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We show the existence of self-dual (topological) solitons in a gauged version of the baby Skyrme model
in which the Born-Infeld term governs the gauge field dynamics. The successful implementation of the
Bogomol’nyi-Prasad-Sommerfield formalism provides a lower bound for the energy and the respective
self-dual equations whose solutions are the solitons saturating such a limit. The energy lower bound
(Bogomol’nyi bound) is proportional to the topological charge of the Skyrme field and therefore quantized.
In contrast, the total magnetic flux is a nonquantized quantity. Furthermore, the model supports three types
of self-dual solitons profiles: the first describes compacton solitons, the second follows a Gaussian decay
law, and the third portrays a power-law decay. Finally, we perform numerical solutions of the self-dual
equations and depict the soliton profiles for different values of the parameters controlling the nonlinearity
of the model.
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I. INTRODUCTION

The Skyrme model [1] is a well-known low-energy field
theory proposal to study nonperturbative quantum chromo-
dynamics (QCD). This nonlinear effective field theory,
defined initially in (3þ 1) dimensions, provides some
insights into the physical properties of hadrons and nuclei
belonging to the realm of low-energy QCD [2]. In this
framework, the physical structures emerge as topological
solitons—so-called Skyrmions.
Over the years there has been remarkable progress in our

understanding of Skyrme-like models, especially about its
corresponding planar version, also known as the baby
Skyrme model [3]. The (2þ 1)-dimensional version serves
as a laboratory to study many aspects of the original
Skyrme model.
Besides, theSkyrmionshave also attracted the community’s

attention because they are used or come up in the des-
cription of various physical systems. Among them we can
mention the topological quantumHall effect [4], chiralnematic
liquid crystals [5], superconductors [6], brane cosmology [7],
and magnetic materials [8], including recent investigations
with the Dzyaloshinskii-Moriya interaction [9,10].
The Skyrme model consists of a Oð3Þ nonlinear sigma-

model term (a quadratic kinetic term), the Skyrme term

(a quartic kinetic term), and a potential (a nonderivative
one). For the baby Skyrme model, the presence of such a
potential is obligatory to stabilize the soliton solutions
[11,12], being optional in the 3þ 1-dimensional version.
Although the standard baby Skyrme model describes stable
solitons, it does not possess a self-dual or Bogomol’nyi-
Prasad-Sommerfield (BPS) structure. Nevertheless, lacking
the sigma model term, the so-called restricted baby Skyrme
model [13] does admit BPS configurations [14].
To investigate the electric and magnetic properties

of the Skyrme model, we must couple it with a Uð1Þ
gauge field [15]. Soliton solutions in the gauged baby
Skyrme model were first found in Ref. [16], and were later
considered in Ref. [17] and by including a Chern-Simons
term in Refs. [18,19]. On the other hand, in Refs. [20–22]
BPS configurations (carrying magnetic flux alone) were
studied in the restricted gauge baby Skyrme model.
Moreover, Refs. [23–25] analyzed the self-dual solutions
carrying both magnetic flux and electric charge. It is
essential to point out that the restricted gauge baby
Skyrme model also allows a supersymmetric extension
[26–30].
In the literature, the emergence of topological defects is

also a current issue in generalized or effective field theories.
In particular, the new solitons may present quite different
features than those found in the usual models. There are
many results in models characterized by possessing non-
standard kinetic terms (e.g., Refs. [31–39]), including
supersymmetric extensions [40,41]. Moreover, there have
been additional applications, such as in the inflationary
phase of the Universe [42], strong gravitational waves [43],
tachyon matter [44], dark matter [45], black holes [46,47],
and other topics [48,49].
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Among several generalized or effective models, we
may highlight the Born-Infeld (BI) electrodynamics [50],
also dubbed Dirac-Born-Infeld theory [51]. In this elegant
model, the gauge field’s kinetic term is a highly nonlinear
function of the Maxwell term (instead of the usual Maxwell
term) that removes the divergence of the electron self-
energy appearing in classical electrodynamics. The Born-
Infeld-Higgs (BIH) model can be considered one of the
pioneering studies of vortex solutions within the scope of
such generalized theories [52]. Later, in Ref. [53] the
existence of electrically charged BIH vortices was studied
through the inclusion of the Chern-Simons term. Further,
the BI theory has been explored in different contexts,
including topological defects [34–37,54,55], unusual prop-
erties under wave propagation [56], in gravitation and
cosmology [57,58], quantum gravity [59], and supersym-
metric extensions [30]. Currently, BI electrodynamics is
worthy of special attention since it appears in the low-
energy limit of string/D-brane physics [33,60–63].
Thus, motivated by the versatility of the Born-Infeld

term, the present manuscript aims to show the existence
of the topological BPS solitons in a Born-Infeld baby
Skyrme model and explore their main physical properties.
We have organized the paper as follows. In Sec. II,
we introduce the BI restricted baby Skyrme model and
implement the BPS formalism to get the topological energy
lower bound and self-dual equations that provide the
soliton solutions saturating such a limit. In Sec. III, we
focus our attention on rotationally symmetric configura-
tions. We study the behavior of the profiles around
boundaries, obtain the numerical solution of the BPS
equations, and depict the main features of the BPS
configurations. Finally, in Sec. IV we include our remarks
and conclusions.

II. THE BORN-INFELD RESTRICTED BABY
SKYRME MODEL

We consider a model describing the interaction between
the restricted baby Skyrme field and a Born-Infeld gauge
field defined by the Lagrangian

L ¼ E0

Z
d2xL; ð1Þ

where E0 is a common factor of the energy scale which
hereafter we set to be E0 ¼ 1, and L stands for the
Lagrangian density given by

L ¼ β2ð1 −RÞ − λ2

4
ðDμϕ⃗ ×Dνϕ⃗Þ2 − VðϕnÞ; ð2Þ

where we have defined

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F2

μν

2β2g2

s
; VðϕnÞ ¼ β2½1 − UðϕnÞ�: ð3Þ

The first contribution in Eq. (2) is the BI term, where
Fμν ¼ ∂μAν − ∂νAμ is the field-strength tensor of the Uð1Þ
gauge field Aμ, the electromagnetic coupling constant is
given by g, and β is the BI parameter. The second
contribution is the Skyrme term minimally coupled to
the Uð1Þ gauge field through the covariant derivative
given by

Dμϕ⃗ ¼ ∂μϕ⃗þ Aμn⃗ × ϕ⃗; ð4Þ

where ϕ⃗ ∈ S2, a triplet of real scalar fields, represents
the Skyrme field satisfying the constraint ϕ⃗ · ϕ⃗ ¼ 1. The
unitary vector n⃗ provides a preferred direction in the
internal space that afterwards becomes the vacuum value
of the Skyrme field, that is,

lim
jx⃗j→∞

ϕ⃗ ¼ n⃗: ð5Þ

Last, the third term in Eq. (2), VðϕnÞ ¼ Vðn⃗ · ϕ⃗Þ, is the
potential defined in Eq. (3) with the function UðϕnÞ
satisfying the condition 0 < UðϕnÞ < 1.
We assume that all of the coupling constants are

non-negative quantities. Moreover, the Skyrme field is
dimensionless, the gauge field has mass dimension
equal to 1, both the BI parameter β and the electromag-
netic coupling constant g have mass dimension 1,
and the Skyrme coupling constant λ has mass
dimension −1.
We now proceed to present the Euler-Lagrange equations

resulting from the Lagrangian density (2). The equation of
motion of the gauge field reads

∂σ

�
1

R
Fσμ

�
¼ g2jμ; ð6Þ

where jμ ¼ n⃗ · J⃗μ is the conserved current density with

J⃗μ ¼ λ2½ϕ⃗ · ðDμϕ⃗ ×Dνϕ⃗Þ�ðDνϕ⃗Þ: ð7Þ

Already for the Skyrme field we obtain

DμJ⃗
μ þ ∂V

∂ϕn
ðn⃗ × ϕ⃗Þ ¼ 0: ð8Þ

Our effort will be focused on the study of stationary
solutions. Then, from Eq. (6) Gauss’ law reads as

∂i

�
1

R
∂iA0

�
¼ g2λ2A0ðn⃗ · ∂iϕ⃗Þ2: ð9Þ

We observe that the gauge condition A0 ¼ 0 identically
satisfies Gauss’ law, implying that the resulting configu-
rations only carry on magnetic flux.
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Furthermore, from Eq. (6) the stationary Ampère’s law
gives

∂i

�
B
R

�
þ λ2g2ðn⃗ · ∂iϕ⃗ÞQ ¼ 0; ð10Þ

where B ¼ F12 ¼ ϵij∂iAj is the magnetic field,R assumes
the form

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

β2g2

s
; ð11Þ

and Q≡ ϕ⃗ · ðD1ϕ⃗ ×D2ϕ⃗Þ, which can still be expressed as

Q ¼ ϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ þ ϵijAiðn⃗ · ∂jϕ⃗Þ: ð12Þ

The term ϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ is related to the topological
charge or topological degree (also called winding number)
of the Skyrme field,

deg½ϕ⃗� ¼ −
1

4π

Z
d2xϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ ¼ k; ð13Þ

with k ∈ Zn0.
Similarly, from Eq. (8) the stationary equation of motion

of the Skyrme field becomes

∂U
∂ϕn

ðn⃗ × ϕ⃗Þ þ λ2ϵijDiðQDjϕ⃗Þ ¼ 0: ð14Þ

In the next section we show how the BPS formalism is
implemented, allowing us to obtain the energy lower bound
and the self-dual equations to be satisfied by the soliton
configurations saturating such a bound.

A. The BPS framework

The stationary energy density of the model (2) is

ε ¼ β2ðR −UÞ þ λ2

2
Q2; ð15Þ

where we have used Q2 ¼ 1
2
ðDiϕ⃗ ×Djϕ⃗Þ2. The require-

ment that the energy density is null when jx⃗j → ∞
establishes the boundary conditions satisfied by the fields
of the model. Thus, from Eq. (11) the magnetic field
must satisfy limjx⃗j→∞ B ¼ 0, implying that limjx⃗j→∞ R ¼ 1;
consequently,

lim
jx⃗j→∞

U ¼ 1; lim
jx⃗j→∞

Q ¼ 0: ð16Þ

The total energy is defined by integrating the energy
density (15), so that we implement the BPS formalism
by writing

E ¼
Z

d2x

�ðB� λ2g2RWÞ2
2g2R

þ λ2

2
ðQ∓ ZÞ2

∓ λ2BW � λ2QZ − β2U þ β2R

−
B2

2g2R
−
λ4g2RW2

2
−
λ2

2
Z2

�
; ð17Þ

where we have introduced two auxiliary functions, namely,
W ≡WðϕnÞ and Z≡ ZðϕnÞ, which we shall determine
later. By using the magnetic field definition and Eqs. (11)
and (12) for R and Q, respectively, we arrive at

E ¼
Z

d2x

�ðB� λ2g2RWÞ2
2g2R

þ λ2

2
ðQ∓ ZÞ2

� λ2Zϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ � λ2ϵij½ð∂jAiÞW þ AiZð∂jϕnÞ�

− β2U þ β2

2

�
1

R
þR

�
−
λ4g2RW2

2
−
λ2

2
Z2

�
: ð18Þ

At this point, to continue with the implementation of
the BPS formalism, we perform two steps: (i) the term
ð∂jAiÞW þ AiZð∂jϕnÞ is transformed into a total derivative
by setting

Z ¼ ∂W
∂ϕn

; ð19Þ

and (ii) we require the function UðϕnÞ to be defined as

β2U ¼ β2

2

�
1

R
þR

�
−
λ4g2RW2

2
−
λ2

2

�∂W
∂ϕn

�
2

: ð20Þ

This way, the total energy becomes

E ¼
Z

d2x

�ðB� λ2g2RWÞ2
2g2R

þ λ2

2

�
Q∓ ∂W

∂ϕn

�
2

� λ2
�∂W
∂ϕn

�
ϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ � ϵij∂jðAiWÞ

�
: ð21Þ

Notably, WðϕnÞ plays the role of a superpotential
function, and it must be constructed (or proposed) such
that the potential UðϕnÞ becomes unity when ϕn → 1 (or
jx⃗j → ∞) in accordance with Eq. (16). Consequently, the
following boundary conditions must be satisfied:

lim
ϕn→1

WðϕnÞ ¼ 0; lim
ϕn→1

∂W
∂ϕn

¼ 0: ð22Þ

Then, under such boundary conditions we observe that
the contributions of the total derivative in the second row
of Eq. (21) vanish. Therefore, we can express the total
energy as

E ¼ Ēþ EBPS; ð23Þ
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where Ē represents the integral composed of the quadratic
terms,

Ē ¼
Z

d2x

�ðB� λ2g2RWÞ2
2g2R

þ λ2

2

�
Q∓ ∂W

∂ϕn

�
2
�
; ð24Þ

and EBPS defines the energy lower bound,

EBPS ¼ �λ2
Z

d2x

�∂W
∂ϕn

�
ϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ: ð25Þ

The total energy (23) satisfies the inequality

E ≥ EBPS; ð26Þ

because Ē ≥ 0. Then, the energy lower bound will be
achieved when the fields possess configurations such that
Ē ¼ 0, i.e., the bound is saturated when the following set of
first-order differential equations is satisfied:

B ¼ ∓λ2g2W

�
1 −

g2λ4W2

β2

�−1=2
; ð27Þ

Q ¼ � ∂W
∂ϕn

; ð28Þ

where we have used

R ¼
�
1 −

g2λ4W2

β2

�−1=2
: ð29Þ

This last equation, together with Eq. (20), allows us to write
the self-dual potential of the model as

VðϕnÞ ¼ β2
�
1 −

�
1 −

g2λ4W2

β2

�
1=2

�
þ λ2

2

�∂W
∂ϕn

�
2

: ð30Þ

Equations (27) and (28) are called the self-dual or BPS
equations which ensure the energy lower bound and
stability of the field configurations. Further, we highlight
that such first-order equations satisfy the Euler-Lagrange
equations associated with the Lagrangian density (2).
Before proceeding to the next section, we must highlight

that the BPS configurations for the corresponding standard
case (gauged BPS baby Skyrme model) can be recovered in
the limit β → ∞. In this limit, the BPS model described by
the Lagrangian density (2) becomes

L ¼ −
1

4g2
F2
μν −

λ2

4
ðDμϕ⃗ ×Dνϕ⃗Þ2 − VðϕnÞ; ð31Þ

where the corresponding BPS potential is now given by

VðϕnÞ ¼
g2λ4

2
W2 þ λ2

2

�∂W
∂ϕn

�
2

: ð32Þ

Such a system was investigated in Ref. [20].

III. ROTATIONALLY SYMMETRIC
BI SKYRMIONS

We now consider rotationally symmetric solitons satu-
rating the energy lower bound (25). Henceforth, without
loss of generality, we set n⃗ ¼ ð0; 0; 1Þ such that ϕn ¼ ϕ3

and we assume the usual ansatz for the Skyrme field,

ϕ⃗ðr; θÞ ¼

0
B@

sin fðrÞ cosNθ

sin fðrÞ sinNθ

cos fðrÞ

1
CA; ð33Þ

where r and θ are polar coordinates, N ¼ deg½ϕ⃗� is the
winding number introduced in Eq. (13), and fðrÞ is a
regular function satisfying the boundary conditions

fð0Þ ¼ π; lim
r→∞

fðrÞ ¼ 0: ð34Þ

We now introduce the field redefinition [20]

ϕ3 ¼ cos f ≡ 1 − 2h; ð35Þ

with the field h ¼ hðrÞ obeying

hð0Þ ¼ 1; lim
r→∞

hðrÞ ¼ 0: ð36Þ

For the gauge field Aμ, we consider the ansatz

Ai ¼ −ϵijxj
NaðrÞ
r2

; ð37Þ

where aðrÞ is a regular function satisfying the boundary
conditions

að0Þ ¼ 0; lim
r→∞

aðrÞ ¼ a∞; ð38Þ

where a∞ is a finite constant.
The superpotential WðhÞ must satisfy

lim
r→0

WðhÞ ¼ W0; lim
r→∞

WðhÞ ¼ 0; lim
r→∞

∂W
∂h ¼ 0; ð39Þ

with the two last conditions obtained from Eq. (22). The
constant W0 ¼ Wðhð0ÞÞ ¼ Wð1Þ is positive and finite.
Besides, we consider the superpotential WðhÞ a well-
behaved function for all of our analyses.
Under the ansatz, the BPS bound (25) becomes

E ≥ EBPS ¼ �2πλ2NW0; ð40Þ
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which is a positive-definite quantity, where the sign þð−Þ
corresponds to N > 0 ðN < 0Þ. The BPS energy density
associated to this configuration may be written in the form

εBPS ¼ g2λ4W2

�
1 −

g2λ4W2

β2

�−1=2
þ λ2

4

�∂W
∂h

�
2

: ð41Þ

Similarly, the BPS equations (27) and (28) assume,
respectively, the forms

N
r
da
dr

þ λ2g2W

�
1 −

g2λ4W2

β2

�−1=2
¼ 0; ð42Þ

4N
r

ð1þ aÞ dh
dr

þ ∂W
∂h ¼ 0; ð43Þ

where we have used the magnetic field given by

B ¼ N
r
da
dr

:

Also note that, without loss of generality, we have chosen
the upper sign. Such an assumption will be considered in
the remainder of the manuscript.
In what follows, we present the behavior of the self-dual

profiles close to the boundaries by solving the BPS
equations (42) and (43) according to the already established
boundary conditions. We begin by showing the behavior of
the fields around the origin, which are given by

hðrÞ ≈ 1 −
ðWhÞh¼1

8N
r2 þ ðWhÞh¼0ðWhhÞh¼1

128N2
r4; ð44Þ

aðrÞ ≈ −
λ2g2A0W0

2N
r2 þ λ2g2A3

0ðWhÞ2h¼1

32N2
r4; ð45Þ

where Wh ¼ ∂W=∂h, Whh ¼ ∂2W=∂h2, and the constant
A0 is defined as

A0 ¼
�
1 −

g2λ4W2
0

β2

�−1=2
: ð46Þ

Furthermore, near the origin, for the magnetic field and
BPS energy density we get, respectively,

BðrÞ ≈ −λ2g2A0W0 þ
λ2g2A3

0ðWhÞ2h¼1

8N
r2; ð47Þ

and

εBPS≈
λ2ðWhÞ2h¼1

4
þ λ4g2A0W2

0−
λ4g2A1ðWhÞ2h¼1

8N
r2; ð48Þ

where A1 has been defined as

A1 ¼
ðWhhÞh¼1

2λ2g2
þ ð1þA2

0ÞA0W0: ð49Þ

The analysis of the behaviors near the origin of the gauge
field profile (45), magnetic field (47), and BPS energy
density (48) reveals the existence of a singularity associated
with the BI parameter, as shown by the constantA0 defined
in Eq. (46), i.e., the field profiles will be well defined if and
only if the β parameter satisfies

β > βc ¼ gλ2W0: ð50Þ

Thus, we expect that well-behaved solitons should exist
in the range βc < β < ∞, and that for sufficiently large
values β, the soliton profiles become similar to those
engendered by the model (31).
On the other hand, to compute the field profiles’

behavior for sufficiently large values of r, we consider a
superpotential WðhÞ behaving as

WðhÞ ≈WðσÞ
R hσ with σ > 1; ð51Þ

where WðσÞ
R > 0. The asymptotic form in Eq. (51) engen-

ders the potential (30) behaving as V ∼ h2σ−2, allowing us
to compare our solutions with those of the cases studied
in Ref. [20].
Our analysis is performed by considering the boundary

conditions

hðRÞ ¼ 0; aðRÞ ¼ aR; WðhðRÞÞ ¼ 0; ð52Þ

with R > 0 and aR being a real constant. A finite value of R
defines the maximum size of the topological defect
characterizing a soliton called compacton, i.e., it reaches
the vacuum value in a finite radius R (the compacton’s
radius) and remains in the vacuum for all r > R. On the
other hand, when R → ∞ the model engenders extended
or noncompact configurations that may be localized or
delocalized. Hence, we have different soliton configura-
tions satisfying the boundary conditions (52). Of course,
these solutions depend on the σ values. In this way, the
asymptotic analysis leads us to three types of solitons:
(i) for 1 < σ < 2 we have compactons; (ii) for σ ¼ 2 the
soliton tail decays following a Gaussian law; (iii) for σ > 2,
the soliton tails have a power-law decay. Besides, these
three types of soliton profiles behave near to the origin
according as already presented in Eqs. (44) and (45).
We now calculate the magnetic flux of the BPS solitons.

It is given by

Φ ¼ 2π

Z
R

0

Brdr ¼ 2πNaR ð53Þ

for compactons, whereas for the noncompact solitons the
magnetic flux is
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Φ ¼ 2π

Z
∞

0

Brdr ¼ 2πNa∞: ð54Þ

We observe that the magnetic flux is nonquantized (in the
topological sense) since aR or a∞ are real numbers
belonging to the interval h−1; 0�. However, for sufficiently
large values of g, the vacuum value aR or a∞ tends to −1;
consequently, in such a limit, the magnetic flux becomes
quantized in units of 2π.
In the following sections, we show the field profiles’

behavior in the limit in which the soliton reaches its
corresponding vacuum value (i.e., r → R) and also obtain
the numerical solution of the BPS equations (42) and (43).
Thus, we will choose specific superpotentials for such
aims, allowing us to study the different types of solutions
mentioned previously.

A. Born-Infeld compactons

In this section we approach a class of topological
defects called compactons (i.e., solitons whose profiles
reach the vacuum value at a finite distance). We point out
that compact baby Skyrmions (nongauged case) were
first investigated in Ref. [13]. Later, the gauged versions
supporting purely magnetic compactons were studied in
Ref. [20] and those carrying both magnetic flux and electric
charge were studied in Ref. [24].
A superpotential like Eq. (51) for r → R, i.e.,

WðhÞ ≈WRhσ with 1 < σ < 2; ð55Þ

with R being a finite value, engenders Born-Infeld com-
pactons whose profiles possess the following behavior:

hðrÞ ≈ CRðR − rÞ 1
2−σ þ CR

2ð2 − σÞR ðR − rÞ3−σ2−σ; ð56Þ

aðrÞ ≈ aR þ 2g2λ2ð1þ aRÞðCRÞ2
σ

ðR − rÞ 2
2−σ þ � � �

þ g4λ6WR
2ð1þ aRÞ

β2σð1þ σÞ ðCRÞ2þ2σðR − rÞ2þ2σ
2−σ ; ð57Þ

where we have considered the lowest order in R − r and the
first contribution of the BI parameter. We also have defined
the quantity CR as

CR ¼
�
Rσð2 − σÞWR

4NðaR þ 1Þ
�
1=ð2−σÞ

; ð58Þ

where aR ¼ aðRÞ is the vacuum value of the gauge field
profile.
The first relevant terms of the magnetic field and BPS

energy density are given by

B ¼ −WRg2λ2ðCRÞσðR − rÞ σ
2−σ þ � � �

−
g4λ6WR

3

2β2
ðCRÞ3σðR − rÞ 3σ

2−σ ð59Þ

and

εBPS ¼
W2

Rλ
2

4
σ2ðCRÞ2σ−2ðR − rÞ2σ−22−σ þ � � �

þ g4λ8WR
4ð2 − σÞ

2β2ð1þ σÞ ðCRÞ4σðR − rÞ 4σ
2−σ; ð60Þ

respectively.
For the numerical solutions, we select a superpotential

like Eq. (55) and set σ ¼ 3=2. This way, we assume

WðhÞ ¼ W0h3=2; ð61Þ

by choosing W0 ¼ 1=λ2. This superpotential for r → R
engenders a potential behaving as V ∼ h, which is analo-
gous to the so-called “old baby Skyrme potential” [20]. For
simplicity, we have fixed N ¼ 1, λ ¼ 1, and perform our
numerical analysis in the following way: given a coupling
constant g, we run distinct values for the BI parameter β.
The compacton solutions are depicted in Figs. 1 and 2.
Once the parameter β controls the BI term, which

behaves as the Maxwell term for sufficiently large values
of β, we expect the compacton profiles (colored lines) to be
similar to those of the gauged BPS baby Skyrme model
(black lines), as shown in Figs. 1 and 2. On the other hand,
we observe that the compacton radius shrinks when β

FIG. 1. The compacton profiles (color lines) generated by the
superpotential (61) with g ¼ 1 (left), g ¼ 3 (right), and different
values of β. Besides, we depict the corresponding ones fathered
by the model (31) (solid black lines). For the Born-Infeld Skyrme
model, we depict β ¼ βc þ 0.01 (solid lines), β ¼ βc þ 0.1
(long-dashed lines), and β ¼ βc þ 0.5 (dashed lines). The pointed
lines in the profiles for the gauge field aðrÞ stands for r > R
(outside of the compacton).
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decreases continuously but remains greater than the critical
value βc. Furthermore, we note that the compacton radius
decreases when the value of g increases (compare the left
and right panels in Fig. 1), a general feature already
observed in the solutions of its standard counterpart.
Also, Fig. 2 shows that when the β values are closer to
βc, the profiles of both to magnetic field and BPS energy
density besides suffering relevant changes, the respective
values overgrow at the origin.
We point out that, for our analysis, we have conveniently

considered the values (g ≥ 1). This is because when g is
small, the nonlinear effects of the BI term become
insignificant, which is clarified by looking at Eq. (42)
where the term in brackets depending on β becomes higher
order than g2 due to the constraint (50). In this way, for
sufficiently small values of g, the soliton profiles become
similar to those of the standard case described by the
Lagrangian density given in Eq. (31). Similar consider-
ations also arise for the case of the extended solitons, which
we will analyze in the following sections.

B. Localized Born-Infeld Skyrmions

As already commented, the model provides noncompact
configurations when the vacuum value happens at R → ∞.
This way, for superpotentials like Eq. (51) with σ ¼ 2, i.e.,

WðhÞ ≈Wð2Þ
∞ h2; ð62Þ

the resulting extended configurations represent localized
solitons, whose field profiles behave as

hðrÞ ≈ Cð2Þ∞ e−Λr
2

; ð63Þ

aðrÞ ≈ a∞ þ λ2g2ð1þ a∞ÞðCð2Þ∞ Þ2e−2Λr2

þ g4λ6ð1þ a∞ÞðWð2Þ
∞ Þ2

6β2
ðCð2Þ∞ Þ6e−6Λr2 ; ð64Þ

where we have considered the first contribution of the BI

parameter. Besides Cð2Þ∞ > 0, the parameter a∞ ¼ að∞Þ is
the vacuum value of the gauge field profile, and Λ > 0 is
given by

Λ ¼ Wð2Þ
∞

4Nð1þ a∞Þ
: ð65Þ

Further, we can exhibit the corresponding behaviors
for both the magnetic field and BPS energy density, which
read as

BðrÞ ≈ −λ2g2Wð2Þ
∞ ðCð2Þ∞ Þ2e−2Λr2 þ � � �

−
g4λ6ðWð2Þ

∞ Þ3ðCð2Þ∞ Þ6
2β2

e−6Λr
2 ð66Þ

and

εBPS ≈ λ2ðWð2Þ
∞ Þ2ðCð2Þ∞ Þ2e−2Λr2 þ � � �

þ g4λ8ðWð2Þ
∞ Þ4ðCð2Þ∞ Þ8
2β2

e−8Λr
2

; ð67Þ

respectively.
For our numerical analysis, we set the superpotential to

WðhÞ ¼ W0h2; ð68Þ

by assuming W0 ¼ 1=λ2. The superpotential for r → ∞
provides a potential behaving as V ∼ h2, which also has an
analogous version investigated in Ref. [20]. As in the
previous case, we adopt N ¼ 1 and λ ¼ 1, and we run
distinct values for the BI parameter β for a fixed value of the
coupling constant g. The numerical solutions depicted in
Figs. 3 and 4 show the field profiles, the magnetic field, and
BPS energy density. Observing the profiles, we perceive
that they present many previously discussed features for the
compacton’s case. However, here the solitons are extended
and localized, and for sufficiently large values of r their
tails decay following a Gaussian law.

C. Delocalized Born-Infeld Skyrmions

We now consider a superpotential whose behavior for
r → ∞ is given by Eq. (51) with σ > 2,

WðhÞ ≈WðσÞ
∞ hσ; ð69Þ

FIG. 2. Profiles for the magnetic field and BPS energy density
rescaled by a factor of 10−1. Conventions are as in Fig. 1.
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where WðσÞ
∞ is a positive constant. Then, in this limit, the

field profiles have the asymptotic behavior

hðrÞ ≈
�
CðσÞ∞

r2

� 1
σ−2

; ð70Þ

aðrÞ ≈ a∞ þ 2g2λ2ð1þ a∞Þ
σ

�
CðσÞ∞

r2

� 2
σ−2

þ � � �

þ g4λ6ð1þ a∞ÞðWðσÞ
∞ Þ2

σðσ þ 1Þβ2
�
CðσÞ∞

r2

�2σþ2
σ−2

; ð71Þ

where we have considered the lowest order in r−1 and the

first contribution of the BI parameter. The constant CðσÞ∞ is
given by

CðσÞ∞ ¼ 8Nða∞ þ 1Þ
σðσ − 2ÞWðσÞ

∞
; ð72Þ

remembering that the parameter a∞ ¼ að∞Þ is the vacuum
value of the gauge field profile. Furthermore, the magnetic
field and BPS energy density behave as

BðrÞ ≈ −λ2g2WðσÞ
∞

�
CðσÞ∞

r2

� σ
σ−2

þ � � �

−
g4λ6ðWðσÞ

∞ Þ3
2β2

�
CðσÞ
∞

r2

� 3σ
σ−2

ð73Þ

and

εBPS ≈
1

4
σ2λ2ðWðσÞ

∞ Þ2
�
CðσÞ∞

r2

�2σ−2
σ−2

þ � � �

þ g4λ8ðWð2Þ
∞ Þ4

2β2

�
CðσÞ∞

r2

� 4σ
σ−2

; ð74Þ

respectively.
To perform the numerical analysis, we select the super-

potential

WðhÞ ¼ W0hσ; σ > 2 ð75Þ
by setting W0 ¼ 1=λ2. Next, by considering N ¼ 1, λ ¼ 1,
and fixing both of the coupling constants g and β, we run
distinct values for the parameter σ. We adopt a different
approach than in the two previous cases because we want to
analyze the soliton’s features for σ > 2. With such a per-
spective, the numerical solutions depicted in Fig. 5 show the
field profiles, the magnetic field, and the BPS energy density.
We observe that the behavior of the Skyrme field profiles

hðrÞ follow a decay more slowly to its vacuum value
whenever σ increases by following the power law presented
in Eq. (70), see the upper left panel in Fig. 5.We also see that
the Skyrme field profiles and the corresponding ones for the

FIG. 4. Profiles for the solitons by assuming the superpotential
(68). Conventions are as in Fig. 2.

FIG. 5. Profiles for the solitons (dashed lines) generated by the
superpotential (75) with g ¼ 1, β ¼ 1.01, and distinct values of σ
which are exhibited together with those of the counterpart model
(31) (solid lines). We show the profiles with σ ¼ 2.1 (red lines),
σ ¼ 3.0 (purple lines), and σ ¼ 4.0 (orange lines). The BðrÞ
profiles for the standard case have been rescaled by a factor of 5.

FIG. 3. Profiles for the solitons by assuming the superpotential
(68). Conventions are as in Fig. 1.
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gauged BPS baby Skyrme model, Eq. (31), become closer
and closer as σ grows. The same effect is also observed in the
gauge field profiles aðrÞ, see the upper right panel in Fig. 5.
On the other hand, the magnetic field and BPS energy
density exhibit distinct values at the origin and different
formats to those of the model defined by Eq. (31).
Interestingly, for every model, unlike the BPS energy
density, the magnetic field has the same values at the origin
for all values of σ. This happens because of our choice λ ¼ 1
(hence, W0 ¼ 1) in all cases, verifying the result shown
in Eq. (47).

IV. CONCLUSIONS AND REMARKS

We have shown that topological BPS Skyrmions exist
in a restricted baby Skyrme model endowed with a
generalized gauge field dynamic given by the Born-
Infeld term. The term possesses a free parameter β, which
for sufficiently large values reproduces effects similar to
the Maxwell term. Next, the Bogomol’nyi framework’s
successful implementation provides both an energy lower
bound and the corresponding self-dual or BPS equations,
whose solutions are the fields saturating such a lower limit.
The behavior of the field profiles near the origin reveals the
existence of a critical value [Eq. (50)] of the BI parameter,
i.e., only above such a value can we obtain well-behaved
solitons. On the other hand, depending on the behavior of the
superpotential at large values of r, the model supports three
different types of soliton solutions. Finally, by choosing
specific superpotentials, we have obtained numerical sol-
utions of the BPS equations, and we compared the resulting
solitons with those of the standard counterpart.
In Figs. 1 and 2 we have shown the Born-Infeld compac-

tons for different values of β, given a fixed value of g. The
figures allow us to conclude that the soliton becomes more
compacted whenever the value of β decreases. The left panel
in Fig. 6 depicts this property by clearly showing the
dependence of the compacton radius R on β. We note that
the radius becomes smaller and smaller as β gets closer to the
critical value βc ¼ 1 and, since β > βc, there is a minimum

radius RðcÞ
min > 0 such that R → RðcÞ

min asymptotically when
β → βc. On the other hand, the soliton grows larger when β

increases continuously until the maximum size of the soliton
approaches that of the standard case.
Besides the compacton solitons, the model has two

other types of solutions that we named extended or non-
compact solitons, which also present some general features
already described for the compactons, e.g., β controls how
the solutions move away from or approach the respective
standard counterparts. The right panel of Fig. 6 shows the
evolution of the vacuum value of the gauge field profiles of
the three types of Born-Infeld Skyrmions as β grows. It is
clear that the values shift toward those of the respective
gauged BPS baby Skyrme model (dashed black lines). In
addition, this plot also shows how the magnetic flux (53) in
units of 2πN changes as a function of β.
The values of the magnetic field at the origin are

independent of the σ parameter according to Eq. (47).
This is shown in the bottom-left panel of Fig. 5 for the
solutions with σ > 2, and the left panel of Fig. 7 shows the
Bð0Þ amplitudes for all of the superpotentials that coincide
on a single curve. On the other hand, the BPS energy
density εBPSð0Þ possesses an explicit dependence on σ as
given by the first term of Eq. (48); see the lower-right panel
of Fig. 5 and the right panel of Fig. 7.
Finally, we are currently studying the possible existence

of charged BPS Skyrmions (maybe behaving as anions) in
the presence of dielectric media or magnetic impurities.
Advances in this direction will be reported elsewhere.
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FIG. 6. Left: compacton radius R vs β. Right: gauge field
vacuum value vs β for the three distinct superpotentials analyzed
here. We setN ¼ 1, g ¼ 1, and λ ¼ 1. The dashed lines depict the
standard counterparts.

FIG. 7. Magnetic field (left) and BPS energy density (right)
amplitudes at the origin as functions of the BI parameter β, with
N ¼ 1, g ¼ 1, and λ ¼ 1. The pictures depict both behaviors for
the solitons coming from the superpotentials with σ ¼ 3=2 (solid
line), σ ¼ 2 (long-dashed line), and σ ¼ 3 (dashed line), with the
respective standard counterpart (black dashed lines).
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