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In local scalar quantum field theories at finite temperature correlation functions are known to satisfy
certain nonperturbative constraints, which for two-point functions in particular implies the existence of a
generalization of the standard Källén-Lehmann representation. In this work, we use these constraints in
order to derive a spectral representation for the shear viscosity arising from the thermal asymptotic states,
η0. As an example, we calculate η0 in ϕ4 theory, establishing its leading behavior in the small and large
coupling regimes.
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I. INTRODUCTION

Determining the properties of quantum field theories
(QFTs) at finite temperature is essential for describing
many physical phenomena. While progress has been made,
particularly for systems in or approaching equilibrium, the
full extent to which QFTs are modified by the presence of a
thermal background medium remains largely unknown.
In order to fully understand these effects one ultimately
requires a framework that does not depend on the specific
coupling regime. At zero temperature, a successful such
framework was developed by defining QFTs using a series
of physically motivated axioms [1–3]. The advantage of
this approach is that it allows nonperturbative character-
istics to be derived in a purely analytic manner and has led
to numerous important insights such as the CPT theorem,
collision theory, and the rigorous connection of Minkowski
and Euclidean QFTs. A natural question is whether this
framework can be extended beyond zero temperature. In
Refs. [4–7] the first important steps were taken to

demonstrate that for Hermitian scalar fields this is indeed
possible, but crucially this requires a modification of the
standard axioms.
An essential difference in the formulation of finite

temperature QFT proposed in Refs. [4–7] is the existence
of a thermal equilibrium state jΩβi at temperature T ¼ 1=β.
Unlike the vacuum state j0i at vanishing temperature, the
thermal state jΩβi determines a privileged reference frame,
and hence full Lorentz symmetry cannot exist. This is
reflected in the assumption that the corresponding quantized
fields ϕðxÞ no longer transform covariantly under a unitary
representation of the full Poincaré group. Moreover, while
j0i is a unique Poincaré invariant state, jΩβi constitutes a
thermal superposition, and only remains invariant under the
subgroup of spacetime translations and rotations. Temporal
invariance is implied by the fact that jΩβi is an equilibrium
state, and hence stationary, whereas spatial translational and
rotational invariance is a choice that assumes the thermal
system to be both homogeneous and isotropic [4]. Despite
these differences, there are nevertheless several key assump-
tions that remain unchanged, including the distributional
nature of the fields,1 their locality,2 and the fact that the states
in the theory are constructed by acting with the fields on the
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1ϕðxÞ are defined to be operator-valued (tempered) distribu-
tions, and hence only the smeared fields

R
d4xfðxÞϕðxÞ have

meaning as well-defined operators [1,2].
2Locality requires that the fields commute with one another for

spacelike separations.
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background state, in this case jΩβi. It subsequently
follows that the correlation functions of the fields
hΩβjϕðx1Þ � � �ϕðxnÞjΩβi, the so-called thermal correlation
functions, encode all of the dynamical properties of the QFT,
just like in the vacuum theory [7]. Determining the properties
of these objects is therefore central to understanding the
characteristics of finite temperature QFTs.
At high temperatures, collective relativistic particle

systems display fluidlike behavior, and hence hydrody-
namical quantities such as transport coefficients are impor-
tant observables. A coefficient of particular relevance is
the shear viscosity η, which describes the resistiveness to
sheared flow. Over recent years, a significant theoretical
effort has been dedicated towards calculating η in different
models using a variety of methods. Perturbative calcula-
tions of η have been performed in many instances, includ-
ing in physical theories such as quantum chromodynamics
(QCD) [8–10]. However, even for the simplest scalar
theories difficulties arise due to the appearance of infrared
divergences, which leads to a worsening of the perturbative
convergence [11,12]. In essence, this stems from non-
perturbative corrections due to the interactions with the
background medium. In order to circumvent these issues,
nonperturbative techniques like lattice QFT [13–17],
together with functional methods such as the functional
renormalization group (FRG) and Dyson-Schwinger equa-
tions (DSEs) [18,19], have been applied in order to
calculate η directly. A problem with Euclidean-based
techniques like lattice QFT is that nonunique numerical
inversions must be performed in order to reconstruct η from
the Euclidean data. Although functional methods can in
principle avoid this issue, model dependent information is
still necessary to establish the form of η. In light of these
theoretical difficulties there is clearly a strong motivation to
better understand the analytic structure of η. The goal of
this work will be to use the nonperturbative constraints of
local QFT to provide new insights.
The remainder of this paper is structured as follows: in

Sec. II we outline the general nonperturbative constraints
imposed on thermal correlation functions, in particular the
two-point function of real scalar fields; in Sec. III we use
these constraints to derive a spectral representation for the
shear viscosity arising from the thermal asymptotic states
η0, which in Sec. IV we apply in order to calculate an
explicit expression for η0 in ϕ4 theory. Finally, in Sec. V we
summarize our key findings.

II. THERMAL CORRELATION FUNCTIONS
IN LOCAL QFT

As outlined in Sec. I, in Refs. [4–7] it was demonstrated
that the standard assumptions of zero temperature local
QFT can be adapted in order to describe systems in thermal
equilibrium. It turns out that the conditions of locality,
translational invariance, and thermal equilibrium impose
particularly significant analytic constraints. In this section

we will analyze the consequences of these constraints for
the structure of the thermal correlation functions.

A. General constraints

Since the quantized fields ϕðxÞ are defined to be
operator-valued (tempered) distributions, it immediately
follows that the thermal correlation functions
hΩβjϕðx1Þ � � �ϕðxnÞjΩβi are distributions, just like at van-
ishing temperature. For a real scalar theory to be local this
requires that ½ϕðxÞ;ϕðyÞ� ¼ 0 for ðx − yÞ2 < 0. Because
locality is an operator identity it must hold for all states, and
is therefore independent of the representation of the system.
This implies that the corresponding constraints on the
thermal correlation functions are identical to those in the
vacuum theory. In particular, it follows that

hΩβjϕðx1Þ � � �ϕðxkÞϕðxkþ1Þ � � �ϕðxnÞjΩβi
¼ hΩβjϕðx1Þ � � �ϕðxkþ1ÞϕðxkÞ � � �ϕðxnÞjΩβi; ð2:1Þ

for ðxk − xkþ1Þ2 < 0. Similarly, due to the assumption that
jΩβi is invariant under spacetime translations and the fields
transform covariantly under the action of this symmetry,
one finds that (∀ a ∈ R4)

hΩβjϕðx1Þϕðx2Þ � � �ϕðxnÞjΩβi
¼ hΩβjϕðx1 þ aÞϕðx2 þ aÞ � � �ϕðxn þ aÞjΩβi: ð2:2Þ

So far, the correlation function constraints are identical to
those in the vacuum theory, except that jΩβi is no longer
invariant under Lorentz symmetry. The fundamental
differences arise from the fact that jΩβi is an equilibrium
state. The physical requirement of thermal equilibrium
is captured via the Kubo-Martin-Schwinger (KMS)
condition [20]:

hΩβjϕðx1Þ � � �ϕðxkÞϕðxkþ1Þ � � �ϕðxnÞjΩβi
¼ hΩβjϕðxkþ1Þ � � �ϕðxnÞϕðx1 þ iðβ; 0⃗ÞÞ � � �
× ϕðxk þ iðβ; 0⃗ÞÞjΩβi; ð2:3Þ

which holds ∀ k ∈ f1;…; n − 1g and all thermal n-point
functions.3 It was further established in Ref. [6] that
the condition in Eq. (2.3) can be extended in a
Lorentz covariant manner, and doing so enables the
constraint of thermal equilibrium to be defined for arbitrary
observers. This is referred to as the relativistic KMS

3More concretely, the KMS condition implies that
hΩβjϕðxkþ1Þ � � �ϕðxnÞϕðx1 þ zÞ � � �ϕðxk þ zÞjΩβi defines an
analytic continuation of the thermal n-point function in the
variable z ∈ C4, which is holomorphic in the region
0 < Imz0 < β, and has boundary values hΩβjϕðxkþ1Þ � � �ϕðxnÞ×
ϕðx1Þ � � �ϕðxkÞjΩβi and hΩβjϕðx1Þ � � �ϕðxnÞjΩβi at the two end
points, respectively.
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condition4 [6]. Throughout the remainder of this work we
will take the KMS condition to mean the full relativistic
constraint.
The thermal two-point functions are of particular impor-

tance for understanding the analytic structure of the shear
viscosity. In the next section we will outline the constraints
imposed on these objects due to the nonperturbative
conditions in Eqs. (2.1)–(2.3).

B. The thermal two-point function

In the particular case of the thermal two-point function
hΩβjϕðxÞϕðyÞjΩβi, translational invariance [Eq. (2.2)]
implies that the correlation function depends only on the
variable x − y, and hence one can define Wβðx − yÞ ¼
hΩβjϕðxÞϕðyÞjΩβi. If one then takes the Fourier transform
of the KMS condition [Eq. (2.3)] with respect to x − y for
n ¼ 2, it follows that

W̃βðpÞ ¼ eβp0W̃βð−pÞ; ð2:4Þ

which when combined with the definition of the thermal
two-point commutator Cβðx − yÞ ¼ hΩβj½ϕðxÞ;ϕðyÞ�jΩβi
immediately implies the well-known condition

W̃βðpÞ ¼
C̃βðpÞ

1 − e−βp0
: ð2:5Þ

Equation (2.5) demonstrates that similarly to the vacuum
theory, where

W̃vacðpÞ ¼ θðp0ÞC̃vacðpÞ; ð2:6Þ

the thermal two-point function can be uniquely recovered
from the commutator. As one would expect, in the zero
temperature limit (β → ∞), Eq. (2.5) approaches the vacuum
theory constraint in Eq. (2.6), and is therefore only defined
for non-negative energies. In local formulations of QFT this
is referred to as the “spectral condition” [1,2]. For non-
vanishing temperatures, Eq. (2.5) implies that W̃βðpÞ can in
general have contributions for p0 < 0, but that these will
decay exponentially for large values of jp0j. From a physical
perspective, this reflects the possibility of extracting energy
from the background medium, which is thermodynamically
suppressed as the temperature decreases [7].
The conditions outlined so far in this section are well-

known features of finite temperature QFT, and have been
instrumental in forming the conventional treatment of this
subject [21,22]. In particular, these conditions highlight the
important role of the thermal commutator C̃βðpÞ, or

spectral function as it is commonly known, in determining
the characteristics of these theories. In Ref. [4] it was
first pointed out that locality actually imposes significant
additional constraints on the structure of C̃βðpÞ. Since
locality requires that the position space commutator must
vanish at spacelike points, this implies that the momentum
space commutator can be written in the following general
manner [4]:

C̃βðp0; p⃗Þ ¼
Z

∞

0

ds
Z

d3u⃗
ð2πÞ2 ϵðp0Þ

× δðp2
0 − ðp⃗ − u⃗Þ2 − sÞD̃βðu⃗; sÞ; ð2:7Þ

where ϵðp0Þ is the sign function. As the temperature
dependence is contained entirely within D̃βðu⃗; sÞ, this
quantity uniquely describes the effects of the thermal
background medium. For vanishing temperature, the
Poincaré covariance of the fields is restored, and jΩβi
approaches the vacuum state j0i. In this limit, one finds that

D̃βðu⃗; sÞ !β→∞ ð2πÞ3δ3ðu⃗ÞρðsÞ; ð2:8Þ

which after substitution into Eq. (2.7) implies

C̃βðp0; p⃗Þ !β→∞
2πϵðp0Þ

Z
∞

0

dsδðp2 − sÞρðsÞ: ð2:9Þ

Since Eq. (2.9) is the standard Källén-Lehmann representa-
tion [23,24], with ρðsÞ the zero temperature spectral density,5

Eq. (2.7) therefore corresponds to the finite temperature
generalization of this representation. With this in mind, we
refer to D̃βðu⃗; sÞ throughout as the “thermal spectral
density.” From Eq. (2.7) one can explicitly see that
C̃βðp0; p⃗Þ is antisymmetric with respect to p0. This follows
from the overall antisymmetry property: C̃βðpÞ¼−C̃βð−pÞ,
due to the definition of the commutator, and the condition:
C̃βðp0; p⃗Þ ¼ C̃βðp0;−p⃗Þ, which is implied by the rotational
invariance of the background state. Because of the p⃗-
reflectional symmetry it follows from Eq. (2.7) that the
thermal spectral density must satisfy

D̃βðu⃗; sÞ ¼ D̃βð−u⃗; sÞ; ð2:10Þ

and hence depends only on ju⃗j. For the remainder of this
paper we will write D̃βðu⃗; sÞ, but understand this to
implicitly depend on the one-dimensional variable ju⃗j.
Despite the fact that Eq. (2.7) imposes significant

constraints on C̃βðpÞ, and hence on the characteristics of
finite temperature QFTs as a whole, this thermal spectral
representation has largely been overlooked in the literature.4This extension implies that hΩβjϕðxkþ1Þ � � �ϕðxnÞϕðx1 þ

zÞ � � �ϕðxk þ zÞjΩβi is holomorphic in the larger region
jImzj < Imz0 < β − jImzj, which reduces to the standard con-
dition for the specific point z ¼ iðβ; 0⃗Þ [5].

5For example, ρðsÞ ¼ δðs −m2Þ in a free scalar theory with
mass m.

SPECTRAL REPRESENTATION OF THE SHEAR VISCOSITY … PHYS. REV. D 104, 065010 (2021)

065010-3



In the next sections we will demonstrate that this repre-
sentation has important implications for the properties of
particles moving within a thermal medium, and in particu-
lar on the structure of the shear viscosity.

III. ANALYTIC STRUCTURE OF THE
SHEAR VISCOSITY

As with any observable in QFT, the behavior of the shear
viscosity is fixed by the correlation functions in the theory.
In this section, we will use the model independent con-
straints outlined in Sec. II to derive a nonperturbative
spectral representation for the shear viscosity arising from
the thermal asymptotic states η0, and discuss the essential
role played by the thermal spectral density and its corre-
sponding analytic properties.
For a local scalar QFT at finite temperature with energy-

momentum tensor Tμν, the shear viscosity η can be
calculated from the Kubo relation [25]

η ¼ 1

20
lim
p0→0

dρππ
dp0

; ð3:1Þ

where ρππðp0Þ ¼ C̃ππðp0; p⃗ ¼ 0Þ, and C̃ππðpÞ ¼ F ½hΩβj
½πijðxÞ; πijðyÞ�jΩβi�ðpÞ, with πij ¼ Tij − 1

3
gijTk

k the spatial
traceless component of the energy-momentum tensor.
Independently of the specific form of the interactions,
πij is given by

πij ¼ ð∂iϕÞð∂jϕÞ − 1

3
gijð∂kϕÞð∂kϕÞ: ð3:2Þ

For the purposes of this study we are interested in
calculating the shear viscosity arising from the thermal
asymptotic states η0, and hence only the contributions of
the thermal correlation functions at asymptotic times play

a role. In Ref. [26], it was demonstrated that in the limit of
asymptotic temporal separations the thermal n-point func-
tions decompose into products of two-point functions. By
applying Eq. (2.5), together with a point-splitting regulari-
zation to make sense of the field products in Eq. (3.2), it
ultimately follows that the contribution of the asymptotic
states to ρππðp0Þ can be expressed in the form

ρππðp0Þ¼ sinh

�
β

2
p0

�Z
d3q⃗
ð2πÞ4

2

3
jq⃗j4

×
Z

∞

−∞
dq0

C̃βðq0;q⃗ÞC̃βðp0−q0;q⃗Þ
sinhðβ

2
q0Þsinhðβ2ðp0−q0ÞÞ

; ð3:3Þ

where C̃β is the thermal (two-point) commutator.
Equation (3.3) coincides in structure with the lowest order
perturbative calculation of ρππ [27], although the repre-
sentation in Eq. (3.3) is nonperturbative. This occurs
because the large-time behavior of the correlation functions
has a quasifree structure, and hence connected components
are suppressed. In analyses of the shear viscosity in the
literature a variety of different methods are adopted in order
to either explicitly calculate, or model the form of C̃β. Once
the dependence of ρππ on C̃β is known, the Kubo relation in
Eq. (3.1) can then be applied. However, in general these
analyses do not take into account the additional constraints
imposed on C̃β and ρππ by locality, namely the thermal
spectral representation in Eq. (2.7). As we will now
demonstrate, applying Eq. (2.7) one can derive a spectral
representation for η0 and, in doing so, explicitly establish
how the model dependence of thermal scalar QFTs affects
the behavior of η0.
After substituting Eq. (2.7) into Eq. (3.3), the q0

convolution takes the form

Z
∞

−∞
dq0

C̃βðq0; q⃗ÞC̃βðp0 − q0; q⃗Þ
sinh ðβ

2
q0Þ sinh ðβ2 ðp0 − q0ÞÞ

¼
Z

∞

0

ds
Z

∞

0

dt
Z

d3u⃗
ð2πÞ22Eu

d3v⃗
ð2πÞ22Ev

D̃βðu⃗; sÞD̃βðv⃗; tÞ
sinh ðβ

2
EuÞ sinh ðβ2EvÞ

× ½δðp0 − Eu − EvÞ þ 2δðp0 − Eu þ EvÞ þ δðp0 þ Eu þ EvÞ�; ð3:4Þ

where Eu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq⃗ − u⃗Þ2 þ s

p
and Ev ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq⃗ − v⃗Þ2 þ t

p
. For simplicity, we calculate the contributions to ρππðp0Þ from each

of the three delta components in Eq. (3.4) separately, defining

ρππðp0Þ ¼ ρð1Þππ ðp0Þ þ ρð2Þππ ðp0Þ þ ρð3Þππ ðp0Þ; ð3:5Þ

where the numbering corresponds to the ordering in Eq. (3.4). Since the thermal spectral density D̃βðu⃗; sÞ depends only
on ju⃗j and s, one can explicitly perform the angular integrals in Eq. (3.4). Doing so for the first delta component, and
applying Eq. (3.3), gives
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ρð1Þππ ðp0Þ ¼
Z

∞

0

ds
Z

∞

0

dt
Z

∞

0

djq⃗j jq⃗j4
48π5β

Z
∞

0

dju⃗j
Z

∞

0

djv⃗jju⃗jjv⃗jD̃βðu⃗; sÞD̃βðv⃗; tÞ

×

�
θðEþ

u þ E−
v − p0Þ ln

�
sinh ðβ

2
ðEþ

u − p0ÞÞ sinh ðβ2 ðE−
v − p0ÞÞ

sinh ðβ
2
Eþ
u Þ sinh ðβ2 E−

v Þ

�

þ θðE−
u þ Eþ

v − p0Þ ln
�
sinh ðβ

2
ðE−

u − p0ÞÞ sinh ðβ2 ðEþ
v − p0ÞÞ

sinh ðβ
2
E−
u Þ sinh ðβ2 Eþ

v Þ

�

− θðEþ
u þ Eþ

v − p0Þ ln
�
sinh ðβ

2
ðEþ

u − p0ÞÞ sinh ðβ2 ðEþ
v − p0ÞÞ

sinh ðβ
2
Eþ
u Þ sinh ðβ2 Eþ

v Þ

�

− θðE−
u þ E−

v − p0Þ ln
�
sinh ðβ

2
ðE−

u − p0ÞÞ sinh ðβ2 ðE−
v − p0ÞÞ

sinh ðβ
2
E−
u Þ sinh ðβ2 E−

v Þ

��
; ð3:6Þ

where the energy-dependent parameters E�
u and E�

v are defined:

E�
u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjq⃗j � ju⃗jÞ2 þ s

q
; E�

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjq⃗j � jv⃗jÞ2 þ t

q
: ð3:7Þ

Performing an analogous calculation for the second delta component, one finds

ρð2Þππ ðp0Þ ¼
Z

∞

0

ds
Z

∞

0

dt
Z

∞

0

djq⃗j jq⃗j4
24π5β

Z
∞

0

dju⃗j
Z

∞

0

djv⃗jju⃗jjv⃗jD̃βðu⃗; sÞD̃βðv⃗; tÞ

×

�
θðEþ

u − E−
v − p0Þ ln

�
sinh ðβ

2
ðEþ

u − p0ÞÞ sinh ðβ2 ðE−
v þ p0ÞÞ

sinh ðβ
2
Eþ
u Þ sinh ðβ2 E−

v Þ

�

þ θðE−
u − Eþ

v − p0Þ ln
�
sinh ðβ

2
ðE−

u − p0ÞÞ sinh ðβ2 ðEþ
v þ p0ÞÞ

sinh ðβ
2
E−
u Þ sinh ðβ2 Eþ

v Þ

�

− θðEþ
u − Eþ

v − p0Þ ln
�
sinh ðβ

2
ðEþ

u − p0ÞÞ sinh ðβ2 ðEþ
v þ p0ÞÞ

sinh ðβ
2
Eþ
u Þ sinh ðβ2 Eþ

v Þ

�

− θðE−
u − E−

v − p0Þ ln
�
sinh ðβ

2
ðE−

u − p0ÞÞ sinh ðβ2 ðE−
v þ p0ÞÞ

sinh ðβ
2
E−
u Þ sinh ðβ2 E−

v Þ

��
: ð3:8Þ

For the final contribution ρð3Þππ ðp0Þ, one can see from

Eq. (3.4) that this can in fact be related to ρð1Þππ ðp0Þ via
the interchange p0 → −p0, and in particular:

ρð3Þππ ðp0Þ ¼ −ρð1Þππ ð−p0Þ: ð3:9Þ

Moreover, due to Eqs. (3.3) and (3.4) it follows that

ρð2Þππ ðp0Þ is antisymmetric in p0, which when combined
with Eq. (3.9) implies ρππðp0Þ ¼ −ρππð−p0Þ, as expected.
An important characteristic of this representation is that

general support properties of the components ρðiÞππðp0Þ can
be inferred from the delta terms appearing in Eq. (3.4). In
particular, since Eq. (2.7) implies that D̃βðu⃗; sÞ is defined
somewhere in the region 0 ≤ s < ∞, if follows that
D̃βðu⃗; sÞ has support for s ≥ ν, where ν is some non-
negative value. In the case of a massive theory,

ffiffiffi
ν

p
is simply

the mass gap m. By requiring that the arguments of the
delta terms in Eq. (3.4) are nonvanishing, it therefore

follows that ρð1Þππ ðp0Þ, ρð2Þππ ðp0Þ, and ρð3Þππ ðp0Þ are defined,
respectively, in the following regions:

2
ffiffiffi
ν

p
≤p0<∞; −∞<p0<∞; −∞<p0<−2

ffiffiffi
ν

p
:

ð3:10Þ

To our knowledge, these analytic properties of ρππðp0Þ,
in particular the representations in Eqs. (3.6) and (3.8),
are novel.
Now that we have explicit expressions for the compo-

nents of ρππðp0Þ, one can apply the Kubo relation in order
to derive a spectral representation for η0. In light of the

support properties of ρðiÞππðp0Þ in Eq. (3.10), if D̃βðu⃗; sÞ is
defined such that ν > 0, then Eq. (3.1) implies that only the
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component ρð2Þππ ðp0Þ will provide a nonvanishing contribution to η0. Under this assumption, after differentiating Eq. (3.8),
shifting variables, and then taking the limit p0 → 0 under the integral sign,6 the shear viscosity arising from the thermal
asymptotic states takes the form

η0 ¼
Z

∞

0

ds
Z

∞

0

dt
Z

∞

0

dju⃗j
Z

∞

0

djv⃗j ju⃗jjv⃗j
480π5

D̃βðu⃗; sÞD̃βðv⃗; tÞ
Z

∞

0

djq⃗j 1

eβ
ffiffiffiffiffiffiffiffiffi
jq⃗j2þt

p
− 1

×
h
ðjq⃗j þ jv⃗jÞ4

n
ϵ
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ ðjq⃗j þ jv⃗j þ ju⃗jÞ2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ jq⃗j2

q 

− ϵ

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ ðjq⃗j þ jv⃗j − ju⃗jÞ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ jq⃗j2

q 
o
− ðjq⃗j − jv⃗jÞ4

n
ϵ
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ ðjq⃗j − jv⃗j þ ju⃗jÞ2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ jq⃗j2

q 

− ϵ

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ ðjq⃗j − jv⃗j − ju⃗jÞ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ jq⃗j2

q 
oi
: ð3:11Þ

In the jq⃗j integrand there appears an explicit factor of the Bose-Einstein distribution

nðωq⃗Þ ¼
1

eβωq⃗ − 1
; ð3:12Þ

with ωq⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq⃗j2 þ t

p
. One can make the parameter dependence of Eq. (3.11) manifest by rewriting this expression in terms

of the following class of positive-valued integrals:

INðR; a; bÞ ¼
Z

b

0

dq̂ðq̂ − aÞNnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2 þ R2

q
Þ; ð3:13Þ

where the variables fR; a; bg and q̂ ¼ jq⃗j=T are dimensionless. INðR; a; bÞ are proportional to the jq⃗j moments of the
Bose-Einstein distribution of a particle with mass RT about the point aT, in the interval ½0; bT�. After combining the various
contributions from the sign functions in Eq. (3.11), and applying the definition in Eq. (3.13), one ultimately finds

η0 ¼
T5

240π5

Z
∞

0

ds
Z

∞

0

dt
Z

∞

0

dju⃗j
Z

∞

0

djv⃗jju⃗jjv⃗jD̃βðu⃗; sÞD̃βðv⃗; tÞ

×

�
4½1þ ϵðju⃗j − jv⃗jÞ�

�jv⃗j
T

I3

� ffiffi
t

p
T

; 0;∞
�
þ jv⃗j3

T3
I1

� ffiffi
t

p
T

; 0;∞
��

þ
�
I4

� ffiffi
t

p
T

;
jv⃗j
T

;
s − tþ ðju⃗j þ jv⃗jÞ2

2ðju⃗j þ jv⃗jÞT
�
þ ϵðju⃗j − jv⃗jÞI4

� ffiffi
t

p
T

;
jv⃗j
T

;
s − tþ ðjv⃗j − ju⃗jÞ2

2ðjv⃗j − ju⃗jÞT
���

: ð3:14Þ

Equation (3.14) explicitly demonstrates that the model
dependence of η0 factorizes and is completely determined
by the form of the thermal spectral density D̃β. Since the
integral kernel function in square brackets is fixed, one can
use the properties of this function to establish general
constraints on η0. In particular, in the Appendix we prove
the following result:

If theKMScondition holds ⇒ η0 is finite ð3:15Þ

Therefore, if a system exists in a state of thermal equilibrium,
this is sufficient to guarantee that η0 is a meaningful
observable. In the next section we will use Eq. (3.14) in
order to calculate the explicit form of η0 in specific examples,
and discuss the implications of the condition in Eq. (3.15).

IV. SHEAR VISCOSITY OF THERMAL
SCALAR PARTICLES

A. Spectral decomposition

The analysis in Secs. II and III demonstrates that the
thermal spectral density plays an essential role in governing
the dynamics of local QFTs at finite temperature, and in
particular the behavior of the shear viscosity. For nonvanish-
ing temperatures, it is expected that the singular structure of
D̃βðu⃗; sÞ in the variable s is preserved relative to the vacuum
theory, and hence the discrete and continuous contributions
can be separated [4]. In particular, this means that if a theory
has a known particle state of massm at zero temperature, then
D̃βðu⃗; sÞ has the following decomposition [26]:

D̃βðu⃗; sÞ ¼ D̃m;βðu⃗Þδðs −m2Þ þ D̃c;βðu⃗; sÞ; ð4:1Þ

where D̃c;βðu⃗; sÞ is continuous in the variable s. This
decomposition provides a natural description for the

6The specific conditions under which the p0 → 0 limit and the
integrals can be swapped is outlined in the Appendix.
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properties of particles in a thermal medium since Eqs. (2.5)
and (2.7) imply that the u⃗-dependent coefficient D̃m;βðu⃗Þ
causes the correlation functions to have contributions outside
of themass shellp2 ¼ m2. In this sense, the restmassm of the
particle state is screened, and D̃m;βðu⃗Þ has the interpretation of
a thermal damping factor, thebehavior ofwhich is fixedby the
underlying dynamics between the particle and the constitu-
ents in the thermal background state.
In Ref. [26], an important finding was made with regard

to damping factors and their connection to the properties of
asymptotic states. The authors proved that if the thermal
spectral density of a real scalar field ϕðxÞ satisfies Eq. (4.1),
then the discrete particle component will dominate the
behavior of correlation functions in the asymptotic tem-
poral limit. Moreover, as discussed in Sec. III, in this limit
they demonstrated that all correlation functions are express-
ible in terms of sums of products of two-point functions,
and in this sense the asymptotic contributions have the
structure of quasifree states. By introducing an asymptotic
scalar field ϕ0ðxÞ satisfying a modified commutator alge-
bra, the authors showed that the universal structure of these
quasifree states can be captured by these fields in a model-
independent manner. By further demanding that ϕ0ðxÞ
satisfies a specific asymptotic field equation, in particular
requiring that the operator

ð∂2 þm2Þϕ0ðxÞ þ
XK
k¼2

gkϕk
0ðxÞ ð4:2Þ

is suppressed in all correlation functions in the asymptotic
limit x0 → �∞ for some choice of (temperature-indepen-
dent) parametersm and gk, this leads to the remarkable result
that the thermal two-point function of ϕ0ðxÞ is uniquely
determined. Since this two-point function coincides with that
of the full interacting field ϕðxÞ for x0 → �∞, and the latter
is dominated by the damping factor in this limit, this
procedure therefore fixes the form of D̃m;βðu⃗Þ in terms of
the parameters m and gk, which correspond to the mass and
coupling strength experienced by the asymptotic states.
Physically this makes sense since these parameters represent
genuine observables, and hence one would expect the full
nonperturbative correlation functions to be parametrized by
them, as one indeed finds in phenomenological approaches
such as the QCD sum rules, where the spectral density is
fixed in terms of the masses and decay constants of the
(asymptotic) hadronic states [28].
Since the discrete particle component in Eq. (4.1)

dominates the behavior of the two-point function in the
asymptotic temporal limit, the shear viscosity associated
with the thermal particle states can therefore be calculated
by making the substitution D̃βðu⃗; sÞ → D̃m;βðu⃗Þδðs −m2Þ
in Eq. (3.14). As outlined in this section, despite their
nonperturbative nature, the structure of the damping factors
D̃m;β is actually fixed by the dynamics of the asymptotic

states, and hence one can use Eq. (3.14) in order to derive
an explicit expression for η0. In the remainder of this
section we will explore the characteristics of η0 in different
models.

B. Free scalar theory

For free theories it turns out that the structure of the
thermal commutator is completely independent of the
thermal state jΩβi, and hence coincides with the zero
temperature expression. In position space the damping
factor therefore has the form Dm;βðx⃗Þ ¼ 1, and hence

D̃m;βðu⃗Þ ¼ ð2πÞ3δ3ðu⃗Þ: ð4:3Þ

Applying Eqs. (3.6) and (3.8), one finds

ρππðp0Þ ¼
½p2

0 − 4m2�3
96πp2

0

coth

�
βp0

4

�
× ½θðp0 − 2mÞ þ θð−p0 − 2mÞ�; ð4:4Þ

where, in particular, ρð2Þππ ðp0Þ ¼ 0. Since Eq. (4.4) is only
nonvanishing for p0 ≥ 2m, it immediately follows from
Eq. (3.1) that the shear viscosity of a free field is zero, as
pointed out in Ref. [27].

C. Thermal particle shear viscosity in ϕ4 theory

At zero temperature, the negative and positive coupling
regimes of ϕ4 theory represent two very different phases of
the theory. The former is unstable but known to be
asymptotically free [29], whereas the latter has a ground
state but is expected to be trivial in 3þ 1 dimensions [30].
At finite temperature, less is known about the nonpertur-
bative characteristics of the theory, although progress has
been made in understanding the spectral structure of the
two-point function hΩβjϕðxÞϕðyÞjΩβi. In particular, by
applying the procedure outlined in Sec. IVA, and demand-
ing that the equation of motion7 operator

ð∂2 þm2Þϕ0ðxÞ þ
λ

3!
ϕ3
0ðxÞ ð4:5Þ

is suppressed in all correlation functions of the asymptotic
field ϕ0, in Ref. [26] the authors were able to explicitly
calculate the form of the damping factor D̃m;βðu⃗Þ for both
λ < 0 and λ > 0. As emphasized in Sec. IVA, m and λ
represent physical parameters in the theory: the zero-
temperature mass and the coupling of the asymptotic states.

7In Ref. [26] the 1
3!
factor was not included in Eq. (4.5), but

here and throughout this paper we will use this in order to be
consistent with the perturbative convention.
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1. Negative coupling shear viscosity

Setting λ < 0, the condition that the field operator in
Eq. (4.5) vanishes asymptotically implies that the position
space damping factor has the form [26]

Dm;βðx⃗Þ ¼
sinðκjx⃗jÞ
κjx⃗j ; ð4:6Þ

where κ is a positive function of the parameters fλ; β; mg
and is related in the following manner to the Lorentz
invariant integral of the Bose-Einstein distribution nðEq⃗Þ of
a particle with energy Eq⃗ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq⃗j2 þm2

p
:

κ ¼
ffiffiffiffiffi
jλj

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
d3q⃗

ð2πÞ32Eq⃗
nðEq⃗Þ

s
: ð4:7Þ

In the region jx⃗j ≪ κ−1, one can see from Eq. (4.6) that the
damping factor approaches the free field expression,
namely Dm;βðx⃗Þ → 1. Since jx⃗j is the spatial separation

of the fields, l ¼ κ−1 can therefore be interpreted as the
mean free path of the (asymptotic) particles in the thermal
state [26]. This matches physical expectations, since
l → ∞ in the weak coupling (jλj → 0) and small temper-
ature (β → ∞) limits. In the special casem ¼ 0, one has the
exact expression: l ¼ 2

ffiffiffi
6

p jλj−1
2β. Taking the Fourier trans-

form of Eq. (4.6) gives

D̃m;βðu⃗Þ ¼
2π2

κ2
½δðju⃗j − κÞ þ δðju⃗j þ κÞ�: ð4:8Þ

Equation (4.8) reduces to the free theory result of Eq. (4.3)
as the coupling approaches zero, which is what one would
expect if the theory were asymptotically free, like its zero
temperature limit [29].
Now that we have the explicit form of the damping

factor, one can apply Eqs. (3.6) and (3.8) in order to
calculate the thermal particle contribution to ρππðp0Þ. In the
case of the first spectral component, one finds

ρð1Þππ ðp0Þ ¼
θðp0 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þm2

p
Þ

6πβκ2

Z
κþ1

2
γ

1
2
α

djq⃗jjq⃗j4 ln
�
sinh ðβ

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjq⃗j − κÞ2 þm2

p
− p0ÞÞ

sinh ðβ
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjq⃗j − κÞ2 þm2

p
ÞÞ

�

þ θðp0 − 2mÞθð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þm2

p
− p0Þ

6πβκ2

Z
κþ1

2
γ

κ−1
2
γ

djq⃗jjq⃗j4 ln
�
sinh ðβ

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjq⃗j − κÞ2 þm2

p
− p0ÞÞ

sinh ðβ
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjq⃗j − κÞ2 þm2

p
ÞÞ

�

−
θðp0 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þm2

p
Þ

6πβκ2

Z
1
2
α

1
2
γ−κ

djq⃗jjq⃗j4 ln
�
sinh ðβ

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjq⃗j þ κÞ2 þm2

p
− p0ÞÞ

sinh ðβ
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjq⃗j þ κÞ2 þm2

p
ÞÞ

�
; ð4:9Þ

where the threshold parameters α and γ are defined

α¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2

0ðκ2þm2Þ−p4
0

4κ2−p2
0

s
; γ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0−4m2

q
: ð4:10Þ

One can immediately see from Eq. (4.9) that ρð1Þππ ðp0Þ has support for p0 ≥ 2m, which agrees with the general result in
Eq. (3.10). For the second spectral component:

ρð2Þππ ðp0Þ ¼
θðp0Þθð2κ − p0Þ

6πβκ2

Z
∞

1
2
α

djq⃗jjq⃗j4
�
ln

�
sinh ðβ

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjq⃗j − κÞ2 þm2

p
þ p0ÞÞ

sinh ðβ
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjq⃗j − κÞ2 þm2

p
ÞÞ

�

þ ln

�
sinh ðβ

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjq⃗j þ κÞ2 þm2

p
− p0ÞÞ

sinh ðβ
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjq⃗j þ κÞ2 þm2

p
ÞÞ

��

−
θð−p0Þθð2κ þ p0Þ

6πβκ2

Z
∞

1
2
α

djq⃗jjq⃗j4
�
ln
�
sinh ðβ

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjq⃗j − κÞ2 þm2

p
− p0ÞÞ

sinh ðβ
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjq⃗j − κÞ2 þm2

p
ÞÞ

�

þ ln

�
sinh ðβ

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjq⃗j þ κÞ2 þm2

p
þ p0ÞÞ

sinh ðβ
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjq⃗j þ κÞ2 þm2

p
ÞÞ

��
; ð4:11Þ
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and hence ρð2Þππ ðp0Þ is nonvanishing in the region ½−2κ; 2κ�,
which is again consistent with Eq. (3.10). The jq⃗j integrals
in ρð1Þππ ðp0Þ and ρð2Þππ ðp0Þ are convergent for all values of the
asymptotic parameters, and whenm ¼ 0 they can in fact be
evaluated in terms of elementary functions. Due to the
general antisymmetry relation in Eq. (3.9), the full spectral
function therefore has the form

ρππðp0Þ ¼ ρð1Þππ ðp0Þ þ ρð2Þππ ðp0Þ − ρð1Þππ ð−p0Þ: ð4:12Þ

In Fig. 1, the dimensionless normalized spectral function
ρππðp0Þ=T4 is plotted as a function of p0=T for both
fixed m=T and coupling strength jλj. For λ ¼ 0, the plot
coincides with the exact free field expression in Eq. (4.4).
When m=T > 0 and jλj > 0, the jq⃗j integrals in Eqs. (4.9)
and (4.11) are evaluated numerically, and in the special case
m=T ¼ 0 the integrals are solvable in terms of elementary
functions. One can see from Fig. 1 that the presence
of nontrivial interactions causes the appearance of resonant
peaks at p0 ¼ �κ. Physically, this corresponds to the
point at which the energy of the particles approaches the
inverse of their mean free path l−1. As m=T decreases, the
resonance peak grows, and ρππðp0Þ=T4 moves off the p0=T
axis, becoming nonzero for all p0=T ≠ 0. This occurs in the
region m ≤ κ, where the particle rest mass is smaller than
the interaction energy with the thermal background.
Applying the spectral representation in Eq. (3.14), one

can now use the form of the damping factor in Eq. (4.8) to
calculate the thermal particle shear viscosity η0. In order to
make the dimensional dependence of this representation
explicit, we rewrite the expression in Eq. (4.7) for κ in terms
of the dimensionless parameter r ¼ m=T

κ ¼ T
ffiffiffiffiffi
jλj

p
KðrÞ;

KðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

d3 ˆq⃗

ð2πÞ32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ˆq⃗j2 þ r2

q 1

e
ffiffiffiffiffiffiffiffiffiffiffi
j ˆq⃗j2þr2

p
− 1

vuuut ; ð4:13Þ

and also define the following rescaled version of the
functions in Eq. (3.13):

KNðr; a; bÞ ¼ ½KðrÞ�2−NINðr; a; bÞ: ð4:14Þ

Finally, after setting D̃βðu⃗; sÞ ¼ D̃m;βðu⃗Þδðs −m2Þ in
Eq. (3.14), and using Eqs. (4.13) and (4.14), the thermal
particle shear viscosity takes the form

η0 ¼
T3

15π

�
K3ðmT ; 0;∞Þffiffiffiffiffijλjp þ

ffiffiffiffiffi
jλj

p
K1

�
m
T
; 0;∞

�

þK4ðmT ;
ffiffiffiffiffijλjp
KðmTÞ;

ffiffiffiffiffijλjp
KðmTÞÞ

4jλj
�
: ð4:15Þ

Equation (4.15) implies that for fixed coupling strength jλj
the temperature dependence of η0=T3 is entirely controlled
by functions of m=T, similarly to what one finds in
perturbative calculations [11,12]. However, in contrast to
the perturbative case, Eq. (4.15) is valid for all values of jλj.
In Fig. 2, we plot η0=T3 as a function of jλj for different

values of m=T. One can see that η0=T3 diverges for both
small and large values of jλj, and at some finite value of λ
there exists a global minimum. In particular, using
Eq. (4.15) together with the boundedness properties of
the functions KN , one finds that η0 has the following
asymptotic behavior:

η0 ∼
T3

15π
ffiffiffiffiffijλjp K3

�
m
T
; 0;∞

�
; jλj → 0; ð4:16Þ

η0 ∼
jλjT3

60π
K0

�
m
T
; 0;∞

�
; jλj → ∞; ð4:17Þ

where ∼ refers to the leading terms in the small and large
coupling asymptotic expansions. So far we have implicitly

FIG. 1. ρππðp0Þ=T4 plotted as a function of p0=T for fixedm=T
(dashed lines) and fixed jλj (solid lines).

FIG. 2. η0=T3 plotted as a function of jλj for varying m=T.
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assumed that m > 0, since this is required in order to apply
the spectral representation in Eq. (3.14). In fact, from the
analysis in the Appendix it turns out that the condition
m > 0 is actually both necessary and sufficient for η0 to be
finite. Therefore, even though ρππðp0Þ is well defined when
m ¼ 0, η0 is divergent. This divergence is reflected in the
large coupling asymptotic behavior in Eq. (4.17), where
one finds

K0

�
m
T
; 0;∞

�
∼ −

1

24
ln

�
m
2T

�
; m → 0: ð4:18Þ

In this sense m acts as an infrared regulator, guaranteeing
the finiteness of η0 for all nonvanishing temperatures and
coupling strengths.
Equation (4.16) demonstrates that for fixed temperatures

and masses, η0 diverges in the zero coupling limit. On
initial inspection this appears to contradict the conclusions
of Sec. IV B, where one finds for a free theory that η ¼ 0.
However, as we will now demonstrate, the expectation that
the shear viscosity of an interacting theory is a continuous
perturbation of the free theory turns out to be false. This can

be seen from the explicit structure of ρð1Þππ ðp0Þ and ρð2Þππ ðp0Þ
in Eqs. (4.9) and (4.11), in particular their support proper-
ties. As previously noted in Sec. III, for m > 0 the first

spectral component ρð1Þππ ðp0Þ does not contribute to the
shear viscosity since it only has support for p0 ≥ 2m.
For the second spectral function component, one can see

that ρð2Þππ ðp0Þ has an overall θðp0Þθð2κ − p0Þ coefficient for
positive p0. This coefficient remains for dρð2Þππ

dp0
because its p0

derivative gives no contribution. Due to Eq. (4.13), λ ¼ 0
implies κ ¼ 0, and hence in the free theory this coefficient
exactly vanishes. In the interacting theory though, κ > 0

for T > 0, and so taking the p0 → 0 limit of dρð2Þππ
dp0

leads
to a nonvanishing contribution to η0. This implies that the
free theory shear viscosity cannot be recovered from the

zero coupling (κ → 0) limit of the interacting theory
result because the limits p0 → 0 and jλj → 0 are non-
commutative, due to the appearance of the coefficient
θðp0Þθð2κ − p0Þ.
In Fig. 3, 1

20T3

dρππ
dp0

is plotted as a function of p0=T and jλj
form=T ¼ 0.1. The blue line is the fixed surface p0=T ¼ 0,
corresponding to η0=T3, and the red line is the free field
expression. The noncommutativity of the zero-energy and
zero-coupling limits is reflected in the fact that the value of
the function at ðp0=T; jλjÞ ¼ ð0; 0Þ depends upon the
direction in which the limit is taken, and so (0,0) represents
a nonanalytic point. Keeping λ ¼ 0 fixed, and then
p0=T → 0, corresponds to traveling along the red line
towards the red point, but setting p0=T ¼ 0 first, and then
taking jλj → 0, amounts to moving along the blue line
towards the p0=T axis. In the first case, the function 1

20T3

dρππ
dp0

vanishes, and hence η0 ¼ 0 for a free theory, whereas in
the second case the function diverges, which implies
limjλj→0 η0 ¼ ∞.

2. Positive coupling shear viscosity

Setting λ > 0, and following the same procedure as in the
negative coupling case, the position space damping factor
takes the form [26]

Dm;βðx⃗Þ ¼
e−κjx⃗j

κ0jx⃗j
; ð4:19Þ

where κ is the same expression as in Eq. (4.7). Unlike the
λ < 0 case, Eq. (4.19) involves an additional fixed energy
scale κ0. This arises because the damping factor solutions
have a more singular structure due to the divergent ultra-
violet properties of the quartic interaction. The asymptotic
fields must therefore be renormalized, which results in the
introduction of the scale κ0. Taking the Fourier transform of
Eq. (4.19) gives

FIG. 3. 1
20T3

dρππ
dp0

plotted as a function of p0=T and jλj for m=T ¼ 0.1. The blue and red lines correspond to the fixed surfaces p0

T ¼ 0
and λ ¼ 0, respectively.
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D̃m;βðu⃗Þ ¼
4π

κ0ðju⃗j2 þ κ2Þ : ð4:20Þ

One can immediately see that unlike the λ < 0 damping
factor, this expression does not approach the free field
result of Eq. (4.3) in the zero coupling limit. Moreover, by
setting D̃m;βðu⃗; sÞ ¼ D̃m;βðu⃗Þδðs −m2Þ, one finds that

η0 is divergent for λ > 0: ð4:21Þ

Since D̃m;βðu⃗; sÞ satisfies all of the assumptions leading to
the general condition in Eq. (3.15), it therefore follows
from the contrapositive of this condition that the KMS
condition must be violated. This is indeed the case, as
outlined in the Appendix. Physically, this implies that the
positive coupling quartic interaction is not consistent
with the existence of thermal equilibrium. While it might
appear surprising that η0 is divergent, since perturbative
calculations have been performed in this model [11,12], it
should be noted that the divergence of η0 is a nonpertur-
bative result, and so does not necessarily need to coincide
with perturbative expectations. This is certainly the case at
T ¼ 0, where the renormalized perturbative series is
seemingly disconnected from the full (trivial) nonpertur-
bative solution [31]. In the strong coupling calculations that
have been performed with λ > 0, for example using
variational methods [32,33], an ultraviolet cutoff is
assumed. In light of the condition in Eq. (4.21) one would
therefore expect that the shear viscosity must ultimately
diverge in these calculations in the limit of cutoff removal.

V. CONCLUSIONS

Local formulations of QFT at finite temperature imply
the existence of nonperturbative constraints on the structure
of thermal correlation functions. In this work, we use these
constraints in order to derive a spectral representation
for the shear viscosity arising from scalar thermal asymp-
totic states, η0. Using this representation, we calculate the
explicit form of η0 in ϕ4 theory at both positive and
negative coupling. For negative coupling, we find that η0
possesses a global minimum, and grows unbounded for
both small and large values of the coupling strength,
whereas for positive coupling η0 diverges for all parameter
values. We subsequently demonstrate that the divergence of
η0 in the positive coupling theory is a reflection of the fact
that the quartic interaction is not consistent with the
existence of thermal equilibrium.
Since the constraints of local QFT also apply to theories

with nonscalar fields, as well as those with a nonvanishing
chemical potential, this work represents a first step in
understanding the analytic structure of in-medium observ-
ables for more complex theories of physical interest,
including gauge theories like QCD. Although this work
has focused solely on the nonperturbative characteristics of

thermal correlation functions in Minkowski spacetime, it
turns out that the corresponding Euclidean quantities also
possess specific constraints. By utilizing these constraints
in conjunction with nonperturbative results from lattice
QFT [13–16], or functional methods [34–39], this could
provide new insights into both the spectral and transport
properties of local QFTs. This will be the subject of
forthcoming work.
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APPENDIX: BOUNDEDNESS OF THE
SHEAR VISCOSITY

Here we will prove the result in Eq. (3.15). First, it
follows from the definition in Eq. (3.13) that the functions
INðR; a; bÞ are continuous in their arguments for positive
N, and vanish in the limit R → ∞. In the particular case of
the functions I1ðR; 0;∞Þ, I3ðR; 0;∞Þ, and I4ðR; a; bÞ,
appearing in Eq. (3.14), the first two are finite for R → 0,
and the last one diverges in this limit. However, since we
assume that D̃βðu⃗; sÞ is defined for s ∈ ½ν;∞Þ, where
ν > 0, the singularity of I4ðR; a; bÞ is not contained within
the integration range. Taken together, these properties
imply that the coefficient in square brackets in
Eq. (3.14) is bounded from above by polynomials in ju⃗j,
jv⃗j, s, and t, and approaches a constant in the limits
ju⃗j; jv⃗j → 0 and s; t → ν. As outlined in Sec. II, thermal
correlation functions are tempered distributions that satisfy
several constraints, including the KMS condition. Due to
the thermal spectral representation in Eq. (2.7), it turns out
that this implies D̃βðu⃗; sÞ is also a tempered distribution and
satisfies [7]

D̃βðu⃗; sÞ ¼ dðu⃗; sÞe−β
2

ffiffiffiffiffiffiffiffiffiffi
1þju⃗j2

p
; ðA1Þ

where dðu⃗; sÞ is some other tempered distribution. Due to
the u⃗-reflectional symmetry of D̃βðu⃗; sÞ, it follows from
Eq. (A1) that ju⃗j2dðu⃗; sÞ defines a tempered distribution in
the variable ju⃗j. If one further assumes that dðu⃗; sÞ is
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regular at ju⃗j ¼ 0, by which we mean that either ju⃗j ¼ 0 is
not included in the support of dðu⃗; sÞ, or that ju⃗jdðu⃗; sÞ is
locally integrable about this point,8 this implies, together
with Eq. (A1) and the polynomial boundedness of the
integrand coefficient, that the ju⃗j and jv⃗j integrals in
Eq. (3.14) reduce to the integration of the tempered
distributions ju⃗j2dðu⃗; sÞ and jv⃗j2dðv⃗; tÞ with Schwartz
functions in ju⃗j and jv⃗j, which by definition are finite.
After integrating over ju⃗j and jv⃗j, the remaining coef-

ficient in Eq. (3.14) is a function of s and t that approaches
a constant in the limit s; t → ν and vanishes for s; t → ∞. In
order that the s and t integrals are finite, this therefore
requires that for fixed u⃗ the thermal spectral density must
satisfy the conditionZ

∞

0

dsD̃βðu⃗; sÞ < ∞: ðA2Þ

Combining all of these results together, one is led to the
following conclusion: for a theory that has a thermal
spectral density D̃βðu⃗; sÞ that is regular at ju⃗j ¼ 0, has

support in R3 × ½ν;∞Þ for ν > 0, and obeys the integral
condition in Eq. (A2), if the KMS condition holds, then
Eq. (A1) is satisfied ⇒ η0 is finite.
This completes the proof of the condition in Eq. (3.15).

In arriving at Eq. (3.11), and hence Eq. (3.14), it was
implicitly assumed that the p0 → 0 limit and integrals
could be exchanged. It turns out that the assumptions on the
behavior of D̃βðu⃗; sÞ required in order to prove Eq. (3.15)
are actually sufficient to guarantee that this is valid.
One can now discuss the above outlined conditions on

D̃βðu⃗; sÞ in the context of the specific examples of Sec. IV.
For λ < 0, it follows from Eq. (4.8) that D̃βðu⃗; sÞ is regular
at ju⃗j ¼ 0 (it vanishes), has support at s ¼ m > 0, and
satisfies both Eqs. (A1) and (A2), which explains why η0 is
finite. For λ > 0, η0 is divergent, and hence one (or more) of
these conditions must be violated. Since D̃m;βðu⃗; sÞ is
regular at ju⃗j ¼ 0 (locally integrable), has support for
s ¼ m > 0, and satisfies Eq. (A2), it must therefore be
the case that the KMS condition is violated. From the
structure of the damping factor in Eq. (4.20) one can clearly
see that the exponential decay property in Eq. (A1) does not
hold, and so this confirms that the KMS condition is indeed
violated in this model, as discussed in Ref. [26].
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