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We extend the classic results of the paper [P. C. W. Davies, S. A. Fulling, and W. G. Unruh, Phys. Rev. D
13, 2720 (1976).] “Energy-momentum tensor near an evaporating black hole” by considering a massive
scalar field in a two dimensions in the presence of a thin shell collapse. We show that outside the shell the
WKB approximation is valid for any value of rif mr, > 1, where m is the mass of the field, and r, is the
Schwarzschild radius. Thus, we use semiclassical modes to calculate the flux in the vicinity of the shell, and
at spatial infinity, » — +oo at the final stage of the collapse, t — +oo with the use of the covariant point-
splitting regularization. We get that near the shell and at the spatial infinity the radiation is thermal with

Hawking temperature. We obtain the negative flux 7

classic result in the massless case.
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I. INTRODUCTION

In this paper we extend the classic results of P.C. W.
Davies, S. A. Fulling, and W. G. Unruh [1] to the case of the
massive scalar field theory on the background of a
collapsing thin shell in two dimensions. The background
is described in details in [2,3] but we briefly review the
main points in the Sec. II for completeness of the paper. Our
goal is to calculate the expectation value of the stress-
energy tensor at the final stage of the thin shell collapse
using the covariant point-splitting regularization [4—10].

In this classic paper [1], the authors calculate the
expectation value, T,,, of the stress-energy tensor for
the massless scalar field in the two-dimensional model
of the gravitational collapse. In two dimensions, there is a
problem that Hawking radiation is incompatible with the
conserved and traceless T,. Depending on the scheme of
regularization they got either conserved or traceless stress
energy tensor. From the physical point of view we need to
demand the conservation of stress energy tensor in order to
generalize these results to four dimensions. It supports the
picture of the black hole evaporation in which pairs of
particles are created outside the horizon (and not entirely in
the collapsing matter), one of which carries negative energy
toward the future horizon of the black hole, while the other
contributes to the thermal flux at infinity:
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in the vicinity of the shell, which is similar to the

{T%:_er;’ T =0, Br=Ty (1.1)

TUL' — 0, Tuu = 1

1927272 ° as r — ©o0.
g

Such T, will lead to the evaporation of the horizon during
the Hawking radiation during the thin shell collapse.
However, massive theory in 2D is not conformally invariant
and the method of [1] could not be used in this case. The
goal of this paper is to fill in this gap.

We calculate the expectation value of the stress energy
tensor in the same background, discussed above, for the
massive case. Unfortunately, the model is not solvable
exactly. However, we show that in the limit of the heavy
fields, mr, > 1, where m is the mass of the scalar field, and
ry is the Schwarzschild radius, we can find modes outside
the shell for all values of r with the use of the WKB
method. Then, we calculate the expectation value of the
stress energy tensor 7, using the same covariant point-
splitting regularization and WKB modes in the vicinity of
the shell and at spatial infinity as ¢ - +o0.

The paper is organized as follows. In Sec. II we briefly
discuss the geometry of the thin shell collapse and the
behavior of the massive scalar field in such a background.
In the limit mr, > 1, we can find modes outside the shell
for any value of r using the WKB method.

In Sec. III A we find in-harmonics—modes that diago-
nalize the free hamiltonian before the start of the collapse,
when the shell is stationary, hence providing a sensible
definition of the in ground state. The state with respect to
which the flux is found is defined in terms of these modes.
In Sec. III B we find the behavior of in-harmonics at the
final stage of the thin shell collapse (for more details,
see [3]).

Published by the American Physical Society
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In Sec. IVA we obtain covariantly conserved stress
energy tensor for the massive theory at the final stage of
the collapse at the spatial infinity (¢, r, — oo, such that
|t — r.| < o), using the covariant point-splitting regulari-
zation. We obtain thermal behavior for the T,  component.
In Sec. IV B we discuss the results of the calculation of
covariantly conserved stress energy tensor for a massive
scalar field in the vicinity of the shell and compare it with
results of the paper [1]. Near the shell we obtain the same
thermal radiation as at spatial infinity. Even though we get
the same thermal flux 7, =T,, —T,, near the horizon
and at spatial infinity, still the components 7', and T, are
different: at infinity we find out going flux, while near the
horizon there is a negative ingoing flux.

We discuss the results and the future steps in the Sec. V.
To make the paper self-contained the details of calculations
are present in the Appendix A—C.

II. THE BACKGROUND GEOMETRY
AND WKB APPROACH

The two-dimensional metric, which we use as the
background for the massive scalar field theory has the
following form

, { dr: — dr?,
ds® = Iy 2 dr*
(1 — 7)dt - 1

r < R(1),

rs R, Y

Before the collapse, ¢ < 0, the shell is at rest: R(7) = Ry
and 0 < Ry —r, < r,. In this case, the times inside and
outside the shell are related as:

t<0. (2.2)

At the final stage of the collapse, which starts at t = 0, the
shell’s trajectory from the point of view of the outside
observer is

In terms of tortoise coordinates, r, = r +r,log (X —1),
g9

the trajectory has the form:

R.(t) ~ Ry, — t + (ry— Ry) (1 - e‘r‘—g). (2.4)

For the internal observer, given the assumption that
|R(t) — ry| < r, the shell collapses at almost constant
speed ¢, which is defined as

dR(t_)
dt_

R

'Nl, R(t_)~Ry—ct_.

Then the relation between the times outside and inside the
shell during this stage of the collapse process is

Ry—r _t
L)
c

t — o0.

(2.5)

For the details and some further discussions see [2,3].
The theory that we consider on this background is as
follows:

s= [ @idl@07-mpl. 20

Using the exact form of the background metric (2.1), the
action takes the form

R(r)
1 or_ [ [ 0t\?
s=3 [ar [ %] (5) @2 - @2 -]
0

+oo
1 (0,0) ( rg) 2 2 2]
1= [ ar d{——ﬁ—l——-@@)—m¢,
2/ 4) - r

(2.7)

Varying this action we obtain the equations of motions

{ (07 — 02 —m?|¢p =0, r < R(t), 28)

07 =2 + (1 -2)m*p =0, r>R(1). '
with gluing conditions at the shell as follows':

$(R(1) —€) = p(R(1) +¢).  and
] - (1-7) o) 29)
1=2] dt r R(1)+e

'for simplicity we use that ¢(r = 0) = 0, even though it is possible to generalize our calculation to different boundary conditions [2].
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Inside the shell the harmonics are plane waves as follows
from (2.8). Let us analyze the equations of motion outside
the shell. First of all, the term 1 — r(rr”*) can be represented
via the Lambert function as

- W(er/n™) :
w(r) "~ 1+ W(er )

(2.10)

Before the collapse we can represent ¢(r, ) = e~ !¢, (r),
and obtain the following equation for ¢, (r):

r(r;’*)> (2.11)

or in terms of dimensionless argument x = =
g

0+ =Vinly 0. Virl=n?(1-

4207 + ()], = 0. (2.12)

where

(2.13)

Because of the form of the potential V(r,) it is
convenient to separate solutions of the Eq. (2.12) in two

. . r . .
regions: the modes with m, /1 — R—f} < w < m, which oscil-

late as r, - —oco and exponentially decay as r, — +o0,
and the modes with m < @ < +o0, which oscillate for any
value of r, (see Fig. 1). If one assumes that 1 < 1, then the
condition of the validity of the WKB approach, i.e.,

r.

R.(1) 0

FIG. 1. The form of the potential V[r,] in (2.11). The limit
r, — —oo corresponds to r — r,. The red line corresponds to the
position of the shell. At the final stage of the collapse process the
shell surface is moving toward infinity: R,(7) - —oo.

1 1 r
2mry [@?/m* — (1 —ry/r)]¥?r?

{1 —r—:’] <1, (2.14)

is fulfilled for any r and @ > m. We discuss the harmonics
with m, /1 —;—-‘; < w < m below.

The above-mentioned statement means that any mode
can be represented as

do' 1 —ie't—i | dxk'(x) 1 —iw’t—}—if” dxk’(x))
woml 1) = Cilw,o e Rox +C(w,0 e Ro. , r>R(1), (2.15
Donltr.) |/ 5o (Gl 00) 0. @13)
where
2 2 2 Ty
= - 1- 2.1
k*(r,) =0 —m ( r(r*)> (2.16)

It is worth to mention that the integration in (2.15) is over both positive and negative @’. The form of (2.15) means that in
general we have some linear combination of the exponents of the form

r*

exp (:I:ia)’t + i/dxk’(x)).

Ro.

For example, before the start of the collapse the situation is stationary, C; (@, @) ~ 6(w — @'), Cr(@, @) ~ §(w — @'). At
the final stage of the collapse, as we show later, such a separation of ¢ and r is not possible because the background depends
on time, and the harmonics have a more complicated form. Using these semiclassical harmonics in the next sections we find
the expectation value of the stress energy tensor near the shell and at spatial infinity, as t - +oo.
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Thus, we get that the harmonics are

;w e—iw_t_<e—ik_r _ eik_r)’
= ; —iw't—i I dxk'
¢w>m %_a;/ <C1 (kal,w)e iw lfRO* XK' (x)
| |>m (r:)

Using gluing conditions (2.9) we can find unknown
coefficients C(w,®’) and Cy(w, @').

III. MODES

The set up of the problem is as follows. We solve Klein
Gordon equation (2.8), with the boundary conditions (2.9)
for any r and any ¢ The solution of this equation is some
complicated function ¢(r, t) for which we cannot separate
the dependence on r and ¢ as ¢, (r)e'! for all times. This is
a very complicated problem.

However, one can find an approximate solution of this
problem in two different phases. First phase, is defined for
t < 0—the shell is at rest. We use the in-harmonics—
modes which diagonilize the free hamiltonian. In this phase
the modes have the form ¢,,(r)e’!. The phase 11 is the late
stage of collapse when R(#) — r, as t — +oo. At this phase
we look for the approximate solution of the in-harmonics at
t — +oo. The form ¢, (r)e’, t <0 is used as initial value
for the second stage.

A. The behavior of in-harmonics before the collapse

In this section we find harmonics before the collapse.
During the first stage, when the shell is stationary, we can
find in-harmonics that diagonalize the free Hamiltonian. As
was mentioned in Sec. II, before collapse the time inside
and outside the shell are related according to (2.2), which
means that the modes inside the shell have the form>

d)m(t’ I") = (1 - rg/RO)_IM\/TT_

e—ia)_t_ (e—ik_r _ eik_r)’

r < Ro, (31)

with w_ =w//1 —1,/Ry and k_ = V@ —m?. From
(3.1) we can see that harmonics are bounded from below:
w>my/l— 1:—1.

As is usual in canonical quantization, we expand the
scalar field in terms of a basis of harmonics
|

\/lzje_iw_t_ (e—ik_r _ eik_r)’
Gosm(t,r) = ik Ry 1 it i axk() _

2k(r,)

2 . — 1
For @ > m the coefficient (1 — r,/Ry)~"/*
‘ 2k

r < R(1),
it [ ek 2.17
n CZ(/?{w;e i Jiy, 4 )>, r> R(1). @17)
[
+o0 i
;b = / _w (¢w&w + H'C')’
2n
m\/l——_r;/_R;
a,. 4] = 278(0 — "), (32)

where o is the quantum number that labels the harmonics,
and plays the role of energy before the collapse. The
harmonics inside the shell satisfy the following commuta-
tion relation:

+o0

[ @0 ) - e
=
=is(r—r)—=is(r+7r), (3.3)

where in addition to the usual delta function appears the
boundary one §(r + r') whose argument is equal to zero
only at the boundary r = ' = 0. Since before the collapse
everything is stationary we look for the solution outside the
shell in the form

C, —iwr—i [:* dxk(x)
— ¢ 0
\/2k(r,)

C2 e—iwt+ier;* dxk(x)'
2k(r.)

wa(t’ r*) =

(3.4)

To find coefficients C| and C, one needs to use the gluing
conditions at R, (2.9). Using that k*(r,) - w* when
r — ry, we have that

Cl — e—ik,RO’
(e .
Finally,
r< Ro,
. 3.6
oik_Ro 1 —iwt+i fRo* dxk(x) . RO, ( )

1 _
reduces to 7y, since Ry—r,<r,.
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For future reference, it is worth to mention that the harmonics outside the shell with r — Ry < r, have the form

! e~ iovtie,/2 _ 1_e—iwu—iwm/27 (3.7)

¢wzm m

with

v=1t+r,,
R
u=t-—r,, and R; = 0

——— > 0. (3.8)
- V - g/ RO
P = 2(wRo. —k_Rg) = 20(Ro, — Ry ),
We will need these expressions when in the next section will look for the in-harmonics outside the shell at the final stage of
the collapse, i.e., as t - +o0.

For completeness, we mention that in the vicinity of the shell with the radius R, there is a discrete spectrum with
my/1—r,/Ry < @ < m, [11]. Harmonics from this part of the spectrum exponentially decay at spatial infinity. We do not
provide the exact form of those harmonics because we do not discuss the expectation value of the stress energy tensor before
the collapse. However, at the final stage of the collapse the harmonics with @ < m play an important role near the shell and
we will discuss them below.

B. In-harmonics during the late-stage of the collapse

The calculation of the in-harmonics as t — 400 in the vicinity of the shell is similar to the one in [3]. Hence, we state here
only the result:

e~lo-1— ¢ _ik_r ik_r
et R(1)
7 (e e, r< ;
Poom & 1 ! —iwv+ip,/2 _ _2i ,—io(BU+A) (3.9)
Nk o2 — e sinw_r,, r>R(t),|R(t) —r,| < r,,
with
U = e—u/2r_,/’
Py = 2a)(R(”§ - Ra),
R*+rg—R
B _ R re, (3.10)
1%
A= R“_r-ig -0,
=7

if c & 1, i.e., the shell is almost lightlike at the late-stage of collapse, the v-dependent part of the modes outside the shell for

r — r, is not affected by the collapse [see Eq. (3.7)]. For convenience, we can reexpand the u-dependent part as
2i . do' 1 ‘
__“t —io(BU+A) _ aw N —iaf
\/Z_a)e i sinw_r, = / o my(w,w}e o (3.11)
|@'|[>m
where
/
Yo, ') = —4ir, |C;))| sin (w_r,) e~ @4 emire oy’ g2irs@' 102 0r (2 r ). (3.12)
Then modes in (3.9) can be written as
1 Tdw 1 Taw 1
~ emiovtin, /2 4 / @ w, e /_a)_ w, - e, 3.13
oom ™= o mr( ) > m?( ) (3.13)
m m

which is valid for r > R(z) and |r — R(1)| < r,, as t — +o0.
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Knowing the modes near the shell (3.13), we can find the WKB modes outside the shell for arbitrary r > R(¢). In fact,
assuming that for r > R(¢) the modes have the WKB form:

+o0 +o0
C —iwt—i [ dxk(x do' s / —iot+i | dxk (x do' s / iw't—i |7 dxk(x

Boon(67) = i it dxk(x) o a(w a))e i [ ik () o P(w a))e o foo, ) (3.14)

/2k(r,) 2 (/2K (r,) 2 (/2K (r,)
where k'(r \/ o' —m?(1 - G )) we find that near the horizon they behaves as

C o do' a(w, @) o do' f(w, @)

N ~ _ —iwv+ioRy, ’ —iw'u—iw' Ry, ’ io u+tio' Ry, . 3.15

1) = omeriert 1 [ S e e (3.13)

Comparing (3.13) and (3.15) we get that
C — e_inO*ei(/)w/z’
a(w, ') = e“Roy(w,a), (3.16)
ﬁ(a),a)’) — e_i(”/RO*]/(a), _a)/)’

with y(w, ') defined in (3.12).

As t — +oo these harmonics behave as:

elPw/? —l(1}1) 400 da' J’ ,w ) —lm u 400 da' 7(o, —(U) io'u
‘/Qw +f 2 2 +f 2 o' € ’ I"—>}’g,

Posm® g (3.17)
evol?  _iwt—ikr, oo da V(@.0) i/ 1+ik'r, +o0 do' V(@0=0') ig)t—ik'r,
V2k ¢ + f 2 2K ¢ + f 2r 2K ¢ » I 00,

where k> = @*> — m?, and at r — 400 we use the behavior of k(r,), depicted in the Fig. 2.

It is worth to mention that we reexpand the harmonics in (3.9) in terms of exponentials for convenience only, which
simplify the calculations of the expectation value of the stress energy tensor, and clearly gives the Hawking radiation as we
show below.

Harmonics (3.17) are defined for w > m. However, near the shell there are harmonics with 0 < w < m which
exponentially decay at spatial infinity, Fig. 3. They play an important role only in the vicinity of the shell, and have no
contribution at spatial infinity.

To find those harmonics we need to perform the following steps. First, near the shell the mass term vanishes, i.e., we need
to glue linear combination of ¢? and e'®* with the solution of equations of motion inside the shell at » = R(¢). Second, we

need to find such a linear combination that decays exponentially as r — +o0, i.e., e~ —Vm’~o’r. These two conditions
complicate the problem of finding the harmonics. We discuss the exact form of the harmonics in the Appendix B. Here we
formulate the results on1y3:

do' 2 .
Dy & / ;y(w ® )\/He"’”’sin (—a'r,), r> R(1), r—r, (3.18)

u<|o'|<m
with
/2] 2,1 —iolr, —iwA . . iz /4
Yo o) = —2zrgﬁe”‘“ ialrylogwr g=io'ry g~ i0AD(=2ie r,) sin (w_r,)e™/*, (3.19)

3Truly speaking we should have the sum over discrete spectrum for @ < m. However, to simplify calculation of the integrals, we
formally replace the sum with the integral over the interval @ < m.
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.

FIG.2. Thisis a graph of k?(r,) as function of r, coordinate. As
could be seen, for r, > 1 the function k*(r,) can be approxi-
mated as a constant w®> — m>. On the other hand, as r, - —co
(which is the same as r — r,) the function k*(r,) takes its
maximum value @?. Finally, we can approximate k>(r,) as the
Heaviside function.

T

1y O
Ortn(w)
FIG. 3. The form of the potential V[r,] in (2.11). The point
r"(w) is the turning point which separates classically allowed
and forbidden regions.

where A = rgz/1— ;—2. The cut off 4 — 0 comes from the

demand of the validity of the WKB approximation, i.e.,

when r — r, this condition is satisfied as long as the

denominator of the equation

1 1 r(zl r
<21 -4 <1, (320
2mr, [aﬂ/m2 -(1- 1"(]/}')]3/2 2 { r} ( )

is not equal to zero.

IV. THE CALCULATION OF THE COVARIANTLY
CONSERVED STRESS ENERGY TENSOR

A. The stress energy tensor as £,r — + oo

In this section we calculate the expectation value of the
stress energy tensor using covariant point-splitting regu-
larization at infinity r — 400 as t - +oco. We perform
calculations for two dimensional metric

ds> = C(u,v)dudv, with C(u,v)=C(u—v)=1-

with u,v as in (3.8). For such a metric we have only two
nonzero Christofel symbols

r<,=a,logC=r,; Iy, =9,logC=T,. (4.2)

The expectation value of the stress energy tensor is
calculated by the expansion of the expression

T (Oatp(x T)0up(x))

5 1 _
x <el-4mevﬂ - zgﬂugdpe;aeﬂﬂ>

F)0pp(x™) + Opp(x

l/_

l\)|>—‘

m2
T 9w

SAOIE) + PPN, (@43)

in powers of €. Here the points x* lie on a geodesic passing
through the point x of interest, each at a proper distance e,

but in opposite directions from x; eM “—are the matrices of
the parallel transport along the geodesic from x to x*. In the
Appendix A we show that the expectation value of the stress
energy tensor for the modes at r - oo and ¢ — 40
[Eq. (3.17)] has the form

T - 4 R n t,t 1
w4 (1) " 24n | Am) |10 29

m? mo
+®W—4 gﬂy[log< 7 ) —I—y]

where

0, = =1 C'P0C™ 2 g [ dov g [ (14 )°),

®1I17 = _ﬁcl/zagc_l/z f dw 47m)rj 1 [%(1 _5)2]1
®17u = ®u74‘ = 0’

(4.5)

with 6> = C(u, v)(u™ —u~)(v" — v~) = 0 being the geo-

desic distance between the points x™ and x~, and y is the
Euler-Mascheroni constant.
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Following [1], we neglect terms of the form 7,7, and get

1 m? mo 1
T, = —Rg,, ——— log( — —— 4.
Hv ®pw +487Z g;w 4 g;w |: Og< 2 ) +7/ 2:| P ( 6)
which is covariantly conserved:
v, " = 0. (4.7)

Finally, the flux at infinity at the final stage of the collapse
has the form

Ttr* = Tuu - Tl/l/

1 [+e ® ® k\?
8 m @ 647"1”5/ -1 |:k < + a)> :|

1+oo 0\ 2
[0 [0
—— | do——— =12
871/ @ o, 1 {k < a)> }
+0o0

B dw 0]
- 207 e47m)r_q -1

m

r,t — +oo.

(4.8)

Even though the results were obtained in the consideration
of heavy scalar field, mr, > 1, still, if we, formally, set
m = 0, we reproduce the result of the paper [1].

The expectation value of the stress energy tensor (4.6)
has the divergent logarithmic term log (em) which neces-
sarily needs to be renormalized. We assume that the
renormalization of (4.6) is the same as in [6] (see also
[12—-16]). Moreover, in this paper the main goal was to find
the flux near the horizon and at spatial infinity which are
not affected by the logarithmic term.

B. The stress energy tensor as { — + o in the
vicinity of the shell

Calculation of the expectation value of the stress energy
tensor in the vicinity of the shell with the harmonics (3.17)
is very similar to the one presented in the previous section
and appendix A. However, there is also contribution from
harmonics (3.18), i.e., from @ < m part of the spectrum. In
the Appendix C we provide details of the calculation, and
here we formulate the result only:

2

m 1
= 0w () 7 =3 (49

T, =06, + >

1
—R
487
with

0, = —p-C2R2C12 +

@/M — _ﬁcl/Zaﬁc—l/Z +fmd_w @

0 27 H7org_1°
Q) —
®1/u - ®M1/' - 07

+00 dw w
0 2 e47ra}rg_1 ’

(4.10)

which is covariantly conserved:

Vv, " = 0. (4.11)
Using that
_LC]/ZaZC—l/Q _ _LCI/ZaZC—l/Q
127 " 127 !
= —19217”3 r—r, (4.12)
and the fact that
7 dw 0] 1
{ﬂe‘l’”‘”y -1 1927zr§’ (4.13)
we obtain
~ wdo__w
(7275 e

When m = 0 we reproduce exactly (1.1). Also, the fact that
T,,=0 as r—r,is in full agreement with the results
of [17].

V. CONCLUSIONS

First, we have found the behavior of the semiclassical
harmonics for the massive scalar field outside the shell as
t — +oo that are given in (3.13) and (3.18). These are the
harmonics which diagonalize the free Hamiltonian before
the collapse.

Second, we find the expectation value of the stress
energy tensor (4.3) with the help of the covariant point
splitting regularization in the vicinity of the shell

T,.~0,
{T rods  © r—r, and t—+oo. (5.1)

~ m  2r e47[(urg_1 )

vv

Similarly to the massless case there is a negative flux near
the shell.

Third, we have found that far away from the shell the
flux is

(5.2)

r,t = +o0.

(1-5?

w ’

~ L [Foo © [® k)2
{ Tuu"’gﬂ m da)e4”””g_1 {k(l +w) ]’
~_L [+ O — (0
Tm) ~8rdm da} etmorg 1 [k
Furthermore, the total flux 7,, =T, — T, is the same in

the vicinity of the shell and at the spatial infinity and is
equal to
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+o0

dw w
T, ~ | s=—p.
* 27zeﬂwry_1

m

(5.3)

It is also interesting to point out that in the paper [3] the flux was calculated in the vicinity of the collapsing shell in four
dimensions. The result had the form

J, ~ [sin0d0dep(T,,) ~1 [ dow,
2
> (5.4)

Ju~ fzsin 9d9d(p<Tuu> ~. /1= rg/RO ;"’-100 %34’""&’}1;_1 _’_% ;oo doo.,
N

where the usual point splitting regularization was
used, since authors were interested in finding the
J2 8in0dOdg(T,, ) only. Even though they received correct
thermal radiation still, with this method of regularization
they did not observe negative vv- flux near the shell. The
latter is seen if one uses the covariant point splitting
method. It is present in the part of the stress energy tensor
which has the form

1

C1/282c—1/2_
127 !

Because we find the explicit form of the harmonics
outside the shell for heavy fields, it will be interesting to
calculate the loop corrections to the stress—energy flux in
self-interacting ¢* model. It is possible that in this model
the perturbative IR corrections grow with time and, if one
considers a long enough period of time they can even
dominate over the tree level contribution, which is true in
the model of massive scalar in the background of collapsing
thin shell in four dimensions, [3]. There is a hope that in 2D
it is possible to do the resummation of all the leading
loop corrections, which was not obtained in four dimen-
sional model.
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APPENDIX A: CALCULATING THE
EXPECTATION VALUE OF THE STRESS
ENERGY TENSOR AT SPATIAL INFINITY

In this section we provide some details of calculations of
T, with the help of the covariant point splitting regulari-
zation (for the detailed discussion of this method see, for
example, [4-10]).

We assume that the separation of points on geodesic is
infinitesimal, which means that we can use the expansion of
the form

1 1
xH(+te) :x":I:et"+§€2a”:|:6€3b”+---. (A1)

We find coefficients a*, b, ...
geodesic equation:

in (Al) by putting x* into

d’x* dx? dx*
i A2
dr? Ydr drt ’ (42)
with the initial conditions:
At
X (7= 0) =, di(f —0) == (7). (A3)
T
The solution has the following form:
{a" o (A4)
bt = -T%, (a1* + t*a*) — FOTY 11,
or explicitly in light-cone coordinates:
at = = (t* 2’
{ %
al’ = —FU(I”)Z,
{ b" = _(tu)ztvavru + (213 - auru)(tu)S’ (AS)
b" = _(tv)%‘uaurﬂ + (2F% - abrv)(t%)3

Next, the matrix of the parallel transport has the form:

det dx?
1_1#07 [ 0’
dr o dr €

(A6)

with the initial condition: €} (7 = 0) = &;. The solution has
the form:

1
e(t)y =& + oty +§Tzaff+'~~ (A7)
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with

t!lf - - %l/tpa
ay = T 010 + T, 1017 = 1°1°9, 1.

As can be seen from the equations above, the matrix ¢, is diagonal.
For completeness, we again write the explicit form of the harmonics as ¢t - o and r — +oo0:

+o0 +oo
1 2
Qo (t,r,) = et/ e-iot—ikr, | /d_a)’y(a)a)’) i ik, | /d_a)’y(a) _w,)eiw’t—ik’r*
e 2k 2r 2K 2n 2K '

m m

where y(, ') is defined in (3.12). A .
The integral over w in the expression for (0,¢(x*)0d,¢(x7)) can first be evaluated as follows

+o0 d
aw A 1"
[ Ser@ayy @.of)
m
e daw &2 (/=" log(awr,)
_ 16}’5 /7|w/|’w//’eﬂry(w/+w//)F(_zia)/rg)r\(ziw//rg)e—irg(a)/_w//) 2_2)6 9 ; [ Sin2<w_rg)
m

/ 1" : / /" 1
= 1672\/|0'||@"|e™" @+ )0 (=2ia'r, )T (2iwr ) e~ s(@=") [S_r 5w — w”)} + regular terms,

g

where one can show that the contribution from “regular terms” are negligible as t - +oco. In all, we find that:

+o0 +o0

A~ A~ 1 (CU - k)2 S N o 1 (CU + k)2 P S
+ -\ — —iw(rt—1")—ik(rf —ry) —iw(r =) +ik(rf —ry)
<au¢(x )alt¢(x )> 16ﬂ/ da) 8k e + 1677: dCU k e

+o0
1 ® 1) k)2
t+— | do—f—r-—— || 1 +— + suppressed terms.
871 ey — 1 | k 0]

The integrals in (A11) can be calculated using the table integrals from [18]. Hence, the result is

5 5 R m*] t,t,
Ty = (0,0(x1)0,p(x7))es e, = — [W + g +4—ﬂ] "+ + ©,, + suppressed terms,

where

1 1 i K\ 2

0, ——— g1 /d o Jo RV
T Bl o s

Similarly,

T,, = : + K +m2 bl g

YU 4me (1Y) 24m dr| .17 v
where
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+o0
1 1 w w k\2
@,, = —— C\252c1/2 —/d @ 2K\ Al5
v 127 v +87r @ gnor, Z1 |k 1) (AL5)

Finally, the calculation of 7',, component is very similar. The result has the form:

m2 m
T, ] Al6
= gm{og<2>+7] (Al6)

where y is the Euler—-Mascheroni constant.

APPENDIX B: THE FORM OF HARMONICS WITH 0 <w <m ASr —r,

g
The quasiclassical harmonics with @ < m from (2.11) have the form [19]
k(r* —L_-ivtgip (f’ ) dxk(x +5)., r.<r(w),
Gp = 5 (B1)
D it Sy Bl )\’ > (),
[k (r.)|
with V[r,] = m*(1 - r[rr‘{]), k(r,) = \/@* — V|[r,], and the turning point r"(w) is as follows (see Fig. 3)
) t m @2
w* = V[r"], hence r"(w) = Ty +r,log o (B2)

Now we discuss how to glue the harmonics at the shell. Particularly, we suggest that at the late stage of collapse, i.e.,
t > +oo the behavior of the harmonics inside the shell is the same as one before collapse, with the change

T, Ro—r, —ri‘
t=/l-gt=1t~r=""(l-em):

1

bu(t.r) = me"’w*’*(e”‘mm e~ kR r < R(1), my/1=r,/Ry < ® < +co, (B3)
0

where w_ = ,k(Ry) = (/w? — m? , = . However, in such an approximation there is a problem. As
1 r J/ Ry’ A / Ro

t — +oo outside the shell we have the oscﬂlatlng harmonics with 0 < @ < m when r — r,, while inside the shell [see (B3)]
we have oscillating harmonics only for m./1 —r,/R;, < @ < m. To glue the harmonics at the shell we need to make the

following approximation: k(Ry) = ,/@? — m*(1 — ;—i)) — o which is fair since we assume that Ry ~ r,. In such a way we

can make the oscillating spectrum inside the shell in the region 0 < @ < m. And after such a procedure we can glue the
harmonics on the surface of the shell. In other words we can write the harmonics with @ < m as

—im_1_

—2is—sinw_r, r < R(1),
I~ B4
Po f ‘g’;; y(w, @ )\/Ee"‘”’ sin (—w'r,) r>R(t),|R(t) = r,| < 1y, (B4)
u<|w'|<m

Let us make a few comments about the form of the harmonics outside the shell. First of all, we approximate

/ 2
d — ~1/—sin (— , , B5
sm / x\/ @? \/;sm( r,) r—r, (B5)
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where we assume” that lur.| Z 1 as r, > —oo. Second, the constant 4 — 0 comes from the validity of the WKB approach,
i.e., when r — r, this condition is satisfied as long as the denominator of the equation

1 1 r% Iy
—_ 1 —
2mr, [w?/m?* — (1 — ry/r)]3/2 r?

<1, (B6)

is not equal to zero. Now we are ready to glue the modes (B4) on the surface of the shell, where
Ro—r,

R(t) ~ rg(l —|—r—ge_é) ~rg, and R.(t)~ Ry, —t+ (rg —Ry)(1 - e_i) ~ Ry, — 1

2i A do'’ 1 ) - s
- \/2lw emi0(BeHA) sin w_ry & / %V(w, ') N ﬁe_m (e7 Rou~1) — gl <R“*_t))» (B7)
u<la'|<m
where B = —rgy/1— ;—2, A= -B. Making the Fourier transformation in ¢, we find that
do o1 1 1
f(a), (1)/) = |: / %}’(W, w) %e 1wR0*:| 6(2(0/) - 5}/((1), w/) 2|w/|elw Roka (BS)
u<|aol<m
where

2ir / . . Iy .

f(a), w/) - _ 9 ne'ry i rylogwr, yiw (RO*_ry)e_'mAF(—Zia)/rg) sin (w_rg) (Bg)

V2w

Since in our approximation y < |@’| < m we can drop the term with delta function and in such a way find the Bogoliubov
coefficients:

E \ 2 / / Es ES A .
y(w, o) =20 |f(w, 0 )e™® Ry — —2ir, % 7'y g2 rylog wry p—iw rﬂe_lwAF(—2i(u/l’g) sin (a)_rg). (B10)
a)

APPENDIX C: CALCULATING THE EXPECTATION VALUE OF THE STRESS ENERGY TENSOR
NEAR THE SHELL

As was mentioned before, the calculation of the expectation value of the stress energy tensor in the vicinity of the shell
with the harmonics (3.17) is very similar to the one presented in the previous section and Appendix A. Hence, the result is

+00
IR R m*] t,t,
To>m — / 0y (xT)0upyy(x™)) e ey = — [W + An + E} . + 0O, + suppressed terms, (C1)
where
1 +oo d 5

0, =-—Clpcry (22 T C2
u 127 " + 27 ey — 1 8z ( )

Similarly,

*Without this assumption we can not drop the phase z/4 in (B5), which means that in (C13) we would have z/2 instead of 7. But as
we discuss in the Appendix C the phase for 4 < w < m is irrelevant for T,,. It is also does not contribute neither to 7, nor to T,.
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1 R m?] t,t
To>m _ _ — X +0,, C3
v drc(1,0) | 24w Az e T O (©3)
where
0. — L cirgep_ M (C4)
w127 8x

Now we need to calculate the contribution to the expectation value of the stress energy tensor of the harmonics with
U<w<m

do’ 2
P = / 26; (w, w’)\/;e‘”‘”sm (—a'r,), r> R(1), r—rg (C5)
pu<la'|<m
with y(w, ') defined in (B10):
d / d /! /I - - " d
Tuu _ / i / w ww e~ i uy+io"u_ /—wy(a), Cl)/)]/* (Cl), Cl)”). (C6)
| 2w
u

27 2 2|0’ 2|0”

u<|w'|<m u<|a|<m

Taking the integral over @ and isolating the leading contribution only we get:

d / d /! ,
TO<m / i / w w/ngeanyw |F(—2ia)’rg)|25(a)’ _ a)//)

“” 2n 2z
u<lo'|<m u<la"|<m
~ L LQJ, 0)/2}" e27zryw’ /2” .
20 27 g 2(1)/7‘9(827"” Ty _ e—27m) rg)
u<|w'|<m
2 ” d
m 0} 0]
_/dww+/2ﬂe4mur,]_1~g+/%e4ﬂa)rq_l' (C7)
0
Similarly, one can show that
m
/ 4n'a)rq _ 1 (C8)
0
where £~ exactly cancels unphysical part present in (C2) and (C4). Finally, T,, component near the shell has the form
) m d +o0 d +o0
m w ) 0} )
T,=Ty"+Ty "= ’zg + /2_”64;:@@ -1 - / 207 e4murq — / 4’”‘”(1 — ~0. (C9)
0 0
Similarly,
2 m d “+o00 d ) “+oc0 d
m 0] 0] 0] 0] m w 0]
T, ~— —— | ——— %= | ———— C10
" 8 + / 27 e* % — | / 2w e — 1 8n / 2m 4% — 1 (C10)
0 0 m

Finally, we get that
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T, =0,

+oo do o
LL ~ = 27 Smorg 10 r—r,. (Cl])

T, o~ [Todo__o®
tr, ~ Jm 2x gMrorg

The calculation of 7', near the shell is very similar to the one presented in Appendix A. Using the calculations from the
Appendix, we can find contribution from the modes with @ > m:

1 7 w cos ( i w cos ( o
L R R e e e Rl e T

The main difference is that in the vicinity of the shell we also need to take into the account the harmonics (C5) from the
region w < m. Again, as in Appendix C, after integrating over the variable @, we calculate the contribution of §(@’ — @”) in
(C6) only, since other contributions lead to terms that decay as powers of 1/u. Repeating steps from the previous
appendixes with the harmonics (C5) we obtain

1 - —
E(qb(x*)qb(x )+ p(x)p(x" w<m~11m /

u<|wl<m

do 1

277: 4w1 - 6_4]” — [€2irzlr*+i7r + eia}[u*—u_] + eia)[v'—v‘] + e—Ziwr*—in] (C13)

This expression for 7', should be compared with the Eq. (4.12) in [10]. Following this paper we change fﬂ<‘w‘ I e
is again worth to mention that we cannot find the modes with 0 < @ < p because we cannot solve Eq. (B8). But as we show
below we obtain the right Hadamard term in 7', which justifies our approximation. To calculate integrals, present in (C13),
we use regularization from [10] and make the change @ — @ + is after which we use Jordan’s lemma to calculate integrals.

The results in the limit mr, > 1 and mr, — —co has the form

m
dw 1 1 . . . _ . _ . . 1r

li aw : 2iwr, +in iw[ut—u"] iw[vt—v7] —iwr,—in c=—-——= 14
gg/zﬂqw+jwl_e4mﬂmﬂk +e +e +e ] +cc i, (C14)

Using that when r, — —co the geodesic distance between points x™ and x~ has the form

2 = (1 - r(r:*)> [t — u][o — o] m o fut — u)fot — v, (C15)

and taking the logarithm of (C15) we get that

logo? ~ % +log[u™ —u][vt —0v7). (C16)
g

Finally, using the asymptotic form of cosine integral

+00
lim | dxS2Y — JimCi(z) ~ —y — log z, (C17)
z—0 X z—0

4

+oo dw 1 1
21w g ]

where y is the Euler-Mascheroni constant, and using that the integral is negligibly small in the limit

mr, > 1, we get that

2

T % g Gl =log o +log ([u* = u][v* = v7]) = log (m?u* —u|[v" = v7]) = 27]
m2
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Once again, we want to emphasize the point made in [10]: the phase 7 (in the notations of [10] it is 25,) as w — 0 at (C14) is
very important: only for such a phase it is possible to get the correct singularity for T,,. Indeed, if we formally change

n — 26, in (C14), we obtain:

lim / do 1 !
s—=0 2 4(60 =+ lS) 1-— e_4ﬂry<w+is)

—m

1. Ty
~ 7 sin (260) + %cos (26).

[e2i(ur*+i25m + eiw[u*—u’] +eim[v+—v’] +e—2iwr*—i25m} +ec

(C19)

which gives — ;-log (ma) only for 25, = x. Also, as was mentioned above, we cannot find the exact form of modes with

T

0 < w < u which play a crucial role since they contain 25,. So, in some sense after taking the limit 4 — 0 we solve an
inverse problem: we define such 26, which gives standard UV singularity for 7',
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