�ðΩ−1ðDanb −D0

anbÞÞ; ð43Þ

where we denoted α≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gab∇aΩ∇bΩ

p for brevity and in the last step we took into account that i�ðΩαÞ ¼ i�ðΩα0Þ ¼ 1. The term

inside parentheses vanishes as OðΩÞ at null infinity but the prefactor diverges as Ω−1, so the product is a well-defined,
smooth quantity at null infinity. To calculate its value let us use Eq. (B4) from Appendix B:

ΩSab þ 2∇anb −Ω−1ncncgab ¼ OðΩ3Þ: ð44Þ

The pullback of i∶J þ → M on this expression provides us with the value of Ω−1∇anb at future null infinity,

i�ðΩ−1∇anbÞ ¼ −
1

2
Sab þ

1

2
g
ab
i�ðΩ−2nanaÞ ¼ −

1

2
Sab þ

1

2
g
ab
: ð45Þ

Repeating the same with the auxiliary Minkowski space, one gets [recall that we fixed the same conformal frame ðg
ab
; ncÞ

for both spacetimes]:

i�ðΩ−1∇anbÞ − i�ðΩ−1∇0
anbÞ ¼ i�ðΩ−1ðDanb −D0

anbÞÞ ¼ −
1

2
ðSab − S0abÞ: ð46Þ
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But for Minkowski, S0ab ¼ ρab, where ρab is the “gauge” part of Sab. The combination Sab − ρab ≕Nab is manifestly
invariant under conformal gauge transformations of the form Ω → ωΩ, and defines what is known as the Bondi News
tensor, Nab (see Appendix B). This is the quantity that determines whether an asymptotically flat spacetime contains
nontrivial gravitational radiation. We find

i�ðKab − K0
abÞ ¼ −

1

2
Nab: ð47Þ

On the other hand,

i�ðn̂eRbc
d
eϵ

abc
ffiffiffi
h

p
Þ ¼ i�ðneΩ−1ðCbce

d þ ge½bSdc� − δd½bSc�eÞϵabc
ffiffiffi
h

p
Þ: ð48Þ

Because n̂aϵabc ¼ 0, the second term does not contribute. On the other hand, the third term can be written as
i�ðn̂eSnegcnϵadcÞ ¼ i�ðgcnϵadcΩ−1Þi�ðneSneÞ ∝ i�ðgcbϵadcΩ−1Þi�ðnbÞ ¼ i�ðϵadcÞi�ðΩ−1nbgbcÞ ¼ 0, where we used Sabn

b ∝
na and nai�ðΩ−2naÞ ¼ 1 in the last step. Thus,

i�ðn̂eRbc
d
eϵ

abc
ffiffiffi
h

p
Þ ¼ i�ðneΩ−1Cbce

dϵabc
ffiffiffi
h

p
Þ

¼ −i�ðneΩ−1C��
bc

edϵabc
ffiffiffi
h

p
Þ

¼ 1

2
i�ðϵdpqeneΩ−1C�

bcpqϵ
abc

ffiffiffi
h

p
Þ;

where � denotes the Hodge dual. Note that ϵabc ¼ ϵabcdn̂d ¼ Ω−1ϵabcdnd but
ffiffiffi
h

p ¼ Ω ffiffiffi
q

p
, where qab is the metric of the

two-dimensional spheres, so that ϵabc
ffiffiffi
h

p ¼ ϵabcdnd
ffiffiffi
q

p
. Now, the quantity ðϵdpqeneÞðϵabcmnmÞðΩ−1C�

bcpqÞ is smooth in all

M, and thus it exists in J þ (see Appendix B). Its pullback to null infinity is denoted as �Kad. Taking into account all this and
using �Kab ¼ 2ϵpqaDpNq

b [31],

i�ðKad − K0
adÞi�ðn̂eRbc

d
eϵ

abc
ffiffiffi
h

p
Þ ¼ −

1

4
Nmn

�Kmn ffiffiffi
q

p ¼ −
1

2
Nmnϵ

pqmDpNq
n ffiffiffi

q
p

: ð49Þ

This expression can be simplified further. The basis fna;ma; m̄ag satisfies 0 ¼ Lnma ¼ ndDdma. Using ϵabc ¼
i3!n½ambm̄c� and Nabnb ¼ 0, Danb ¼ 0, we can get

i�ðKad − K0
adÞi�ðn̂eRbc

d
eϵ

abc
ffiffiffi
h

p
Þ ¼ −iNabm½nm̄a�ndDdNb

n ¼ −ImðN44∂uN33Þ; ð50Þ

where N33 ≔ Nabmamb and N44 ¼ N̄33, following the usual Newman-Penrose notation.
Taking into account these results, we can rewrite (29) in the final form

Z
d4x

ffiffiffiffiffiffi
−g

p h∇aja5i ¼ −
ℏ
6

Z
M
p1ðRÞ ¼

ℏ
48π2

Z
J þ

dudS2ImðN44∂uN33Þ: ð51Þ

Note the strong analogy with the electromagnetic case, Eq. (16), and also that this result is manifestly gauge invariant (Nab
is invariant under conformal gauge transformations of the formΩ → ωΩ). On the other hand, notice that this result is purely
geometrical. In other words, the topological information encoded in the Chern-Pontryagin is here trivial (zero) because we
are just working with R4 with the usual differentiable structure. It is the contribution of the boundary (physically, null
infinity) that contributes nontrivially to the final result, but this contribution is not topological. For manifolds with boundary,
the Chern-Pontryagin is not purely topological, and its utility as a topological invariant is recovered only when a surface
correction is added [27]. This correction is precisely equal to the result that we obtain with a sign reversed.

B. Physical interpretation: Circularly polarized gravitational waves

The result (51) tells us that the electromagnetic duality anomaly (4) is fully determined by the radiative content of the
spacetime. To write the result in terms of the Ψ0

4 Weyl scalar, widely used in the gravitational-wave literature, we notice that
N33 ¼ 2_σ and Ψ0

4 ¼ − ̈σ̄, where σ is the shear of the gravitational radiation (see Appendix C). Then,
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Z
d4x

ffiffiffiffiffiffi
−g

p h∇aja5i ¼
ℏ

12π2

Z
J þ

dudS2

Z
u
du0ImðΨ0

4ðu0; θ;ϕÞΨ̄0
4ðu; θ;ϕÞÞ: ð52Þ

Despite its apparent form, the physical interpretation of this result is remarkably simple. Expand in Fourier modes as

Ψ0
4ðu; θ;ϕÞ ¼

Z
∞

−∞

dω
2π

hðω; θ;ϕÞe−iωu ¼
Z

∞

0

dω
2π

½hRðω; θ;ϕÞe−iωu þ h̄Lðω; θ;ϕÞeiωu�; ð53Þ

where in the second equality we split the modes explicitly in terms of positive and negative definite modes: hRðωÞ ≔ hðωÞ
for ω > 0 while h̄Lð−ωÞ ≔ hðωÞ for ω < 0. The News scalar satisfies _N33 ¼ −2Ψ̄0

4, so we can write

N33ðu; θ;ϕÞ ¼ 2

Z
∞

0

dω
2π

�
hLðω; θ;ϕÞ

iω
e−iωu þ h̄Rðω; θ;ϕÞ

−iω
eiωu

�
þ βðθ;ϕÞ; ð54Þ

where the function βðθ;ϕÞ emerges as a constant of integration. This function, however, does not contribute to (51) because
the physical requirement of finite GW energy crossing null infinity implies N33ðu → �∞Þ → 0 (this is inferred from the
Bondi mass formula, [31]), and leads to βðθ;ϕÞ ¼ 0. From (51),

Z
d4x

ffiffiffiffiffiffi
−g

p h∇aja5i ¼ −
ℏ

12π2

Z
dS2

Z
∞

0

dω
2πω

ðjhRðω; θ;ϕÞj2 − jhLðω; θ;ϕÞj2Þ: ð55Þ

What is the physical meaning of these modes, hR and hL? Because Ψ0
4 ¼ − ̈σ̄ ¼ −ðḧþ − iḧ×Þ, where hþ, h× are the two

standard linear polarization modes of the GWs, we also have

Ψ0
4ðu; θ;ϕÞ ¼

Z
∞

−∞

dω
2π

ω2ðhþðω; θ;ϕÞ − ih×ðω; θ;ϕÞÞe−iωu; ð56Þ

from which we identify

hRðωÞ ¼ ω2ðhþðωÞ − ih×ðωÞÞ;ω > 0;

h̄Lð−ωÞ ¼ ω2ðhþðωÞ − ih×ðωÞÞ;ω < 0: ð57Þ

The second equation implies hLðωÞ ¼ ω2ðh̄þð−ωÞ þ ih̄×ð−ωÞÞ, forω > 0. Because hþðuÞ and h×ðuÞ are real functions, we
must have h̄þð−ωÞ ¼ hþðωÞ and h̄×ð−ωÞ ¼ h×ðωÞ, leading to hLðωÞ ¼ ω2ðhþðωÞ þ ih×ðωÞÞ, and

hQ5ðscriþÞi − hQ5ðscri−Þi ¼ ℏ
Z

∞

0

dωω3

24π3
X
lm

½jhlmþ ðωÞ þ ihlm× ðωÞj2 − jhlmþ ðωÞ − ihlm× ðωÞj2�; ð58Þ

where we expanded the field variables in spin-weight spherical harmonics of modes ðl; mÞ. The physical interpretation of
this result is again clear: while the LHS represents the net amount of photon circular polarization created, the RHS is the
difference in intensity between right- and left-handed circularly polarized GWs reaching future null infinity, i.e., the Stokes
V parameter of GWs. Thus, we conclude that the emission of chiral gravitational radiation by astrophysical systems implies
the spontaneous creation of photons with net helicity. The more right- or left-handed GWs the spacetime contains, the more
left- or right-handed photons will be excited from the quantum vacuum.

C. An example: Precessing binary black hole systems

Let us consider a binary black hole merger. The system emits GWs, which are analyzed in modes of frequency
ω and angular numbers ðl; mÞ. During the inspiral phase the frequency spectrum is determined by the angular
velocity Ω as ωm ∼mΩ. The shear of the gravitational waves can be decomposed as σðu; θ;ϕÞ ¼P

lmðAþ
lm−2Ylmðθ;ϕÞe−iωmu þ Ā−

lm2Ȳlmðθ;ϕÞeiωmuÞ. Self-consistency requires Ā−
lm ¼ ð−1ÞmAþ

l−m, which is deduced
using sȲlm ¼ ð−1Þsþm

−sYlð−mÞ. Equation (58) gives

hQ5ðscriþÞi − hQ5ðscri−Þi ∝
X
lm

ω3
mðjAþ

lmj2 − jAþ
lð−mÞj2Þ: ð59Þ
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The parameters A�
lm can be understood as “excitation”

factors for the generation of each GW polarization of mode
ðl; mÞ, and they depend on the details of the physical
system under consideration (initial data). If the binary
system is invariant under mirror symmetry with respect to
some plane, choosing angular coordinates such that θ ¼
π=2 represents that plane, this invariance is equivalent to
say that Cabcdðu; θ;ϕÞ ¼ Cabcdðu; π − θ;ϕÞ, which implies
σðu; θ;ϕÞ ¼ σ̄ðu; π − θ;ϕÞ. Using sYlmðπ − θ;ϕþ πÞ ¼
ð−1Þl−sYlmðθ;ϕÞ, the previous condition leads to
Aþ
lm ¼ Aþ

lð−mÞð−1Þl, which makes (59) vanish. In other

words, the chiral anomaly emerges in binary mergers that
do not have any mirror symmetry.7 Examples of this are
precessing binary systems, in which the individual spins of
the black holes are not aligned with the total angular
momentum [43] and break any potential symmetry under
mirror transformations (see [29] for more details and
implications in astrophysics).

IV. CONCLUSIONS

Chiral anomalies are a long-standing prediction of
quantum field theory that have provided rich physical
consequences along the past decades in several branches
of physics. Despite this, their use has been considerably
restricted to nontrivial topological issues, with instantons
playing a dominant role. While this has been fruitful in
many aspects, as for instance in unraveling the vacuum
structure in Yang-Mills theories and solving problems of
major importance in particle physics, it is not the whole
story, at least in gravity (and electrodynamics). In this paper
we characterized which class of solutions to Einstein’s (and
Maxwell) equations are able to induce the chiral anomaly
on fermion and electromagnetic fields. On the one hand, we
found that stationary solutions cannot trigger this anomaly.
On the other hand, we found that, among all dynamical
solutions, only those which involve radiation with net
circular polarization are able to induce the quantum
anomaly, and we provided specific examples of physical
interest where this occurs. The physical interpretation of
this quantum effect is associated with spontaneous creation
of particles, but in sharp contrast to the familiar Hawking
radiation of black holes, a net amount of helicity can be
originated from the quantum vacuum. This new aspect of
chiral anomalies could be useful in the search for phe-
nomenology, but this is out of the scope of this paper and
will be left for future studies.
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APPENDIX A: STATIONARY SPACETIMES

In this Appendix we prove that in stationary, asymptoti-
cally flat spacetimes (M, gab) withM ≃ ðt1; t2Þ ×R3 one has

Z
M
d4x

ffiffiffiffiffiffi
−g

p
Rabcd

�Rabcd ¼ 0: ðA1Þ

The argument follows in close analogy to the electromag-
netic case (see Sec. II A).
Given a local orthonormal frame (“vierbein”) feaI g, we

can define the curvature 2-form from the Riemann tensor as
Rab

I
J ¼ Rabc

deIde
c
J. For notational simplicity we will

frequently omit the internal indices I, J of the curvature
2-form and/or work directly with R ¼ 1

2
Rabdxa ∧ dxb. If

the spacetime is stationary there exists a timelike killing
vector ka that leaves the metric invariant along its integral
curves, Lkgab ¼ 0. We construct our tetrad basis feaI g such
that LkeaI ¼ 0 as well. The stationarity condition leads to
LkRabcd ¼ 0. Together with the previous equation it gives
LkRab ¼ 0, or equivalently dikRþ ikdR ¼ 0. For a general
matrix-valued, p-form V we can introduce the covariant
derivative DV ¼ dV þ ω ∧ V − ð−1ÞpV ∧ ω [27], under
which the familiar Bianchi identity ∇a

�Rabcd ¼ 0 is equiv-
alent to DR ¼ dRþ ω ∧ R − R ∧ ω ¼ 0. Using these
equations we can write ikdR ¼ ikð−ω ∧ Rþ R ∧ ωÞ ¼
−ikω ∧ Rþ ω ∧ ikRþ ikR ∧ ωþ R ∧ ikω and dðikRÞ ¼
DðikRÞ − ω ∧ ikR − ikR ∧ ω. Joining both results,

DðikRÞ ¼ ikωR − Rikω: ðA2Þ

For any matrix Λ one has DðDΛÞ ¼ −ΛRþ RΛ, so one
can deduce from the above that ikR ¼ −DðikωÞ,
or kaRab ¼ −∇bikω.
On the other hand, let us use the normalized vector

k̂a ¼ 1
α k

a, with α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
−kaka

p
, to make a 3þ 1 decompo-

sition of the metric, gab ¼ −k̂ak̂b þ hab. This decomposi-
tion allows the simplification

Z
M
d4x

ffiffiffiffiffiffi
−g

p
Rabcd

�Rabcd

¼ Tr
Z
M
d4x

ffiffiffiffiffiffi
−g

p
Rab

�Rab

¼ −4Tr
Z
M
d4x

ffiffiffiffiffiffi
−g

p
k̂aRab

�Rb
ck̂

c; ðA3Þ

7Note that we are neglecting the backreaction of GWs on the
evolution of the inspiral. When this is taken into account, the
radius of the orbit shrinks for any binary merger, and to some
extent this breaks the symmetry under spatial reversals. However,
this process can be considered adiabatic, and its contribution
insignificant.
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where in the last equality we used �Rab ¼ 1
2
ϵabcdRcd to write TrhabhcdRacRbd ¼ −2Trk̂aRabk̂c�Rcb. Doing some

manipulations one gets

TrððDbikωÞα−1k̂c�RcbÞ ¼ ∇bTrðikωα−1k̂c�RcbÞ −∇bðα−1k̂cÞTrð�RcbikωÞ: ðA4Þ
It turns out that the second term is identically zero. To see this expand as

∇bðα−1k̂cÞ ¼ α−1∇bk̂c −
1

α2
k̂c∇bα: ðA5Þ

Since ∇bα ¼ − 1
α k

d∇bkd and ∇akb ¼ −∇bka (ka is a Killing vector field),

∇bðα−1k̂cÞ ¼ α−1
�
∇bk̂c −

1

α
k̂ck̂

d∇dkb

�
¼ 1

α
ð2∇ðbk̂cÞ −Dck̂bÞ; ðA6Þ

where in the last equality we used ka∇aα ¼ 0 (which can be deduced after expanding kaLkka ¼ kagabLkkb ¼ 0),
k̂ak̂b ¼ −gab þ hab, and introduced the spatial covariant derivativeDak̂b ¼ hcahdb∇ck̂d ¼ hca∇ck̂b. The RHS is a symmetric
tensor, so when contracting with �Rcb in (A4) the result will be zero.
We end up with the integral of a total derivative, which can be solved using Stokes theorem. Let us work in coordinates

ft; r; θ;ϕg, where t is the time measured by static observers at spatial infinity: k → ∂
∂t as r → ∞. Then

Z
M
d4x

ffiffiffiffiffiffi
−g

p
Rabcd

�Rabcd ¼ lim
r→∞

Z
t2

t1

dt
Z

dS2r2Trðikωk̂c�Rcd∇drÞ ðA7Þ

(notice that for asymptotically flat spacetimes α → 1 as r → ∞). Using LkeaI ¼ ½k; eI�a ¼ 0 one can further deduce that
ðikωÞIJ ¼ eaI e

b
J∇akb so

Z
M
d4x

ffiffiffiffiffiffi
−g

p
Rabcd

�Rabcd ¼ lim
r→∞

Z
t2

t1

dt
Z

dS2r2∇akb�Rabcdkc∇dr: ðA8Þ

At spatial infinity we have ∇akb ¼ ∇a∇bt ¼ 0 so
∇akb ∼Oðr−1Þ. Assuming standard falloff conditions at
spatial infinity for the Weyl tensor [44], Cabcd ∼Oðr−3Þ,
we finally see that

Z
M
d4x

ffiffiffiffiffiffi
−g

p
Rabcd

�Rabcd ¼ 0: ðA9Þ

APPENDIX B: ASYMPTOTIC MINKOWSKIAN
SPACETIMES

We summarize here the basic points of [31–33] that are
needed to follow the calculation in the main text.
A spacetime ðM̂; ĝabÞ is called asymptotically flat at null

infinity if there exists a manifold M with boundary I
endowed with a metric tensor gab, and a diffeomorphism
from M̂ ontoM − I (with which we identify M̂ andM − I)
that satisfies the following:
(a) (a) there exists a smooth function Ω on M with gab ¼

Ω2ĝab on M̂; with Ω ¼ 0 on I; and with na ≔ ∇aΩ as
nonvanishing at I.

(b) I is homeomorphic to S2 × R.
(c) g̃ab satisfies Einstein’s equations R̂ab − 1

2
R̂ĝab ¼

8πGT̂ab, and Ω−2T̂ab has a smooth limit to I.

One refers to ðM̂; ĝabÞ as the physical spacetime, and to
ðM; gabÞ as the unphysical one, or the conformal comple-
tion of ðM̂; ĝabÞ. Using the known conformal transforma-
tion rules for the Ricci tensor and scalar curvature, it is easy
to find that these conditions imply nana ¼ 0 on I. Thus, I is
a three-dimensional null hypersurface in M.
Notice that within this definition there is freedom to

perform conformal rescalings: if Ω is an allowed conformal
factor for a physical spacetime ðM̂; ĝabÞ, so is Ω0 ¼ ωΩ,
where ω is a smooth function on M and nonvanishing at I.
Under this conformal gauge transformation, it is easy to
check that gab → ω2gab, na → ω−1na þ ω−2Ω∇aω. Using
this freedom, it is always possible to consider a conformal
completion so that ∇ana ¼ 0 on I. This gauge fixing will be
preserved under conformal gauge transformations as long as
we restrict consideration to functions ω that satisfy
na∇aω ¼ Lnω ¼ 0 on I. This gauge-fixing condition,
together with property (c) above and the formula for the
Ricci tensor under conformal transformations, implies
∇anb ¼ 0 on I, or equivalently ∇anb ¼ ∇ðanbÞ ¼
1
2
Lngab ¼ 0 on I. Furthermore, suppose we have any two

divergence-free conformal frames associated with Ω and Ω0.
Because the relative conformal factor ω obeys Lnω ¼ 0 on
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I, the vector field na is complete if and only if n0a is
complete. An asymptotically flat spacetime is called asymp-
totically Minkowski if I is complete in any divergence-free
conformal frame.
Denote by I a diffeomorphic copy of I, and let ξ∶I → M

the corresponding smoothmap. The pullback, denoted by ξ�,
is defined on all covariant tensor fields inM in a natural way.
It can also be extended to those contravariant tensor fields
such that their contraction of each of their indices with na
gives zero at I. Set na ≔ ξ�ðnaÞ, g

ab
≔ ξ�ðgabÞ, and

ω ≔ ξ�ðωÞ. It follows from the discussion above that I is
endowed with the following universal structure. It is
homeomorphic to S2 ×R, and equipped with pairs of fields
ðg

ab
; ncÞ such that:

(i) g
ab

is a degenerate metric of signature 0;þ;þ with
g
ab
nb ¼ 0 and Lngab ¼ 0;

(ii) na is complete; and
(iii) any two pairs ðg

ab
; ncÞ and ðg0

ab
; n0cÞ in the collec-

tion are related by a conformal rescaling Ω → ωΩ as
g0
ab

¼ ω2g
ab
, n0a ¼ ω−1na, with Lnω ¼ 0.8

This collection exists in any asymptotically
Minkowskian spacetime, and thereby receives the name
of universal structure. A choice of one element ðg

ab
; ncÞ of

the collection fðg
ab
; ncÞigi∈I will be called a choice of

conformal frame. Note that, since 2-spheres carry a unique
conformal structure, every g

ab
in this collection is con-

formal to a unit 2-sphere metric. Because of this, it is
sometimes convenient to restrict the remaining conformal
freedom at I (i.e., to fully fix the gauge function ω) by
demanding that the metric qab on these 2-spheres be the
metric of the unit radius 2-sphere. This is always possible,
and this conformal frame is known as the Bondi frame.
The metric in ðM; gabÞ allows the raising and lowering of

indices, introduces an alternating tensor field ϵabcd unique
up to a sign, and leads to a preferred derivative operator ∇a

and its associated curvature tensor Rd
abc. Suppose we are

given a fixed conformal frame. We study now what the
corresponding apparatus is for ðI ; g

ab
; naÞ. This is not a

trivial question since g
ab

is a degenerate metric. In the
following we will define what fields, operations, etc., one
can construct from this conformal frame, and then study
their behavior under a conformal gauge transformation.
First of all, we can lower indices with g

ab
, but we cannot

raise indices a priori since g
ab

is degenerate, and hence it
does not have an inverse. Define a tensor gab by the property
g
am
gmng

nb
¼ g

mn
. This is unique up to the addition of a

tensor of the form vðanbÞ, for any vector field va. We will use
this gab to raise indices whenever the lack of uniqueness

does not lead to an ambiguous result. Next, we introduce an
alternating tensor field ϵabc, up to a sign, by the equation
ϵamnϵbpqg

mp
g
nq

¼ 2nanb and demanding antisymmetry.

Having fixed the sign, we can define uniquely the tensor
ϵabc by ϵabcϵabc ¼ 6 and the condition of antisymmetry. The
above definition implies that ϵabc ¼ ξ�ðϵabcdndÞ, but note
that ϵabc ≠ ϵa

0b0c0g
aa0gbb0gcc0 ¼ ξ�ðϵabcdndÞ ¼ 0. The usual

identities for ϵabc and ϵabc hold.
As commented above, the universal structure of I is

common to every asymptotic Minkowski spacetime. The
S2 ×R differentiable structure together with the collection
of pairs ðg

ab
; ncÞ is called the zeroth order structure of I and

is available in any asymptotic Minkowski spacetime. We
shall describe now higher order geometrical structures that
are not universal and that contain specific physical informa-
tion of the given spacetime. The connection D defined
intrinsically on I in any given conformal completion,
induced by the torsion-free connection ∇ compatible with
gab, will be regarded as the first order structure. As we shall
see, it contains the “radiative information” of the physical
spacetime ðM̃; g̃abÞ, and consequently it changes from one
spacetime to another.
We define the derivative operator in I by Daμb ≔

ξ�ð∇aνbÞ, where μ is any 1-form in I and νa is a 1-form
in M such that μa ¼ ξ�ðνaÞ. This derivative operator is
defined intrinsically in I . Notice that given any μa in I , there
exists many νa in M that satisfies μa ¼ ξ�ðνaÞ. However, it
can be shown that the derivative operator is a well-defined
operation: given two νa and ν0a that leads to μa in I , one
actually has ξ�ð∇aνbÞ ¼ ξ�ð∇aν

0
bÞ. Having seen this, we can

now extend the derivative operator to all tensor fields in the
usual manner. In particular, given that ∇agbc ¼ 0, and
∇anb ¼ 0 on I, we find Dagbc ¼ 0 and Danb ¼ 0 (it is
also not difficult to prove also thatDaϵbcd ¼ 0,Daϵ

bcd ¼ 0).
In otherwords, this derivative operator is compatiblewith the
metric g

ab
. However, it should be remarked that this con-

nection is not uniquely defined because g
ab
is degenerate.We

shall now characterize in physical terms the different allowed
derivative operators.
First of all, we need to know how any derivative operator

changes under a conformal gauge transformation Ω → ωΩ.
For any covector ka, the transformation rule, at points
of I, is

D0
akb ¼ Dakb − 2ω−1kðaDbÞωþ ω−1ð∇mωÞkmgab: ðB1Þ

Notice that, even when ω ¼ 1 so that g
ab

and na are
invariant, Da changes nontrivially as D0

akb ¼ Dakbþ
fðnmkmÞgab, where we introduced ∇aω≕ fna. This shows
that the derivative operator at I is not invariant under
conformal gauge transformations (in analogy to the mag-
netic potential in electrodynamics). Because this residual
transformation of the derivative operator is just pure gauge,
one is motivated to define an equivalence class of

8The result ξ�ðnaÞ ¼ Daξ
�ðΩÞ ¼ 0 implies g

ab
nb ¼ 0. On the

other hand, because the pullback commutes with the Lie
derivative, we automatically inherit Lngab ¼ 0 and Lnω ¼ 0.
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connections fDag, in a given conformal frame ðg
ab
; ncÞ, by

the equivalence relation

Da ∼D0
a iff ðD0

a −DaÞkb ¼ ðfnckcÞgab; ðB2Þ

where f is an arbitrary function on I . Now, given two
connections Da and D0

a belonging to different equivalence
classes, their difference when acting on any covector is
linear, and thus it must be determined by another tensor
Cc
ab: ðDa −D0

aÞkb ¼ Cc
abkc. The torsion-free derivative ∇a

implies that Cab
c ¼ CðabÞc (just take kb ¼ Dbg in the

previous equation for some function g to find
Cab

c ¼ Cba
c). On the other hand, the condition Danb ¼

D0
anb ¼ 0 implies Cc

abn
b ¼ 0, and the metric compatibility

Dagbc ¼ D0
agbc ¼ 0 implies CaðbdgcÞd ¼ 0. Since the only

vector that annihilates the metric is nd, then

ðDa −D0
aÞkb ¼ Σabnckc; ðB3Þ

for some tensor Σab with Σab ¼ ΣðabÞ and Σabnb ¼ 0.
Consequently, due to (B2) the difference fD0

ag − fDag
between the equivalence classes of connections is fully
characterized by the trace-free tensor: σab ≔ Σab−
1
2
Σcdgcdgab. The space of equivalence classes fDag is an

affine space, we can select any fD0
ag as an origin, and then

any other fDag is labeled uniquely by a transverse
(σabnb ¼ 0) trace-free symmetric tensor σab on J þ.
These properties allow one to write σab ¼ σmamb þ c:c:,
for some complex function σ. In physical terms, the two
independent components of σab represent the two radiative
degrees of freedom of the gravitational field in full general
relativity.
We turn now to study the second order structure of an

asymptotically Minkowski spacetime. Let Rabc
d be the

Riemann tensor of the unphysical spacetime, defined by
∇½a∇b�kc ¼ 1

2
Rabc

dkd for any covector kc. The Riemann
tensor can be split into a totally traceless part (theWeyl tensor
Cabc

d) plus a traceful part (the Ricci Rab or, alternatively,
Schouten tensorSab) asRabcd ¼ Cabcd þ ga½cSd�b − gb½cSd�a.
It is a fundamental result [31] that theWeyl tensor vanishes at
I, and consequently all the information about the curvature of
Iwill be determined bySab. On theother hand, let us introduce
the combination Lb

a ≔ R̂b
a − 1

6
R̂δab and Lab ¼ gacLc

b, where
R̂b
a and R̂ denote the Ricci tensor and scalar curvature of the

unphysical spacetime. From the standard formula for the
behavior of the Ricci tensor under conformal transforma-
tions, and using property (c) above, one can find9

ΩSab þ 2∇anb − Ω−1ncncgab ¼ Ω−1Lab ¼ OðΩ3Þ: ðB4Þ

From this equation one deduces that, at points of I,
2∇anb ¼ 2∇ðanbÞ ¼ Lngab ¼ Ω−1ncncgab. But remember
thatLngab ¼ 0 at points of I, so f ≔ Ω−1ncnc ¼ 0 at points
of I, too. Now, contracting the above equation with nb and
rearranging terms, one arrives at

Sabnb þ∇af ¼ OðΩ2Þ: ðB5Þ
Sincef vanishes at I, it serves to define this hypersurface, and
so its gradient must be transverse to it. Since the only
transverse covector to I isna, we necessarily have∇af ∝ na.
Then, Sbanb ∝ na and vanishes at I. This means that the
pullback is well-defined on the tensor Sba, so we define Sba ≔
ξ�ðSbaÞ and also Sab ≔ g

ac
Scb. Notice the properties Sabn

b ¼
0 and Sab ¼ SðabÞ. There is one further property of Sab that is
important to keep in mind. By taking the pullback of the
Riemann tensor, and recalling thevanishing ofCabcd at I, one
gets

Rabc
d ¼ g

c½aS
d
b� þ Sc½aδdb�: ðB6Þ

If we defineRabcd ≔ Rabc
eg

de
, then the contraction of any of

its indices with na is zero. The corresponding Ricci tensor
Rab ≔ gcdRabcd and scalar curvature R ≔ gcdRcd are thus
unambiguous. Since Rabcd lives in the two dimensions
orthogonal to na, it can be reconstructed from its scalar
curvature alone, Rabcd ¼ Rg

a½cgd�b. Combining this with

(B6), one finally gets gabSab ¼ R.
The tensor Sab carries information of major importance

about gravitational radiation in the given spacetime, but there
is still a small complication. If we change the conformal
frame, this tensor transforms in a complicated way:

S0ab ¼ Sab − 2ω−1DaDbωþ 4ω−2DaωDbω

− ω−2ðgmnDmωDnωÞgab: ðB7Þ

Consequently, a portion of this curvature is “gauge” in the
sense that it contains information that is not truly physical.
The goal is to extract information from this curvature tensor
that remains invariant under conformal gauge transforma-
tions. This was successfully done in [31]: given any
conformal frame ðg

ab
; ncÞ, it can be proven that there exists

a unique tensor field ρab on I that fulfills

ρ½ab� ¼0; ρabnb¼0; ρabgab¼R; D½aρb�c¼0; ðB8Þ
and, most importantly, transforms exactly as Sab does under
a conformal gauge reescaling. Therefore, the combination

Nab ≔ Sab − ρab; ðB9Þ

is conformally gauge invariant. Consequently, the role of
ρab is to subtract from Sab the pure gauge-dependent
contribution. In a Bondi conformal frame, in particular,

9The definition of asymptotically Minkowski spacetimes
requires that T̂ab ¼ OðΩ2Þ, and so R̂ab ¼ OðΩ2Þ. Then
Lab ¼ gbcLc

a ¼ OðΩ4Þ.
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one has ρab ¼ 1
2
g
ab
R. Nab is referred to as the Bondi news

tensor and is regarded as the second order structure at J . It
satisfies

N½ab� ¼ 0; Nabnb ¼ 0; Nabgab ¼ 0: ðB10Þ

This is all the physical information we can extract from
Sab. Nevertheless, the full information of the curvature of
fDag is actually contained in Sab, and not in Sab (notice that
since g

ab
is not invertible it is not possible to reconstruct Sab

from Sab). This information is encoded in what we shall call
the third (and last) geometric asymptotic structure, which
can be worked out from the Weyl tensor. Since the Weyl
tensor vanishes at I, the tensor Ω−1Cabcd is smooth up to
and including I. If we define

Kab ≔ ϵamnϵbpqξ�ðΩ−1CmnpqÞ; ðB11Þ
�Kab ≔ ϵamnϵbpqξ�ðΩ−1�CmnpqÞ; ðB12Þ

then we immediately see that they are symmetric and that
Kabg

ab
¼ �Kabg

ab
¼ 0. Taking the curl of (B4), using the

definition of Riemann tensor, expressing it in terms of the
Weyl tensor, and doing some manipulations, it is possible
to show that D½aScb� ¼ 1

4
ϵamn

�Kmc, which automatically

leads to

D½aNb�c ¼
1

4
ϵamn

�Kmng
nc
; ðB13Þ

or, equivalently, �Kab ¼ 2ϵpqaDpNb
q. Furthermore, a

straightforward calculation shows that �Kab remains invari-
ant under conformal gauge transformations with ω ¼ 1, so
it is a physically meaningful quantity. Because �Kab

involves derivatives of Sba, it is called the third order
structure at I.
If �Kab ¼ 0, then Nab ¼ 0, and the associated equiv-

alence class fDag of connections is said to be trivial. In this
case, the physical spacetime ðM̂; ĝabÞ does not contain
gravitational radiation. In particular, every stationary,
asymptotically flat spacetime produces a trivial connection
on I. Conversely, if Nab ¼ 0 (i.e., no gravitational waves),
it can be shown that the spacetime is stationary [45].

APPENDIX C: SPIN-COEFFICIENT FORMALISM
AND ASYMPTOTIC BEHAVIOR

Let ðM; gabÞ be a spacetime and fla; na; ma; m̄ag a
Newman-Penrose basis, i.e., a null tetrad satisfying
nala ¼ 1, mam̄a ¼ −1, and zero otherwise.10 If we intro-
duce the notation ea1 ¼ la, ea2 ¼ na, ea3 ¼ ma, ea4 ¼ m̄a,
then this basis of null vectors satisfies gab ¼ ηijeiae

j
b with

η12 ¼ η21 ¼ 1, η34 ¼ η43 ¼ −1. Internal indices (i; j;…)
are raised and lowered with ηij, while spacetime indices
(a; b;…) are raised and lowered with gab.
Given this tetrad we can introduce the connection 1-form

by γc
b
a ≔ −eic∇aebi , which satisfies γabc ¼ −γbac. In this

basis there are 12 independent (complex) components of
the connection 1-form, which are called spin coefficients.
They are designated by

κ ¼ γ311 ¼ −malb∇bla; ρ ¼ γ314 ¼ −mam̄b∇bla; ϵ ¼ 1

2
ðγ211 þ γ341Þ ¼ −

1

2
ðnalb∇bla − m̄alb∇bmaÞ;

σ ¼ γ313 ¼ −mamb∇bla; μ ¼ γ243 ¼ m̄amb∇bna; γ ¼ 1

2
ðγ212 þ γ342Þ ¼ −

1

2
ðnanb∇bla − m̄anb∇bmaÞ;

λ ¼ γ244 ¼ m̄am̄b∇bna; τ ¼ γ312 ¼ −manb∇bla; α ¼ 1

2
ðγ214 þ γ344Þ ¼ −

1

2
ðnam̄b∇bla − m̄am̄b∇bmaÞ;

ν ¼ γ242 ¼ m̄anb∇bna; π ¼ γ241 ¼ m̄alb∇bna; β ¼ 1

2
ðγ213 þ γ343Þ ¼ −

1

2
ðnamb∇bla − m̄amb∇bmaÞ:

Note that γ311 ¼ γ̄411, γ314 ¼ γ̄413, etc. On the other hand,
the Weyl tensor has ten independent components that are
represented in this framework by five complex scalars:

Ψ0 ≔ −C1313 ¼ −Cabcdlamblcmd; ðC1Þ

Ψ1 ≔ −C1213 ¼ −Cabcdlanblcmd; ðC2Þ

Ψ2 ≔ −C1342 ¼ −Cabcdlambm̄cnd; ðC3Þ

Ψ3 ≔ −C1242 ¼ −Cabcdlanbm̄cnd; ðC4Þ
Ψ4 ≔ −C2424 ¼ −Cabcdnam̄bncm̄d: ðC5Þ

The remaining components are determined using the
symmetry properties of the Weyl tensor. In particular, it
is not difficult to show that

10In this Appendix and in the next one we follow the Newman-
Penrose [34] notation. In particular, the metric signature will be
ðþ;−;−;−Þ in order to use the asymptotic expressions for the
spin-coefficients calculated in [46].
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Ψ1 ¼ C1334 ¼ C1231; ðC6Þ

Ψ3 ¼ C2443; ðC7Þ

ReΨ2 ¼
−1
2

C1212 ¼
−1
2
C3434; ðC8Þ

ImΨ2 ¼
1

2i
C1234; ðC9Þ

C1314 ¼ C2324 ¼ C1332 ¼ C1442 ¼ 0: ðC10Þ

In asymptotically flat spacetimes, a preferred coordinate
system and an associated null tetrad can always be
considered. Following Bondi and Sachs, we can always
introduce a foliation of the asymptotic region of M by
outgoing null hypersurfaces fu ¼ constg. Denoting the
corresponding geodesic null normal by la, we can intro-
duce an affine parameter r of la (i.e., l ¼ ∂

∂r so that
la∇ar ¼ 1) such that each null surface u ¼ const is
foliated by a family of (spacelike) 2-spheres
fr ¼ constg. The set fu; r; θ;ϕg is called Bondi-Sachs
coordinates. Let us denote the intrinsic ð−;−Þ metric of
these 2-spheres by qab and the other null normal to each of
these 2-spheres by na, normalized so that gablanb ¼ 1. If
la is normal to the fu ¼ constg hypersurfaces, necessarily
la ¼ gab∇bu, so that la ≔ gablb ¼ ∇au and we can write
n ¼ V ∂

∂u þ U ∂
∂r þ XA ∂

∂XA with V ¼ 1 (na is not simply
given by ∇ar since na is not normal to fr ¼ constg
hypersurfaces in general). Finally, introduce a null complex
vector fieldma and its complex conjugate m̄a such that their
real and imaginary parts are tangential to these 2-spheres,
and they are normalized such that gabmam̄b ¼ −1. Thus, at
each point in the asymptotic region we have a null tetrad
fla; na; ma; m̄ag for which the only nonzero contractions
are l · n ¼ 1 and m · m̄ ¼ −1. In terms of the null tetrad,
the metric takes the form gab ¼ 2nðalbÞ − 2mðam̄bÞ.
The spin-coefficient formalism is particularly useful for

asymptotically flat spacetimes. If the Weyl scalars are
smooth functions on the spacetime manifold, their asymp-
totic behavior as r → ∞, keeping u; θ;ϕ constant, is
determined by the Peeling theorem [36]:

Ψiðu; r; θ;ϕÞ ∼ Ψ0
i ðu; θ;ϕÞ=r5−i; i ¼ 0; 1; 2; 3; 4: ðC11Þ

Furthermore, the asymptotic behavior of the spin coeffi-
cients can be systematically obtained by integrating asymp-
totically a set of equations in the Newman-Penrose
framework that are equivalent to Einstein’s field equations
[46]. The results read

λ ¼ λ0=rþOðr−2Þ; λ0 ¼ _̄σ0; ðC12Þ

μ ¼ μ0=rþOðr−2Þ; μ0 ¼ −1; ðC13Þ

σ ¼ σ0=r2 þOðr−4Þ; σ0 ¼ free data; ðC14Þ

ρ ¼ ρ0=rþ ρ1=r3 þOðr−5Þ; ρ0 ¼ −1;

ρ1 ¼ −jσ0j2; ðC15Þ

κ ¼ 0; ðC16Þ

π ¼ 0; ðC17Þ

ν ¼ ν0 þOðr−1Þ; ν0 ¼ 0; ðC18Þ

τ ¼ ᾱþ β ¼ ðᾱ0 þ β0Þ=rþOðr−2Þ; ðᾱ0 þ β0Þ ¼ 0;

ðC19Þ

and Ψ0
4 ¼ − ̈σ̄0.

The relation with the Bondi News N33 ¼ Nabmamb

introduced in Appendix A can be obtained using (B12)
and the result �Kab ¼ 2ϵpqaDpNb

q. Using the first equation
we get �Kabmamb ¼ 4inambncmdξ�ðΩ−1CabcdÞ ¼ −4iΨ̄0

4;
on the other hand, the second equation yields
�Kabmamb ¼ 2inpDpðNabmambÞ ¼ 2i∂uN33. Combining
both we get _N33 ¼ −2Ψ̄0

4 ¼ 2σ̈0. Furthermore, from the
Bondi mass formula

R
J dudS2jN33j2 < ∞ one infers

N33 → 0 at u → �∞ so N33 ¼ 2_σ0.

APPENDIX D: ALTERNATIVE DERIVATION
USING THE SPIN-COEFFICIENT FORMALISM

In this Appendix we derive the result (51) using the spin-
coefficient formalism and the corresponding asymptotic
behavior summarized in the previous Appendix. Our
starting point is Eq. (42), which in the physical spacetime
(M̂; ĝab) can be rewritten in a similar way (in this Appendix
we only work with the physical spacetime so we will omit
the hat symbol in all associated geometric quantities for
convenience),

Z
M̂
p1ðR̂Þ

¼ − lim
r0→∞

1

8π2

Z
r¼r0

ðKad − K0
adÞn̂eRbc

d
eϵ

abcfn̂f
ffiffiffi
h

p
d3x;

ðD1Þ

where here n̂b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gab∇ar∇br

p ∇br is the normal vector to

fr ¼ r0g hypersurfaces and Kab ¼ Dan̂b the extrinsic
curvature. In terms of the Newman-Penrose basis con-
structed in Appendix C we must have ∇ar ¼ a1na þ a2la.
Given that la∇ar ¼ 1, then ∇ar ¼ na þ a2la; and squar-
ing na ¼ ∇ar − a2la we get a2 ¼ 1

2
grr so that

∇ar ¼ na þ grr

2
la. The asymptotic behavior of grr in

Bondi-Sachs coordinates can be found in [37,38] and is
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given by −grr ¼ 1 − 2M
r þOðr−2Þ. Note that Dan̂b ¼

ha
0

a hb
0

b ∇bnb0 ¼ ha
0

a ∇an̂b and ϵabchn̂hDan̂e ¼ ϵabchn̂h∇an̂e.
We can also take the prefactor of n̂b out of the deriva-
tive operator thanks to the antisymmetry of the Riemann
tensor, ð∇an̂eÞn̂dRbc

de ¼ ∇a½ðgrrÞ−1=2∇er�n̂dRbc
de ¼

ðgrrÞ−1=2∇a½∇er�n̂dRbc
de þ 0. Finally, if we take the fr ¼

r0g surface outside the gravitational sources (we assume
they have spatial compact support), then Rabcd ¼ Cabcd.
Taking into account all this

Z
M̂
p1ðR̂Þ ¼ lim

r0→∞

1

8π2

Z
r¼r0

ffiffiffi
h

p

ðgrrÞ3=2 d
3xCde

bcϵ
abch

�
nh þ

grr

2
lh

��
nd þ

grr

2
ld

�
∇a

�
ne þ

grr

2
le

�
: ðD2Þ

We have ∇aðne þ grr

2
leÞ ¼ −ðγ2ea þ grr

2
γ1eaÞ þ 1

2
le∇agrr. Then, using ϵabcd ¼ 4!il½anbmcm̄d�, we find

−1
8π2

Z
6

ffiffiffi
h

p
d3x

ðgrrÞ3=2
��

C2ebc þ
grr

2
C1ebc

�
i

�
n½ambm̄c� −

grr

2
l½ambm̄c�

��
γe2a þ

grr

2
γe1a

�

− C21bci

�
n½ambm̄c� −

grr

2
l½ambm̄c�

�∇agrr

2

�
: ðD3Þ

We do the calculation term by term:
(A)

C2ebcn½ambm̄c� ¼ 1

3
C2ebc½nam½bm̄c� þmam̄½bnc� þ m̄an½bmc��

¼ 1

3
½naC2e34 þmaC2e42 þ m̄aC2e23� ¼

1

3
½naC2e34 þ 2iImðmaC2e42Þ�; ðD4Þ

(B) same as (A) but changing na → la

C2ebcl½ambm̄c� ¼ 1

3
C2ebc½lam½bm̄c� þmam̄½blc� þ m̄al½bmc��

¼ 1

3
½laC2e34 þmaC2e41 þ m̄aC2e13� ¼

1

3
½laC2e34 þ 2iImðmaC2e41Þ�; ðD5Þ

(C) same as (A) but changing C2.:: → C1.:.

C1ebcn½ambm̄c� ¼ 1

3
C1ebc½nam½bm̄c� þmam̄½bnc� þ m̄an½bmc��

¼ 1

3
½naC1e34 þmaC1e42 þ m̄aC1e23� ¼

1

3
½naC1e34 þ 2iImðmaC1e42Þ�; ðD6Þ

(D) same as (B) but changing C2.:: → C1.:.

C1ebcl½ambm̄c� ¼ 1

3
C1ebc½lam½bm̄c� þmam̄½blc� þ m̄al½bmc��

¼ 1

3
½laC1e34 þmaC1e41 þ m̄aC1e13� ¼

1

3
½laC1e34 þ 2iImðmaC1e41Þ�; ðD7Þ

(E) same as (A) but changing C2e… → C21::.

C21bcn½ambm̄c� ¼ 1

3
½naC2134 þ 2iImðmaC2142Þ� ¼

1

3
½−2inaImΨ2 þ 2iImðmaΨ3Þ�; ðD8Þ
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(F) same as (B) but changing C2e… → C21::.

C21bcl½ambm̄c� ¼ 1

3
½laC2134 þ 2iImðmaC2141Þ� ¼

1

3
½−2ilaImΨ2 − 2iImðmaΨ̄1Þ�: ðD9Þ

We now elaborate in detail each of these terms:
(A)

1

3
½naC2e34 þ 2iImðmaC2e42Þ�

�
γe2a þ

grr

2
γe1a

�

¼ 1

3

�
γe22C2e34 þ 2iImðγe23C2e42Þ þ

grr

2
γe12C2e34 þ grriImðγe13C2e42Þ

�

¼ 1

3

�
2iImðγ322C2334Þ þ 2iImðγ323C2342 þ γ423C2442Þ

þ grr

2
ðγ112C2134 þ 2iImðγ312C2334ÞÞ þ grriImðγ113C2142 þ γ313C2342 þ γ413C2442Þ

�

¼ 1

3
½−2iImðνΨ̄3Þ − 2iImðλ̄Ψ4Þ þ 2iReγImΨ2grr þ igrrImðτ̄Ψ̄3Þ − 2igrrReβImðΨ3Þ þ grriImðσΨ4Þ�; ðD10Þ

(C) similar to (A) changing C2.:: → C1.:.

1

3
½naC1e34 þ 2iImðmaC1e42Þ�

�
γe2a þ

grr

2
γe1a

�

¼ 1

3

�
γe22C1e34 þ 2iImðγe23C1e42Þ þ

grr

2
γe12C1e34 þ grriImðγe13C1e42Þ

�

¼ 1

3
½γ222C1234 þ 2iImðγ322C1334Þ þ 2iImðγ223C1242 þ γ323C1342 þ γ423C1442Þ

þ grr

2
2iImðγ312C1334Þ þ grriImðγ313C1342 þ γ413C1442Þ�

¼ 1

3
½4iReγImΨ2 − 2iImðνΨ1Þ − 4iReβImΨ3 þ 2iImðμΨ2Þ þ igrrImðτ̄Ψ1Þ − igrrImðρ̄Ψ2Þ�; ðD11Þ

(B)

1

3
½laC2e34 þ 2iImðmaC2e41Þ�

�
γe2a þ

grr

2
γe1a

�

¼ 1

3

�
γe21C2e34 þ 2iImðγe23C2e41Þ þ

grr

2
γe11C2e34 þ grriImðγe13C2e41Þ

�

¼ 1

3
½2iImðγ321C2334Þ þ 2iImðγ323C2341 þ γ423C2441Þ

þ grr

2
ðγ111C2134 þ 2iImðγ311C2334ÞÞ þ grriImðγ113C2141 þ γ313C2341 þ γ413C2441Þ�

¼ 1

3
½−2iImðπΨ̄3Þ þ 2iImðμΨ̄2Þ þ 2igrrReϵImΨ2 þ igrrimðκ̄Ψ̄3Þ þ 2igrrReβImðΨ̄1Þ − igrrImðρ̄Ψ̄2Þ�; ðD12Þ

CHIRAL ANOMALIES INDUCED BY GRAVITATIONAL WAVES PHYS. REV. D 104, 065012 (2021)

065012-19



(D)

1

3
½laC1e34 þ 2iImðmaC1e41Þ�

�
γe2a þ

grr

2
γe1a

�

¼ 1

3

�
γe21C1e34 þ 2iImðγe23C1e41Þ þ

grr

2
γe11C1e34 þ grriImðγe13C1e41Þ

�

¼ 1

3
½γ221C1234 þ 2iImðγ321C1334Þ þ 2iImðγ223C1241 þ γ323C1341 þ γ423C1441Þ

þ grr

2
2iImðγ311C1334Þ þ grriImðγ313C1341 þ γ413C1441Þ�

¼ 1

3
½4iReϵImΨ2 − 2iImðπΨ1Þ þ 4iReβImΨ̄1 − 2iImðλ̄Ψ̄0Þ þ igrrImðκ̄Ψ1Þ þ igrrImðσΨ̄0Þ�; ðD13Þ

(E)

1

3
½−2inaImΨ2 þ 2iImðmaΨ3Þ�∇agrr ¼

−2i
3

�
−2M
r2

þOðr−3Þ
�
na∇arImΨ2 ¼

2Mi
3r

½1þOðr−1Þ�grrImΨ2; ðD14Þ

(F)

1

3
½−2inaImΨ2 − 2iImðmaΨ̄1Þ�∇agrr ¼

−2i
3

�
−2M
r2

þOðr−3Þ
�
na∇arImΨ2 ¼

2Mi
3r

½1þOðr−1Þ�grrImΨ2: ðD15Þ

We use now the asymptotic properties of the spin coefficients (see Appendix C) in the limit to future null infinity to
simplify all these quantities. Notice that

ffiffiffi
h

p
∼ r2, so all terms that decay faster than 1=r2 vanish at J þ. On the other hand,

all the spin coefficients decay at least as 1=r, and because all terms above are of the form spin coefficient × Weyl scalar, the
only nonvanishing contributions are those that involve Ψ4 ¼ Oð1rÞ. Among all of them, we have to take the one whose spin
coefficient only decays as Oð1rÞ, which is λ. Doing this we get

Z
d4x

ffiffiffiffiffiffi
−g

p h∇aja5i ¼ −
ℏ
6

Z
M̂
p1ðR̂Þ ¼

ℏ
12π2

Z
J þ

dudS2Imðσ̈0 _̄σ0Þ: ðD16Þ

Recalling that N33 ¼ 2_σ0 (see Appendix C), we recover Eq. (51).
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