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We study the modular symmetry on magnetized toroidal orbifolds with Scherk-Schwarz phases. In
particular, we investigate finite modular flavor groups for three-generation modes on magnetized orbifolds.
The three-generation modes can be the three-dimensional irreducible representations of covering groups
and central extended groups of ΓN for N ¼ 3, 4, 5, 7, 8, 16, that is, covering groups of Δð6ðN=2Þ2Þ for
N ¼ even and central extensions of PSLð2;ZNÞ for N ¼ odd with Scherk-Schwarz phases. We also study
anomaly behaviors.

DOI: 10.1103/PhysRevD.104.065008

I. INTRODUCTION

The origin of the flavor structure, such as quark and lepton
masses and their mixing angles, is one of the most significant
mysteries in particle physics. Non-Abelian discrete flavor
symmetries [1–6] such as SN , AN , Δð3N2Þ, and Δð6M2Þ for
the three generations of quarks and leptons are attractive
candidates to realize the flavor structure. However, in order
to obtain realistic masses and mixing angles of the quarks
and leptons, the complicated vacuum alignment of gauge-
singlet scalars—the so-called flavons—is required.
The geometries of compact spaces predicted in higher-

dimensional theories such as superstring theory can be
candidates for the origin of the flavor structure (see
Refs. [7,8]). For example, a torus and its orbifold have
the complex structure modulus τ, which decides the shape
of the torus and the orbifold. There is the modular
symmetry Γ≡ SLð2;ZÞ as well as Γ̄≡ SLð2;ZÞ=Z2 as
the geometrical symmetry on a torus and some orbifolds.
Under the modular transformation, chiral zero modes on
the torus and orbifolds, corresponding to the flavors of
quarks and leptons, are transformed; that is, the modular
symmetry can be regarded as the flavor symmetry. In
addition, Yukawa couplings as well as higher-order cou-
plings can be functions of the modulus τ, and then they also
transform under the modular transformation since they
can be obtained by overlap integrals of the zero-mode
profiles on the torus and orbifolds. Instead of flavons, a
vacuum expectation value of the modulus τ breaks the
flavor symmetry and characterizes the flavor structure.
These features are different from ones in the conventional

flavor models. The modular transformation behavior of
zero modes was investigated in magnetized D-brane
models [9–15] and heterotic orbifold models [16–20]
(see also Refs. [21–23]). In particular, on magnetized T2

with the magnetic flux M, there are M chiral zero modes
[24], and in a recent work [13] it was shown that the zero
modes withM ¼ even and vanishing Scherk-Schwarz (SS)
phases behave as modular forms of weight 1=2, and then
they transform as M-dimensional representations of the
finite modular subgroup Γ̃2M, which is the quadruple
covering group of Γ2M. There also exists the modular

symmetry on the magnetized T2=ZðtÞ
2 twisted orbifold. The

number of zero modes on the magnetized T2=ZðtÞ
2 twisted

orbifold was investigated in Refs. [25–28]. Similarly, in
Ref. [14] it was shown that zero modes on the magnetized
T2
1 × T2

2 with the magnetic fluxesMðiÞ (i ¼ 1, 2) on T2
i and

its orbifolds1 behave as modular forms of weight 1 and they
transform under the finite modular subgroup Γ0

2lcmðMð1Þ;Mð2ÞÞ,
which is the double covering group of Γ2lcmðMð1Þ;Mð2ÞÞ. The
number of zero modes was investigated in Ref. [15].
The modular transformation for Yukawa couplings was
also studied in Ref. [15]. Thus, it is important to study the
modular flavor symmetries, particularly in magnetized
orbifold models.
Furthermore, the finite modular subgroups ΓN forN ¼ 2,

3, 4, 5 are isomorphic to S3, A4, S4, A5, respectively [29].
Similarly, Γ0

N for N ¼ 3, 4, 5 are isomorphic to T 0, S04, A
0
5,

respectively [30]. These results are well motivated for
realistic model building. In particular, in Ref. [29] three-
dimensional irreducible representations were studied in
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1Both of moduli on T2
i , τi, are identified each other, i.e.,

τ1 ¼ τ2 ≡ τ. Such moduli identification can be realized by certain
three-form fluxes [23] or ZðpÞ

2 permutations.
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the finite modular subgroups and it was shown that
three-dimensional irreducible representations appear only
in the finite modular subgroups: Γ3 ≃ PSLð2;Z3Þ ≃ A4,
Γ4 ≃ S4, Γ5 ≃ PSLð2;Z5Þ ≃ A5, Γ7 ≃ PSLð2;Z7Þ,
Γ8 ⊃ Δð96Þ, and Γ16 ⊃ Δð384Þ. Note that a triplet repre-
sentation of Γ8 [Γ16] is not faithful, but rather represents its
subgroup Δð96Þ [Δð384Þ] [29]. Recently, the bottom-up
approach of model building with the modular flavor
symmetries was studied extensively for ΓN [31] and for
its covering groups [30,32].
In this paper, we study modular flavor groups of the

three-generation modes on magnetized orbifolds. We study
nonvanishing SS phases, although previous studies on
the modular symmetry did not include SS phases. We find
that the three-generation modes are the three-dimensional
representations of corresponding covering groups and
central extended groups of the above finite modular
subgroups provided in Ref. [29].
After this paper was completed, relevant papers appeared

[33,34]. In Ref. [33] it was claimed that the violation of the
modular symmetry in models with odd magnetic fluxes is
strange and it is inconsistent. To preserve the modular
symmetry, a certain shift of the coordinate was introduced
in the models with odd magnetic fluxes in Ref. [33], that is,
one class of compactification. However, the modular
symmetry can break when we impose further boundary
conditions on wave functions by geometry and/or gauge
background, that is, a generic compactification. For example,
T2=ZN orbifolds with N ¼ 3, 4, 6 break the modular
symmetry, while some residual symmetries remain. The full
modular symmetry remains in wave functions on T2 and
T2=Z2 with even magnetic fluxes and vanishing Wilson
lines (WLs), which are equivalent to SS phases. However,
nonvanishing SS phases can break the modular symmetry for
even magnetic fluxes. Indeed, the number of zero modes
depends on the SS phases [26,28]. On the other hand, the
modular symmetry is broken in wave functions for odd
magnetic fluxes and vanishing Wilson lines and SS phases,
but the modular symmetry remains for odd magnetic fluxes
and nonvanishing WLs, which is a discrete shift of the
coordinate. This result is consistent with Ref. [33]. At any
rate, a general class of compactifications can be decomposed
into two classes. One class of compactifications preserves
the modular symmetry, while the other class breaks the
modular symmetry. Both are consistent compactifications.
Thus, one can concentrate on the compactification preserv-
ing the modular symmetry, or one can discuss generic
compactification including breaking of the modular sym-
metry. In Ref. [34] SS phases were also studied.
This paper is organized as follows. In Sec. II we review

the modular symmetry on magnetized T2 and T2=ZðtÞ
2

twisted orbifolds without the SS phases. In Sec. III we

study the modular symmetry on magnetized T2 and T2=ZðtÞ
2

twisted orbifolds with the SS phases. We can consider the
modular symmetry of not only wave functions with

magnetic flux M ¼ even and vanishing SS phases, but
also ones with magnetic flux M ¼ odd and certain SS
phases. In Sec. IV we show the specific modular flavor

groups for three-generation modes on magnetized T2=ZðtÞ
2

twisted orbifolds with the SS phases. We find that the
three-generation modes are the three-dimensional repre-
sentations of the quadruple covering groups and Z8 central
extended groups of the corresponding modular flavor
groups provided in Ref. [29]. We also extend the analyses

to the modular symmetry on magnetized T2
1=Z

ðt1Þ
2 ×

T2=Zðt2Þ
2 orbifolds and the ZðpÞ

2 permutation orbifold, i.e.,

ðT2
1 × T2

2Þ=ðZðtÞ
2 × ZðpÞ

2 Þ orbifolds in Secs. V and VI. We
obtain three-dimensional representations of all of the
double covering groups of ΓN for N ¼ 4, 8, 16, i.e.,
covering groups of Δð6N02Þ with N0 ¼ N=2, and Z4 central
extended groups of ΓN for N ¼ 3, 5, 7, i.e., Z4 extensions
of PSLð2;ZNÞ. In Sec. VII we conclude this study. In
Appendix A we review that the SS phases can be replaced
by the WLs through a gauge transformation and we show
that the modular transformations for them are consistent.
In Appendix B we also show that the ZN SS phases are
related to the ZN shift modes. In Appendix C we prove
that Δ̃ð6M2Þ, which is the quadruple covering group of
Δð6M2Þ, can be obtained. In Appendix D we express the
three-dimensional modular forms obtained from the wave
functions on magnetized orbifolds.

II. MODULAR SYMMETRY ON MAGNETIZED T2

AND T2=ZðtÞ
2 TWISTED ORBIFOLDS WITHOUT

THE SCHERK-SCHWARZ PHASES

In this section we review the modular symmetry on

magnetized T2 and T2=ZðtÞ
2 twisted orbifolds without the

SS phases.
First, we review the modular symmetry of T2 [35–38]. A

two-dimensional torus T2 can be constructed as T2 ≃ C=Λ,
where Λ is a two-dimensional lattice spanned by lattice
vectors ek (k ¼ 1, 2). The torus is characterized by the
complex structure modulus τ≡ e2=e1 (Imτ > 0). We also
define the complex coordinate of C as u and that of T2 as
z≡ u=e1, so that zþ 1 and zþ τ are identified with z. The
metric on T2 is given by

ds2 ¼ 2hμνdzμdz̄ν; h ¼ je1j2
�
0 1

2

1
2

0

�
; ð1Þ

and then the area of T2 is A ¼ je1j2Imτ.
Here, we can consider the same lattice spanned by the

following lattice vectors transformed by SLð2;ZÞ≡ Γ:
�
e02
e01

�
¼
�
a b

c d

��
e2
e1

�
; γ¼

�
a b

c d

�
∈SLð2;ZÞ≡Γ:

ð2Þ
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The SLð2;ZÞ is generated by

S ¼
�

0 1

−1 0

�
; T ¼

�
1 1

0 1

�
; ð3Þ

and they satisfy the following algebraic relations:

Z≡ S2 ¼ −I; Z2 ¼ S4 ¼ ðSTÞ3 ¼ I: ð4Þ

Under the SLð2;ZÞ transformation, the complex coordinate
of the torus z and the complex structure modulus τ are
transformed as

γ∶ ðz; τÞ → ðγðz; τÞÞ ¼
�

z
cτ þ d

;
aτ þ b
cτ þ d

�
: ð5Þ

The above transformation for the modulus τ is called
the (inhomogeneous) modular transformation, and Γ̄≡
Γ=f�Ig is called the (inhomogeneous) modular group
since τ is invariant under Z ¼ −I.
We define the principal congruence subgroup ΓðNÞ of

level N by

ΓðNÞ≡
�
h ¼

�
a0 b0

c0 d0

�

∈ Γ
����
�
a0 b0

c0 d0

�
≡

�
1 0

0 1

�
ðmod NÞ

�
: ð6Þ

Then, the modular forms fðτÞ of the (integral) weight k for
ΓðNÞ are the holomorphic functions of τ, which transform
under the modular transformation in Eq. (5) as

fðγðτÞÞ ¼ Jkðγ; τÞρðγÞfðτÞ; Jkðγ; τÞ ¼ ðcτ þ dÞk;

γðτÞ ¼ aτ þ b
cτ þ d

; γ ¼
�
a b

c d

�
∈ Γ: ð7Þ

Here, ρðγÞ denotes the unitary representation of the
quotient group Γ0

N ≡ Γ=ΓðNÞ satisfying the following
algebraic relations:

ρðZÞ ¼ ρðSÞ2 ¼ ð−1ÞkI;
ρðZÞ2 ¼ ρðSÞ4 ¼ ½ρðSÞρðTÞ�3 ¼ I;

ρðZÞρðTÞ ¼ ρðTÞρðZÞ; ð8Þ

ρðTÞN ¼ I: ð9Þ

For even weight k, in particular, ρðγÞ becomes the unitary
representation of the quotient group ΓN ≡ Γ̄=Γ̄ðNÞ, where
Γ̄ðNÞ≡ ΓðNÞ=f�Ig for N ¼ 1, 2,2 and Γ̄ðNÞ≡ ΓðNÞ for

N > 2. Note that ΓN for N ¼ 2, 3, 4, and 5 are isomorphic
to S3, A4, S4, and A5, respectively [29], and Γ0

N for N ¼ 3,
4, and 5 are isomorphic to the corresponding double
covering groups T 0, S04, and A0

5, respectively [30]. In what
follows, we review the wave functions of ðz; τÞ on a
magnetized torus and then review their behavior as modular
forms under the modular transformation in Eq. (5).
First, let us review the wave functions, particularly the

zero-mode wave functions of the two-dimensional spinor,
on the torus with Uð1Þ magnetic flux [24]. Here, we do not
consider the WLs or the SS phases. In the next section, we
will study the case with nonvanishing SS phases.3 TheUð1Þ
magnetic flux is given by

F ¼ πiM
Imτ

dz ∧ dz̄; ð10Þ

which satisfies the quantization condition ð2πÞ−1 RT2 F ¼
M ∈ Z. This flux is induced by the vector potential

AðzÞ ¼ πM
Imτ

Imðz̄dzÞ: ð11Þ

This vector potential transforms under lattice translations as

Aðzþ 1Þ ¼ AðzÞ þ d

�
πM
Imτ

Imz

�
¼ AðzÞ þ dχ1ðzÞ; ð12Þ

Aðzþ τÞ ¼ AðzÞ þ d

�
πM
Imτ

Imτ̄z

�
¼ AðzÞ þ dχ2ðzÞ; ð13Þ

which correspond to a Uð1Þ gauge transformation.
Thereby, the two-dimensional spinor withUð1Þ unit charge
q ¼ 1,

ψðz; τÞ ¼
�
ψþðz; τÞ
ψ−ðz; τÞ

�
; ð14Þ

should satisfy the following boundary conditions:

ψðzþ 1; τÞ ¼ eiχ1ðzÞψðz; τÞ ¼ eπiM
Imz
Imτψðz; τÞ; ð15Þ

ψðzþ τ; τÞ ¼ eiχ2ðzÞψðz; τÞ ¼ eπiM
Imτ̄z
Imτ ψðz; τÞ: ð16Þ

Under these boundary conditions, we can solve the zero-
mode Dirac equation,

i=Dψðz; τÞ ¼ 0; ð17Þ

and then only ψþðz; τÞ (ψ−ðz; τÞ) has jMj degenerate zero
modes when M is positive (negative). In what follows, we

2Since Z ¼ −I ∈ ΓðNÞ for N ¼ 1, 2, ρðZÞ ¼ I should be
satisfied and then the modular weight k should be even.

3The WLs can be replaced by the SS phases [26]. We review
this and also show its consistency in terms of the modular
symmetry in Appendix A.
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consider the positive flux M. The jth zero-mode wave
function on the torus with the flux M is expressed as

ψ j;M
T2 ðz; τÞ ¼

�
M
A2

�
1=4

eπiMzImz
Imτϑ

� j
M

0

�
ðMz;MτÞ;

∀ j ∈ ZM ¼ f0; 1; 2;…;M − 1g; ð18Þ

where ϑ denotes the Jacobi theta function defined as

ϑ

�
a

b

�
ðν; τÞ ¼

X
l∈Z

eπiðaþlÞ2τe2πiðaþlÞðνþbÞ: ð19Þ

We take the following normalization condition:

Z
T2

dzdz̄ðψ j;M
T2 ðz; τÞÞ�ψk;M

T2 ðz; τÞ ¼ ð2ImτÞ−1=2δj;k: ð20Þ

Now, we can see that the wave functions for ∀ j in
Eq. (18) behave as modular forms of weight 1=24 under the
modular transformation in Eq. (5) [13] as follows. We first
introduce the double covering group of Γ,

Γ̃≡ f½γ; ϵ�jγ ∈ Γ; ϵ ∈ f�1gg: ð21Þ

The generators are given by

S̃≡ ½S; 1�; T̃ ≡ ½T; 1�; ð22Þ

and they satisfy the following algebraic relations:

Z̃≡ S̃2; Z̃2 ¼ S̃4 ¼ ðS̃ T̃Þ3 ¼ ½I;−1�;
Z̃4 ¼ S̃8 ¼ ðS̃ T̃Þ6 ¼ ½I; 1�≡ I; Z̃ T̃ ¼ T̃ Z̃ : ð23Þ

Note that the modular transformation in Eq. (5) does not
change upon replacing γ ∈ Γ with γ̃ ≡ ½γ; ϵ� ∈ Γ̃. We also
introduce the congruence subgroup,

Γ̃ðNÞ≡ f½h; ϵ� ∈ Γ̃jh ∈ ΓðNÞ; ϵ ¼ 1g: ð24Þ

Then, the modular forms fðτÞ of the (half integral)
weight k=2 for Γ̃ðNÞ transform under the modular trans-
formation as

fðγ̃ðτÞÞ ¼ J̃k=2ðγ̃; τÞρ̃ðγ̃ÞfðτÞ; γ̃ ∈ Γ̃; ð25Þ

J̃k=2ðγ̃;τÞ¼ ϵkJk=2ðγ;τÞ¼ ϵkðcτþdÞk=2; k∈Z; ð26Þ

where ρ̃ðγ̃Þ is the unitary representation of the quotient
group Γ̃N ≡ Γ̃=Γ̃ðNÞ, which is the double covering group
of Γ0

N , satisfying the following algebraic relations:

ρ̃ðZ̃Þ ¼ ρ̃ðS̃Þ2 ¼ eπik=2I; ð27Þ

ρ̃ðZ̃Þ2 ¼ ρ̃ðS̃Þ4 ¼ ½ρ̃ðS̃Þρ̃ðT̃Þ�3 ¼ eπikI; ð28Þ

ρ̃ðZ̃Þ4 ¼ ρ̃ðS̃Þ8 ¼ ½ρ̃ðS̃Þρ̃ðT̃Þ�6 ¼ I; ð29Þ

ρ̃ðZ̃Þρ̃ðT̃Þ ¼ ρ̃ðT̃Þρ̃ðZ̃Þ ð30Þ

ρ̃ðT̃ÞN ¼ I: ð31Þ

Here we take ð−1Þk=2 ¼ e−πik=2. On the other hand, the
wave functions for ∀ j in Eq. (18) transform under the
modular transformation as

ψ j;M
T2 ðγ̃ðz;τÞÞ¼ J̃1=2ðγ̃;τÞ

XM−1

k¼0

ρ̃T2ðγ̃Þjkψk;M
T2 ðz;τÞ; γ̃∈ Γ̃;

ð32Þ

ρ̃T2ðS̃Þjk ¼ eπi=4
1ffiffiffiffiffi
M

p e2πi
jk
M; ρ̃T2ðT̃Þjk ¼ eπi

j2

Mδj;k; ð33Þ

where ρ̃T2ðγ̃Þ satisfies Eqs. (27)–(31) with k=2 ¼ 1=2 and
N ¼ 2M, although Ijk ¼ δj;k in Eq. (27) is modified into
δM−j;k, derived from

ψ j;M
T2 ðZ̃ðz; τÞÞ ¼ ψ j;M

T2 ð−z; τÞ ¼ ψM−j;M
T2 ðz; τÞ: ð34Þ

Note that the above modular transformation for the wave
functions without the SS phases can be valid only if the
magnetic flux M is even because of the consistency of the
boundary conditions in Eqs. (15) and (16) under the T
transformation. That is, the wave functions after the T
transformation satisfy

ψðzþ τ þ 1; τ þ 1Þ ¼ eπiM
Imðτ̄þ1Þz

Imτ ψðz; τ þ 1Þ; ð35Þ

while the wave functions before the T transformation
satisfy

ψðzþ τ þ 1; τÞ ¼ e−πiMeπiM
Imðτ̄þ1Þz

Imτ ψðz; τÞ: ð36Þ

In the next section, however, we will show that when we
take the SS phases into account, we can also consider
the modular transformation for wave functions with the
flux M ¼ odd. Thus, the wave functions on T2 with the
magnetic flux M ∈ 2Z and vanishing SS phases behave as
the modular forms of weight 1=2 for Γ̃ð2MÞ. They seem to
be aM-dimensional representation. However, they can be a
reducible representation. Their concrete flavor symmetry
depends on irreducible representations. For example, they
cannot be faithful. Thus, we will study concrete flavor
symmetries of zero modes in the following sections.4For details see, e.g., Refs. [36,39,40].
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Finally, we also review the zero-mode wave functions

on the magnetized T2=ZðtÞ
2 twisted orbifold without

the SS phases [25] and the modular transformation for

them [13] (see also Refs. [9,10]). The T2=ZðtÞ
2 twisted

orbifold can be obtained by further identifying the ZðtÞ
2

twisted point −z with z. Note that the modulus τ is not

restricted by ZðtÞ
2 twist orbifolding, which means we can

also consider the modular transformation on the T2=ZðtÞ
2

twisted orbifold. Then, the wave functions on the magnet-

ized T2=ZðtÞ
2 twisted orbifold should also satisfy the

boundary condition

ψ j;M

T2=ZðtÞm
2

ð−z;τÞ¼ð−1Þmψ j;M

T2=ZðtÞm
2

ðz;τÞ; m∈ZðtÞ
2 ð37Þ

in addition to the boundary conditions on the magnetized
T2 in Eqs. (15) and (16). Actually, their boundary con-
ditions are satisfied by the following linear combination of
wave functions on the magnetized T2:

ψ j;M

T2=ZðtÞm
2

ðz; τÞ ¼ N j
ðtÞðψ j;M

T2 ðz; τÞ þ ð−1Þmψ j;M
T2 ð−z; τÞÞ;

ð38Þ

whereN j
ðtÞ denotes the normalization factor determined by

the normalization condition in Eq. (20). Since the wave
functions on the T2 without the SS phases satisfy Eq. (34),

those on the T2=ZðtÞ
2 twisted orbifold without the SS phases

can be expanded by

ψ j;M

T2=ZðtÞm
2

ðz; τÞ ¼ N j
ðtÞ
XM−1

k¼0

ðδj;k þ ð−1ÞmδM−j;kÞψk;M
T2 ðz; τÞ;

N j
ðtÞ ¼

�
1=2 ðj ¼ 0;M=2Þ;
1=

ffiffiffi
2

p ðotherwiseÞ: ð39Þ

Then, the number of zero modes for even M are equal to

M=2þ 1 for ZðtÞ
2 -even modes (m ¼ 0) and M=2 − 1 for

ZðtÞ
2 -odd modes (m ¼ 1). Furthermore, under the modular

transformation, these transform similarly to Eq. (32) by
replacing Eq. (33) with

ρ̃
T2=ZðtÞ0

2

ðS̃Þjk ¼ N j
ðtÞN

k
ðtÞ
4eπi=4ffiffiffiffiffi

M
p cos

�
2πjk
M

�
;

ρ̃
T2=ZðtÞ0

2

ðT̃Þjk ¼ eπi
j2

Mδj;k; ð40Þ

ρ̃
T2=ZðtÞ1

2

ðS̃Þjk ¼ N j
ðtÞN

k
ðtÞ
4ieπi=4ffiffiffiffiffi

M
p sin

�
2πjk
M

�
;

ρ̃
T2=ZðtÞ1

2

ðT̃Þjk ¼ eπi
j2

Mδj;k; ð41Þ

where ρ̃
T2=ZðtÞm

2

ðγ̃Þ for each m ∈ Z2 satisfies Eqs. (27)–(31)
with k=2 ¼ 1=2 and N ¼ 2M, although Ijk ¼ δj;k in
Eq. (27) is modified into ð−1Þmδj;k, derived from

Eq. (37). Thus, both the ZðtÞ
2 -even and -odd mode wave

functions on the T2=ZðtÞ
2 twisted orbifold with magnetic

flux M ∈ 2Z and vanishing SS phases behave as modular
forms of weight 1=2. They decompose into ðM=2þ 1Þ- and
ðM=2 − 1Þ-dimensional representations for ZðtÞ

2 -even and
-odd modes, respectively. That is, the representations on
the magnetized T2 can be decomposed into smaller

representations on the magnetized T2=ZðtÞ
2 twisted orbifold.

We will study their concrete flavor symmetries in the
following sections.

III. MODULAR SYMMETRY ON MAGNETIZED T2

AND T2=ZðtÞ
2 TWISTED ORBIFOLDS WITH

THE SCHERK-SCHWARZ PHASES

In this section we review the wave functions on mag-

netized T2 and T2=ZðtÞ
2 twisted orbifolds with SS phases

[26], and then we study their modular symmetry.
The wave functions on T2 with flux M and SS phases

ðα1;α2Þ (0 ≤ α1; α2 < 1)5 satisfy the boundary conditions

ψα1;α2ðzþ 1; τÞ ¼ e2πiα1eiχ1ðzÞψα1;α2ðz; τÞ
¼ e2πiα1eπiM

Imz
Imτψα1;α2ðz; τÞ; ð42Þ

ψα1;α2ðzþ τ; τÞ ¼ e2πiα2eiχ2ðzÞψα1;α2ðz; τÞ
¼ e2πiα2eπiM

Imτ̄z
Imτ ψα1;α2ðz; τÞ ð43Þ

instead of Eqs. (15) and(16). Then, the jth zero-mode wave
function is expressed as

ψ ðjþα1;α2Þ;M
T2 ðz; τÞ ¼

�
M
A2

�
1=4

eπiMzImz
Imτϑ

� jþα1
M

−α2

�
ðMz;MτÞ;

∀ j ∈ ZM: ð44Þ

Note that Eq. (18) corresponds to Eq. (44) with
ðα1;α2Þ ¼ ð0; 0Þ.
Let us study the modular transformation for the wave

function in Eq. (44). First, we check the consistency of the
boundary conditions under the modular transformation.
For example, the wave functions after the T transformation
satisfy

5Thewave functionon themagnetizedT2 ≃ C=Λwith theZN SS
phases is related to the ZN-eigenmode wave function on the
magnetized ZN full shifted orbifold of T̃2 ≃ C=Λ̃ðΛ̃ ¼ NΛÞ with-
out SSphases [13,41], as shown inAppendixB.The analyses for the
wave functions on the magnetized T2 with the (ZN) SS phases are
consistent with those for the wave functions on the magnetized
T̃2=ZN full shifted orbifold without SS phases in Ref. [13].
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ψα0
1
;α0

2ðzþ τ þ 1; τ þ 1Þ ¼ e2πiα
0
2eπiM

Imðτ̄þ1Þz
Imτ ψα1;α2ðz; τ þ 1Þ;

ð45Þ

while the wave functions before the T transformation
satisfy

ψα1;α2ðzþ τ þ 1; τÞ ¼ e2πiðα1þα2−M=2ÞeπiM
Imðτ̄þ1Þz

Imτ ψα1;α2ðz; τÞ:
ð46Þ

Thus, in order to see the modular symmetry (particularly
the T symmetry) of the wave functions, α02 ≡ α1 þ α2 −
M=2 ðmod 1Þ should be satisfied. Also, α01 ≡ α1 ðmod 1Þ
is required under the T transformation. Under the S
transformation, similarly, α02 ≡ α1 ðmod 1Þ and α01 ≡
1 − α2ðmod 1Þ are required. Then, the modular transfor-
mations in Eqs. (32) and (33) are deformed as

ψ
ðjþα0

1
;α0

2
Þ;M

T2 ðγ̃ðz; τÞÞ

¼ J̃1=2ðγ̃; τÞ
XM−1

k¼0

ρ̃T2ðγ̃Þjkψ ðkþα1;α2Þ;M
T2 ðz; τÞ; γ̃ ∈ Γ̃;

ð47Þ

ρ̃T2ðS̃Þjk ¼ eπi=4
1ffiffiffiffiffi
M

p e2πiððjþ1Þkþð1−α0
1
Þα1Þ=Mδα0

2
;α1δ1−α01;α2 ;

ð48Þ

ρ̃T2ðT̃Þjk ¼ eπiðjþα0
1
Þðj−α0

1
þxÞ=Mδj;kδα1;α01δα02−α01þx=2;α2 ; ð49Þ

where x≡M ðmod 2Þ and ρ̃T2ðγ̃Þ satisfies Eqs. (27)–(30)
with k=2 ¼ 1=2, although Ijk in Eq. (27) is modified into
e−2πiðjþα0

1
Þ=MδM−j−1;kδ1−α0

1
;α1δ1−α02;α2 , derived from

ψ ðjþα1;α2Þ;M
T2 ðZ̃ðz; τÞÞ ¼ ψ ðjþα1;α2Þ;M

T2 ð−z; τÞ
¼ e−2πiðjþα1Þ=Mψ ðM−ðjþα1Þ;1−α2Þ;M

T2 ðz; τÞ:
ð50Þ

However, Eq. (31) is not obtained in the general SS phases.
Note that under the modular transformation, in general, the
wave functions with the SS phases ðα1; α2Þ transform into
ones with different SS phases ðα01; α02Þ. Conversely, whenM
is even, only the wave functions with ðα1; α2Þ ¼ ð0; 0Þ are
closed under the modular transformation. This case was
reviewed in the previous section. Similarly, whenM is odd,
only the wave functions with ðα1; α2Þ ¼ ð1=2; 1=2Þ are
closed under the modular transformation. In this case,
ρ̃T2ðT̃Þ satisfies

ρ̃T2ðT̃ÞM ¼ eπi=4I; ρ̃T2ðT̃Þ8M ¼ I: ð51Þ

Thus, the wave functions on T2 with magnetic flux M ∈
2Zþ 1 and SS phases ðα1; α2Þ ¼ ð1=2; 1=2Þ behave as
modular forms of weight 1=2. They transform as M-
dimensional representations, but they can be reducible.

Furthermore, we consider the magnetized T2=ZðtÞ
2 twisted orbifold with SS phases.6 In this case, we can only consider the

Z2 SS phases, ðα1;α2Þ ¼ ðl1=2;l2=2Þ, (l1;l2 ∈ Z2), which are derived from

1−α1≡α1ðmod 1Þ; 1−α2≡α2ðmod 1Þ: ð52Þ

The wave functions on the magnetized T2=ZðtÞ
2 twisted orbifold with the Z2 SS phases can be expanded by those on the

magnetized T2 in Eq. (44) as

ψ
ðjþl1

2
;
l2
2
Þ;M

T2=ZðtÞm
2

ðz; τÞ ¼ N
ðjþl1

2
;
l2
2
Þ

ðtÞ
XM−1

k¼0

ðδj;k þ ð−1Þme−2πiðjþl1
2
Þl2=mδM−j−l1;kÞψ

ðkþl1
2
;
l2
2
Þ;M

T2 ðz; τÞ; ð53Þ

where we use Eq. (50) instead of Eq. (34). Then, the modular transformation for the wave functions in Eq. (53) is similarly
obtained by replacing Eqs. (48) and (49) with

ρ̃
T2=ZðtÞ0

2

ðS̃Þjk ¼ N
ðjþl1

2
;
l2
2
Þ

ðtÞ N
ðkþl1

2
;
l2
2
Þ

ðtÞ
4eπi=4ffiffiffiffiffi

M
p eπiðkl01−jl1Þ cos

�
2π

�
jþ l0

1

2

��
kþ l1

2

�

M

�
δl0

2
;l1δl01;l2 ; ð54Þ

6Similarly, the wave functions on the magnetized T2=ZðtÞ
2 twisted orbifold with SS phases are related to those on the magnetized

T̃2=Z2 twisted and full shifted orbifold without SS phases in Ref. [13].
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ρ̃
T2=ZðtÞ0

2

ðT̃Þjk¼eπiðjþ
l0
1
2
Þðj−l0

1
2
þxÞ=Mδj;kδl0

1
;l1δl0

2
−l0

1
þx;l2 ; ð55Þ

ρ̃
T2=ZðtÞ1

2

ðS̃Þjk ¼ N
ðjþl1

2
;
l2
2
Þ

ðtÞ N
ðkþl1

2
;
l2
2
Þ

ðtÞ
4ieπi=4ffiffiffiffiffi

M
p eπiðkl01−jl1Þ sin

�
2π

�
jþ l0

1

2

��
kþ l1

2

�

M
�
δl0

2
;l1δl01;l2 ; ð56Þ

ρ̃
T2=ZðtÞ1

2

ðT̃Þjk ¼ eπiðjþ
l0
1
2
Þðj−l0

1
2
þxÞ=Mδj;kδl0

1
;l1δl02−l01þx;l2 : ð57Þ

In particular, when M ¼ even and ðα1; α2Þ ¼ ð0; 0Þ, they correspond to Eqs. (40) and (41). When M ¼ odd and
ðα1; α2Þ ¼ ð1=2; 1=2Þ, they become

ρ̃
T2=ZðtÞ0

2

ðS̃Þjk ¼ N
ðjþ1

2
;1
2
Þ

ðtÞ N
ðkþ1

2
;1
2
Þ

ðtÞ
4eπi=4ffiffiffiffiffi

M
p eπiðk−jÞ cos

�
2π

�
jþ 1

2

��
kþ 1

2

�

M

�
; ð58Þ

ρ̃
T2=ZðtÞ0

2

ðT̃Þjk ¼ eπiðjþ1
2
Þ2=Mδj;k; ð59Þ

ρ̃
T2=ZðtÞ1

2

ðS̃Þjk ¼ N
ðjþ1

2
;1
2
Þ

ðtÞ N
ðkþ1

2
;1
2
Þ

ðtÞ
4ieπi=4ffiffiffiffiffi

M
p eπiðk−jÞ sin

�
2π

�
jþ 1

2

��
kþ 1

2

�

M

�
; ð60Þ

ρ̃
T2=ZðtÞ1

2

ðT̃Þjk ¼ eπiðjþ1
2
Þ2=Mδj;k; ð61Þ

where Eqs. (58)–(61) for each m ∈ Z2 satisfy Eqs. (27)–
(30), and Eq. (51) with k=2 ¼ 1=2, although Ijk ¼ δj;k in
Eq. (27) is modified into ð−1Þmδj;k, derived from Eq. (37).

Note that there are ðM − 1Þ=2 ZðtÞ
2 -even (m ¼ 0) modes

and ðM þ 1Þ=2 ZðtÞ
2 -odd (m ¼ 1) modes when M ¼ odd

and ðα1; α2Þ ¼ ð1=2; 1=2Þ. Thus, both ZðtÞ
2 -even and -odd

mode wave functions on the T2=ZðtÞ
2 twisted orbifold with

magnetic flux M ∈ 2Zþ 1 and the SS phases ðα1; α2Þ ¼
ð1=2; 1=2Þ behave as modular forms of weight 1=2. Then,
they transform as ðM − 1Þ=2- and ðM þ 1Þ=2-dimensional

representations for ZðtÞ
2 -even and -odd modes, respectively.

We show the number of ZðtÞ
2 eigenmodes, NmðMÞ, which

have the modular symmetry, and the order of T̃, i.e., T̃h ¼ I
in Tables I and II.

IV. MODULAR FLAVOR GROUPS OF THREE-
GENERATION MODES ON MAGNETIZED

T2=ZðtÞ
2 TWISTED ORBIFOLDS

As mentioned in the Introduction, in Ref. [29] three-
dimensional representations were obtained from specific
finite modular subgroups: Γ3 ≃ A4, Γ4 ≃ S4, Γ5 ≃ A5,
Γ7 ≃ PSLð2;Z7Þ, Γ8 ⊃ Δð96Þ, and Γ16 ⊃ Δð384Þ.7 In this
section, we show that the three-generation modes on the

magnetized T2=ZðtÞ
2 twisted orbifold shown in Tables I

and II are the representations of the corresponding covering
or central extended groups of the modular flavor groups.

A. T2=ZðtÞ
2 twisted orbifold with magnetic fluxM = even
and vanishing Scherk-Schwarz phases

In this subsection we show the modular flavor groups of

the three-generation modes on the T2=ZðtÞ
2 twisted orbifold

withM ¼ even and ðα1; α2Þ ¼ ð0; 0Þ. As shown in Table I,

TABLE I. Number of ZðtÞ
2 -even (m ¼ 0) modes, N0ðMÞ, and

ZðtÞ
2 -odd (m ¼ 1) modes, N1ðMÞ, on the T2=ZðtÞ

2 twisted orbifold
with M ¼ even and ðα1; α2Þ ¼ ð0; 0Þ, and the order of T̃. The
three generations are boxed.

M 2 4 6 8

ZðtÞ
2 -even: N0ðMÞ M

2
þ 1 2 3 4 5

ZðtÞ
2 -odd: N1ðMÞ M

2
− 1 0 1 2 3

order h of T̃ (Th ¼ I) 2M 4 8 12 16

TABLE II. Number of ZðtÞ
2 -even (m ¼ 0) modes, N0ðMÞ, and

ZðtÞ
2 -odd (m ¼ 1) modes, N1ðMÞ, on the T2=ZðtÞ

2 twisted orbifold
withM ¼ odd and ðα1; α2Þ ¼ ð1=2; 1=2Þ, and the order of T̃. The
three generations are boxed.

M 1 3 5 7

ZðtÞ
2 -even: N0ðMÞ M−1

2
0 1 2 3

ZðtÞ
2 -odd: N1ðMÞ Mþ1

2
1 2 3 4

order h of T̃ (Th ¼ I) 8M 8 24 40 56
7See Refs. [2,3,42] for the algebraic relations for the generators

of each non-Abelian discrete flavor group.
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the three-generation modes are obtained from the ZðtÞ
2 -even

modes withM ¼ 4 and the ZðtÞ
2 -odd modes withM ¼ 8. In

the following, we show that they are the representations of
Δ̃ð96Þ and Δ̃ð384Þ, which are subgroups of Γ̃8 and Γ̃16,
respectively, and are the quadruple covering groups of
Δð96Þ and Δð384Þ, respectively.
First, ΓN satisfy

S2 ¼ ðSTÞ3 ¼ TN ¼ 1: ð62Þ

On the other hand, Δð96Þ≃ðZ4×Z0
4Þ⋊Z3⋊Z2≃Δð48Þ⋊Z2

and Δð384Þ ≃ ðZ8 × Z0
8Þ⋊Z3⋊Z2 ≃ Δð192Þ⋊Z2 satisfy

aM ¼ a0M ¼ b3 ¼ c2 ¼ 1; ðM ¼ 4; 8Þ;
aa0 ¼ a0a; cbc−1 ¼ b−1; bab−1 ¼ a−1a0−1;

ba0b−1 ¼ a; cac−1 ¼ a0−1; ca0c−1 ¼ a−1; ð63Þ

where að0Þ, b, c denote the generators of Zð0Þ
M ðM ¼ 4; 8Þ, Z3,

Z2, respectively [2,3,42]. In order to obtain Δð96Þ and
Δð384Þ from the above algebra (62) for N ¼ 8 and 16,
respectively, the relation

ðS−1T−1STÞ3 ¼ 1 ð64Þ

should also be satisfied. Actually, we can show that if S
and T satisfy Eq. (64) in addition to Eq. (62) for N ¼ 2M,
M ∈ 4Z, the generators8

a ¼ ST2ST4; a0 ¼ ST2S−1T−2;

b ¼ T
M
2
þ3STM; c ¼ STM−2ST

3
2
M−1 ð65Þ

satisfy Eq. (63) in Appendix C (see also Refs. [29,43]). In
other words, we can obtain Δð6M2Þ from Γ2M by satisfying
the additional relation in Eq. (64). Similarly, Γ̃2M satisfy
Eqs. (27)–(31) with k=2 ¼ 1=2 and N ¼ 2M. If Eq. (64) is
also satisfied, especially for M ∈ 4Z, the generators

a ¼ ST2S5T4; a0 ¼ ST2S−1T−2;

b ¼ T
M
2
þ3S

3
2
M−1TM; c ¼ STM−2ST

3
2
M−1 ð66Þ

satisfy

aM ¼ a0M ¼ b3 ¼ c8 ¼ 1; aa0 ¼ a0a;

cbc−1 ¼ b−1; bab−1 ¼ a−1a0−1;

ba0b−1 ¼ a; cac−1 ¼ a0−1; ca0c ¼ a−1; ð67Þ

which means that the generators in Eq. (66) are those of
Δ̃ð6M2Þ ≃ ðZM × ZMÞ⋊Z3⋊Z8 ≃ Δð3M2Þ⋊Z8, where að0Þ,
b, c denote those of Zð0Þ

M , Z3, Z8, respectively. (We give the
proof in Appendix C.) In other words, we can obtain
Δ̃ð6M2Þ, especially for M ∈ 4Z, from Γ̃2M by satisfying
the additional relation in Eq. (64).
Let us study the case of the three-generation modes

on the T2=ZðtÞ
2 twisted orbifold with M ¼ 4, 8 and

ðα1;α2Þ ¼ ð0; 0Þ. The S and T transformation matrices

for the ZðtÞ
2 -even modes with M ¼ 4 are given by

S¼ eπi=4

2

0
B@

1
ffiffiffi
2

p
1ffiffiffi

2
p

0 −
ffiffiffi
2

p

1 −
ffiffiffi
2

p
1

1
CA; T ¼

0
B@
1

eπi=4

−1

1
CA;

ð68Þ

and those for the ZðtÞ
2 -odd modes with M ¼ 8 are given by

S¼e3πi=4

2

0
B@

1
ffiffiffi
2

p
1ffiffiffi

2
p

0 −
ffiffiffi
2

p

1 −
ffiffiffi
2

p
1

1
CA;T¼eπi=8

0
B@
1

e3πi=8

−1

1
CA:

ð69Þ

Note that here and hereafter (as well as in Sec. VI) we
omit ρ. The above S and T matrices in both of Eqs. (68)
and (69) can be written by

S ¼ eiθ1

2

0
B@

1
ffiffiffi
2

p
1ffiffiffi

2
p

0 −
ffiffiffi
2

p

1 −
ffiffiffi
2

p
1

1
CA;

T ¼ eiθ2

0
B@

1

eiθ3

−1

1
CA; ∀ θ1;2;3 ∈ R; ð70Þ

and we can check that Eq. (70) satisfies Eq. (64) in general.

Thus, the three-generation ZðtÞ
2 -even modes with M ¼ 4

and ZðtÞ
2 -odd modes with M ¼ 8 are transformed under the

modular transformation as the three-dimensional represen-
tations of Δ̃ð96Þ and Δ̃ð384Þ, respectively.9
We also comment on the modular flavor anomaly. As

discussed in Refs. [22,44], the transformation g can be
anomalous if detðgÞ ≠ 1. Then, let us see the anomaly of
the modular flavor group Δ̃ð6M2Þ. From Eqs. (27)–(31)
with k=2 ¼ 1=2 and N ¼ 2M, and Eqs. (66) and (67), we
can obtain8For N ¼ 2M, M ¼ 2ð2s − 1Þ s ∈ Z, similarly, the generators

a ¼ ST2ST4, a0 ¼ ST2S−1T−2, b ¼ T
M
2STM, and c ¼ STMST

3
2
M

satisfy Eq. (63). 9See also Ref. [11].
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detðaÞ ¼ detða0Þ ¼ detðbÞ ¼ 1;

detðcÞ ¼ detðTÞM2þ3; detðcÞ8 ¼ 1: ð71Þ

Actually, Eqs. (68) and (69) both satisfy Eq. (71) and
detðcÞ ¼ eπi=4. Thus, only Z8 symmetry, generated by c,
can be anomalous,10 and then Δð48Þ and Δð192Þ remain
anomaly free, respectively.

B. T2=ZðtÞ
2 twisted orbifold with magnetic flux M = odd

and the Scherk-Schwarz phases ðα1;α2Þ= ð1=2;1=2Þ
In this subsection we show the modular flavor groups of

the three-generation modes on the T2=ZðtÞ
2 twisted orbifold

with M ¼ odd and ðα1; α2Þ ¼ ð1=2; 1=2Þ. As shown in
Table II, the three-generation modes are obtained from

the ZðtÞ
2 -odd modes with M ¼ 5 and the ZðtÞ

2 -even modes
with M ¼ 7.
First, the S and T transformation matrices for the

ZðtÞ
2 -odd modes with M ¼ 5 are given by

S ¼ ieπi=4ffiffiffi
5

p

0
BB@

2 sinð π
10
Þ 2eπi=5 sinð3π

10
Þ ffiffiffi

2
p

e2πi=5

2e−πi=5 sinð3π
10
Þ 2 sinð π

10
Þ −

ffiffiffi
2

p
eπi=5ffiffiffi

2
p

e−2πi=5 −
ffiffiffi
2

p
e−πi=5 1

1
CCA;

T ¼

0
B@

eπi=20

e9πi=20

e25πi=20

1
CA; ð72Þ

which satisfy Eqs. (27)–(30) and (51) with k=2 ¼ 1=2 and
replacing I in Eq. (27) with ð−1Þm¼1I ¼ −I. When we
define the generators

a ¼ ST5; b ¼ ST21; c ¼ T5 ð73Þ

from the above S and T in Eq. (72), they satisfy

a2¼b3¼ðabÞ5¼c8¼1; ac¼ca; bc¼cb; ð74Þ

which means that they are the generators of A5 × Z8. Thus,

the three-generational ZðtÞ
2 -odd modes with M ¼ 5 are

transformed under the modular transformation as the
three-dimensional representations of A5 × Z8.
Next, the S and T transformation matrices for the

ZðtÞ
2 -even modes with M ¼ 7 are given by

S¼2eπi=4ffiffiffi
7

p

0
B@

cosð π
14
Þ eπi=7cosð3π

14
Þ e2πi=7cosð5π

14
Þ

e−πi=7cosð3π
14
Þ cosð9π

14
Þ −eπi=7cosð π

14
Þ

e−2πi=7cosð5π
14
Þ −e−πi=7cosð π

14
Þ cosð3π

14
Þ

1
CA;

T¼

0
B@
eπi=28

e9πi=28

e25πi=28

1
CA ð75Þ

which satisfy Eqs. (27)–(30) and (51) with k=2 ¼ 1=2.
They also satisfy

ðS−1T−1STÞ4 ¼ 1: ð76Þ

When we define the generators

a ¼ ST21; b ¼ S7T3; c ¼ T7 ð77Þ

from the above S and T in Eq. (75), they satisfy

a2 ¼ b4 ¼ ðabÞ7 ¼ ða−1b−1abÞ4 ¼ c8 ¼ 1;

ac ¼ ca; bc ¼ cb; ð78Þ

whichmeans that they are the generators ofPSLð2;Z7Þ×Z8.

Thus, the three-generational ZðtÞ
2 -even modes with M ¼ 7

are transformed under the modular transformation as the
three-dimensional representations of PSLð2; Z7Þ × Z8.
Similarly, we comment on the anomaly of these modular

flavor groups. From Eqs. (27)–(30) with k=2 ¼ 1=2, and
Eqs. (51), (73), and (74) as well as Eqs. (77) and (78), we
can obtain

detðaÞ¼detðbÞ¼1; detðcÞ¼detðeπi=4IÞ; detðcÞ8¼1:

ð79Þ

Actually, Eqs. (72) and (75) satisfy Eq. (79). Thus, in both
cases, only Z8 symmetry (generated by c) can be anoma-
lous, and then A5 and PSLð2; Z7Þ remain anomaly free.

V. MODULAR SYMMETRY ON MAGNETIZED
ORBIFOLDS OF T2 × T2

In this section we extend the analyses to the modular
symmetry on magnetized orbifolds of T2

1 × T2
2, where both

of the moduli on T2
i (i ¼ 1, 2), τi, are identified each other,

i.e., τ1 ¼ τ2 ≡ τ (see Ref. [14]). First, let us consider the
modular transformation for the wave functions on the

T2
1=Z

ðt1Þ
2 × T2=Zðt2Þ

2 with magnetic flux MðiÞ ¼ even and

the SS phases ðαðiÞ1 ; αðiÞ2 Þ ¼ ð0; 0Þ, and magnetic flux

MðiÞ ¼ odd and the SS phases ðαðiÞ1 ; αðiÞ2 Þ ¼ ð1=2; 1=2Þ
on each T2

i =Z
ðtiÞ
2 . The wave functions transform under

the modular transformation as
10The anomalous symmetry, which is the discrete subsymme-

try of Uð1Þ, can be canceled by the Green-Schwarz mechanism.
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Ψjð1Þjð2Þ;Mð1ÞMð2Þ
ðt1Þm1ðt2Þm2

ðγðz1; z2; τÞÞ ¼ J1ðγ; τÞ
XNm1
ðMð1ÞÞ

kð1Þ¼0

XNm2
ðMð2ÞÞ

kð2Þ¼0

ρðt1Þm1ðt2Þm2
ðγÞðjð1Þjð2ÞÞðkð1Þkð2ÞÞΨkð1Þkð2Þ;Mð1ÞMð2Þ

ðt1Þm1ðt2Þm2
ðz1; z2; τÞ ð80Þ

m1 ∈ Zðt1Þ
2 ; m2 ∈ Zðt2Þ

2 ; γ ∈ Γ;

Ψjð1Þjð2Þ;Mð1ÞMð2Þ
ðt1Þm1ðt2Þm2

ðz1; z2; τÞ ¼ ψ
ðkð1Þþαð1Þ

1
;αð1Þ

2
Þ;Mð1Þ

T2
1
=Z

ðt1Þm1
2

ðz1; τÞψ ðkð2Þþαð2Þ
1
;αð2Þ

2
Þ;Mð2Þ

T2
2
=Z

ðt2Þm2
2

ðz2; τÞ; ð81Þ

ρðt1Þm1ðt2Þm2
ðSÞðjð1Þjð2ÞÞðkð1Þkð2ÞÞ ¼ ρ̃

T2
1
=Z

ðt1Þm1
2

ðS̃Þjð1Þkð1Þ ρ̃T2
2
=Z

ðt2Þm2
2

ðS̃Þjð2Þkð2Þ ; ð82Þ

ρðt1Þm1ðt2Þm2
ðTÞðjð1Þjð2ÞÞðkð1Þkð2ÞÞ ¼ ρ̃

T2
1
=Z

ðt1Þm1
2

ðT̃Þjð1Þkð1Þ ρ̃T2
2
=Z

ðt2Þm2
2

ðT̃Þjð2Þkð2Þ ; ð83Þ

where ρ̃
T2
2
=Z

ðtiÞmi
2

ðγ̃Þ (i ¼ 1, 2) correspond to Eqs. (40)–(41) for MðiÞ ¼ even and ðαðiÞ1 ; αðiÞ2 Þ ¼ ð0; 0Þ or Eqs. (58)–(61)

for MðiÞ ¼ odd and ðαðiÞ1 ; αðiÞ2 Þ ¼ ð1=2; 1=2Þ. Then, ρðt1Þm1ðt2Þm2
ðγÞ satisfies Eq. (8) with k ¼ 1, where ρðZÞ ¼ −I

is replaced by ρðt1Þm1ðt2Þm2
ðZÞ ¼ −ð−1Þm1þm2 I, and also satisfies11

ρðTÞ2lcmðMð1Þ;Mð2ÞÞ ¼ I; ðMð1Þ ¼ 2sð1Þ;Mð2Þ ¼ 2sð2ÞÞ; ð84Þ

ρðTÞ2lcmðMð1Þ;Mð2ÞÞ ¼ I; ðMð1Þ ¼ 4sð1Þ;Mð2Þ ¼ 2sð2Þ − 1Þ; ð85Þ

ρðTÞ2lcmðMð1Þ;Mð2ÞÞ ¼ −I; ρðTÞ4lcmðMð1Þ;Mð2ÞÞ ¼ I; ðMð1Þ ¼ 2ð2sð1Þ − 1Þ;Mð2Þ ¼ 2sð2Þ − 1Þ; ð86Þ

ρðTÞlcmðMð1Þ;Mð2ÞÞ ¼ e
πi Mð1ÞþMð2Þ

4 gcdðMð1Þ ;Mð2ÞÞI; ðMð1Þ ¼ 2sð1Þ − 1;Mð2Þ ¼ 2sð2Þ − 1Þ;

⇒ ρðTÞN ¼ I; N ¼

8>><
>>:

lcmðMð1Þ;Mð2ÞÞ ðMð1Þ þMð2Þ ∈ 8ZÞ;
2lcmðMð1Þ;Mð2ÞÞ ðMð1Þ þMð2Þ ∈ 4ZÞ;
4lcmðMð1Þ;Mð2ÞÞ ðMð1Þ þMð2Þ ∈ 2ZÞ;

ð87Þ

corresponding to Eq. (9), where sð1Þ, sð2Þ ∈ Z and we omit the ZðtÞ
2 indices since the above relations are independent of

them. Thus, the wave functions on the magnetized T2
1=Z

ðt1Þ
2 × T2=Zðt2Þ

2 orbifold behave as modular forms of weight 1, and
then they transform as Nm1

ðMð1ÞÞNm2
ðMð2ÞÞ-dimensional representations, whereNmi

ðMðiÞÞ (i ¼ 1, 2) denote the number of

zero-mode wave functions on T2
i =Z

ðtiÞ
2 . These can be irreducible representations. We will study their flavor symmetries in

the next section. Also, note that when m1 þm2 ¼ 1, S2 ¼ I is satisfied even though the modular weight k ¼ 1.12

We can further consider the ZðpÞ
2 permutation orbifold if Mð1Þ ¼ Mð2Þ ¼ M, αð1Þi ¼ αð2Þi ¼ αi (i ¼ 1, 2), and

m1 ¼ m2 ¼ m. The ZðpÞ
2 permutation means that the transformation of the complex coordinate of T2

1=Z
ðt1Þ
2 × T2=Zðt2Þ

2 :

ðz1; z2Þ → ðz2; z1Þ, and then the ZðpÞ
2 permutation orbifold can be considered by identifying z1 and z2. Hence, the

wave functions on the ZðpÞ
2 permutation orbifold of T2

1=Z
ðt1Þ
2 × T2=Zðt2Þ

2 , i.e., the ðT2
1 × T2

2Þ=ðZðtÞ
2 × ZðpÞ

2 Þ orbifold, are
expressed as

Ψjð1Þjð2Þ;M
ðtÞmðpÞn ðz1; z2; τÞ ¼ N jð1Þjð2Þ

ðt;pÞ ðΨjð1Þjð2Þ;MM
ðtÞmðtÞm ðz1; z2; τÞ þ ð−1ÞnΨjð1Þjð2Þ;MM

ðtÞmðtÞm ðz2; z1; τÞÞ;

m ∈ ZðtÞ
2 ; n ∈ ZðpÞ

2 ; jð1Þ ≥ jð2Þ; N jð1Þjð2Þ
ðt;pÞ ¼

�
1=2 ðjð1Þ ¼ jð2ÞÞ;
1=

ffiffiffi
2

p ðjð1Þ > jð2ÞÞ;
ð88Þ

and they satisfy the boundary condition

11lcmða; bÞ denotes the least common multiple of a and b, and gcdða; bÞ denotes the greatest common divisor of a and b.
12This situation does not appear in modular forms, and actually the wave functions vanish at z1 ¼ z2 ¼ 0.
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Ψjð1Þjð2Þ;M
ðtÞmðpÞn ðz2; z1; τÞ ¼ ð−1ÞnΨjð1Þjð2Þ;M

ðtÞmðpÞn ðz1; z2; τÞ ð89Þ

in addition to those in Eqs. (15), (16), and (37). Thus, we

can obtainNmðMÞðNmðMÞþ1Þ=2ZðpÞ
2 -even (n¼0) modes

and NmðMÞðNmðMÞ − 1Þ=2 ZðpÞ
2 -odd (n ¼ 1) modes. We

show the number of (ZðtÞ
2 twist, ZðpÞ

2 permutation) eigenm-
odes, Nðm;nÞðMÞ ¼ NmðMÞðNmðMÞ þ ð−1ÞnÞ=2, which
have the modular symmetry in Tables III and IV. Under
the modular transformation, the wave functions in Eq. (88)
transform similarly to Eq. (80) by replacing Eqs. (82)
and (83) with

ρðtÞmðpÞnðγÞðjð1Þjð2ÞÞðkð1Þkð2ÞÞ
¼ 2N jð1Þjð2Þ

ðt;pÞ N kð1Þkð2Þ
ðt;pÞ ðρðtÞmðγÞðjð1Þjð2ÞÞðkð1Þkð2ÞÞ

þ ð−1ÞnρðtÞmðSÞðjð1Þjð2ÞÞðkð1Þkð2ÞÞÞ; ð90Þ

which satisfies Eq. (8) with k ¼ 1 and also satisfies

ρðtÞmðpÞnðTÞ2M ¼ I ðM ∈ 2ZÞ; ð91Þ

ρðtÞmðpÞnðTÞM ¼ iI; ρðtÞmðpÞnðTÞ2M ¼ −I;

ρðtÞmðpÞnðTÞ4M ¼ I ðM ∈ 2Zþ 1Þ; ð92Þ

corresponding to Eq. (9). Thus, the wave functions on the

ðT2
1 × T2

2Þ=ðZðtÞ
2 × ZðpÞ

2 Þ orbifold with magnetic flux
M ∈ 2Z and the SS phases ðα1; α2Þ ¼ ð0; 0Þ behave as
modular forms of weight 1, and then they transform as

Nðm;nÞðMÞ-dimensional representations, as shown in
Table III. Similarly, the wave functions with magnetic flux
M ∈ 2Zþ 1 and the SS phases ðα1; α2Þ ¼ ð1=2; 1=2Þ also
behave as modular forms of weight 1, and then they
transform as Nðm;nÞðMÞ-dimensional representations, as
shown in Table IV.
In the next section, we show the specific modular flavor

groups of the three-generation modes on the magnetized
orbifolds of T2 × T2.

VI. MODULAR FLAVOR GROUPS OF
THREE-GENERATION MODES ON

MAGNETIZED ORBIFOLDS OF T2 × T2

A. ðT2
1 × T2

2Þ=ðZðtÞ
2 × ZðpÞ

2 Þ orbifold
First, we consider the three-generation modes on the

magnetized ðT2
1 × T2

2Þ=ðZðtÞ
2 × ZðpÞ

2 Þ orbifold in Tables III
and IV.
As shown in Table III, we can obtain four models with

three-generation modes on the ðT2
1 × T2

2Þ=ðZðtÞ
2 × ZðpÞ

2 Þ
orbifold withM ¼ even and ðα1; α2Þ ¼ ð0; 0Þ: ðM;m; nÞ ¼
ð2; 0; 0Þ, (4,0,1), (6,1,0), and (8,1,1). They can be repre-
sentations of Δ0ð6M2Þ, which are the double covering
groups of Δð6M2Þ, similar to that shown in Sec. IVA.
Namely, if Eq. (64) is also satisfied13 in addition to Eqs. (8)
and (9) with k ¼ 1 and N ¼ 2M, the generators

a ¼ ST2ST4; a0 ¼ ST2S−1T−2;

b ¼ T
M
2
þ3S

3
2
M−1TM; c ¼ STM−2ST

3
2
M−1ðM ¼ 4sÞ;

ð93Þ

a ¼ ST2ST4; a0 ¼ ST2S−1T−2;

b ¼ T
M
2S

3
2
MTM; c ¼ STMST

3
2
MðM ¼ 2ð2s − 1ÞÞ;

ð94Þ

where s ∈ Z, satisfy

aM¼a0M¼b3¼c4¼1;

aa0 ¼a0a; cbc−1¼b−1; bab−1¼a−1a0−1;

ba0b−1¼a; cac−1¼a0−1; ca0c−1¼a−1; ð95Þ

which means that the generators in Eq. (93) are those of
Δ0ð6M2Þ ≃ ðZM × ZMÞ⋊Z3⋊Z4 ≃ Δð3M2Þ⋊Z4, where að

0Þ,
b, c denote those of Zð0Þ

M , Z3, Z4, respectively. Actually, all
of the following S and T transformation matrices for
ðM;m; nÞ ¼ ð2; 0; 0Þ, (4,0,1), (6,1,0), and (8,1,1) satisfy
Eq. (64) since they can be written as Eq. (70).

TABLE III. Number of (ZðtÞ
2 twist, ZðpÞ

2 permutation) eigenm-

odes, Nðm;nÞðMÞ, on the ðT2
1 × T2

2Þ=ðZðtÞ
2 × ZðpÞ

2 Þ orbifold with
M ¼ even and ðα1; α2Þ ¼ ð0; 0Þ, and the order of T. The three
generations are boxed.

M 2 4 6 8

(even, even): Nð0;0ÞðMÞ ðM þ 2ÞðM þ 4Þ=8 3 6 10 15
(even, odd): Nð0;1ÞðMÞ MðM þ 2Þ=8 1 3 6 10
(odd, even): Nð1;0ÞðMÞ MðM − 2Þ=8 0 1 3 6
(odd, odd): Nð1;1ÞðMÞ ðM − 2ÞðM − 4Þ=8 0 0 1 3
order h of T (Th ¼ I) 2M 4 8 12 16

TABLE IV. Number of (ZðtÞ
2 twist, ZðpÞ

2 permutation) eigenm-

odes, Nðm;nÞðMÞ, on the ðT2
1 × T2

2Þ=ðZðtÞ
2 × ZðpÞ

2 Þ orbifold with
M ¼ odd and ðα1; α2Þ ¼ ð1=2; 1=2Þ, and the order of T. The
three generations are boxed.

M 1 3 5 7

(even, even): Nð0;0ÞðMÞ ðM − 1ÞðM þ 1Þ=8 0 1 3 6
(even, odd): Nð0;1ÞðMÞ ðM − 1ÞðM − 3Þ=8 0 0 1 3
(odd, even): Nð1;0ÞðMÞ ðM þ 1ÞðM þ 3Þ=8 1 3 6 10
(odd, odd): Nð1;1ÞðMÞ ðM þ 1ÞðM − 1Þ=8 0 1 3 6
order h of T (Th ¼ I) 4M 4 12 20 28

13When M ¼ 1, 2, Eq. (64) is automatically satisfied by
considering Eq. (8) (see Appendix C for details).
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The S and T transformation matrices for ðM;m; nÞ ¼
ð2; 0; 0Þ are given by

S¼ i
2

0
B@

1
ffiffiffi
2

p
1ffiffiffi

2
p

0 −
ffiffiffi
2

p

1 −
ffiffiffi
2

p
1

1
CA; T¼

0
B@
1

i

−1

1
CA: ð96Þ

The S and T transformation matrices for ðM;m; nÞ ¼
ð4; 0; 1Þ are given by

S¼−
i
2

0
B@

1
ffiffiffi
2

p
1ffiffiffi

2
p

0 −
ffiffiffi
2

p

1 −
ffiffiffi
2

p
1

1
CA; T¼eπi=4

0
B@
1

e3πi=4

−1

1
CA:

ð97Þ

The S and T transformation matrices for ðM;m; nÞ ¼
ð6; 1; 0Þ are given by

S¼−
i
2

0
B@

1
ffiffiffi
2

p
1ffiffiffi

2
p

0 −
ffiffiffi
2

p

1 −
ffiffiffi
2

p
1

1
CA; T¼eπi=3

0
B@
1

i

−1

1
CA:

ð98Þ

The S and T transformation matrices for ðM;m; nÞ ¼
ð6; 1; 0Þ are given by

S¼ i
2

0
B@

1
ffiffiffi
2

p
1ffiffiffi

2
p

0 −
ffiffiffi
2

p

1 −
ffiffiffi
2

p
1

1
CA; T¼e5πi=8

0
B@
1

e5πi=8

−1

1
CA:

ð99Þ

Note that since the T matrix in Eq. (98) also satisfies
T4 ¼ e4πi=3I, this can be the Z3 generator, d ¼ T4, which
commutes with all of the generators in Eq. (94), and also

the generators a and a0 in Eq. (94) satisfy a2 ¼ a02 ¼ 1.
Thus, the three-generation modes for ðM;m; nÞ ¼ ð2; 0; 0Þ,
(4,0,1), (6,1,0), and (8,1,1) are transformed under the
modular transformation as the three-dimensional represen-
tations of S04 ≃ Δ0ð24Þ, Δ0ð96Þ, S04 × Z3, and Δ0ð384Þ,
respectively.
We also comment on the anomaly of these modular

flavor groups. From Eqs. (8) with k ¼ 1, (9) with N ¼ 2M,
(93), (94), and (95), similarly, we can obtain

detðaÞ ¼ detða0Þ ¼ detðbÞ ¼ 1;

detðcÞ ¼
�
detðTÞM2þ3 ðM ¼ 4sÞ;
detðTÞM2þ6 ðM ¼ 2ð2s − 1ÞÞ;

detðcÞ4 ¼ 1:

ð100Þ

All of Eqs. (96)–(99) satisfy Eq. (100) and detðcÞ ¼ i. In
Eq. (98), detðdÞ ¼ detðTÞ4 ¼ 1 is also satisfied. Thus, in all
cases, only Z4 symmetry (generated by c) can be anoma-
lous, and then A4 ≃ Δð12Þ, Δð48Þ, A4 × Z3, and Δð192Þ
remain anomaly free.
As shown in Table IV, we can obtain four models with

three-generation modes on the ðT2
1 × T2

2Þ=ðZðtÞ
2 × ZðpÞ

2 Þ
orbifold with M ¼ odd and ðα1; α2Þ ¼ ð1=2; 1=2Þ:
ðM;m; nÞ ¼ ð3; 1; 0Þ, (5,0,0), (5,1,1), and (7,0,1). We note
that all of the following S and T transformation matrices
satisfy Eqs. (8) and (92) with k ¼ 1. First, from the S and T
transformation matrices for ðM;m; nÞ ¼ ð3; 1; 0Þ,

S ¼ −
i
3

0
B@

1 2eπi=3 2e2πi=3

2e−πi=3 1 −2eπi=3

2e−2πi=3 −2e−πi=3 1

1
CA;

T ¼

0
B@

eπi=6

e5πi=6

e9πi=6

1
CA; ð101Þ

TABLE V. Flavor groups of the three-generation modes ðMð1Þ; m1∶Mð2Þ; m2Þ which satisfy Nm1
ðMð1ÞÞ ¼ 3 and

Nm2
ðMð2ÞÞ ¼ 1, on the magnetized T2

1=Z
ðt1Þ
2 × T2=Zðt2Þ

2 orbifold. The anomaly-free subgroups are also shown.

ðMð1Þ; m1∶Mð2Þ; m2Þ orders ðhS; hTÞ of S and T ðShS ¼ ThT ¼ IÞ modular flavor group anomaly-free group

(4,0:4,1) (2,8) Δð96Þ Δð96Þ
(4,0:1,1) (2,8) Δð96Þ Δð96Þ
(4,0:3,0) (4,24) Δ0ð96Þ × Z3 Δð48Þ × Z3

(8,1:4,1) (4,16) Δ0ð384Þ Δð192Þ
(8,1:1,1) (4,16) Δ0ð384Þ Δð192Þ
(8,1:3,0) (2,48) Δð384Þ × Z3 Δð384Þ × Z3

(5,1:4,1) (4,20) A5 × Z4 A5

(5,1:1,1) (4,20) A5 × Z4 A5

(5,1:3,0) (2,15) A5 × Z3 A5 × Z3

(7,0:4,1) (2,7) PSLð2; Z7Þ PSLð2; Z7Þ
(7,0:1,1) (2,7) PSLð2; Z7Þ PSLð2; Z7Þ
(7,0:3,0) (4,84) PSLð2; Z7Þ × Z3 × Z4 PSLð2; Z7Þ × Z3
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we can obtain the generators

a ¼ ST9; b ¼ ST; c ¼ T3; ð102Þ

which satisfy

a2 ¼ b3 ¼ ðabÞ3 ¼ c4 ¼ 1; ac ¼ ca; bc ¼ cb;

ð103Þ

which means that the generators in Eq. (102) are those of
A4 × Z4. Thus, the three-generation modes ðM;m; nÞ ¼
ð3; 1; 0Þ are transformed under the modular transformation
as the three-dimensional representations of A4 × Z4.
Second, from the S and T transformation matrices

for ðM;m; nÞ ¼ ð5; 0; 0Þ,

S ¼ 4i
5

0
BB@

A2
ffiffiffi
2

p
eπi=5AB e2πi=5B2ffiffiffi

2
p

e−πi=5AB B2 − A2 −
ffiffiffi
2

p
eπi=5AB

e−2πi=5B2 −
ffiffiffi
2

p
e−πi=5AB A2

1
CCA; T ¼

0
B@

eπi=10

e5πi=10

e9πi=10

1
CA;

A ¼ cos

�
π

10

�
; B ¼ cos

�
3π

10

�
; ð104Þ

we can obtain the generators

a ¼ ST5; b ¼ ST; c ¼ T5; ð105Þ

which satisfy

a2¼b3¼ðabÞ5¼c4¼1; ac¼ca; bc¼cb; ð106Þ

which means that the generators in Eq. (105) are those of
A5 × Z4. Thus, the three-generation modes ðM;m; nÞ ¼
ð5; 0; 0Þ are transformed under the modular transformation
as the three-dimensional representations of A5 × Z4.
Third, similarly, from the S and T transformation

matrices for ðM;m; nÞ ¼ ð5; 1; 1Þ,

S ¼ −
2i
5

0
B@

2ðA2 − B2Þ −
ffiffiffi
2

p
eπi=5ðAþ BÞ −

ffiffiffi
2

p
e2πi=5ðAþ BÞ

−
ffiffiffi
2

p
e−πi=5ðAþ BÞ A − 1 eπi=5ðBþ 1Þ

−
ffiffiffi
2

p
e−2πi=5ðAþ BÞ e−πi=5ðBþ 1Þ A − 1

1
CA;

A ¼ sin

�
π

10

�
; B ¼ sin

�
3π

10

�
;

T ¼

0
B@

e5πi=10

e13πi=10

e17πi=10

1
CA; ð107Þ

we can obtain the generators in Eq. (105) satisfying Eq. (106). Thus, the three-generation modes ðM;m; nÞ ¼ ð5; 1; 1Þ are
also transformed under the modular transformation as the three-dimensional representations of A5 × Z4.
Fourth, from the S and T transformation matrices for ðM;m; nÞ ¼ ð7; 0; 1Þ,

S ¼ 4i
7

0
BB@

AD − B2 −eπi
7 ðA2 þ BCÞ −e2πi

7 ðABþ CDÞ
−e−πi

7 ðA2 þ BCÞ AB − C2 e
πi
7 ðB2 þ ACÞ

−e−2πi
7 ðABþ CDÞ e−

πi
7 ðB2 þ ACÞ BD − A2

1
CCA;

A ¼ cos

�
π

14

�
; B ¼ cos

�
3π

14

�
; C ¼ cos

�
5π

14

�
; D ¼ cos

�
9π

14

�
;

T ¼

0
B@

e5πi=14

e13πi=14

e17πi=14

1
CA; ð108Þ
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which also satisfy Eq. (76), we can obtain the generators

a ¼ ST21; b ¼ S3T3; c ¼ T7; ð109Þ

which satisfy

a2 ¼ b4 ¼ ðabÞ7 ¼ ða−1b−1abÞ4 ¼ c4 ¼ 1;

ac ¼ ca; bc ¼ cb; ð110Þ

which means that the generators in Eq. (109) are those
of PSLð2; Z7Þ × Z4. Thus, the three-generation modes
ðM;m; nÞ ¼ ð7; 0; 1Þ are transformed under the modular
transformation as the three-dimensional representations
of PSLð2; Z7Þ × Z4.
Finally, we also comment on the anomaly of these

modular flavor groups. From Eqs. (101)–(109), and also
Eqs. (8) and (92) with k ¼ 1, we can obtain

detðaÞ¼detðbÞ¼1; detðcÞ¼detðiIÞ¼−i; detðcÞ4¼1:

ð111Þ

Thus, in all of the above cases, only Z4 symmetry
(generated by c) can be anomalous, and then A4, A5 and
PSLð2; Z7Þ remain anomaly free.

Therefore, on the magnetized ðT2
1 × T2

2Þ=ðZðtÞ
2 × ZðpÞ

2 Þ
orbifold, we can obtain three-dimensional representations
of all of the double covering groups of Γ4 ≃ S4,
Γ8 ⊃ Δð96Þ, and Γ16 ⊃ Δð384Þ for even magnetic fluxes
and Z4 central extended groups of Γ3 ≃ PSLð2;Z3Þ ≃ A4,
Γ5 ≃ PSLð2;Z5Þ ≃ A5, Γ7 ≃ PSLð2;Z7Þ for odd magnetic
fluxes.

B. Other T2
1=Z

ðt1Þ
2 × T2=Zðt2Þ

2 orbifolds

Finally, we consider the three-generation modes on the

magnetized T2
1=Z

ðt1Þ
2 × T2=Zðt2Þ

2 orbifold, where T2
1=Z

ðt1Þ
2

and T2=Zðt2Þ
2 are not identified. In order to obtain

Nm1
ðMð1ÞÞNm2

ðMð2ÞÞ ¼ 3 on the magnetized T2
1=Z

ðt1Þ
2 ×

T2=Zðt2Þ
2 orbifold, we can only considerNm1

ðMð1ÞÞ ¼ 3 and
Nm2

ðMð2ÞÞ ¼ 1. Then, from Tables I and II we can consider
12 patterns, listed in Table V. The corresponding finite
modular subgroups, which can be found by considering
Z ¼ −ð−1Þm1þm21 and Eqs. (84)–(87),14 are also listed in

Table V. The S and T transformation matrices for the ZðtÞ
2 -

odd modes with M ¼ 1 as well as the ZðtÞ
2 -odd modes with

M ¼ 4 are given by

S ¼ e3πi=4; T ¼ eπi=4; ð112Þ

and those for the ZðtÞ
2 -even modes withM ¼ 3 are given by

S ¼ eπi=4; T ¼ eπi=12; ð113Þ

while those for Nm1
ðMð1ÞÞ ¼ 3 modes were given in

Sec. IV. Then, we can find the specific modular flavor
groups as shown in Table V. We also show their anomaly-
free subgroups in Table V.

VII. CONCLUSION

We have studied the modular symmetry of wave func-

tions on magnetized orbifolds: the T2=ZðtÞ
2 twisted orbifold,

T2
1=Z

ðt1Þ
2 × T2=Zðt2Þ

2 twisted orbifold, and ZðpÞ
2 permutation

orbifold, i.e., ðT2
1 × T2

2Þ=ðZðtÞ
2 × ZðpÞ

2 Þ orbifold, with the
Scherk-Schwarz phases. We found that we can consider
the modular symmetry of not only wave functions with
magnetic flux M ¼ even and vanishing SS phases
ðα1;α2Þ ¼ ð0; 0Þ, but also those with magnetic flux
M ¼ odd and SS phases ðα1;α2Þ ¼ ð1=2; 1=2Þ.
Moreover, we investigated the specific modular flavor

groups for three-generation modes on the magnetized
orbifolds. The three-generation modes on the magnetized

T2=ZðtÞ
2 twisted orbifold with magnetic flux M ¼ 4, 8

are three-dimensional representations of Δ̃ð96Þ, Δ̃ð384Þ,
which are quadruple covering groups of Δð96Þ, Δð384Þ,
respectively. Among them, only Z8 symmetries can be
anomalous, and then Δð48Þ, Δð192Þ are anomaly free,
respectively. Note that since the anomalous Z8 symmetry is
a discrete subgroup of Uð1Þ, it can be canceled by the
Green-Schwarz mechanism. The three-generation modes

on the magnetized T2=ZðtÞ
2 twisted orbifold with magnetic

flux M ¼ 5, 7 are three-dimensional representations
of A5 × Z8, PSLð2; Z7Þ × Z8, respectively. Among them,
only Z8 symmetries can be anomalous, and then A5

and PSLð2; Z7Þ are anomaly free, respectively. Similarly,
the three-generation modes on the magnetized ðT2

1 × T2
2Þ=

ðZðtÞ
2 × ZðpÞ

2 Þ orbifold are the corresponding three-dimen-
sional representations of the double covering groups of ΓN
for N ¼ 4, 8, 16 and Z4 central extended groups of ΓN for
N ¼ 3, 5, 7, provided in Ref. [29]. Among them, only Z8

symmetries can be anomalous, and then Δð3M2Þ for
N ¼ 2M ¼ 4, 8, 16, A4 for N ¼ 3, A5 for N ¼ 5, and
PSLð2; Z7Þ for N ¼ 7 are anomaly free. We have also
shown the specific modular flavor groups of the three-
generation modes on the other distinguishable magnetized

T2
1=Z

ðt1Þ
2 × T2=Zðt2Þ

2 orbifolds in Table V.
Our results on flavor symmetries of three generations are

useful to understand quark and lepton masses and their
mixing angles. Also, anomaly behaviors are useful (see,
e.g., Ref. [45]). We will investigate realistic model building

14There is an exception in Eq. (85); Eq. (85) for the Mð1Þ ¼ 4

singlet mode—that is, the Zðt1Þ
2 -odd mode of Mð1Þ ¼ 4—

corresponds to Eq. (87) with Mð1Þ ¼ 1.
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considering the obtained modular flavor groups in mag-
netized orbifold models elsewhere.
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APPENDIX A: SCHERK-SCHWARZ PHASES
AND WILSON LINES

Here we show that Scherk-Schwarz phases can be
converted into Wilson lines through a gauge transformation
]26 ], and also that their modular transformations are

consistent with each other.
First, let us consider the following gauge transformation:

ψ̃α1;α2ðz; τÞ ¼ e−iReβ̄zψα1;α2ðz; τÞ; ðA1Þ

ÃðzÞ ¼ AðzÞ − d½Reβ̄z� ¼ πM
Imτ

Im

��
z̄ −

iImτ

πM
β̄

�
dz

�
;

ðA2Þ
where β is a complex number, ψα1;α2 satisfies Eqs. (42) and
(43), and AðzÞ is as in Eq. (11). We can regard iImτ

πM β≡ ãw
as the WL. Accordingly, χ1ðzÞ and χ2ðzÞ, defined in
Eqs. (12) and (13), are deformed as

χ̃1ðzÞ ¼
πM
Imτ

Im

�
zþ iImτ

πM
β

�
¼ χ1ðzÞ þ Reβ; ðA3Þ

χ̃2ðzÞ ¼
πM
Imτ

Imτ̄

�
zþ iImτ

πM
β

�
¼ χ2ðzÞ þ Reτ̄β: ðA4Þ

Therefore, the boundary conditions of the gauge-
transformed wave function ψ̃α1;α2 are modified from
Eqs. (42) and (43) as

ψ̃α1;α2ðzþ 1; τÞ ¼ e2πiα1−2iReβeiχ̃1ðzÞψ̃α1;α2ðz; τÞ; ðA5Þ

ψ̃α1;α2ðzþ τ; τÞ ¼ e2πiα2−2iReτ̄βeiχ̃2ðzÞψ̃α1;α2ðz; τÞ: ðA6Þ

When we chose β ¼ −iπ α1τ−α2
Imτ , the gauge-transformed

wave function,

ψ̃α1;α2ðz; τÞ ¼ eπi
Imðα1 τ̄−α2Þz

Imτ ψα1;α2ðz; τÞ; ðA7Þ

has the WL Mãw ¼ α1τ − α2 and vanishing SS phases
ðα̃1; α̃2Þ ¼ ð0; 0Þ. That is, the SS phases ðα1;α2Þ can be
converted into the WL Mãw ¼ α1τ − α2 through the gauge
transformation in Eq. (A7). Actually, the jth wave function
can be expressed as

ψ̃ ðjþα1;α2Þ;M
T2 ðz; τÞ ¼ e−πi

α1α2
M ψ ðjþ0;0Þ;M

T2 ðzþ ãw; τÞ: ðA8Þ

Next, let us consider the modular transformation. When
M ¼ even (x ¼ 0), the WL transforms as

TðMãwÞ¼α1ðτþ1Þ−ðα1þα2Þ¼Mãw; T¼
�
1 1

0 1

�
;

ðA9Þ

SðMãwÞ ¼ −α2
�
−
1

τ

�
− α1 ¼

Mãw
−τ

; S ¼
�

0 1

−1 0

�
;

ðA10Þ
that is, it transforms as

γðMãwÞ ¼
Mãw
cτ þ d

; γ ¼
�
a b

c d

�
: ðA11Þ

In this case, as mentioned in Ref. [13], the modular
transformation for the wave function on the right-hand
side of Eq. (A8) is the same as Eq. (33). Furthermore, in
this case the gauge phase in Eq. (A7) is invariant under the
modular transformation, and then the modular transforma-
tion for the gauge-transformed wave function on the left-
hand side of Eq. (A7) or Eq. (A8) is the same as Eqs. (48)
and (49). These are consistent. WhenM ¼ odd (x ¼ 1), the
T transformation for the WL is

TðMãwÞ ¼ α1ðτ þ 1Þ −
�
α1 þ α2 −

M
2

�
¼ M

�
ãw þ 1

2

�
:

ðA12Þ
Under the T transformation, the wave function with the WL
on the right-hand side of Eq. (A8) is transformed as

ψ ðjþ0;0Þ;M
T2

�
zþ ãw þ 1

2
; τ þ 1

�

¼ eπijeπi
j2

Me
πi
2

ImðMzþα1τ−α2Þ
Imτ ψ ðjþ0;0Þ;M

T2 ðzþ ãw; τÞ: ðA13Þ
On the other hand, in this case the gauge phase in Eq. (A7)
is also transformed:

ψ̃α1;α2ðz; τ þ 1Þ ¼ e
πi
2
MImz

Imτeπi
Imðα1 τ̄−α2Þz

Imτ ψα1;α2ðz; τ þ 1Þ: ðA14Þ
Considering this equation and Eq. (49), the T transforma-
tion for the wave function on the left-hand side of Eq. (A8)
is actually consistent with Eq. (A13).

APPENDIX B: ZN SCHERK-SCHWARZ PHASES
AND ZN SHIFT MODES

Here we show that the wave functions on the magnetized
T2 ≃ C=Λ with the ZN SS phases are related to the
ZN-eigenmode wave functions on the magnetized full
ZN shifted orbifold of T̃2 ≃ C=Λ̃ðΛ̃ ¼ NΛÞ without the
SS phases as follows.
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First, the lattice vectors ẽk (k ¼ 1, 2) of the lattice
Λ̃ ¼ NΛ are written by lattice vectors of the lattice Λ, ek
(k ¼ 1, 2), as ẽk ¼ Nek. Then, the coordinate and modulus
of T̃2 ≃ C=Λ̃, ðz̃; τ̃Þ≡ ðu=ẽ1; ẽ2=ẽ1Þ are related to those of
T2 ≃ C=Λ, ðz; τÞ≡ ðu=e1; e2=e1Þ as ðz̃; τ̃Þ ¼ ðz=N; τÞ,
where u is the coordinate of C. Note that z̃þ 1 ∼ z̃ and
z̃þ τ̃ ∼ z̃ are satisfied on T̃2.
The T̃2=ZN full shifted orbifold [13], on which the

full modular symmetry remains, can be obtained by further
identifying any ZN shifted points z̃þ ðrþ sτ̃Þ=Nð∀ r;
s ∈ ZNÞ with z̃ (see also Ref. [41]). Then, the boundary
conditions of the wave function on the T̃2=ZN full shifted
orbifold with magnetic flux M̃ and vanishing SS phases are
just the following two conditions:

ψ
T̃2=Z

ðl1 ;l2Þ
N

�
z̃þ 1

N
; τ̃

�
¼ e2πi

l1
N eπiM̃

Im z̃
N

Imτ̃ ψ
T̃2=Z

ðl1 ;l2Þ
N

ðz̃; τ̃Þ;

ðB1Þ

ψ
T̃2=Z

ðl1 ;l2Þ
N

�
z̃þ τ̃

N
; τ̃

�
¼ e2πi

l2
N eπiM̃

Im
¯̃τ
Nz̃

Imτ̃ ψ
T̃2=Z

ðl1 ;l2Þ
N

ðz̃; τ̃Þ;

ðB2Þ
where l1;l2 ∈ ZN are the ZN eigenvalues. From the above
boundary conditions, M̃=N2 ≡M ∈ Z should be satisfied.
The above wave function on the magnetized T̃2=ZN full
shifted orbifold without SS phases, ψ j;M

T̃2=Z
ðl1 ;l2Þ
N

, can be

expanded by the wave function on the magnetized T̃2

without SS phases as

ψ j;M

T̃2=Z
ðl1 ;l2Þ
N

ðz̃; τ̃Þ ¼ 1ffiffiffiffi
N

p
XN−1

k¼0

e−2πik
l2
N ψ ðNjþl1ÞþkNM;N2M

T̃2 ðz̃; τ̃Þ:

ðB3Þ
Furthermore, by considering the relation ðz̃; τ̃Þ ¼

ðz=N; τÞ, the boundary conditions in Eqs. (B1) and (B2)
correspond to those in Eqs. (42) and (43) with the ZN SS
phases ðα1; α2Þ ¼ ðl1=N;l2=NÞðl1;l2 ∈ ZNÞ. Actually,
the above wave function with the ZN eigenvalue ðl1;l2Þ
on the T̃2=ZN full shifted orbifold with magnetic flux M̃
and vanishing SS phases is related to the wave function
on T2 with magnetic flux M and the ZN SS phases
ðα1; α2Þ ¼ ðl1=N;l2=NÞ as

ψ j;M

T̃2=Z
ðl1 ;l2Þ
N

�
z
N
; τ
�

¼ 1ffiffiffiffi
N

p
XN−1

k¼0

e−2πik
l2
N ψ ðNjþl1ÞþkNM;N2M

T̃2

�
z
N
; τ

�

¼ e2πiðjþ
l1
N Þ

l2
N =Mψ

ðjþl1
N ;

l2
N Þ;M

T2 ðz; τÞ: ðB4Þ
The analyses of the modular transformation are also
consistent.

Similarly, the wave function on the magnetized T̃2=Z2

twisted and full shifted orbifold without SS phases is
related to that on the magnetized T2 with the Z2 SS phases.
Their behavior of the modular transformation are
consistent.

APPENDIX C: Δ̃ð6M2Þ AS A SUBGROUP OF Γ̃2M

Here we prove that the generators in Eq. (66) (in
particular, for M ∈ 4Z) satisfy the algebraic relations of
Δ̃ð6M2Þ in Eq. (67), where the algebraic relations of Γ̃2M in
Eqs. (27)–(31) with N ¼ 2M and the additional relation
in Eq. (64) are satisfied. Note that when we have k=2 ¼
integer [even] in Eqs. (27)–(31) with k ¼ integer [even]
and N ¼ 2M, which correspond to the algebraic relations
of Γ0

2M [Γ2M] in Eqs. (8) and (9) with N ¼ 2M, we can find
that the generators in Eq. (66) correspond to those in
Eq. (93) [Eq. (65)] and they satisfy the algebraic relations
of Δ0ð6M2Þ [Δð6M2Þ] in Eq. (95) [Eq. (63)].
First, by using Eqs. (27)–(30), Eq. (64) can be

rewritten15 as

ðS7T3Þ3 ¼ ðS−1T3Þ3 ¼ 1: ðC1Þ

By using Eqs. (27)–(30) and (C1), the generator a0 in
Eq. (66) can be rewritten as

a0 ¼ ST2S−1T−2

¼ STTS−1T2T−4

¼ STT−2ST−1T−2ST−1T−4

¼ S−1T−1S−1T−1S4T−2ST−5

¼ TST−2ST−5

¼ TS−1T−1S4T−1S−1T−5

¼ T2STSS4STST−4

¼ T2ST2S−1T−4

¼ T2ðST2S−1T−2ÞT−2

⇔ a0 ¼ T−2ðST2ST−2ÞT2

¼ T−2ST2S−1: ðC2Þ

Then, we can obtain

ST2pS−1T2q¼ðST2S−1ÞpT2q¼T2qST2pS−1; p;q∈Z;

ðC3Þ

in general. Similarly, by using this relation, the generator a
in Eq. (66) can be rewritten as

15When we consider Eqs. (8) and (9) with N ¼ 2M,M ¼ 1, 2,
we can check that Eq. (C1) is already satisfied.
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a ¼ ST2S5T4

¼ T4ST2S5: ðC4Þ

Thus, we can obtain

aM ¼ S−2MT4MST2MS−1 ¼ 1;

a0M ¼ T−2MST2MS−1 ¼ 1; ðC5Þ

aa0 ¼ ST4S5T2 ¼ a0a ðC6Þ

by also using Eq. (31) with N ¼ 2M and M ∈ 4Z.16

Furthermore, from Eq. (28) we also have

ðS5TÞ3 ¼ 1: ðC7Þ

Then, we can prove that

ðS2nþ3T2n−1Þ3 ¼ 1; n ∈ N ðC8Þ

by mathematical induction. Thus, we can obtain the other
relations in Eq. (67),

b3 ¼ T−MðT3
2
Mþ3S

3
2
M−1Þ3TM ¼ 1; ðC9Þ

c2 ¼ STM−2ST
3
2
M−1STM−2ST

3
2
M−1

¼ STM−2S−1T−1S−1TM−2STM−1S4

¼ STM−1STM−1STM−1

¼ ðSMþ3TM−1Þ3S−3M−6

¼ SMþ2; ðC10Þ

c4 ¼ S4; ðC11Þ

c8 ¼ 1; ðC12Þ

cbc−1 ¼ STM−2ST2S
3
2
M−1T1−M

2S−1T2−MS−1

¼ T2STM−2S
3
2
MT5S−1T2−MS−1T−M

2
−4

¼ T2STMþ3S
3
2
M−1T3−MS5TST−M

2
−3

¼ T2STMþ3SM−1TMþ3S5TS−
3
2
Mþ1T−M

2
−3

¼ T2SM−1TMþ3SM−1TMþ3S−M−1TS−
3
2
Mþ1T−M

2
−3

¼ T2T−M−3S−Mþ1S−M−1TS−
3
2
Mþ1T−M

2
−3

¼ T−MS−
3
2
Mþ1T−M

2
−3

¼ b−1; ðC13Þ

bab−1 ¼ T
M
2
þ3S

3
2
M−1TMST2S5T4−MS−

3
2
Mþ1T−M

2
−3

¼ T
M
2
þ3S

3
2
M−1T4S−

3
2
M−1T−M

2
−1

¼ TS−1T4S−1T

¼ T−2S−1T−3STST

¼ T−2S−5T−4S−1

¼ a−1a0−1; ðC14Þ

ba0b−1 ¼ T
M
2
þ3S

3
2
M−1TMST2S−1T−2−MS−

3
2
Mþ1T−M

2
−3

¼ T
M
2
þ3S

3
2
M−1T−2S−

3
2
Mþ1T−M

2
−1

¼ T−1S−1T−2S−1T−1S2T4

¼ STSS2STST4

¼ ST2S5T4

¼ a; ðC15Þ

cac−1 ¼ STM−2ST
3
2
M−1ST2S5T5−3

2
MS−1T2−MS−1

¼ STM−2S−1T−1S−1T2S5T5ST2−MS

¼ STM−1S5T3S5T5ST2−MS

¼ S−1TM−2TS7T3S7T2T3ST2−MS−1

¼ S−1TM−4ST2ST2−MS−1

¼ T2ST−2S−1

¼ a0−1; ðC16Þ

ca0c−1 ¼ STM−2ST
3
2
M−1ST2S−1T−1−3

2
MS−1T2−MS−1

¼ STM−2S−1T−1ST2S−1T−1S−1T2−MS

¼ STM−1S−1T4S5T3−MS

¼ STST4S3TS

¼ T−1S3T3S3TS

¼ T−1S5T2S3T−1

¼ T−2S−1T−1S−1S6S−1T−1S−1T−2

¼ T−2S−5T−2S−1T−2

¼ T−4S−5T−2S−1

¼ a−1: ðC17Þ

Therefore, when the relation in Eq. (64) is also satisfied in
addition to the algebraic relations of Γ̃2M (in particular, for
M ∈ 4Z), Eq. (66) can be the generators of Δ̃ð6M2Þ.
Similarly, when the algebraic relations of Γ0

2M [Γ2M] and
also Eq. (64) are satisfied, we can find that Eq. (93)
[Eq. (65)] as well as Eq. (94) [the generators in footnote 8]
can be the generators of Δ0ð6M2Þ [Δð6M2Þ].

16This is because S−2M ¼ 1 is satisfied only if M ∈ 4Z.
However, when we consider the case that Eqs. (8) and (9) with
N ¼ 2M are satisfied instead of Eqs. (27)–(31) with N ¼ 2M,
S−2M ¼ 1 is satisfied even if M ¼ 2ð2s − 1Þðs ∈ ZÞ.
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APPENDIX D: THREE-DIMENSIONAL MODULAR FORMS

Here we express the three-dimensional modular forms obtained from the wave functions on magnetized orbifolds at
z ¼ 0, which means that the modular forms can be obtained from Z2-even (m ¼ n ¼ 0) modes.
We can obtain two three-dimensional modular forms of weight 1=2 from the modes ðM;mÞ ¼ ð4; 0Þ and (7,0) at z ¼ 0 on

the magnetized T2=ZðtÞ
2 twisted orbifold as follows:

0
B@

ϑ41ðτÞ
ϑ42ðτÞ
ϑ43ðτÞ

1
CA ¼

0
BBBBBBBBB@

ϑ

�
0

0

�
ð0; 4τÞ

1ffiffi
2

p
�
ϑ

� 1
4

0

�
ð0; 4τÞ þ ϑ

� 3
4

0

�
ð0; 4τÞ

�

ϑ

� 2
4

0

�
ð0; 4τÞ

1
CCCCCCCCCA

¼

0
BBBBBBBBB@

ϑ

�
0

0

�
ð0; 4τÞ

ffiffiffi
2

p
ϑ

� 1
4

0

�
ð0; 4τÞ

ϑ

� 2
4

0

�
ð0; 4τÞ

1
CCCCCCCCCA
ðM ¼ 4Þ; ðD1Þ

0
B@

ϑ71ðτÞ
ϑ72ðτÞ
ϑ73ðτÞ

1
CA ¼

0
BBBBBBBBB@

1ffiffi
2

p
�
ϑ

� 1
14

− 1
2

�
ð0; 7τÞ − ϑ

� 13
14

− 1
2

�
ð0; 7τÞ

�

1ffiffi
2

p
�
ϑ

� 3
14

− 1
2

�
ð0; 7τÞ − ϑ

� 11
14

− 1
2

�
ð0; 7τÞ

�

1ffiffi
2

p
�
ϑ

� 5
14

− 1
2

�
ð0; 7τÞ − ϑ

� 9
14

− 1
2

�
ð0; 7τÞ

�

1
CCCCCCCCCA

¼

0
BBBBBBBBB@

ffiffiffi
2

p
ϑ

� 1
14

− 1
2

�
ð0; 7τÞ

ffiffiffi
2

p
ϑ

� 3
14

− 1
2

�
ð0; 7τÞ

ffiffiffi
2

p
ϑ

� 5
14

− 1
2

�
ð0; 7τÞ

1
CCCCCCCCCA
ðM ¼ 7Þ: ðD2Þ

They are modular forms of weight 1=2 for Γ̃ð8Þ and Γ̃ð56Þ, respectively, and they also transform as the three-dimensional
representations of Δ̃ð96Þ and PSLð2; Z7Þ × Z8, respectively.
Similarly, we can obtain four three-dimensional modular forms of weight 1, two of which are obtained from the modes

ðMð1Þ; m1∶Mð2Þ; m2Þ ¼ ð4; 0∶3; 0Þ and ð7; 0∶3; 0Þ at z1 ¼ z2 ¼ 0 on the magnetized T2
1=Z

ðt1Þ
2 × T2=Zðt2Þ

2 orbifold, and the
other two of which are obtained from the modes ðM;m; nÞ ¼ ð2; 0; 0Þ and (5,0,0) at z1 ¼ z2 ¼ 0 on the magnetized

ðT2
1 × T2

2Þ=ðZðtÞ
2 × ZðpÞ

2 Þ orbifold, as follows:

0
BB@

ϑð4;3Þ1 ðτÞ
ϑð4;3Þ2 ðτÞ
ϑð4;3Þ3 ðτÞ

1
CCA ¼

0
BBBBBBBBB@

ffiffiffi
2

p
ϑ

� 1
6

− 1
2

�
ð0; 3τÞϑ

�
0

0

�
ð0; 4τÞ

2ϑ

� 1
6

− 1
2

�
ð0; 3τÞϑ

� 1
4

0

�
ð0; 4τÞ

ffiffiffi
2

p
ϑ

� 1
6

− 1
2

�
ð0; 3τÞϑ

� 2
4

0

�
ð0; 4τÞ

1
CCCCCCCCCA
ðMð1Þ ¼ 4;Mð2Þ ¼ 3Þ; ðD3Þ

0
BB@

ϑð7;3Þ1 ðτÞ
ϑð7;3Þ2 ðτÞ
ϑð7;3Þ3 ðτÞ

1
CCA ¼

0
BBBBBBBBB@

2ϑ

� 1
6

− 1
2

�
ð0; 3τÞϑ

� 1
14

− 1
2

�
ð0; 7τÞ

2ϑ

� 1
6

− 1
2

�
ð0; 3τÞϑ

� 3
14

− 1
2

�
ð0; 7τÞ

2ϑ

� 1
6

− 1
2

�
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They are modular forms of weight 1 for Γð24Þ, Γð84Þ, Γð4Þ, and Γð20Þ respectively, and they also transform as the three-
dimensional representations of Δ0ð96Þ × Z3, PSLð2; Z7Þ × Z3 × Z4, S04, and A5 × Z4, respectively.
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