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We study the modular symmetry on magnetized toroidal orbifolds with Scherk-Schwarz phases. In
particular, we investigate finite modular flavor groups for three-generation modes on magnetized orbifolds.
The three-generation modes can be the three-dimensional irreducible representations of covering groups
and central extended groups of I'y for N = 3, 4, 5, 7, 8, 16, that is, covering groups of A(6(N/2)?) for
N = even and central extensions of PSL(2, Zy) for N = odd with Scherk-Schwarz phases. We also study

anomaly behaviors.
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I. INTRODUCTION

The origin of the flavor structure, such as quark and lepton
masses and their mixing angles, is one of the most significant
mysteries in particle physics. Non-Abelian discrete flavor
symmetries [1-6] such as Sy, Ay, A(3N?), and A(6M?) for
the three generations of quarks and leptons are attractive
candidates to realize the flavor structure. However, in order
to obtain realistic masses and mixing angles of the quarks
and leptons, the complicated vacuum alignment of gauge-
singlet scalars—the so-called flavons—is required.

The geometries of compact spaces predicted in higher-
dimensional theories such as superstring theory can be
candidates for the origin of the flavor structure (see
Refs. [7,8]). For example, a torus and its orbifold have
the complex structure modulus 7, which decides the shape
of the torus and the orbifold. There is the modular
symmetry I'= SL(2,7) as well as [ =SL(2,2)/Z, as
the geometrical symmetry on a torus and some orbifolds.
Under the modular transformation, chiral zero modes on
the torus and orbifolds, corresponding to the flavors of
quarks and leptons, are transformed; that is, the modular
symmetry can be regarded as the flavor symmetry. In
addition, Yukawa couplings as well as higher-order cou-
plings can be functions of the modulus 7, and then they also
transform under the modular transformation since they
can be obtained by overlap integrals of the zero-mode
profiles on the torus and orbifolds. Instead of flavons, a
vacuum expectation value of the modulus 7 breaks the
flavor symmetry and characterizes the flavor structure.
These features are different from ones in the conventional
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flavor models. The modular transformation behavior of
zero modes was investigated in magnetized D-brane
models [9-15] and heterotic orbifold models [16-20]
(see also Refs. [21-23]). In particular, on magnetized T2
with the magnetic flux M, there are M chiral zero modes
[24], and in a recent work [13] it was shown that the zero
modes with M = even and vanishing Scherk-Schwarz (SS)
phases behave as modular forms of weight 1/2, and then
they transform as M-dimensional representations of the
finite modular subgroup I',),, which is the quadruple
covering group of I',,,. There also exists the modular

symmetry on the magnetized T2/ Zg) twisted orbifold. The

number of zero modes on the magnetized T2/ Zg) twisted
orbifold was investigated in Refs. [25-28]. Similarly, in
Ref. [14] it was shown that zero modes on the magnetized
T? x T3 with the magnetic fluxes M) (i = 1, 2) on T? and
its orbifolds' behave as modular forms of weight 1 and they

H '
transform under the finite modular subgroup | - (MO p?

which is the double covering group of I'y., 00 pre))- The
number of zero modes was investigated in Ref. [15].
The modular transformation for Yukawa couplings was
also studied in Ref. [15]. Thus, it is important to study the
modular flavor symmetries, particularly in magnetized
orbifold models.

Furthermore, the finite modular subgroups I'y, for N = 2,
3,4, 5 are isomorphic to S5, Ay, Sy, As, respectively [29].
Similarly, I"y for N = 3, 4, 5 are isomorphic to 7", S}, A%,
respectively [30]. These results are well motivated for
realistic model building. In particular, in Ref. [29] three-
dimensional irreducible representations were studied in

"Both of moduli on T?, 7;, are identified each other, i.e.,
71 = 7, = 7. Such moduli identification can be realized by certain

three-form fluxes [23] or ng) permutations.
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the finite modular subgroups and it was shown that
three-dimensional irreducible representations appear only
in the finite modular subgroups: I'; ~ PSL(2,7Z5) ~ Ay,
r,~S,, I's ~ PSL(2,Z5) ~ As, I'; ~ PSL(2,7Z,),
I's D A(96), and I'; D A(384). Note that a triplet repre-
sentation of I'g [I";4] is not faithful, but rather represents its
subgroup A(96) [A(384)] [29]. Recently, the bottom-up
approach of model building with the modular flavor
symmetries was studied extensively for I'y [31] and for
its covering groups [30,32].

In this paper, we study modular flavor groups of the
three-generation modes on magnetized orbifolds. We study
nonvanishing SS phases, although previous studies on
the modular symmetry did not include SS phases. We find
that the three-generation modes are the three-dimensional
representations of corresponding covering groups and
central extended groups of the above finite modular
subgroups provided in Ref. [29].

After this paper was completed, relevant papers appeared
[33,34]. In Ref. [33] it was claimed that the violation of the
modular symmetry in models with odd magnetic fluxes is
strange and it is inconsistent. To preserve the modular
symmetry, a certain shift of the coordinate was introduced
in the models with odd magnetic fluxes in Ref. [33], that is,
one class of compactification. However, the modular
symmetry can break when we impose further boundary
conditions on wave functions by geometry and/or gauge
background, that is, a generic compactification. For example,
T?/Zy orbifolds with N =3, 4, 6 break the modular
symmetry, while some residual symmetries remain. The full
modular symmetry remains in wave functions on 72 and
T?/Z, with even magnetic fluxes and vanishing Wilson
lines (WLs), which are equivalent to SS phases. However,
nonvanishing SS phases can break the modular symmetry for
even magnetic fluxes. Indeed, the number of zero modes
depends on the SS phases [26,28]. On the other hand, the
modular symmetry is broken in wave functions for odd
magnetic fluxes and vanishing Wilson lines and SS phases,
but the modular symmetry remains for odd magnetic fluxes
and nonvanishing WLs, which is a discrete shift of the
coordinate. This result is consistent with Ref. [33]. At any
rate, a general class of compactifications can be decomposed
into two classes. One class of compactifications preserves
the modular symmetry, while the other class breaks the
modular symmetry. Both are consistent compactifications.
Thus, one can concentrate on the compactification preserv-
ing the modular symmetry, or one can discuss generic
compactification including breaking of the modular sym-
metry. In Ref. [34] SS phases were also studied.

This paper is organized as follows. In Sec. II we review

the modular symmetry on magnetized 7> and 72/ Zg)
twisted orbifolds without the SS phases. In Sec. III we

study the modular symmetry on magnetized 72 and 72/ th)
twisted orbifolds with the SS phases. We can consider the
modular symmetry of not only wave functions with

magnetic flux M = even and vanishing SS phases, but
also ones with magnetic flux M = odd and certain SS
phases. In Sec. IV we show the specific modular flavor

groups for three-generation modes on magnetized 72/ Z%Q
twisted orbifolds with the SS phases. We find that the
three-generation modes are the three-dimensional repre-
sentations of the quadruple covering groups and Zg central
extended groups of the corresponding modular flavor
groups provided in Ref. [29]. We also extend the analyses

to the modular symmetry on magnetized 72/ Zg” X
T2/ thz) orbifolds and the ng) permutation orbifold, i.e.,

(12 x T2)/(Z)Y x Z\P') orbifolds in Secs. V and VI. We
obtain three-dimensional representations of all of the
double covering groups of I'y for N =4, §, 16, ie.,
covering groups of A(6N?) with N’ = N/2, and Z, central
extended groups of I'y for N =3, 5, 7, i.e., Z, extensions
of PSL(2,Zy). In Sec. VII we conclude this study. In
Appendix A we review that the SS phases can be replaced
by the WLs through a gauge transformation and we show
that the modular transformations for them are consistent.
In Appendix B we also show that the Z5 SS phases are
related to the Z shift modes. In Appendix C we prove
that A(6M?), which is the quadruple covering group of
A(6M?), can be obtained. In Appendix D we express the
three-dimensional modular forms obtained from the wave
functions on magnetized orbifolds.

II. MODULAR SYMMETRY ON MAGNETIZED T*

AND 72/7% TWISTED ORBIFOLDS WITHOUT
THE SCHERK-SCHWARZ PHASES

In this section we review the modular symmetry on

magnetized T2 and T2/ZY twisted orbifolds without the
SS phases.

First, we review the modular symmetry of 72 [35-38]. A
two-dimensional torus 72 can be constructed as 72 ~ C/A,
where A is a two-dimensional lattice spanned by lattice
vectors e¢; (k =1, 2). The torus is characterized by the
complex structure modulus 7 = e,/¢; (Imz > 0). We also
define the complex coordinate of C as u and that of 7% as
z=u/e;, sothat z + 1 and z + 7 are identified with z. The
metric on T2 is given by

o |1
ds® = 2h,,dz'd7", h:e1|2( 2>, (1)

10

and then the area of 77 is A = |e;|*Imz.
Here, we can consider the same lattice spanned by the
following lattice vectors transformed by SL(2,Z) =T

(Z) - (j Z) (:) r= C Z) €SL(2.2)=T.

(2)
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The SL(2,Z) is generated by

(50 () e

and they satisfy the following algebraic relations:

Z=5=-I, 72 =8*= (ST’ =1 (4)
Under the SL(2, Z) transformation, the complex coordinate
of the torus z and the complex structure modulus z are
transformed as

reo - ) = (S5

ct+d cr+d

The above transformation for the modulus 7 is called
the (inhomogeneous) modular transformation, and I =
['/{£I} is called the (inhomogeneous) modular group
since 7 is invariant under Z = —IL.

We define the principal congruence subgroup I'(N) of
level N by

== (5 )
(4 ) =2 mam) @

Then, the modular forms f(z) of the (integral) weight k for
['(N) are the holomorphic functions of z, which transform
under the modular transformation in Eq. (5) as

(@) =Ly 0p(f(2).  Jlr.7) = (ct+a),

=20 y=(0 er g

Ccr+d’
Here, p(y) denotes the unitary representation of the
quotient group I'y, =T/T'(N) satisfying the following
algebraic relations:

p(2) = p(S)? = (-1)L
p(2)? = p(S)* = [p(S)p(T) =1
P(Z)p(T) = p(T)p(2). (8)

p(TN =L ©)

For even weight k, in particular, p(y) becomes the unitary
representation of the quotient group I'y = I'/T'(N), where
[(N)=D(N)/{+I} for N =1, 2,> and T'(N) = T'(N) for

*Since Z=-1€T(N) for N=1, 2, p(Z) =1 should be
satisfied and then the modular weight k should be even.

N > 2. Note that 'y for N = 2, 3, 4, and 5 are isomorphic
to S3, A4, S4, and As, respectively [29], and Iy for N = 3,
4, and 5 are isomorphic to the corresponding double
covering groups 7", S}, and A%, respectively [30]. In what
follows, we review the wave functions of (z,7) on a
magnetized torus and then review their behavior as modular
forms under the modular transformation in Eq. (5).

First, let us review the wave functions, particularly the
zero-mode wave functions of the two-dimensional spinor,
on the torus with U(1) magnetic flux [24]. Here, we do not
consider the WLs or the SS phases. In the next section, we
will study the case with nonvanishing SS phases.” The U(1)
magnetic flux is given by

="M A, (10)
Imz

which satisfies the quantization condition (2z)~! [;. F =
M € Z. This flux is induced by the vector potential

A(z) = %Im(zdz). (11)

This vector potential transforms under lattice translations as

Alz+1)=A(z2) —l—d(ﬁilmz) =A(z) +dy(z), (12)

Alz+71)=A(2) + d<%lm%z> = A(z) +dy(z), (13)

which correspond to a U(l) gauge transformation.
Thereby, the two-dimensional spinor with U(1) unit charge

qg=1,

o) = (w(z,f))’ (14)

w_(z,7)
should satisfy the following boundary conditions:
y(z+1.7) = en@y(z,7) = My (z,7),  (15)
y(z+1.7) = eOy(z,7) = ™My (z.7). (16)

Under these boundary conditions, we can solve the zero-
mode Dirac equation,

iPy(z,7) =0, (17)

and then only v, (z,7) (w_(z.7)) has [M| degenerate zero
modes when M is positive (negative). In what follows, we

The WLs can be replaced by the SS phases [26]. We review
this and also show its consistency in terms of the modular
symmetry in Appendix A.
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consider the positive flux M. The jth zero-mode wave
function on the torus with the flux M is expressed as

. M 1/4 . Imz L
vitan) = (5) et || iz e,

where 9 denotes the Jacobi theta function defined as

lez

2;11 a+l)(u+b)' (19)

We take the following normalization condition:

/2 dzdz () (2. 7)) i (z.7) = (2Imr)™' /25, (20)

Now, we can see that the wave functions for Vj in
Eq. (18) behave as modular forms of weight 1/ 2* under the
modular transformation in Eq. (5) [13] as follows. We first
introduce the double covering group of T,

r={[.

The generators are given by

elly eT,e e {£1}}. (21)
S=[s,1], =[T.1], (22)

and they satisfy the following algebraic relations:

1, 1],
ZT=T7. (23)

7=% 2-F-(T¢-=
Z2=8=08T)°=[M1]=I
Note that the modular transformation in Eq. (5) does not

change upon replacing y € I' with 7 = [y, e] € . We also
introduce the congruence subgroup,

f(N) =

Then, the modular forms f(z) of the (half integral)

weight k/2 for I'(N) transform under the modular trans-
formation as

{[h,e] €T|h € T(N),e = 1}. (24)

f7(@) =T 7. 0p()f (). 7l (25)

jk/Q(f/,r) IEka/z(]/,T) =eéf(ct+d)*?, kez, (26)
where p(7) is the unitary representation of the quotient
group I'y = I'/T'(N), which is the double covering group
of T'y, satisfying the following algebraic relations:

*For details see, e.g., Refs. [36,39,40].

P(Z) = p(S8)* = eI, (27)

p(Z)* =pS)t = pSp(D)f =™ (28)

P2 =p(8)* = [p(S)p(T)° =1, (29)
p(Z2)p(T) = p(T)p(Z) (30)
(N =1 (31)

Here we take (—1)¥/2 = ¢~7%/2_ On the other hand, the
wave functions for V j in Eq. (18) transform under the
modular transformation as

M-
WTz Y (#(z.0) =T a7 Z 7wy (7). 7eT,
(32)
~ . 1 - 2
ﬁTZ(S)jk = 6”1/4—627”%, f’TZ(T)jk = em'/ﬁ@',ka (33)

where pp2(7) satisfies Eqgs. (27)-(31) with k/2 = 1/2 and
N =2M, although I = 6, in Eq. (27) is modified into
Opm—j k> derived from

(-

Note that the above modular transformation for the wave
functions without the SS phases can be valid only if the
magnetic flux M is even because of the consistency of the
boundary conditions in Egs. (15) and (16) under the T
transformation. That is, the wave functions after the T
transformation satisfy

vy (Z(z.7)) ) =y Mz, (34)

m(z+1)z

wz+t+ 1 c4+1) = M5 y(zr+ 1), (35)

while the wave functions before the T transformation
satisfy

Im(7+1)z

yzt+r+11) =My (z,0). (36)

In the next section, however, we will show that when we
take the SS phases into account, we can also consider
the modular transformation for wave functions with the
flux M = odd. Thus, the wave functions on 72 with the
magnetic flux M € 2Z and vanishing SS phases behave as
the modular forms of weight 1/2 for I'(2M). They seem to
be a M-dimensional representation. However, they can be a
reducible representation. Their concrete flavor symmetry
depends on irreducible representations. For example, they
cannot be faithful. Thus, we will study concrete flavor
symmetries of zero modes in the following sections.
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Finally, we also review the zero-mode wave functions

on the magnetized T2/ Zg) twisted orbifold without
the SS phases [25] and the modular transformation for

them [13] (see also Refs. [9,10]). The 72/ZY

orbifold can be obtained by further identifying the Zg>

twisted point —z with z. Note that the modulus 7 is not

restricted by Z(zt)

twisted

twist orbifolding, which means we can

also consider the modular transformation on the 72/ Zg)
twisted orbifold. Then, the wave functions on the magnet-
ized T2/ Zg> twisted orbifold should also satisfy the
boundary condition

! (=21 = mezy (37)

_1\m,, M
TZ/ZZ ( 1) VITZ/ZS)”‘ (Z’T)’
in addition to the boundary conditions on the magnetized
T? in Egs. (15) and (16). Actually, their boundary con-
ditions are satisfied by the following linear combination of
wave functions on the magnetized T2:

M
2 onz27)

= Ny (i (2, 7) + (=1)"wi (=2,7)),

(38)

where N {t) denotes the normalization factor determined by

the normalization condition in Eq. (20). Since the wave
functions on the T? without the SS phases satisfy Eq. (34),

those on the 72/ Z(zt) twisted orbifold without the SS phases
can be expanded by

M-1
"’%z(z (@ 0) = NG Y G+ ()" v (2. 2),
k=0
. 1/2 =0,M/2),
th)Z{ /2 U . /2) (39)
1/V/2  (otherwise).

Then, the number of zero modes for even M are equal to

M/2+1 for th)—even modes (m =0) and M/2 — 1 for

Zg) -odd modes (m = 1). Furthermore, under the modular

transformation, these transform similarly to Eq. (32) by
replacing Eq. (33) with

. 4emi/4 2njk
~ k
PT2/Z(2‘>f)(S) NJ N \/]\_4 cos <7> ’
~ 2
Prypoo(T) e = €79 4 (40)
4ije™/* 2njk
~ k .
pTZ/Z(l ( ) N] N \/M sin <M> ’
pTZ/Z(l (T)jk - emM(sj ks (41)

where ., /Zu)m(?) for each m € Z, satisfies Eqgs. (27)—-(31)
2

with k/2=1/2 and N =2M, although I =4;; in

Eq. (27) is modified into (—1)";, derived from

Eq. (37). Thus, both the Zg)—even and -odd mode wave

functions on the 72/ Zg) twisted orbifold with magnetic
flux M € 2Z and vanishing SS phases behave as modular
forms of weight 1/2. They decompose into (M /2 + 1)- and
(M/2 — 1)-dimensional representations for Zg)—even and
-odd modes, respectively. That is, the representations on

the magnetized T2 can be decomposed into smaller
representations on the magnetized 72/ th> twisted orbifold.

We will study their concrete flavor symmetries in the
following sections.

III. MODULAR SYMMETRY ON MAGNETIZED T*

AND 72/7\" TWISTED ORBIFOLDS WITH
THE SCHERK-SCHWARZ PHASES

In this section we review the wave functions on mag-
netized 72 and T2/ Zg) twisted orbifolds with SS phases
[26], and then we study their modular symmetry.

The wave functions on 72 with flux M and SS phases
(a1.@) (0 < ay,a, < 1) satisfy the boundary conditions

e2ria pix (2)

yere(z+17) = yere(z,17)

2ma1 eﬂlMImrl//al a0 (Z T) (42)

l//a].az (Z +, T) _ e27ziazei;(2(z)l//al,az (Z ’L')

€2n1a2 emMImT Wal 0 (Z T) (43)

instead of Egs. (15) and(16). Then, the jth zero-mode wave
function is expressed as

) M\ /4 /+a1
W;!;al )M (Z, T) _ <2) e’”MZImIS |: :| (MZ, MT),
A —Qy

Y jEZy. (44)

Note that Eq.
(al’ aZ) = (O’ O)

Let us study the modular transformation for the wave
function in Eq. (44). First, we check the consistency of the
boundary conditions under the modular transformation.
For example, the wave functions after the 7" transformation
satisfy

(18) corresponds to Eq. (44) with

>The wave function on the magnetized T2 ~ C/A with the Z SS
phases is related to the Zy-eigenmode wave function on the
magnetized Z full shifted orbifold of 72> ~ C/A(A = NA) with-
out SS phases [13,41], as shown in Appendix B. The analyses for the
wave functions on the magnetized 72 with the (Z,) SS phases are
consistent with those for the wave functions on the magnetized
T2 /7, full shifted orbifold without SS phases in Ref. [13].
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Irn(ljntl)zl,l/"”'”‘2 (z,t+ 1),

(45)

2rict, e:riM

wh (441t +1)=e

while the wave functions before the 7 transformation
satisfy

. _ L Im(E41)z
wa,,az(z L4 1’1) _ e2m(al+a2 M/2)emM =

w2 (z,1).

(46)

Thus, in order to see the modular symmetry (particularly
the 7 symmetry) of the wave functions, o) = a; + a, —
M/2 (mod 1) should be satisfied. Also, a) = a; (mod 1)
is required under the T transformation. Under the S
transformation, similarly, o) =a; (modl) and o) =
1 —ay(mod 1) are required. Then, the modular transfor-
mations in Egs. (32) and (33) are deformed as

LM (2 1)

M-1

= Ji(7, Z pr2(7) jw Tszra]'aZ)’M(Z,T) yer,
k=
(47)
ﬁTz(S)jk _ mifd = 2 (j+1)k+(1- a)a1>/M5a, alél—a’l.azv
(48)

— mi(j+d))(j—d +x)/M5] k(sa] o 5{1, —d,4x/2ay> (49)

pr(T) k=
where x =M (mod2) and pr2(7) satisfies Eqs. (27)—(30)
with k/2 = 1/2, although I;; in Eq. (27) is modified into
e NGy 461ty 01—ty derived from

W(T{;Hll ,(l2>,M(Z<Z T)) V/(T{2+al OY?) M(-Z, T)

— e—2nl(j+a|)/MW;Ag_(j+al>~1_

®).M (z,7).
(50)

However, Eq. (31) is not obtained in the general SS phases.
Note that under the modular transformation, in general, the
wave functions with the SS phases (@, @,) transform into
ones with different SS phases (a}, ). Conversely, when M
is even, only the wave functions with (a;, a,) = (0,0) are
closed under the modular transformation. This case was
reviewed in the previous section. Similarly, when M is odd,
only the wave functions with (a;,a;) = (1/2,1/2) are
closed under the modular transformation. In this case,
ppo(T) satisfies

pre(T)M = e"/11, pre(T)*™ =1 (51)
Thus, the wave functions on 7?2 with magnetic flux M €
2Z + 1 and SS phases (a;,a,) = (1/2,1/2) behave as
modular forms of weight 1/2. They transform as M-
dimensional representations, but they can be reducible.

Furthermore, we consider the magnetized T2/ Zg) twisted orbifold with SS phases. In this case, we can only consider the

Z, SS phases, (a;,a,) =
l—a =

The wave functions on the magnetized 72/ Zg)
magnetized T2 in Eq. (44) as

(+32).m AU
Wpaom (27 =Ng

a](modl), l—az

o
(8 + (=D)me=2miDlmgy, ) D2

(¢1/2,¢,/2), (¢1,¢5 € Z,), which are derived from

=a,(mod 1). (52)

twisted orbifold with the Z, SS phases can be expanded by those on the

o
(k+373). M(

7,7), (53)

where we use Eq. (50) instead of Eq. (34). Then, the modular transformation for the wave functions in Eq. (53) is similarly

obtained by replacing Eqs. (48) and (49) with

<k+f1 fz) 4em/4

~ 3 (+33)
pTZ/Zg)O(S)jk - N(t) N(t) M

GSimilarly, the wave functions on the magnetized T2/ Zg)

o 2 4
m(kfl_jfl) CcoS (271' (J +71> <k + 71> /M) 5f/2f15f/1f2, (54)

twisted orbifold with SS phases are related to those on the magnetized

T?/7, twisted and full shifted orbifold without SS phases in Ref. [13].
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!

~ of . 4 . ¢
'bTZ/Z;l)O (T)jk — g”’<J+T])(/_TI+X)/M5j’k5f/I £ 5,/#’2_[; +x.855 (55)
_ - G452 kLl die™t .7 ?
pTZ/Z;‘“(S)jk :Nd) PR N(t) 272 We ikt 1=it1) sin | 27 ]+?1 k-f—? M 5grzfl5f/1f2, (56)
~ of . /, . f/
Doy (T) e = e THIMG 18,1 06 1, (57)

In particular, when M = even and (a;,a,) = (0,0), they correspond to Eqgs. (40) and (41). When M = odd and

(aj, ) = (1/2,1/2), they become

X 7i/4
~ - () |« Akiily de
Projan(S) =N 2Ny 2

e™(k=)) cos (2;: ( i+ %) (k + %) / M) , (58)

N
ﬁTZ/Zgl)U(T)jk — €ﬂi(j+%)2/M5jyk, (59)
- % () s 4™ 1 !
Pz () = Ny " Ny N Dsin | 2z(jt5 |\ kt5) /M), (60)
|
~ (F) = emiiHP/ms, (61) mode wave functions on the 77/ Zg) twisted orbifold with
Prejz "\ " jk = gk magnetic flux M € 2Z + 1 and the SS phases (a;, ) =

where Egs. (58)—(61) for each m € Z, satisfy Eqs. (27)—
(30), and Eq. (51) with k/2 = 1/2, although I, = §;, in
Eq. (27) is modified into (—1)"6; , derived from Eq. (37).
Note that there are (M —1)/2 Zg)—even (m = 0) modes
and (M +1)/2 Zg)-odd (m = 1) modes when M = odd
and (a,a) = (1/2,1/2). Thus, both Zg)—even and -odd

TABLE L. Number of Z\-even (m = 0) modes, No(M), and
Z(2t>-odd (m = 1) modes, N (M), on the T?/ Zg) twisted orbifold
with M = even and (a;,a,) = (0,0), and the order of 7. The
three generations are boxed.

M 2 4 8
ZY-even: No(M) 41 2 5
7Y -odd: N, (M) -1 0 1 2
order h of T (T" =1T) 2M 4 8 12 16

TABLE I Number of Z\-even (m = 0) modes, No(M), and
Z(zt)—odd (m = 1) modes, N{(M), on the T?/ Zg) twisted orbifold
with M = odd and (a;, @,) = (1/2,1/2), and the order of 7. The
three generations are boxed.

M 1 3 5 7
Z(2t>-even: No(M) M 0 1 2
7Y-0dd: N, (M) 2 4
order h of T (T" =1) 8M 8 24 40 56

(1/2,1/2) behave as modular forms of weight 1/2. Then,
they transform as (M — 1)/2- and (M + 1)/2-dimensional

representations for th)—even and -odd modes, respectively.

We show the number of th> eigenmodes, N, (M), which

have the modular symmetry, and the order of T,ie, T =1
in Tables I and II.

IV. MODULAR FLAVOR GROUPS OF THREE-
GENERATION MODES ON MAGNETIZED

72/7}) TWISTED ORBIFOLDS

As mentioned in the Introduction, in Ref. [29] three-
dimensional representations were obtained from specific
finite modular subgroups: '3 ~A,, ['y~S,, ['s~As,
I, ~ PSL(2,7;), Tg D A(96), and T'j¢ D A(384).” In this
section, we show that the three-generation modes on the
magnetized 7?2/ Zg) twisted orbifold shown in Tables I
and II are the representations of the corresponding covering
or central extended groups of the modular flavor groups.

A.T?/ th) twisted orbifold with magnetic flux M = even
and vanishing Scherk-Schwarz phases

In this subsection we show the modular flavor groups of

the three-generation modes on the 72/ Zg) twisted orbifold
with M = even and (a;, @) = (0,0). As shown in Table I,

"See Refs. [2,3,42] for the algebraic relations for the generators
of each non-Abelian discrete flavor group.
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the three-generation modes are obtained from the Zg) -even

modes with M = 4 and the Zg>—0dd modes with M = 8. In
the following, we show that they are the representations of
A(96) and A(384), which are subgroups of I'y and Iy,
respectively, and are the quadruple covering groups of
A(96) and A(384), respectively.

First, I'y satisfy

S2=(ST?}=7T"=1. (62)

On the other hand, A(96)~(Z, X Z})}Z3XZ,~A(48)xZ,

and A(384) ~ (Zg x Z{)xZ3xZy ~ A(192)xZ, satisfy
aM =aM =p3 = =1, (M =4,8),

cbe ' =b7', bab'=ald!,

bab™' =a, cac'=d!, cd eV =at, (63)

aa =da,

where a'), b, ¢ denote the generators of Z,(Q (M =4,8), Zs,
Z,, respectively [2,3,42]. In order to obtain A(96) and
A(384) from the above algebra (62) for N =8 and 16,
respectively, the relation

(S7'T-18T) =1 (64)

should also be satisfied. Actually, we can show that if S
and T satisfy Eq. (64) in addition to Eq. (62) for N = 2M,
M € 47, the generators8

a = ST*S~'72,

3

¢ = STM-25T3M-] (65)

a = ST*ST*,

b =T3ST™,
satisfy Eq. (63) in Appendix C (see also Refs. [29,43]). In
other words, we can obtain A(6M?) from Iy, by satisfying
the additional relation in Eq. (64). Similarly, I, satisfy
Egs. 27)—-(31) with k/2 = 1/2 and N = 2M. If Eq. (64) is
also satisfied, especially for M € 47, the generators

a = ST*>S°T*,

b= T5+3 S%M—ITM’

d = ST?S'T2,
¢ = STM-25TM-1 (66)

satisfy

M =M =p3=c8 =1, ad =da,

cbe ' =b7", bab ' =a'd,

cdc=a', (67)

badb™' =a, cac™' =d!,

SFor N = 2M, M = 2(2s — 1) s € Z, similarly, the generators
a = ST*ST*, a' = ST2S™'T~2, b = T*STM, and ¢ = STMSTM
satisfy Eq. (63).

which means that the generators in Eq. (66) are those of
A(6M?) = (Zy x Zp))¥Z3xZg ~ A(3M?)xZg, where a'),
b, ¢ denote those of Z,((}, Z5, Zg, respectively. (We give the
proof in Appendix C.) In other words, we can obtain
A(6M?), especially for M € 47, from I, by satisfying
the additional relation in Eq. (64).

Let us study the case of the three-generation modes
on the T2/Z)" twisted orbifold with M =4, 8 and
(aj,a) = (0,0). The S and T transformation matrices

for the Zg) -even modes with M = 4 are given by

7i/4 1 \/i 1 1
S:€2 \/i 0 —\/E ’ T = em'/4 ,
1 =2 1 -1

(68)

and those for the Zg)—odd modes with M = 8 are given by

ni 1 \/i 1 1
e i /4 ) )
S= 3 \/z 0 _\/E ’Tzem/S e3m/8
1 -2 1 -1

(69)

Note that here and hereafter (as well as in Sec. VI) we
omit p. The above S and T matrices in both of Egs. (68)
and (69) can be written by

a1 V2o
e'”
§= V20 =2 .
1 =2 1
1
T = ei% e'ts .V 0,;€R,  (70)

-1

and we can check that Eq. (70) satisfies Eq. (64) in general.

Thus, the three-generation Zg)—even modes with M =4

and Zg) -odd modes with M = 8 are transformed under the
modular transformation as the three-dimensional represen-
tations of A(96) and A(384), respectively.’

We also comment on the modular flavor anomaly. As
discussed in Refs. [22,44], the transformation g can be
anomalous if det(g) # 1. Then, let us see the anomaly of
the modular flavor group A(6M?). From Eqs. (27)-(31)
with k/2 = 1/2 and N = 2M, and Egs. (66) and (67), we
can obtain

°See also Ref. [11].
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det(a) = det(d’) = det(b) = 1,
det(c) = det(T)¥+,  det(c)*=1.  (71)

Actually, Eqs. (68) and (69) both satisfy Eq. (71) and
det(c) = e™/*. Thus, only Zg symmetry, generated by c,
can be anomalous,'® and then A(48) and A(192) remain
anomaly free, respectively.

B.7%/7"
and the Scherk-Schwarz phases (a;,a;) =

twisted orbifold with magnetic flux M =odd
(1/2,1/2)

In this subsection we show the modular flavor groups of

the three-generation modes on the 72/ Z W twisted orbifold
with M =odd and (a;,a,) = (1/2, 1/2) As shown in
Table II, the three-generation modes are obtained from
the Zg)—odd modes with M =5 and the Zg) -even modes
with M =T7.

First, the § and T transformation matrices for the
Zg) -odd modes with M =5 are given by

jemil4 2sin({p) 2e"/5 sin(3E) 227/
S = \/g e~ mi/5 sm(lo) 2 SIH(IO) —\/ie”i/S
\/56—27”/5 —\/Ee—’”/S !
£7i/20
T = £97i/20 ’ (72)
£257i/20

which satisfy Egs. (27)—(30) and (51) with k/2 = 1/2 and
replacing T in Eq. (27) with (=1)"='T = —I. When we
define the generators

a=S8T5, b=ST", ¢=T° (73)

from the above S and T in Eq. (72), they satisfy

a*=b*=(ab)’=ct =1, be=cb, (74)

ac=ca,

which means that they are the generators of A5 x Zg. Thus,

the three-generational Zg)—odd modes with M =5 are
transformed under the modular transformation as the
three-dimensional representations of A5 X Zg.

Next, the § and T transformation matrices for the

Zg) -even modes with M = 7 are given by

'"The anomalous symmetry, which is the discrete subsymme-
try of U(1), can be canceled by the Green-Schwarz mechanism.

9 i/t cos(ﬁ) 6”1/7008(14) eZﬂ:i/7COSG_Z)
e . ‘
S: \/7 e 71'1/7COS<:;_Z) COS(QI{) —eﬂl/7cos(ﬁ) ’
¢271/7 cos(35) —e~"/Tcos(£)  cos(3E)
omi/28
T= £omi/28 a5)
£257i/28

which satisfy Egs. (27)-(30) and (51) with k/2 =1/2.
They also satisfy

(S7IT-1ST)* = 1. (76)
When we define the generators

a=ST?,  bH=ST =T (77)

from the above S and T in Eq. (75), they satisfy

a* =b* = (ab)’ = (a"'b7'ab)* = =1,
ac = ca, bc = cb, (78)

which means that they are the generators of PSL(2,Z;) x Zg.
Thus, the three-generational Zg)-even modes with M =7
are transformed under the modular transformation as the
three-dimensional representations of PSL(2,Z;) x Zg.
Similarly, we comment on the anomaly of these modular
flavor groups. From Egs. (27)—(30) with k/2 = 1/2, and
Egs. (51), (73), and (74) as well as Eqgs. (77) and (78), we
can obtain
det(a)=det(b)=1, det(c)

=det(e™/*T), det(c)®=1.

(79)

Actually, Egs. (72) and (75) satisfy Eq. (79). Thus, in both
cases, only Zg symmetry (generated by c¢) can be anoma-
lous, and then A5 and PSL(2,Z;) remain anomaly free.

V. MODULAR SYMMETRY ON MAGNETIZED
ORBIFOLDS OF T? x T?

In this section we extend the analyses to the modular
symmetry on magnetized orbifolds of 72 x T3, where both
of the moduli on T? (i =1, 2), 7;, are identified each other,
ie., 7y = 7, =7 (see Ref. [14]). First, let us consider the
modular transformation for the wave functions on the
72/Z") x 72/Z% with magnetic flux M) = even and
the SS phases (oz(1 ), az)) (0,0),
M =odd and the SS phases (a\’.a)’) = (1/2.1/2)
on each 77/ th‘). The wave functions transform under
the modular transformation as

and magnetic flux
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Nywy (M) N, (M)

) o Ol B e ) e
KW=0  k®=0
m, € Zg‘), m, € ZgZ), y €T,
qu ) 1 )<;Z4 Yz 27) = ‘/’(Tl?;zsz;‘:l'ag)>’Mm(ZnT)W(TE(;)ZEZE?:;QQZ))’M(Z) (22,7), (81)
Ptyym; (t)my (S) (0 ) (kD) = f’rf/z;‘””" (S>j(l)k(1),5]~§/z;fz)mz (S)ja)k(z), (82)
Piaym ()my (T) (0 j0y 052y = 'E)Tf/zg‘l iy (T)j(l)k(l),bT%/Zélz)mz (T)jmk(zn (83)

where ﬁrg/zg‘f)”"’ (7) (i =1, 2) correspond to Egs. (40)—(41) for M) = even and (ap,az)) (0,0) or Egs. (58)—(61)

for M) = odd and (agi),agi)) = (1/2,1/2). Then, py, ym,w)m, (v) satisfies Eq. (8) with k=1, where p(Z) = -1
is replaced by p(i, m, (t,)m, (Z) = —(=1)"*"1, and also satisfies'’

p(T)PemMO.MD) (M) =25 M@ = 252), (84)
p(T)2lcm(M“),M(2>) =1 (MO =450 M@ =252 _ 1), (85)
p(T)ﬂcm(M(])’M(Z)) _ I p(T)4lcm(M(])’M(2)) — 1 (M(l) _ 2(2s(1) _ 1),M(2> —25@ _— 1), (86)

p(T)]cm(M(]),M(2>) —e WIL (M(l) =25 — ]’M(z) =242 _ ]),

lem(MM, M) (MDY + M) €87),
= p(T)N =1, N =2 2lem(MM, M) (M) + M) € 47), (87)
Hem(MD, MP) (MY + M@ €27),

corresponding to Eq. (9), where s!), s) € Z and we omit the Zg> indices since the above relations are independent of
them. Thus, the wave functions on the magnetized 77/ Zg') x T?/ thZ) orbifold behave as modular forms of weight 1, and
then they transform as N, (MV)N,, (M®))-dimensional representations, where N,,, (M) (i = 1, 2) denote the number of
zero-mode wave functions on 77/ Zg"). These can be irreducible representations. We will study their flavor symmetries in
the next section. Also, note that when m; + m, = 1, §? =1 is satisfied even though the modular weight k = 1.2

We can further consider the Z(zp) permutation orbifold if M) = M) = M, agl) = agz) =a; (i=1, 2), and

m, = m, = m. The ng)

permutation means that the transformation of the complex coordinate of 77/ Zg‘) x T?/ ZgZ):
(z1,22) = (22,21), and then the Z( ) permutation orbifold can be considered by identifying zl and z,. Hence, the

wave functions on the ZP permutation orbifold of 72/Z\) x 72/Z%), i.e., the (T2 x T2)/(Z}" x Z{"") orbifold, are
expressed as
m @) 0 j2)
\Pé) () (Zl’zz’ 1) = NJ ( j)m(t)nIyM@hZZ’T)+(_l)nlpft)ri(t)%M(Zz,21,7)),

e { /2 (W =j9),

(1) (p) (1) > 3(2)
mesy, n€Zy, jUzJ7 (tp) 1/V2 (O > j@)

(88)

and they satisfy the boundary condition

lcm(a D) denotes the least common multiple of a and b, and gcd(a, b) denotes the greatest common divisor of a and b.
"This situation does not appear in modular forms, and actually the wave functions vanish at z; = z, = 0.
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TABLE IIL. Number of (Z\" twist, Z\”’ permutation) eigenm-

odes, N, (M), on the (T2 x 73)/(Z3) x Z') orbifold with
M = even and (a;, @) = (0,0), and the order of 7. The three
generations are boxed.

M 2 4 6 8

(even, even): N(go) (M) (M +2)(M +4)/8 6 10 15

(even, odd): N(g1)(M) M(M+2)/8 1 6 10

(odd, even): N 10)(M) M(M-2)/8 0 1 6

(0dd, odd): Ny 1y (M) — (M—=2)(M—4)/8 0 0 1

order h of T (Th I 2M 4 8 12 16
jD @ M

OFe)
(—1)'“1’{;)]( )M(ZhZz’ 7) (89)

in addition to those in Egs. (15), (16), and (37). Thus, we
can obtain N, (M)(N,,(M) + 1)/2 Z )_even (n=0) modes

and N,,(M)(N,,(M) — 1)/2 Z )0dd (n = 1) modes. We

show the number of (22 twist, Zg P) permutation) eigenm-

odes, N(m,n)(M) = Nm<M)(Nm(M) + (_l)n)/z’ which
have the modular symmetry in Tables III and IV. Under
the modular transformation, the wave functions in Eq. (88)
transform similarly to Eq. (80) by replacing Eqgs. (82)
and (83) with

(ym(p)n (ZQ’Zlv >—

(}/)jwz (1 g2)
= 2N TNk
+(=1)"p

( )m(y)(j(‘)j(z))(k(l)k(Z))
( )](1)1‘(2))(1{(1)]((2)))’ (90)

which satisfies Eq. (8) with k = 1 and also satisfies

Pompn (DM =1 (M €22), (91)
Poympyn(T)M = i, Pm(pyn(T)M = -1,
Pompm(T™M =1 (M e2Z+1), (92)

corresponding to Eq. (9). Thus, the wave functions on the
(12 x 72)/(ZY x Z")) orbifold with magnetic flux
M €27 and the SS phases (a;,a,) = (0,0) behave as
modular forms of weight 1, and then they transform as

TABLE IV.  Number of (Z" twist, Z{" permutation) eigenm-
odes, N, (M), on the (T} x 172)/(Z%" x Z?)) orbifold with
M =odd and (a;,a,) = (1/2,1/2), and the order of T. The
three generations are boxed.

M 1 3 5
(even, even): N(go) (M) (M-1)(M+1)/8 0 1 6
(even, odd): N (M) (M-1)(M-3)/8 0 0 1
(odd, even): N(j (M) (M +1)(M+3)/8 1 6 10
(odd, odd): NH)(M) M+1)(M-1)/8 0 1 6
order h of T (T" =T) 4M 4 12 20 28

N (m,,,)(M )-dimensional representations, as shown in
Table III. Similarly, the wave functions with magnetic flux
M € 27 + 1 and the SS phases (a;, ;) = (1/2,1/2) also
behave as modular forms of weight 1, and then they
transform as N, ,) (M)-dimensional representations, as
shown in Table IV.

In the next section, we show the specific modular flavor
groups of the three-generation modes on the magnetized
orbifolds of 72 x T2.

VI. MODULAR FLAVOR GROUPS OF
THREE-GENERATION MODES ON
MAGNETIZED ORBIFOLDS OF T? x T?

A. (T2 xT%)/ (2} x Z")) orbifold
First, we consider the three-generation modes on the

magnetized (T2 x 72)/(Z}" x Z{) orbifold in Tables TIT
and IV.
As shown in Table III, we can obtain four models with

three-generation modes on the (T2 x T2)/(Z) x Z\P)
orbifold with M = even and (o, @) = (0,0): (M, m,n) =
(2,0,0), (4,0,1), (6,1,0), and (8,1,1). They can be repre-
sentations of A’(6M?), which are the double covering
groups of A(6M?), similar to that shown in Sec. IVA.
Namely, if Eq. (64) is also satisfied" in addition to Egs. (8)
and (9) with k = 1 and N = 2M, the generators

a = ST?ST?, a = ST*S™172,

b=TrB3§M-ITM ¢ = STM25TM-1(M = 4s),
(93)

a = ST2ST*, a = ST*S™'T2,

b=TiSMTM ¢ =STMSTM(M =2(2s5 — 1)),

(94)
where s € Z, satisfy
a¥=aM =p3=c*=1,
ad =da, cbc'=b"", bab '=ald"!,
ba'b~'=a, cac'=d"", cdc'=a", (95)

which means that the generators in Eq. (93) are those of
A (6M?) = (Zyy X Zyy)XNZ3xZy =~ A(3M?)xZ,, where a'),
b, ¢ denote those of Z,(Q, Zs, Z,, respectively. Actually, all
of the following S and T transformation matrices for
(M,m,n) = (2,0,0), (4,0,1), (6,1,0), and (8,1,1) satisfy
Eq. (64) since they can be written as Eq. (70).

BWhen M =1, 2, Eq. (64) is automatically satisfied by
considering Eq. (8) (see Appendix C for details).
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The S and T transformation matrices for (M, m,n) =
(2,0,0) are given by

(1 V21 1
S:% V2 o0 =3, r=| . (96)
1 —v2 1 -1

The § and T transformation matrices for (M, m,n) =
(4,0, 1) are given by

(1 V2 1 1
S:—% VI 0 —v3l|, T=emi Ari/4
1 -2 1 -1

(97)

The S and T transformation matrices for (M, m,n) =
(6,1,0) are given by

(1 V21 1
5:_% V2 0 =2 |, T=eB| i
1 -2 1 -1

(98)

The § and T transformation matrices for (M, m,n) =
(6,1,0) are given by

1 V21 1
S:% VZI 0 —val|, T=esmit o57i/8
1 -2 1 -1

(99)

Note that since the 7 matrix in Eq. (98) also satisfies
T* = ¢*/3], this can be the Z; generator, d = T*, which
commutes with all of the generators in Eq. (94), and also

the generators a and @' in Eq. (94) satisfy a®> = a* = 1.
Thus, the three-generation modes for (M, m, n) = (2,0,0),
4,0,1), (6,1,0), and (8,1,1) are transformed under the
modular transformation as the three-dimensional represen-
tations of S, ~A’(24), A'(96), S, x Z3;, and A'(384),
respectively.

We also comment on the anomaly of these modular
flavor groups. From Egs. (8) with k = 1, (9) with N = 2M,
(93), (94), and (95), similarly, we can obtain

det(a) = det(a’) = det(b) =1,

det(c) = {d‘“’“T)% (M = 4s),
det(T)7+6 (M =2(2s — 1)),

det(c)* = 1.
(100)

All of Egs. (96)-(99) satisfy Eq. (100) and det(c) = i. In
Eq. (98), det(d) = det(T)* = 1 is also satisfied. Thus, in all
cases, only Z, symmetry (generated by c¢) can be anoma-
lous, and then A, ~ A(12), A(48), A4 x Z3, and A(192)
remain anomaly free.

As shown in Table IV, we can obtain four models with

three-generation modes on the (72 x T2)/(ZY x zP))
orbifold with M =odd and (a;,ay) = (1/2,1/2):
(M,m,n) = (3,1,0), (5,0,0), (5,1,1), and (7,0,1). We note
that all of the following S and T transformation matrices
satisfy Egs. (8) and (92) with k = 1. First, from the S and T
transformation matrices for (M, m,n) = (3,1,0),

1 2eﬂi/3 262”i/3
S=-z| 207 1 —2emis |,
2e—2ni/3 _2e—ni/3 1
eﬂi/6
T — £57i/6 ’ (101)
e97zi/6

TABLE V. Flavor groups of the three-generation modes (M), m;:M®), m,) which satisfy N,, (MV) = 3 and
N, (M (2)) =1, on the magnetized 77/ Zg‘) x T?%/ Z(th) orbifold. The anomaly-free subgroups are also shown.

(MO my:M® my) orders (hg, hy) of S and T (S" = T"" =T) modular flavor group

anomaly-free group

(4,0:4,1) (2.8)
(4,0:1,1) (2.8)
(4,0:3,0) (4.24)
(8,1:4,1) (4,16)
(8,1:1,1) (4,16)
(8,1:3,0) (2,48)
(5,1:4,1) (4,20)
(5,1:1,1) (4,20)
(5,1:3,0) (2,15)
(7,0:4,1) 2.7
(7,0:1,1) 2.7
(7,0:3,0) (4,84)

A(96) A(96)
A(96) A(96)
A'(96) x Z3 A(48) x Z5
A'(384) A(192)
A'(384) A(192)
A(384) x Z4 A(384) x Z;

As X Zy As

As X Zy As

As X Z3 As X Z3
PSL(2,Z7) PSL(2,Z7)
PSL(2,Z7) PSL(2,Z7)

PSL(2.Z;) x Zy x Zy  PSL(2.Z;) X Z4
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we can obtain the generators which means that the generators in Eq. (102) are those of
Ay x Z4. Thus, the three-generation modes (M, m,n) =
a= ST, b=ST, c=T3, (102) (3,1,0) are transformed under the modular transformation
as the three-dimensional representations of A, X Z.
which satisfy Second, from the § and 7 transformation matrices
for (M, m,n) = (5,0,0),
a* = b’ = (ab)’ = * =1, ac = ca, bc = cb,
(103)
|
A2 \/Qeﬂi/SAB e2m'/SBZ elri/lO
S = % \/je—m'/SAB B2 — A2 _\/Zem'/SAB , T = eSlri/lO ,
e—27zi/5B2 —\/ie_”i/SAB A2 e97ri/10
z 3z
A = TN | B = P R 104
cos<10> c0s<10> (104)
[
we can obtain the generators which means that the generators in Eq. (105) are those of
As x Z4. Thus, the three-generation modes (M, m,n) =
a= ST, b= ST, c=T1°, (105) (5,0,0) are transformed under the modular transformation
as the three-dimensional representations of As X Z.
which satisfy Third, similarly, from the § and 7 transformation

matrices for (M, m,n) = (5,1, 1),
a*=b*=(ab)’=c*=1, ac=ca, bc=ch, (106)

2(A2 _ BZ) _\/Eeﬂi/S(A +B) _\/EeZﬂi/S(A +B)
2i —mi/5 7i/5
S=-3 —V2e "3 (A + B) A-1 e"3(B+1) :
—\2em5(A+B) e S(B+1) A-1
Vs 3z
A =sin| — B =sin| —
sm<10>, sm<10>,
£57i/10
T = el3m’/10 , (107)
177i/10

we can obtain the generators in Eq. (105) satisfying Eq. (106). Thus, the three-generation modes (M, m,n) = (5,1, 1) are
also transformed under the modular transformation as the three-dimensional representations of As x Z,.
Fourth, from the S and 7 transformation matrices for (M, m,n) = (7,0, 1),

2z

y AD - B? —¢7(A2 + BC) —¢7(AB+ CD)

l i i

S = = —e 7(A%* + BC) AB - C? e7(B*+AC) |,
—¢"7(AB+CD) e 7(B* 4 AC) BD — A?

T 3 hY4 O
A —cos<ﬁ>, B = cos(ﬁ>, C—cos<ﬁ>, D —cos<ﬁ>,

eSJzi/l4
T — 137i/14 ’ (108)

ol 77i/ 14
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which also satisfy Eq. (76), we can obtain the generators

a=ST*, b= ST3, c=T, (109)
which satisfy
a’* = b* = (ab)’ = (a”'b7'ab)* = * =1,
ac = ca, bc = cb, (110)

which means that the generators in Eq. (109) are those
of PSL(2,Z7) x Z4. Thus, the three-generation modes
(M,m,n) = (7,0,1) are transformed under the modular
transformation as the three-dimensional representations
of PSL(2,Z,) X Zy.

Finally, we also comment on the anomaly of these
modular flavor groups. From Eqs. (101)—(109), and also
Egs. (8) and (92) with k = 1, we can obtain
det(a)=det(b) =1,

det(c) =det(il) =—i, det(c)*=1.

(111)

Thus, in all of the above cases, only Z, symmetry
(generated by ¢) can be anomalous, and then A,, As and
PSL(2,Z;) remain anomaly free.

Therefore, on the magnetized (T2 x T2)/(ZY x Z\)
orbifold, we can obtain three-dimensional representations
of all of the double covering groups of I, ~S,,
I's D A(96), and T'js D A(384) for even magnetic fluxes
and Z, central extended groups of I'; ~ PSL(2,Z3) ~ Ay,
I's~ PSL(2,Z5) ~As, I'; =~ PSL(2, Z;) for odd magnetic
fluxes.

B. Other T2/Z"") x T?/Z"*) orbifolds

Finally, we consider the three-generation modes on the
magnetized T2 /Zg‘) x T? /Z(ztz) orbifold, where 72/ Zém
and T?/ ZgZ) are not identified. In order to obtain
N, (MW)N,, (M?) =3 on the magnetized T%/Zg‘) X
T?/ ZgZ) orbifold, we can only consider N, (M) = 3 and
N, (M (2)) = 1. Then, from Tables I and I we can consider
12 patterns, listed in Table V. The corresponding finite
modular subgroups, which can be found by considering
Z = —(=1)™+m1 and Egs. (84)~(87),'* are also listed in
Table V. The S and T transformation matrices for the Zg)—

odd modes with M = 1 as well as the Zg>—odd modes with
M = 4 are given by
S = e3zri/4’

T = e™/4, (112)

“There is an exception in Eq. (85); Eq. (85) for the MY =4
singlet mode—that is, the Zg1>-odd mode of M) =4
corresponds to Eq. (87) with M) = 1.

and those for the Zg>—even modes with M = 3 are given by

S = en’i/4’ T = eﬂi/lZ’ (113)
while those for N, (M) =3 modes were given in
Sec. IV. Then, we can find the specific modular flavor
groups as shown in Table V. We also show their anomaly-
free subgroups in Table V.

VII. CONCLUSION

We have studied the modular symmetry of wave func-
tions on magnetized orbifolds: the T2/ Z§t> twisted orbifold,
72/7%) x T2/ 7 twisted orbifold, and Z) permutation

orbifold, i.e., (T2 x T2)/(ZY x Z®)) orbifold, with the
Scherk-Schwarz phases. We found that we can consider
the modular symmetry of not only wave functions with
magnetic flux M =even and vanishing SS phases
(a1, ) = (0,0), but also those with magnetic flux
M = odd and SS phases (a;,a) = (1/2,1/2).
Moreover, we investigated the specific modular flavor
groups for three-generation modes on the magnetized
orbifolds. The three-generation modes on the magnetized
72/7) twisted orbifold with magnetic flux M =4, 8
are three-dimensional representations of A(96), A(384),
which are quadruple covering groups of A(96), A(384),
respectively. Among them, only Zg symmetries can be
anomalous, and then A(48), A(192) are anomaly free,
respectively. Note that since the anomalous Zg symmetry is
a discrete subgroup of U(1), it can be canceled by the
Green-Schwarz mechanism. The three-generation modes

on the magnetized T2/ Zg) twisted orbifold with magnetic
flux M =5, 7 are three-dimensional representations
of As x Zg, PSL(2,Z;) x Zg, respectively. Among them,
only Zg symmetries can be anomalous, and then As
and PSL(2,Z;) are anomaly free, respectively. Similarly,
the three-generation modes on the magnetized (72 x T53)/

(Zg) X ng)) orbifold are the corresponding three-dimen-
sional representations of the double covering groups of 'y
for N =4, 8, 16 and Z, central extended groups of I'y for
N =3, 5, 7, provided in Ref. [29]. Among them, only Zg
symmetries can be anomalous, and then A(3M?) for
N=2M =4, 8, 16, A, for N =3, As for N =15, and
PSL(2,Z;) for N =7 are anomaly free. We have also
shown the specific modular flavor groups of the three-
generation modes on the other distinguishable magnetized

72/2\") % T2/ 7\ orbifolds in Table V.

Our results on flavor symmetries of three generations are
useful to understand quark and lepton masses and their
mixing angles. Also, anomaly behaviors are useful (see,
e.g., Ref. [45]). We will investigate realistic model building
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considering the obtained modular flavor groups in mag-
netized orbifold models elsewhere.
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APPENDIX A: SCHERK-SCHWARZ PHASES
AND WILSON LINES

Here we show that Scherk-Schwarz phases can be
converted into Wilson lines through a gauge transformation
26]], and also that their modular transformations are
consistent with each other.

First, let us consider the following gauge transformation:

g (an) = Ry ), (AD
A(z) = A(z) — d[Repz] = %Im((z - %ﬁ) dz) ,
(A2)

where f is a complex number, y** satisfies Egs. (42) and
(43), and A(z) is as in Eq. (11). We can regard 2 8 = g,

M

as the WL. Accordingly, y,(z) and y,(z), defined in
Egs. (12) and (13), are deformed as

771'M

71(2) s

m(z + i:;;ﬂ) =x1(z) +Rep, (A3)

i(z) = %Im% (z + 17131; ﬁ> = y2(z) + Rezf. (A4)

Therefore, the boundary conditions of the gauge-
transformed wave function P are modified from
Egs. (42) and (43) as

(2 4 1,7) = eMim-2RA (s (2, 7). (AS)

lijal,az (Z + 1, T) — eZni(lz—ZiRe?ﬁei)?z(z)li/al,a2 (Z, ‘L'). (A6)
e _aT—m
When we chose f = —iz= =

wave function,

, the gauge-transformed

Jdm(aj7-an)z

Iz l/jal’az(z”[),

Pz, T) = e (A7)
has the WL Ma,, = a7 — @, and vanishing SS phases
(@, &) = (0,0). That is, the SS phases (a;,a,) can be
converted into the WL Ma,, = a;7 — a, through the gauge
transformation in Eq. (A7). Actually, the jth wave function
can be expressed as

~ (j+aj,a)).M 212
74

_riti2  (j+0,0),M ~
2 (Z,T):eli//(z )

7 (z+a,,7). (A8)

Next, let us consider the modular transformation. When
M = even (x = 0), the WL transforms as

T(Ma,)=a)(t+1)=(ay +a)=Ma,, T= <1 1>,

01
(A9)
1 Ma 0 1
S(Ma,,) = — — = = rooS= ,
(Ma,) 0‘2( r) aj — (_1 O>
(A10)
that is, it transforms as
Ma a b
Ma,) = u = . All
ay) =20 = (40) @

In this case, as mentioned in Ref. [13], the modular
transformation for the wave function on the right-hand
side of Eq. (A8) is the same as Eq. (33). Furthermore, in
this case the gauge phase in Eq. (A7) is invariant under the
modular transformation, and then the modular transforma-
tion for the gauge-transformed wave function on the left-
hand side of Eq. (A7) or Eq. (A8) is the same as Eqgs. (48)
and (49). These are consistent. When M = odd (x = 1), the
T transformation for the WL is

T(Ma,) = a(z+ 1) — <a] +a2—A24> :M<le+;>.

(A12)

Under the T transformation, the wave function with the WL
on the right-hand side of Eq. (A8) is transformed as

40,0). _—
l//<T’;r >M<z+aw+5,f+ 1)

2 gim(Mztajt-ap)

— o7 ok P (j+0.0).M

l//Tz (Z + le, T). (A13)

On the other hand, in this case the gauge phase in Eq. (A7)
is also transformed:

JIm(aj7-as)

l/?a"az(Z,T + 1) — e%iM{r'E—iemTwwalqaz(z,r—f— 1). (A14)

Considering this equation and Eq. (49), the T transforma-
tion for the wave function on the left-hand side of Eq. (A8)
is actually consistent with Eq. (A13).

APPENDIX B: Zy SCHERK-SCHWARZ PHASES
AND Z, SHIFT MODES

Here we show that the wave functions on the magnetized
T? ~C/A with the Z, SS phases are related to the
Zy-eigenmode wave functions on the magnetized full
Zy shifted orbifold of 72 ~C/A(A = NA) without the
SS phases as follows.
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First, the lattice vectors &, (k= 1, 2) of the lattice
A = NA are written by lattice vectors of the lattice A, e,

(k =1,2), as &, = Ney. Then, the coordinate and modulus
of 7> ~C/A, (3.%7) = (u/&,, ,/&,) are related to those of
T>~C/A, (z,7)=(u/e;, es/e,) as (%,7%) = (z/N,7),

where u is the coordinate of C. Note that 7+ 1 ~ Z and
7+ 7 ~ 7 are satisfied on 72.

The 77/Z, full shifted orbifold [13], on which the
full modular symmetry remains, can be obtained by further
identifying any Zy shifted points Z 4 (r + s7)/N(V r,
s € Zy) with Z (see also Ref. [41]). Then, the boundary
conditions of the wave function on the 72/Z, full shifted
orbifold with magnetic flux M and vanishing SS phases are
just the following two conditions:

1

= = 2 M
WTZ/Z%‘ 3) <Z + N’ T> it e™! '““V/Tz/z e (Z.7),

(B1)

T . miz
= =\ _ 27mir M
WTZ/Zﬁfl'fz) (Z + N T) =e mNem Im? l//T7/Z ?1.42) (Z T)

(B2)

where ¢, ¢, € Zy are the Zy eigenvalues. From the above
boundary conditions, M/N*> = M € Z should be satisfied.
The above wave function on the magnetlzed T2/7, full

shifted orbifold without SS phases, l/f’ 210> can be

expanded by the wave function on the magnetlzed 7°
without SS phases as

1 )
o —27nk— N/+f VHkNMN>M /.~ ~
ll/’i'z/Z 2 f») N 2 e (z,7)
(B3)
Furthermore, by considering the relation (Z,%) =

(z/N,7), the boundary conditions in Egs. (B1) and (B2)
correspond to those in Egs. (42) and (43) with the Z5 SS
phases (aj,ay) = (£1/N,&2/N)(¢1,¢, € Zy). Actually,
the above wave function with the Z eigenvalue (¢, fz)
on the 72/7Z, full shifted orbifold with magnetic flux M
and vanishing SS phases is related to the wave function
on T? with magnetic flux M and the Zy SS phases
(a1.a) = (¢,/N.¢,/N) as

Z
TZ/Zflfz N?T

l//-
e —2m‘k‘—2 (Nj+¢)+kNM.N*M [ Z
= \/—_ Z_: N WTZ N T

ENANS
1\ S22).M
ean(j+W1)W/MW;{2+N v

(z,7).

The analyses of the modular transformation are also
consistent.

(B4)

Similarly, the wave function on the magnetized 72/7,
twisted and full shifted orbifold without SS phases is
related to that on the magnetized 72 with the Z, SS phases.
Their behavior of the modular transformation are
consistent.

APPENDIX C: A(6M?) AS A SUBGROUP OF T,

Here we prove that the generators in Eq. (66) (in
particular, for M € 47) satisfy the algebraic relations of
A(6M?) in Eq. (67), where the algebraic relations of I, in
Egs. (27)—-(31) with N = 2M and the additional relation
in Eq. (64) are satisfied. Note that when we have k/2 =
integer [even] in Egs. (27)—(31) with k = integer [even]
and N = 2M, which correspond to the algebraic relations
of Iy, [Tay] in Egs. (8) and (9) with N = 2M, we can find
that the generators in Eq. (66) correspond to those in
Eq. (93) [Eq. (65)] and they satisfy the algebraic relations
of A'(6M?) [A(6M?)] in Eq. (95) [Eq. (63)].

First, by using Eqs. (27)—-(30), Eq. (64) can be
rewritten'® as

(S7T3)% = ($7'T3)° = 1. (C1)
By using Egs. (27)-(30) and (Cl), the generator a’ in
Eq. (66) can be rewritten as

a = ST?’S™'172
= STTS~'T°7~*
= STT2ST-'T2ST~'T~*
= §7IT-1S T84T 28T 3
= TST2ST™>
O A o A e
= T>STSS*STST~*

=T*ST>S~'T~4
= T*(ST*>S'T~2)T~2
o d =T 2(ST>ST2)T?
=T7287%S7!. (C2)
Then, we can obtain
ST?>PS~'T%4 = (ST?>S~")PT?1 =T?IST*’S~!, p,q€Z,
(C3)

in general. Similarly, by using this relation, the generator a
in Eq. (66) can be rewritten as

When we consider Egs. (8)and (9) with N =2M, M =1, 2,
we can check that Eq. (C1) is already satisfied.
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a=ST*S°T*
= T*ST*S°. (C4)
Thus, we can obtain
aM = §-2MTAMgTaM g1 _
a™ = T2MsTMe-1 — 1, (C3)
aad' = ST*S°T* = d'a (C6)

by also using Eq. (31) with N =2M and M € 42.'
Furthermore, from Eq. (28) we also have

($°T)? =1. (C7)
Then, we can prove that
(S2n+3T2n—1)3 — 1’ neN (CS)

by mathematical induction. Thus, we can obtain the other
relations in Eq. (67),

b3 = T_M<T%M+3S%M_I)BTM =1, (Cg)
2 = STM=2§ M- STM=2§T3M-1

— STM—Zs—lT—ls—lTM—ZSTM—154

= STM-1§TM-1STH-!

— (SM+3TM—1)35—3M—6

= §M+2, (C10)
= §*, (C11)
& =1, (C12)

— STM-29T26M-11-4 g-172-M g~1

= T2STM2SM 3§~ T2~ M g 1744

— T2STM+3 GM—1T3-M ¢S T ST-4-3

— T2§TM+3gM=-1TM+3 5T S-%Mﬂ T_%_3

— T2§M~-1TM+3 gM=17M+3 g~M~17 g—3M+1p—4-3

che™!

— T27-M-3§-M+1 g-M-1g—3M+17-4-3
=TM S—%M+1 T—%—S

= b1, (C13)

"“This is because S™2M =1 is satisfied only if M €4Z.
However, when we consider the case that Egs. (8) and (9) with
N = 2M are satisfied instead of Eqgs. (27)—-(31) with N = 2M,
S72M =1 is satisfied even if M =2(2s — 1)(s € Z).

bab~! = T5+3 S%M—l TMST2S5T4M S—%MH T7-%-3

— TH+3 M-14 g—3M~-1-4~1

=TS 'Ts- 't

= T7257'738TST

— T—2s—5 T_4S_1

=a'a, (C14)
ba'b~! = THH3M-1TM g2 g~17-2-M g—3M+17-4-3

— THB gM-17-2g—3M+1p-4-1

R A A A Y A

= STSS*>STST*

= ST?*S°T*

=a, (C15)
cac™! = STM-2STM-1 §T2§5T5—3M §-172-M g-1

= STM-28-17-1g-1T2G55§T2-M g

= STM-1SS T3 T5§T2-M g

= §-ITM-27 T3 ST T2 3 g2 M g1

= S-iTM-4gT28T2-M g1

= T2ST25"!

=d !, (C16)
ca'c_l — STM—ZST%M—ISTZS—I T—l—%Ms—lTZ—Ms—l

= STM-2g-lp-1gT28-IT-1§-112-Mg

— STM—15—1T455T3—MS

= STST*S3TS

=T 1S37383TS

=T '$72837!

=728 I7-1g-1g6g-17-1g-17-2

= T72§57728- 172

=T4§5728"1

=al. (C17)

Therefore, when the relation in Eq. (64) is also satisfied in
addition to the algebraic relations of I',,, (in particular, for
M € 47), Eq. (66) can be the generators of A(6M?).
Similarly, when the algebraic relations of I',, [I"5;,] and
also Eq. (64) are satisfied, we can find that Eq. (93)
[Eq. (65)] as well as Eq. (94) [the generators in footnote 8]
can be the generators of A’'(6M?) [A(6M?)].
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APPENDIX D: THREE-DIMENSIONAL MODULAR FORMS

Here we express the three-dimensional modular forms obtained from the wave functions on magnetized orbifolds at
z = 0, which means that the modular forms can be obtained from Z,-even (m = n = 0) modes.
We can obtain two three-dimensional modular forms of weight 1/2 from the modes (M, m) = (4,0) and (7,0) at z = 0 on

the magnetized 72/ Zéo twisted orbifold as follows:

91(7)
9(0) | =
9(v)
- L -
1 14
(5]
9(7) 5
o) | = | % (o]
91(2) T
1 14
ﬁ('g__%

- (0,77) = 9

9 m (0,47)

. (8[3] (0,47) + 9 m (0,41))

9 m (0,47)

=5
)

(0,77) = 9

= e
1L

=

(0,77) — 9 _

N|—
oL

=
L

(0, 71))

©0.79)

(0, m)

d

V29

d

\@9_

\/29_

V29

0
0
2
4
0

] (0, 47)

] (0. 47)

(0, 47)

0 O s

==

(0,77)

I~ ol
1 L

(0,77)

|
[
=
1 L

S

(0,77)

(M

4), (D1)

(D2)

They are modular forms of weight 1/2 for I'(8) and I'(56), respectively, and they also transform as the three-dimensional
representations of A(96) and PSL(2,Z;) x Zg, respectively.

Similarly, we can obtain four three-dimensional modular forms of weight 1, two of which are obtained from the modes
(MY, my: M, m,) = (4,0:3,0) and (7,0:3,0) at z; = z, = 0 on the magnetized T%/Zg‘) x Tz/Zgt2> orbifold, and the
other two of which are obtained from the modes (M, m,n) = (2,0,0) and (5,0,0) at z; = z, = 0 on the magnetized
(T2 x T2)/(ZY x 7)) orbifold, as follows:

9"V(z)
857 (x)
(

1

\/Ea[ ‘

1
2

1
2&[6]

m[

Q= =

1
2

(0,37)9
(0,37)9

29| ® 1(0,37)9

] (0,37)9

(0,37)9

] (0.37)8 {

[ —
S O

J0.40)

(0, 47)

1
4
K

| S

(0,41)

O B

(0,77)

(0,77)

(0,77)
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o [ sl
5070 | = | vas[o|0200] 0,20 [0 < me < b =), (D3)
ol
96) wwﬁ} iy Sr)g[joi] -
959 (z) 229 {_‘Tﬂ (0, 57)19[_'_2] (0.57) | (M) = M®) =M =5) (D6)
957 (2) y { _I%J 050 [ i] 050

They are modular forms of weight 1 for I'(24), T'(84), T'(4), and T'(20) respectively, and they also transform as the three-
dimensional representations of A’(96) x Z3, PSL(2,Z;) X Z3 x Zy4, S}, and As x Z,, respectively.

[1] G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82, 2701
(2010).
[2] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada,
and M. Tanimoto, Prog. Theor. Phys. Suppl. 183, 1 (2010).
[3] H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu,
and M. Tanimoto, Lect. Notes Phys. 858, 1 (2012).
[4] D. Hernandez and A. Y. Smirnov, Phys. Rev. D 86, 053014
(2012).
[5] S.FE. King and C. Luhn, Rep. Prog. Phys. 76, 056201
(2013).
[6] S.F. King, A. Merle, S. Morisi, Y. Shimizu, and M.
Tanimoto, New J. Phys. 16, 045018 (2014).
[7] T. Kobayashi, H. P. Nilles, F. Ploger, S. Raby, and M. Ratz,
Nucl. Phys. B768, 135 (2007).
[8] H. Abe, K. S. Choi, T. Kobayashi, and H. Ohki, Nucl. Phys.
B820, 317 (2009).
[9] T. Kobayashi and S. Nagamoto, Phys. Rev. D 96, 096011
(2017).
[10] T. Kobayashi, S. Nagamoto, S. Takada, S. Tamba, and T. H.
Tatsuishi, Phys. Rev. D 97, 116002 (2018).
[11] T. Kobayashi and S. Tamba, Phys. Rev. D 99, 046001
(2019).
[12] H. Ohki, S. Uemura, and R. Watanabe, Phys. Rev. D 102,
085008 (2020).
[13] S. Kikuchi, T. Kobayashi, S. Takada, T. H. Tatsuishi, and H.
Uchida, Phys. Rev. D 102, 105010 (2020).
[14] S. Kikuchi, T. Kobayashi, H. Otsuka, S. Takada, and H.
Uchida, J. High Energy Phys. 11 (2020) 101.
[15] K. Hoshiya, S. Kikuchi, T. Kobayashi, Y. Ogawa, and H.
Uchida, Prog. Theor. Exp. Phys. 2021, 033B05 (2021).

[16] J. Lauer, J. Mas, and H. P. Nilles, Phys. Lett. B 226, 251
(1989); Nucl. Phys. B351, 353 (1991).

[17] W. Lerche, D. Lust, and N. P. Warner, Phys. Lett. B 231,417
(1989).

[18] S. Ferrara, . D. Lust, and S. Theisen, Phys. Lett. B 233, 147
(1989).

[19] A. Baur, H. P. Nilles, A. Trautner, and P. K. S. Vaudrevange,
Phys. Lett. B 795, 7 (2019).

[20] H.P. Nilles, S. Ramos-Snchez, and P. K. Vaudrevange, J.
High Energy Phys. 02 (2020) 045.

[21] T. Kobayashi, S. Nagamoto, and S. Uemura, Prog. Theor.
Exp. Phys. 2017, 023B02 (2017).

[22] Y. Kariyazono, T. Kobayashi, S. Takada, S. Tamba, and H.
Uchida, Phys. Rev. D 100, 045014 (2019).

[23] T. Kobayashi and H. Otsuka, Phys. Rev. D 101, 106017
(2020).

[24] D. Cremades, L.E. Ibanez, and F. Marchesano, J. High
Energy Phys. 05 (2004) 079.

[25] H. Abe, T. Kobayashi, and H. Ohki, J. High Energy Phys. 09
(2008) 043.

[26] T.H. Abe, Y. Fujimoto, T. Kobayashi, T. Miura, K.
Nishiwaki, and M. Sakamoto, J. High Energy Phys. 01
(2014) 065.

[27] H. Abe, K. S. Choi, T. Kobayashi, and H. Ohki, Nucl. Phys.
B814, 265 (2009).

[28] T.h. Abe, Y. Fujimoto, T. Kobayashi, T. Miura, K.
Nishiwaki, M. Sakamoto, and Y. Tatsuta, Nucl. Phys.
B894, 374 (2015).

[29] R. de Adelhart Toorop, F. Feruglio, and C. Hagedorn, Nucl.
Phys. B858, 437 (2012).

065008-19


https://doi.org/10.1103/RevModPhys.82.2701
https://doi.org/10.1103/RevModPhys.82.2701
https://doi.org/10.1143/PTPS.183.1
https://doi.org/10.1007/978-3-642-30805-5
https://doi.org/10.1103/PhysRevD.86.053014
https://doi.org/10.1103/PhysRevD.86.053014
https://doi.org/10.1088/0034-4885/76/5/056201
https://doi.org/10.1088/0034-4885/76/5/056201
https://doi.org/10.1088/1367-2630/16/4/045018
https://doi.org/10.1016/j.nuclphysb.2007.01.018
https://doi.org/10.1016/j.nuclphysb.2009.05.024
https://doi.org/10.1016/j.nuclphysb.2009.05.024
https://doi.org/10.1103/PhysRevD.96.096011
https://doi.org/10.1103/PhysRevD.96.096011
https://doi.org/10.1103/PhysRevD.97.116002
https://doi.org/10.1103/PhysRevD.99.046001
https://doi.org/10.1103/PhysRevD.99.046001
https://doi.org/10.1103/PhysRevD.102.085008
https://doi.org/10.1103/PhysRevD.102.085008
https://doi.org/10.1103/PhysRevD.102.105010
https://doi.org/10.1007/JHEP11(2020)101
https://doi.org/10.1093/ptep/ptab024
https://doi.org/10.1016/0370-2693(89)91190-8
https://doi.org/10.1016/0370-2693(89)91190-8
https://doi.org/10.1016/0550-3213(91)90095-F
https://doi.org/10.1016/0370-2693(89)90686-2
https://doi.org/10.1016/0370-2693(89)90686-2
https://doi.org/10.1016/0370-2693(89)90631-X
https://doi.org/10.1016/0370-2693(89)90631-X
https://doi.org/10.1016/j.physletb.2019.03.066
https://doi.org/10.1007/JHEP02(2020)045
https://doi.org/10.1007/JHEP02(2020)045
https://doi.org/10.1093/ptep/ptw184
https://doi.org/10.1093/ptep/ptw184
https://doi.org/10.1103/PhysRevD.100.045014
https://doi.org/10.1103/PhysRevD.101.106017
https://doi.org/10.1103/PhysRevD.101.106017
https://doi.org/10.1088/1126-6708/2004/05/079
https://doi.org/10.1088/1126-6708/2004/05/079
https://doi.org/10.1088/1126-6708/2008/09/043
https://doi.org/10.1088/1126-6708/2008/09/043
https://doi.org/10.1007/JHEP01(2014)065
https://doi.org/10.1007/JHEP01(2014)065
https://doi.org/10.1016/j.nuclphysb.2009.02.002
https://doi.org/10.1016/j.nuclphysb.2009.02.002
https://doi.org/10.1016/j.nuclphysb.2015.03.004
https://doi.org/10.1016/j.nuclphysb.2015.03.004
https://doi.org/10.1016/j.nuclphysb.2012.01.017
https://doi.org/10.1016/j.nuclphysb.2012.01.017

KIKUCHI, KOBAYASHI, and UCHIDA

PHYS. REV. D 104, 065008 (2021)

[30] X.G. Liu and G.J. Ding, J. High Energy Phys. 08 (2019)
134.

[31] F. Feruglio, arXiv:1706.08749; T. Kobayashi, K. Tanaka,
and T. H. Tatsuishi, Phys. Rev. D 98, 016004 (2018); J. T.
Penedo and S.T. Petcov, Nucl. Phys. B939, 292 (2019);
J. C. Criado and F. Feruglio, SciPost Phys. 5, 042 (2018); T.
Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto,
and T. H. Tatsuishi, J. High Energy Phys. 11 (2018) 196;
P. P. Novichkov, J. T. Penedo, S. T. Petcov, and A. V. Titov,
J. High Energy Phys. 04 (2019) 005; 04 (2019) 174; F.J. de
Anda, S.F. King, and E. Perdomo, arXiv:1812.05620; H.
Okada and M. Tanimoto, Phys. Lett. B 791, 54 (2019); T.
Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T.H.
Tatsuishi, and H. Uchida, Phys. Lett. B 794, 114 (2019);
P. P. Novichkov, S. T. Petcov, and M. Tanimoto, Phys. Lett.
B 793, 247 (2019).

[32] P.P. Novichkov, J. T. Penedo, and S. T. Petcov, Nucl. Phys.
B963, 115301 (2021); X. G. Liu, C. Y. Yao, and G. J. Ding,
arXiv:2006.10722; X. G. Liu, C. Y. Yao, B. Y. Qu, and G. J.
Ding, arXiv:2007.13706; X. Wang, B. Yu, and S. Zhou,
arXiv:2010.10159; C.Y. Yao, X.G. Liu, and G.J. Ding,
arXiv:2011.03501.

[33] Y. Almumin, M.C. Chen, V. Knapp-Pérez, S. Ramos-
Séanchez, M. Ratz, and S. Shukla, J. High Energy Phys.
05 (2021) 078.

[34] Y. Tatsuta, arXiv:2104.03855.

[35] R.C. Gunning, Lectures on Modular Forms (Princeton
University Press, Princeton, NJ, 1962).

[36] B. Schoeneberg, Elliptic Modular Functions (Springer-
Verlag, Berlin, 1974).

[37] N. Koblitz, Introduction to Elliptic Curves and Modular
Forms (Springer-Verlag, Berlin, 1984).

[38] J. H. Bruinier, G. V. D. Geer, G. Harder, and D. Zagier, The
1-2-3 of Modular Forms (Springer, New York, 2008).

[39] G. Shimura, Ann. Math. 97, 440 (1973).

[40] J.F. Duncan and D. A. Mcgady, arXiv:1806.09875.

[41] Y. Fujimoto, T. Kobayashi, T. Miura, K. Nishiwaki, and M.
Sakamoto, Phys. Rev. D 87, 086001 (2013).

[42] J. A. Escobar and C. Luhn, J. Math. Phys. (N.Y.) 50, 013524
(2009).

[43] R. de Adelhart Toorop, F. Feruglio, and C. Hagedorn, Phys.
Lett. B 703, 447 (2011).

[44] T. Araki, T. Kobayashi, J. Kubo, S. Ramos-Sanchez, M.
Ratz, and P.K.S. Vaudrevange, Nucl. Phys. B805, 124
(2008).

[45] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto,
and T.H. Tatsuishi, J. High Energy Phys. 02 (2020)
097; Phys. Rev. D 100, 115045 (2019); 101, 039904(E)
(2020).

065008-20


https://doi.org/10.1007/JHEP08(2019)134
https://doi.org/10.1007/JHEP08(2019)134
https://arXiv.org/abs/1706.08749
https://doi.org/10.1103/PhysRevD.98.016004
https://doi.org/10.1016/j.nuclphysb.2018.12.016
https://doi.org/10.21468/SciPostPhys.5.5.042
https://doi.org/10.1007/JHEP11(2018)196
https://doi.org/10.1007/JHEP04(2019)005
https://doi.org/10.1007/JHEP04(2019)174
https://arXiv.org/abs/1812.05620
https://doi.org/10.1016/j.physletb.2019.02.028
https://doi.org/10.1016/j.physletb.2019.05.034
https://doi.org/10.1016/j.physletb.2019.04.043
https://doi.org/10.1016/j.physletb.2019.04.043
https://doi.org/10.1016/j.nuclphysb.2020.115301
https://doi.org/10.1016/j.nuclphysb.2020.115301
https://arXiv.org/abs/2006.10722
https://arXiv.org/abs/2007.13706
https://arXiv.org/abs/2010.10159
https://arXiv.org/abs/2011.03501
https://doi.org/10.1007/JHEP05(2021)078
https://doi.org/10.1007/JHEP05(2021)078
https://arXiv.org/abs/2104.03855
https://doi.org/10.2307/1970831
https://arXiv.org/abs/1806.09875
https://doi.org/10.1103/PhysRevD.87.086001
https://doi.org/10.1063/1.3046563
https://doi.org/10.1063/1.3046563
https://doi.org/10.1016/j.physletb.2011.08.013
https://doi.org/10.1016/j.physletb.2011.08.013
https://doi.org/10.1016/j.nuclphysb.2008.07.005
https://doi.org/10.1016/j.nuclphysb.2008.07.005
https://doi.org/10.1007/JHEP02(2020)097
https://doi.org/10.1007/JHEP02(2020)097
https://doi.org/10.1103/PhysRevD.100.115045
https://doi.org/10.1103/PhysRevD.101.039904
https://doi.org/10.1103/PhysRevD.101.039904

