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Using a new approach to the analysis of false vacuum decay based on the so-called tunneling potential,
we develop a general method to find scalar potentials with a false vacuum with exactly solvable decay at the
semiclassical level, including gravitational corrections. We examine in particular the decays of de Sitter
vacua providing concrete examples that allow to explore analytically the transition between the Coleman-
De Luccia and Hawking-Moss regimes.
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I. INTRODUCTION

False vacuum decay in quantum field theory is a
fascinating phenomenon of key importance for cosmology,
both in the Standard Model and its extensions. A giant step
in the theoretical analysis of such decays (in particular
for the calculation of the tunneling action that controls
the exponential suppression of vacuum decay) was due to
Coleman [1], who pioneered an elegant and powerful
approach based on an Euclidean formulation of the
problem. This formulation is well known, it became the
standard approach, it proved particularly convenient to go
beyond the semiclassical approximation including quantum
corrections [2], and was also extended, by Coleman and De
Luccia, to include gravitational corrections [3].
Recently, an alternative approach to the calculation of the

tunneling actions was proposed [4]. It reformulates the
problem without reference to Euclidean space or quantities,
as a variational problem in field space, using an auxiliary
function, Vt, dubbed the tunneling potential, that contains
all the information needed to calculate the decay action. It is
always useful to have alternative formulations for important
problems, like the false vacuum decay certainly is, and the
Vt approach has proven quite useful in many respects; see
Refs. [5–10].
It was also possible to extend the Vt formalism to include

in a very compact way gravitational corrections [5]. In this
paper, we make extensive use of this general formulation,
reviewed in Sec. II and push forward in several directions

the results obtained already in Ref. [5]. One particularly
interesting type of vacuum decay is that of de Sitter (dS)
vacua. While in Ref. [5] it was already discussed how the
Vt formalism recovered the Hawking-Moss rate [11] in the
appropriate limit, we enlarge that discussion here, explain-
ing in more detail how this new formalism reproduces the
detailed balance for transitions between dS vacua (Sec. III),
some basic properties of the dS decay action under several
rescalings of parameters (Sec. IV), and different ways in
which the Hawking-Moss (HM) regime takes over the
usual Coleman-De Luccia (CdL) one (Sec. V), for which
the Vt approach is ideally suited.
While the CdL to HM transition is discussed in an

approximate way in Sec. V, one of the useful applications of
the Vt approach is to find potentials, V, for which the
problem of finding the decay configuration is exactly
solvable. In Ref. [4], this was done in a generic way,
formally integrating an equation for V in terms of Vt, that
can be explicitly solved for simple Vt choices. With gravity
included, this problem is harder, and Ref. [5] did not
provide a general solution, although it did manage to give
an exactly solvable V for a particular Vt. This solvable
model, which had some adjustable parameters, could
provide analytic examples for decays of Minkowski and
anti-de Sitter (AdS) false vacua. No example was given for
dS false vacua, and the possibility of analytically examin-
ing the switch from a CdL-dominated decay to a HM-
dominated one was not achieved. In this paper, we fix both
shortcomings of Ref. [5]: in Sec. VI, we develop a
general method to find exactly solvable potentials if Vt
is given, including gravity. The method is applicable to
any false vacua, Minkowski, dS, or AdS. In Sec. VII, we
collect examples of solvable potentials with false dS
vacua decaying to other dS or AdS vacua. This serves,
in particular, to study in an analytically controllable way
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how CdL-dominated decays turn to HM-dominated tran-
sitions. We conclude in Sec. VIII.

II. BRIEF REVIEW OF THE TUNNELING
POTENTIAL APPROACH

The so-called tunneling potential approach [4,5] is an
alternative formulation of the problem of finding the
tunneling action for the decay of a false vacuum at ϕþ
of some potential VðϕÞ. It does not rely on the Euclidean
formulation of Coleman [1] and transforms the problem
into a simple variational problem in field space. In the case
with gravity, this variational problem is the following: find
the (tunneling potential) function VtðϕÞ, which interpolates
between ϕþ and some unknown ϕ0 on the basin of the true
vacuum1 and minimizes the action functional

S½Vt� ¼
6π2

κ2

Z
ϕ0

ϕþ
dϕ

ðDþ V 0
tÞ2

V2
t D

; ð2:1Þ

with

D2 ≡ V 02
t þ 6κðV − VtÞVt; ð2:2Þ

where primes denote field derivatives and κ ¼ 1=m2
P (mP is

the reduced Planck mass). This method reproduces the
Euclidean result of Coleman and De Luccia [3] and has a
number of advantages discussed elsewhere [4–6,9]. The
Euler-Lagrange equation δS=δVt ¼ 0 gives

δS
δVt

¼ −108π2
ðV − VtÞ

D5
EoM ¼ 0; ð2:3Þ

where the “equation of motion” (EoM) for Vt is

EoM≡6ðV−VtÞ½V 00
t þκð3V−2VtÞ�þV 0

tð4V 0
t−3V 0Þ¼0;

ð2:4Þ

or, in terms of V 0
t=D,

d
dϕ

�
V 0
t

D

�
¼ κ

ð2Vt − 3VÞ
D

: ð2:5Þ

The tunneling potentialVt satisfies the boundary conditions

VtðϕþÞ ¼ VðϕþÞ≡ Vþ; Vtðϕ0Þ ¼ Vðϕ0Þ≡ V0;

ð2:6Þ

where ϕ0 must be determined by minimizing (2.1) and equals
the central value of the bounce, ϕð0Þ, in the Euclidean
approach.

Vt is qualitatively different depending on the false
vacuum nature [5]:

(i) For decays of Minkowski or AdS false vacua, Vt is
monotonic with V 0

t ≤ 0. The EoM for Vt also fixes
V 0
tðϕþÞ ¼ V 0ðϕþÞ ¼ 0, and V 0

tðϕ0Þ ¼ 3V 0ðϕ0Þ=4.
As known from Ref. [3], for this type of false vacua,
gravity can forbid decay (gravitational quenching).
In the Vt formulation, to have a real tunneling action,
Vt must give D2 > 0. Gravitational quenching
occurs when this condition cannot be satisfied for
any Vt [5]. For these vacua, the second term in (2.2)
is negative, and in some cases, it can be impossible
to satisfy D2 > 0 for any Vt and the potential is
stabilized [9].

(ii) For decays of dS vacua, Vt is not monotonic; see
Fig. 1. From ϕþ to ϕ0þ, one has Vt ¼ V [notice that
this also solves δS=δϕ ¼ 0; see (2.3)]. From ϕ0þ to
some ϕ0−, Vt < V, and this range corresponds to the
field range for the CdL bounce, with V 0

tðϕ0�Þ ¼
3V 0ðϕ0�Þ=4 and ϕ0− corresponding to ϕð0Þ of the
bounce. Finally, fromϕ0− to the secondminimumϕ−,
one has again Vt ¼ V. If the overall energy scale of
the potential is increased, the range of theCdL interval
shrinks to zero, and the action tends to theHMone [5].

For later reference, we collect here several formulas that
connect the tunneling potential formalism to the Euclidean
approach. These formulas allow one to translate the results
between both formalisms. For details on their derivation,
see Ref. [5]. In the Euclidean formulation, vacuum decay is
described by a bounce configuration ϕðξÞ, an Oð4Þ-sym-
metric extremal of the Euclidean action, and a metric
function ρðξÞ, for the Oð4Þ-symmetric Euclidean space-
time metric

ds2 ¼ dξ2 þ ρðξÞ2dΩ2
3; ð2:7Þ

FIG. 1. Potential VðϕÞ with two dS mimima at ϕ� and
tunneling potential VtðϕÞ describing the transitions between
them. The interval ðϕ0þ;ϕ0−Þ is the field range of the CdL
bounce.

1If we call ϕ− the true vacuum, we use the convention
ϕ− > ϕþ. Then, ϕþ < ϕ0 < ϕ−.
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where ξ is a radial coordinate and dΩ2
3 is the line element on

a unit 3-sphere.
The key link between both formulations is

VtðϕÞ ¼ VðϕÞ − 1

2
_ϕ2; ð2:8Þ

where _x≡ dx=dξ and _ϕ on the right-hand side is assumed
to be expressed in terms of the field, using the bounce
profile ϕðξÞ. Using (2.8) and the differential equations
satisfied by ϕ and ρ, one can establish the following
dictionary, where the left-hand side is a Euclidean quantity
and the right-hand side does not depend at all on Euclidean
quantities. We have

_ϕ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV − VtÞ

p
; ϕ̈ ¼ V0 − V 0

t; ð2:9Þ

where the minus sign in the equation for _ϕ applies for our
convention ϕþ < ϕ−, and

ρ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV −VtÞ

p
D

; _ρ¼ −
V 0
t

D
;

ρ̈

ρ
¼ −

κ

3
ð3V − 2VtÞ:

ð2:10Þ

III. DE SITTER TO DE SITTER TRANSITIONS

In the decay of a dS vacuum, only the finite space inside the
horizon is required to transition (see, e.g., Ref. [12]). This
makes the rate nonzero generically and allows upward
transitions, from a dS vacuum to another with higher cosmo-
logical constant. There is a simple relation between the actions
for transitions between two dS vacua, and it is instructive to
derive such a relation in the tunneling potential formalism.
The tunneling action Sþ→− for the decay from a dS

vacuum at ϕþ to a dS vacuum at ϕ− can be obtained as the
action integral (2.1). For the discussion in this section, it is
convenient to extend the integration interval to the full
interval from ϕþ to ϕ−. The integral has three different
pieces [5] according to the three different ranges described
in the previous section and illustrated by Fig. 1: in the first,
from ϕþ to ϕ0þ, where one has Vt ≡ V, with V 0

t ¼ V 0 ≥ 0,
one gets D ¼ V0

t, and the action density is simply

s ¼ 24π2V 0

κ2V2
; ð3:1Þ

which can be integrated exactly. In the CdL range,
ðϕ0þ;ϕ0−Þ, one has Vt ≤ V. Finally, from ϕ0− to ϕ− with
Vt ≡ V again but with V 0

t ¼ V 0 ≤ 0, the action density is
s ¼ 0.2 The total decay action can then be written as the
sum of two nonzero pieces, one that we call (with an slight

abuse of notation) the “Hawking-Moss” part and the other
we call the CdL contribution,3

Sþ→− ¼ ΔSHM þ ΔSCdL

¼ 24π2

κ2

�
1

Vþ
−

1

V0þ

�
þ 6π2

κ2

Z
ϕ0−

ϕ0þ

ðDþ V 0
tÞ2

DV2
t

dϕ;

ð3:2Þ

with V0þ ≡ Vðϕ0þÞ. When the overall mass scale of the
potential (say Vþ) is sufficiently large, the CdL bounce part
disappears, and the transition is purely of Hawking-Moss
type, as discussed in Sec. V.
The decay in the opposite direction, from ϕ− to ϕþ,

proceeds in a similar manner, in fact with the same Vt
function, but now taken as starting from ϕ−, so that its
derivative flips sign. This implies that now there is a simple
nonzero contribution from the interval ϕ− to ϕ0− and
a zero contribution from the interval from ϕ0þ to ϕþ.
The difference between the two tunneling actions,
ΔS≡ Sþ→− − S−→þ, takes a very simple form, as only
the term linear in V 0

t in the action density, the only one that
flips sign, contributes. This term can be integrated exactly,
and one gets

ΔS ¼ 24π2

κ2

�
1

Vþ
−

1

V−

�
: ð3:3Þ

This can be rewritten simply as ΔS ¼ Sþ − S−, where
S� is the Gibbons-Hawking entropy of a dS vacuum
with cosmological constant V�. Indeed, this entropy is
one-fourth of the horizon’s area in Planck units
S�¼A�=ð4l2PÞ, where the area is given by A� ¼ 4π=H2

�,
with H2

� ¼ κV�=3. In the formulas above, one has lP ¼
1=MP and 1=M2

P ¼ G, 8πG ¼ κ.

IV. SOME BASIC PROPERTIES OF dS DECAYS

The expression for the tunneling action in terms of Vt
can be used to derive in a simple way the following basic
properties for dS vacuum decays under several rescalings:
1) stretching of the potential, 2) stretching of the field,
3) changing the strength of gravity, and 4) a combination of
the latter two. We address these rescalings in what follows.
(1) If the potential is rescaled by a constant, V → aV,

then the tunneling potential that minimizes the
action is aVt (as is clear from the EoM for Vt),
and the tunneling action gets rescaled as S → S=a.
Therefore, for a > 1, the rescaling of V increases the
energy scale of the false vacuum and makes it more
unstable, even though the height of the potential

2One also sees that there are no transitions from AdS to dS: the
action density would diverge if Vþ < 0 as Vt would need to cross
zero with positive slope.

3The mixed nature of the dS to dS transitions, with a “HM”
piece and a CdL part, has been given a thermal interpretation in
Ref. [13].
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barrier is also increased. This conclusion holds
whether the transition happens via a CdL bounce
or via a HM instanton.

(2) The effect of gravity can be examined by studying
how the action is affected by a change in κ [in
the understanding that a larger (smaller) κ means
all mass scales of the potential are smaller
(larger) compared to mP]. This is best analyzed by
looking at

dS½Vt�
dκ

¼ d
dκ

Z
ϕ−

ϕþ
sðV; Vt; V 0

t; κÞdϕ

¼
Z

ϕ−

ϕþ

�� ∂s
∂Vt

−
d
dϕ

∂s
∂V 0

t

�
dVt

dκ
þ ∂s
∂κ

�
dϕ;

ð4:1Þ

where sðV; Vt; V 0
t; κÞ is the tunneling action density

and we have written the total action as an integral in
the full interval ðϕþ;ϕ−Þ, as in the previous section.
The term inside parentheses above cancels due to the
EoM for Vt, Eqs. (2.3) and (2.4) in the whole
integration interval, and the rest gives

dS½Vt�
dκ

¼3π2

κ3

Z
ϕ−

ϕþ

D
V2
t

�
1þV 0

t

D

�
2
��

1−
V 0
t

D

�
2

−4

�
dϕ:

ð4:2Þ

The sign of this derivative depends on the type of
transition considered. For dS to dS transitions,
defined as those for which Vðϕ0−Þ > 0 even if V−
might be negative, we have Vt > 0 for ϕ < ϕ0− (and
zero integrand for ϕ > ϕ0−). Then, it follows that
−1 ≤ V 0

t=D ≤ 1 and dS½Vt�=dκ < 0, and so, one
concludes that larger κ (stronger gravitational ef-
fects) lowers the tunneling action, making dS vacua
more unstable.
However, for dS to AdS transitions [i.e., those

with Vðϕ0−Þ < 0], Vt gets negative at some point,
resulting in V 0

t=D < −1, and the sign of dS½Vt�=dκ
depends on the shape of the potential. If the region
with negative Vt dominates in the integral (4.2), one
would get a positive slope, and stronger gravity
makes the false vacuum more stable (as always
happens for the decays of Minkowski or AdS false
vacua). In Sec. VII E, we show an example of
potential that can realize both signs of dS½Vt�=dκ
depending on its parameters.

(3) If we rescale the field as ϕ → ϕ=a, the tunneling
potential for VaðϕÞ≡ Vðϕ=aÞ is not simply
Vtðϕ=aÞ, but we can still see how the action changes
depending on whether a < 1 (thinner barrier) or
a > 1 (wider barrier). As the HM part of the action
does not change under a field rescaling, we simply

look at the CdL part. Consider the CdL part of the
action for a rescaled VtaðϕÞ≡ Vtðϕ=aÞ (for any
arbitrary Vt),

ΔSCdL½Vta� ¼
6π2

κ2

Z
aϕ0−

aϕ0þ

½Da
κ þ V 0

ta�2
Da

κV2
ta

dϕ; ð4:3Þ

where

Da
κ ≡ ½V 0

ta
2 þ 6κðVa − VtaÞVta�1=2: ð4:4Þ

Changing the integration variable ϕ → ϕ=a, we have

ΔSCdL½Vta� ¼
6π2

κ2

Z
ϕ0−

ϕ0þ

½Dκa2 þ V0
t�2

Dκa2V
2
t

dϕ; ð4:5Þ

where

Dκa2 ≡ ½V 02
t þ 6κa2ðV − VtÞVt�1=2: ð4:6Þ

Now, for a > 1, it is easy to show that ½Dκa2 þ
V 0
t�2=ðDκa2V

2
t Þ ≥ ½Dκ þ V 0

t�2=ðDκV2
t Þ so that the

action integrand is larger for a > 1 than for
a ¼ 1.4 This proves that, for a > 1, ΔSCdL½Vta� >
ΔSCdL½Vt� for any Vt. Therefore, the minimum of the
functional S½Vta� is larger than (or equal to5) the
minimum of S½Vt�, and the tunneling action must
increase (or stay constant) when the barrier is made
wider (a > 1). Eventually, the action for tunneling
via a CdL instanton will become larger than the HM
one (unchanged by the field rescaling), and for
barriers wider than a critical value, it is the HM
action that controls the decay. Finally, for the
opposite case of a < 1, all inequalities are reversed,
so a thinner barrier leads to a higher decay rate
(lower tunneling action).

(4) From (4.5) and the previous discussion of the κ
dependence of the action, we see that the tunneling
action after a field rescalingϕ → ϕ=a is related to the
action after κ → κa2 by Sϕ→ϕ=a ¼ a4Sκ→κa2. We can
combine this inequality with Sϕ→ϕ=a ≥ S for a > 1

from (3) above (wider barriers increase the
action). For dS to dS transitions or dS to AdS
transitions with dS=dκ < 0, we also know from
(2) above that Sκ→κa2 < S for a > 1 (stronger gravity
makes such dS vacua more unstable). Combining

4Taking x ¼ 6κðV − VtÞVt=V 02
t reduces the problem to the

inequality fðxa2Þ ≥ fðxÞ involving the function fðxÞ≡ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p þ 1=
ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
for x ∈ ð−1;∞Þ, as D2 > 0. The equality

holds only for x ¼ 0, which requires V ¼ Vt, i.e., a HM
transition.

5If the original decay was already a HM one, then the rescaling
has no effect on the action, and that is why we also include the
possible equality here.
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all this, we get S ≤ Sϕ→ϕ=a ¼ a4Sκ→κa2 < a4S.
Therefore, we arrive at two inequalities for
a > 1

S ≤ Sϕ→ϕ=a < a4S;

a−4S ≤ Sκ→κa2 < S ð4:7Þ

that set upper and lower bounds for these rescalings.
Notice that this behavior is quite different from that
for Minkowski or AdS vacuum decay. In these two
cases, making the barrier wide enough or increasing
sufficiently the strength of gravity could completely
quench the decay (leading to S → ∞). The bounds
above prevent this from happening in the dS case.
After all, a dS vacuum can always decay via the HM
instanton.

V. ONSET OF HAWKING-MOSS TRANSITIONS

It is well known that, if the vacuum energy of a false dS
vacuum is sufficiently large, the CdL instanton disappears
and vacuum decay proceeds via the Hawking-Moss [11]
instanton instead.6 In this section, we use the tunneling
potential approach to examine this phenomenon.
The decay of a false dS vacuum minimizes the tunneling

action (2.1), which is the sum of two nonzero pieces, as
written in (3.2). The first action contribution, ΔSHM,
pulls V0þ toward Vþ (and thus ϕ0þ → ϕþ) to become
smaller, while ΔSCdL wants the interval ðϕ0þ;ϕ0−Þ to
shrink to lower the value of the CdL integral. The final
solution comes from the interplay between these two
opposing demands [5]. To get a simple qualitative
understanding of this trade-off, it is useful to make the
rough approximation of taking Vt to be a constant. In that
case [5],

SðVtÞ¼
24π2

κ2

�
1

Vþ
−

1

Vt

�
þ 6π2

ffiffiffi
3

p

ðκVtÞ3=2
Z

ϕ0−

ϕ0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV−VtÞ

p
dϕ;

ð5:1Þ

where ϕ0� are just the two solutions of V ¼ Vt. If one
keeps the shape of V fixed but raises the overall energy
scale Vþ, then ΔSHM ∼ 1=V2þ andΔSCdL ∼ 1=V3=2

þ , and the
minimization of the total tunneling action requires
ΔSCdL → 0 with ϕ0þ → ϕ0− → ϕB, the field value for
the top of the barrier. In that case, vacuum decay proceeds
via the Hawking-Moss instanton with rate

S ¼ SHM ¼ 24π2

κ2

�
1

Vþ
−

1

VB

�
ð5:2Þ

[where VB ≡ VðϕBÞ], as obtained from (2.1) when the CdL
interval shrinks to zero [5].7

Although the previous behavior is generic and will
happen for potentials of any shape, the particular way in
which the transition between CdL-mediated and HM-
mediated decay happens depends on the shape of the
potential barrier.
Consider first the case of a barrier with an inverse

quadratic top

V ¼ VB −
1

2
m2ϕ2 þ � � � ð5:3Þ

In the constant-Vt approximation, SðVtÞ can be calculated
(and minimized) analytically. One gets

SðVtÞ ¼
24π2

κ2

�
1

Vþ
−

1

Vt

�
þ 6

ffiffiffi
3

p
π3

mðκVtÞ3=2
ðVB − VtÞ: ð5:4Þ

Figure 2’s left plot shows this action (blue continuous
curves) as a function of Vt for different values of VB (the
end point of each curve corresponds to Vt ¼ VB). The
black dashed line marks the location of the minimum of
SðVtÞ, while the horizontal dashed lines give the value of
SHM for each case. As the scale of the potential VB
increases, the location of the minimum of SðVtÞ gets closer
to the top of the barrier VB, and the action tends to the
Hawking-Moss one. Above a certain critical value, the
minimum of SðVtÞ is at VB, and the CdL instanton has
disappeared, being replaced by the Hawking-Moss one.
While we vary VB, we keep Vþ fixed, and this is why the
action increases with VB.
The value of the critical VB calculated in the constant

Vt approximation is obtained as VBc ¼ 16m2=ð3κπ2Þ ≃
0.54m2=κ, which is of the right order of magnitude. The
exact value can be obtained easily by solving the EoM for
the exact VtðϕÞ in the limit of CdL disappearance, when Vt
gets very close to the top of the barrier. In that limit, a
quadratic expansion should be enough to study the
behavior of V and Vt. Writing V ¼ VB −m2ϕ2=2þ…
and Vt ¼ VB − δ −m2

tϕ
2=2þ… and imposing the boun-

dary condition V 0
t ¼ 3V 0=4 at the ϕ0 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2δ=ðm2 −m2

t Þ
p

for
which Vt ¼ V, one gets

m2
t ¼

3

4
m2: ð5:5Þ

Using this in the EoM for Vt, it follows that
V 00
tB þ κð3VB − 2VtBÞ ¼ 0, from which we get the critical-

ity condition

6For the possible cosmological signatures of a HM transition,
see, e.g., Ref. [14].

7For a derivation of this rate in the context of a stochastic
approach to tunneling, see Ref. [15].
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VBc ¼
3m2

4κ
: ð5:6Þ

For VB ≥ VBc, the Hawking-Moss instanton is the relevant
one to describe dS vacuum decay. In the analytical
examples we present in Sec. VII, it can be checked
explicitly how this critical relation is satisfied. We can
also interpret the critical relation (5.6) as a limit on how
large the curvature at the top should be for the CdL
instanton to exist:

m2 >
4

3
κVB: ð5:7Þ

In the Euclidean formalism, this bound is understood as a
necessary condition for theCdL compact bounce to fit inside
the horizon at ϕB. Substituting the expressions for V and Vt

above in Eq. (2.9) for _ϕ and integrating that equation,

Z
ξCdL

0

dξ ¼
Z

ϕ0

−ϕ0

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV − VtÞ

p

≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 −m2
t

p
Z

ϕ0

−ϕ0

dϕ=ϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϕ2=ϕ2

0

p ; ð5:8Þ

we find that the size of the CdL instanton is
ξCdL ¼ π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

t

p
¼ 2π=m. The horizon radius at the

top of the barrier, ϕB, is ξdS;B ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ðκVBÞ

p
, and imposing

ξCdL < ξdS;B gives (5.7).
We can then examine what would happen if the top of the

potential barrier is flatter, say, like an inverted quartic:

V ¼ VB −
1

4
λϕ4 þ � � � ð5:9Þ

Again, the constant-Vt approximation can give the rough
qualitative behavior. One gets

SðVtÞ ¼
24π2

κ2

�
1

Vþ
−

1

Vt

�
þ 16

ffiffiffi
3

p
π2Kð−1Þ

λ1=4ðκVtÞ3=2
ðVB − VtÞ3=4;

ð5:10Þ

where KðmÞ is the complete elliptic integral of the first
kind, with Kð−1Þ ≃ 1.3. Figure 2’s right plot shows SðVtÞ
for different values of VB (again keeping Vþ fixed). For low
values of VB, SðVtÞ has a minimum with action lower than
the HM action (corresponding to the CdL instanton decay)
and a maximum with higher action. The location of these
minima and maxima is given by the black dashed lines. As
VB increases, the minimum is lifted, until a critical value is
reached for which the minimum is degenerate with the HM
one. For VB higher than the critical value, the action is
minimized by the HM instanton. For VB higher than the
critical value, the minimum and maximum of SðVtÞ get
closer until they merge into a saddle point and disappear for
even higher VB.
Note that this case is qualitatively different from the

previous one with the quadratic barrier top for which
the CdL-mediated minimum merges with the HM one at
the critical value, while now they are still separate. When
the barrier top is flat, the CdL integral decreases more
slowly as VB increases, and at some point, it is advanta-
geous to switch to the HM instanton. The picture obtained
above from the simple constant-Vt approximation is con-
firmed by a numerical calculation of Vt.
Potentials with a flat-top barrier have been studied before

using the Euclidean approach [16–19], which emphasized
the potential obstruction to the existence of the CdL bounce
when condition (5.7) is violated, as well as possible
exceptions to that bound.8 Although one can also apply

FIG. 2. Tunneling action S (continuous blue lines) in the constant Vt approximation for V ¼ VB −m2ϕ2=2 (left) and V ¼
VB − λϕ4=4 (right) for different values of VB (VB corresponds to the Vt value of the right end of each curve), with the dashed black lines
tracking the extrema. The horizontal dashed lines give the corresponding action for HM transitions. We take κ ¼ 1, Vþ ¼ 0.1 (0.001)
for the left (right) plot, m2 ¼ 30, and λ ¼ 1.

8Some of these works also discuss the so-called oscillating
bounces, which cross the top of the barrier more than once. We do
not discuss them here (although theVt formalism can be applied to
them as well) as they do not seem to be relevant for vacuum decay.
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the Vt formalism to examine in more detail flat-top
potentials, we do not pursue this goal further. We tried
to obtain exactly solvable examples of this type of flat-top
potentials to include in Sec. VII, but we failed to find any.

VI. EXACTLY SOLVABLE MODELS:
GETTING V FROM Vt

The tunneling potential formulation can be quite useful
to generate potentials with exactly solvable false vacuum
decay.9 The idea is to postulate a simple enough Vt and
solve its EoM for V, which is a much simpler task that
solving for Vt given V. Without gravity, the integration for
V can be done formally, and explicitly for certain Vt’s. This
was done in Ref. [4] to generate some exactly solvable
potentials. In the case with gravity, the formal integration
for V has not been done, but Ref. [5] presented one exactly
solvable case for a particular choice of Vt, leading to
analytic examples of Minkowski or AdS decays. In this
section, we perform the formal integration for V in the
presence of gravity, and in the next section, we will make
use of it to generate a number of examples for dS decays.
Given the expression for D2 in (2.2), we can formally

write VðϕÞ in terms of VtðϕÞ and DðϕÞ as

VðϕÞ ¼ Vt þ
D2 − V 02

t

6κVt
: ð6:1Þ

When D≡ 0, the action S½Vt� becomes infinite, and the
decay is forbidden by gravity. In that case the potential V
reproduces the generic form of a critical potential [9]. In
that sense, D measures deviations of V from criticality.
Using (6.1), the equation of motion (2.4), given in terms

of Vt and V, can be rewritten in terms ofD and Vt and takes
the form

V 00
t þ κVt þ

D2 − V 02
t

2Vt
− V 0

t
D0

D
¼ 0: ð6:2Þ

This differential equation can be integrated formally to
obtain D2 in terms of Vt as

D2ðϕÞ ¼ V 02
t

1 − VtF
; ð6:3Þ

where

FðϕÞ≡ 2κ

EðϕÞ
Z

ϕ

ϕ0

Eðϕ̃Þ
V 0
tðϕ̃Þ

dϕ̃;

EðϕÞ≡ exp

�
2κ

Z
ϕ

ϕ0

Vtðϕ̃Þ
V 0
tðϕ̃Þ

dϕ̃

�
ð6:4Þ

and ϕ0 is some reference field value, taken here to be one of
the two contact points between V and Vt, so that
D2ðϕ0Þ ¼ V 02

t ðϕ0Þ.
The procedure to find an analytical V under control is

then to find a Vt simple enough that the integrals E and F
can be performed analytically. Once D2 is found, it can be
plugged in (6.1) to obtain V as10

VðϕÞ ¼ Vt þ
V 02
t

6κð1=F − VtÞ
ð6:5Þ

The function F plays a key role in what follows, and it is
instructive to rewrite (6.2) as a differential equation for F,
which takes the very simple form

F0V0
t ¼ 2κð1 − FVtÞ: ð6:6Þ

As is evident from (6.1) and (6.3), the zeros of F determine
the field values at which Vt touches V. In (6.5), we see that
at such points 1=F diverges and the second term drops,
giving precisely V ¼ Vt.
The previous results are general; they apply to decays

from Minkowski, AdS, or dS vacua, and the formalism can
be used to obtain analytical potentials in all those cases. In
what follows, we focus on dS decays. To get sensible
results, Vt must satisfy the proper boundary conditions and
constraints. In the case of dS decays, the field range of the
CdL bounce is ðϕ0þ;ϕ0−Þ, with ϕ0� being different from
the minima of the potential. The values of ϕ0� will
correspond to the zeros of F:

Fðϕ0�Þ ¼ 0: ð6:7Þ

This condition is crucial, as it fixes the value of ϕ0�. We
show explicit examples of this in the next section.
In the dS case, Vt is not monotonic, but rather it

should have a maximum at some intermediate field
value ϕT (which corresponds to the maximum value of the
metric function ρ in the Euclidean formulation; see Ref. [5]),
and at this maximum, the top of Vt should be an inverted
quadratic: from the EoM (2.4), it follows that

V 00
tT ¼ −κð3VT − 2VtTÞ < 0: ð6:8Þ

9Exactly solvable models with gravity included have been
obtained using other methods before; see Refs. [20–22] for an
incomplete list.

10Without gravity, this gives VðϕÞ ¼ VtðϕÞþ
1
3
V 0
tðϕÞ2

R ϕ
ϕ0
dϕ̄=V 0

tðϕ̄Þ, simpler than the expression used in
Ref. [4].
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(The subindex T on a function indicates that it is evaluated at
ϕT .) Equation (6.5) shows that V 0

t ¼ 0 would naively lead to
VT ≡ VðϕTÞ ¼ VtT ≡ VtðϕTÞ, while the contact points
between V and Vt should be just ϕ0�. The condition VT ≠
VtT requires

FðϕTÞVtðϕTÞ ¼ 1; ð6:9Þ
so the ratio in (6.5) gives a finite value. This means 1 − FVt

goes to zero at ϕT as V 02
t does. From (6.6), we then learn that

F0 also vanishes atϕT . Using (6.6), (6.9), and l’Hôpital’s rule,
we get

VT ¼ VtT þ V 00
tT

3VtTF00
T
: ð6:10Þ

Moreover, Eq. (6.3) shows that FVt < 1 and therefore (6.6)
forces F0 to have the same sign as V 0

t; F is also a non-
monotonic function with a maximum, andV 00

tT=F
00
T > 0, with

F00
T < 0 and V 00

tT < 0.
In the next section, we put this formalism to work and

obtain several examples of analytical potentials describing
dS to dS transitions (as well as one transition from dS to
AdS). We relegate to the Appendix a simple case of
Minkowski false vacuum decay, that generalizes the scale
invariant potential VðϕÞ ¼ −λϕ4=4 to the case with gravity.

VII. EXAMPLES OF SOLVABLE dS DECAYS

To use the formalism described in the previous section,
we can postulate a simple Vt (with a maximum at some
point ϕT) that allows one to integrate explicitly (6.6) for F.
The result will depend on an integration constant C that is
fixed in the following way. ATaylor expansion of F around
ϕT takes the generic form

FðϕTþϵÞ¼ 1

VtT
þ g2

κ−κc
ϵ2þOðϵ3ÞþðC−CκÞOðϵ2κ=κcÞ;

ð7:1Þ

with g2; κc > 0; Cκ is some model dependent constant; and

κc ¼ −V 00
tT=VtT: ð7:2Þ

As explained in the discussion at the end of the previous
section, around Eq. (6.10), we need F00ðϕTÞ < 0 and finite
to have Vt below V at ϕT . From (7.1), we immediately see
that to satisfy that requirement we need to respect the limit
κ < κc (if this is violated, the decay occurs via the HM
instanton rather than the CdL bounce) and fix the integra-
tion constant as C ¼ Cκ.
Although most of the examples we present below follow

this method, there is an alternative way to generate solvable
potentials: postulate a simple enough F, with two zeros and
a maximum between them, and integrate Eq. (6.6) for Vt.
The example in Sec. VII D illustrates this route. Besides the

examples we present below, we have found many others,
and the interested reader should be able to produce new
ones easily.

A. VtðϕÞ=A − 1 + cosϕ

For simplicity, in this Vt (and some other examples
below), we suppress mass scales (e.g., in the normalization
of the field, the prefactor of the cosine, etc.). These scales
can be recovered trivially if needed. As Vt is symmetric
under ϕ → −ϕ, the potential V enjoys the same symmetry.
The CdL field rangewill simply be ðϕ0þ;ϕ0−Þ ¼ ð−ϕ0;ϕ0Þ
with 0 < ϕ0 < π, and the maximum of Vt occurs
at ϕT ¼ 0.
Equation (6.6) can be integrated analytically, and F can

be expressed in terms of a hypergeometric function as

FðϕÞ ¼ ½cosðϕ=2Þ�4κ
A 2F1½−2κ;−Aκ; 1 − Aκ;−tan2ðϕ=2Þ�

þ C
ðsin2ϕÞκ

½tan2ðϕ=2Þ�ð1−AÞκ ; ð7:3Þ

where C is an integration constant. Expanding FðϕÞ around
ϕT ¼ 0, we have

FðϵÞ ¼ 1

A
þ κ

2AðAκ − 1Þ ϵ
2 þOðϵ3Þ

þ Cϵ2Aκ½4ð1−AÞκ þOðϵ2Þ�; ð7:4Þ

which conforms to the generic expression (7.1). We
immediately conclude that C ¼ 0 and the condition to
have a CdL bounce is κ < κc ¼ 1=A. If that bound is not
satisfied, the transition occurs via the Hawking-Moss
instanton. Having fixed F, the potential is then obtained
by plugging F above on (6.5), and ϕ0 is obtained
from Fðϕ0Þ ¼ 0.
For numerics, let us examine first the case with fixed A

(we take A ¼ 2), and let κ vary. Figure 3 shows ϕ0 as a
function of κ and different V’s for several choices of κ, as
indicated. The numerical analysis confirms the critical
value κc ¼ 1=A ¼ 1=2, at which the CdL range shrinks
to zero (ϕ0 → 0). Above that critical value, the transition
occurs via the Hawking-Moss instanton.
It is also instructive to fix κ ¼ 1=4 and let A vary.

Figure 4 shows ϕ0 as a function of A and pairs of V and Vt
for several choices of A, as indicated. We see that, as
expected, there is a critical value for A, Ac ¼ 1=κ ¼ 4, at
which the CdL range shrinks to zero (ϕ0 → 0), in accor-
dance with the bound κ < 1=A derived above. In Fig. 5, we
show, for the same choice of parameters, the actions for
decay via the HM transition or via the CdL bounce (fixing
Vþ ¼ 0.01 for concreteness), confirming that the latter
action is smaller. This is not guaranteed (see the discussion
in Sec. V) and must be checked in each case. The rest of the
examples we present do pass this test.
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When a potential V is obtained from a postulated Vt, as
done in this section, in principle, V is defined only in the
CdL interval ðϕ0þ;ϕ0−Þ. Outside that interval, one is free to
extend V almost arbitrarily, although the continuity of V
and V 0 at ϕ0� are natural conditions to impose. In addition,

the location of the potential minima should be compatible
with the decay considered. For instance, a Vt with a
maximum describes dS decay, and therefore the false
vacuum (in the region of V outside the CdL interval)
should have Vþ > 0.

FIG. 4. For the example in Sec. VII Awith κ ¼ 1=4, varying A. Left plot: limit, ϕ0, of the CdL interval. Right plot: V and Vt pairs in
the CdL range for the indicated values of A.

FIG. 3. For the example in Sec. VII A with A ¼ 2, varying κ. Left plot: limit, ϕ0, of the CdL interval. Right plot: for the fixed Vt,
several V’s in the CdL range for the indicated values of κ.

FIG. 5. For the example in Sec. VII A. Right plot: actions for decay via HM transition or via CdL bounce as a function of A, with
κ ¼ 1=4. Left plot: potential and tunneling potential, extended beyond the CdL range, with A ¼ 3 and κ ¼ 1=4. The extension of Vt is
labeled VtL and shown by dashed lines.
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In some cases, the function Vt that has been used to
construct V is defined and well behaved outside the CdL
interval and can be used to extend also V in that
field range. Figure 5 illustrates this, for A ¼ 3 and
κ ¼ 1=4, with V and Vt both simply extended beyond
the CdL range. The extension of Vt, labeled VtL in the
figure can be simply ignored or, if not, needs to be
reinterpreted, as it breaks the crucial relation
Vt ¼ V − _ϕ2=2, which implies Vt ≤ V. This extension
is similar to the Lorentzian continuation of Euclidean CdL
geometries performed in Ref. [20] to extend the exact
solutions to describe the aftermath of bubble nucleation.
Exploring the precise meaning of this extension for Vt
would be interesting but goes beyond the goals of the
present paper.

B. VtðϕÞ= e−ϕ2

For this Vt, integrating (6.6), we get

FðϕÞ≡ κ

2
ð−ϕ2Þκ=2½Γð−κ=2;−ϕ2Þ − Γð−κ=2Þ� þ Cðϕ2Þκ=2;

ð7:5Þ

where Γða; zÞ is the incomplete gamma function.
Expanding FðϕÞ around ϕT ¼ 0, one gets

FðϵÞ ¼ 2þ κ

κ − 2
ϵ2 þOðϵ3Þ þ Cðϵ2Þκ=2; ð7:6Þ

from which we read κc ¼ 2, C ¼ 0, in accordance with the
general discussion around (7.1). The potential is then
obtained by plugging F above on (6.5), and ϕ0 is obtained
from Fðϕ0Þ ¼ 0.
Figure 6 shows ϕ0 as a function of κ and different V’s for

the same Vt for several choices of κ, as indicated. We see
how the CdL range shrinks to zero (ϕ0 → 0) as κ → κc.
Above that critical value, the transition occurs via the
Hawking-Moss instanton.

C. VtðϕÞ = e−ϕ=cosh2ϕ

In this simple example, Vt and V are not symmetric
under ϕ − ϕT → ϕT − ϕ. For these cases, the critical
equation FðϕÞ ¼ 0 has two nonsymmetric zeros, ϕ0�, that
give the extremes of the CdL interval. For the example
above, we have11

FðϕÞ ¼ κffiffiffi
3

p ð9 − 2κÞð9 − 4κ2Þ

�
1

6
ffiffiffi
z

p ½9ð111 − 30z − z2Þ − 144κð1þ zÞ þ 4κ2ð3þ zÞ2�

þ 48ð1 − zÞ4κ=3z−κð3 − 4κÞ½Bðz; κ − 1=2;−4κ=3Þ − C�
�
; ð7:7Þ

where z≡ 3e2ϕ and Bðz; a; bÞ is the incomplete beta
function. Expanding FðϕÞ around the maximum of Vt,
at ϕT ¼ − logð3Þ=2, we get

FðϕT þ ϵÞ ¼ 4

3
ffiffiffi
3

p þ 2κϵ2ffiffiffi
3

p ð2κ − 3Þ
þOðϵ3Þ þOðϵ4κ=3Þ½C − Cκ þOðϵÞ�; ð7:8Þ

with

Cκ ¼ −
π cscð4πκ=3ÞΓðκ − 1=2Þ

Γð−1=2 − κ=3ÞΓð1þ 4κ=3Þ : ð7:9Þ

From this expansion, we obtain κc ¼ 3=2 and C ¼ Cκ.

FIG. 6. For the example in Sec. VII B, varying κ. Left plot: limit, ϕ0, of the CdL interval. Right plot: for the fixed Vt, several V’s in the
CdL range for the indicated values of κ.

11For the particular case κ ¼ 3=4, FðϕÞ can be expressed in
terms of elementary functions, although it is not particularly
simple.
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The potential is obtained from (6.5), and the extremes of
the CdL interval come from solving Fðϕ0�Þ ¼ 0. They are
shown in Fig. 7, left plot, with ϕ0þ ¼ ϕ0− for κ ¼ 3=2. The
right plot gives Vt and V for several values of κ as
indicated, showing again how for κ → κc ¼ 3=2 the CdL
interval disappears.

D. VtðϕÞ= 2ðcos θ + cosϕÞ=sin2θ

As mentioned, we can also get simple examples by
postulating a simple F, from which one gets Vt and
then V. For instance, if we take F ¼ aVt þ b and solve
for Vt, we end up with the simplest example we have found.
We get

VtðϕÞ ¼
1

4a
½−2bþ ð1þ 4aþ b2Þ cosð

ffiffiffiffiffi
2κ

p
ϕþ CÞ

þ ið1 − 4a − b2Þ sinð
ffiffiffiffiffi
2κ

p
ϕþ CÞ�; ð7:10Þ

where C is an integration constant. Setting κ ¼ 1=2, C ¼ 0,
and b ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4a

p
(to have a real Vt), we end up with

VtðϕÞ ¼
2

sin2 θ
ðcos θ þ cosϕÞ; ð7:11Þ

where we have introduced the angular parameter θ, given
by 4a ¼ sin2 θ, with 0 ≤ θ ≤ π=2. From this, we obtain the
axionlike potential

VðϕÞ ¼ 4

3 sin2 θ
ðcos θ þ 2 cosϕÞ; ð7:12Þ

and the CdL range is simply the interval ð−θ; θÞ, with
Vð�θÞ ¼ Vtð�θÞ ¼ 4 cos θ= sin2 θ at the contact points of
V and Vt. The CdL part of the action can be calculated
exactly as

ΔSCdL ¼ 24π2 sin θðtan θ − θÞ: ð7:13Þ

The limit θ → 0 corresponds to the CdL instanton dis-
appearance [which in this particular example only happens

for VB ¼ Vð0Þ → ∞] with ΔSCdL → 0. The limit θ → π=2
corresponds instead to a forbidden Minkowski to
Minkowski transition and has ΔSCdL → ∞.
It is instructive to derive the field and metric Euclidean

profiles, ϕðξÞ and ρðξÞ for this simple example. By
integrating dϕ=dξ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV − VtÞ

p
, see (2.9), we get

ϕðξÞ ¼ −2am
�

2ξ − ξe
2

ffiffiffi
6

p
cosðθ=2Þ

				 csc2ðθ=2Þ
�
; ð7:14Þ

where amðujmÞ is the Jacobi amplitude function and

ξe ¼
ffiffiffi
6

p
sin θKðsin2ðθ=2ÞÞ; ð7:15Þ

with KðmÞ the complete elliptic function of the first kind.
Themetric function is obtained from ρ ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV − VtÞ

p
=D,

see (2.10), as

ρðξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½cosϕðξÞ − cos θ�

p
: ð7:16Þ

The finite interval over which the CdL instanton is defined is
ξ ∈ ð0; ξeÞ, with ρ being zero at both extremes. Figure 8
shows the profiles of both ϕðξÞ and ρðξÞ for two choices of
the θ parameter. This example nicely illustrates the com-
plementarity between the Euclidean and Vt formalisms,
showing how a complicated description in one case can
become elementary in the other.

E. VtðϕÞ=Aeϕ − eaϕ

This example, with A > 0 and a > 1, is interesting as it
can feature a dS vacuum decaying to AdS. This Vt
peaks at ϕT ¼ logðA=aÞ=ða − 1Þ and is an asymmetric
example with two different zeros ϕ0�. The function F is
obtained as

FðϕÞ ¼ r
qða − 1Þ

��
a
A

�
q
�
e−ϕ −

A
a
e−aϕ

�
r
C

þ e−aϕ2F1

�
1; p; 1þ q;

A
a
e−ða−1Þϕ

��
; ð7:17Þ

FIG. 7. For the example in Sec. VII C, varying κ. Left plot: limits, ϕ0�, of the CdL interval. Right plot: for the fixed Vt, several V’s in
the CdL range for the indicated values of κ.
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where r ¼ 2κ=a, p ¼ ða − 2κÞ=ða − 1Þ, q ¼ 1þ p=a,
while 2F1ða; b; c; zÞ is the hypergeometric function, and
C is an integration constant. The expansion of F around ϕT
reads

FðϕT þ ϵÞ ¼ 1

a − 1

�
a
A

�
a=ða−1Þ�

1þ aκϵ2

2ðκ − aÞ þOðϵ3Þ
�

þOðϵ2κ=aÞðC − CκÞ; ð7:18Þ

with

Cκ ¼
π cscðπrÞ
Bðp; 1þ rÞ ; ð7:19Þ

where Bða; bÞ is the Euler beta function. We read off from
this expansion κc ¼ a and C ¼ Cκ, as usual. As
in all previous cases, the potential is obtained from
(6.5), and the extremes of the CdL interval come from
solving Fðϕ0�Þ ¼ 0.
For the numerical examples, we take A ¼ 1=2, a ¼ 2

and leave κ free. Figure 9’s left plot shows ϕ0� as well as
the value ϕB for the barrier top of V as a function of κ.
For κ < 2=3, V grows without reaching a maximum. For
κ < 3=2, Vt never reaches V, while for κ ¼ 3=2, V reaches
Vt only asymptotically with ϕ0− → ∞, corresponding to a

CdL field range of infinite extension. Finally, for
κ > κc ¼ 2, there is no CdL instanton. We are therefore
interested in principle in the interval ð3=2; 2Þ for κ.
The tunneling potential, Vt, and several potentials, V, for

different choices of κ are plotted in Fig. 9, right plot. We
confirm that, as κ → κc ¼ 2, the CdL interval shrinks to
zero. For κ ≲ 1.81, the transition is from dS to AdS (the left
plot also marks by a dashed line this special value). For
κ ¼ 3=2, the intersection point ϕ0− of V and Vt goes to ∞.
This case is discussed below.
Figure 10 shows the ratio between the action for HM

decay and the action for decay via the CdL instanton, as a
function of κ. For concreteness, we have assumed that the
false vacuum ϕþ sits at a potential height Vþ ¼ 0.03 (this
just affects the overall value of the actions but not which
one dominates). The plot shows that decay occurs via a
CdL instanton below κ ¼ 3=2, while for κ > 3=2, the HM
instanton has lower action and drives the decay. Notice also
that the CdL part of the action remains finite also below
κ ¼ 3=2 even though the CdL range is infinite in that case
(and, moreover, Vt never reaches V for κ < 3=2). This does
not seem to be physically accessible for decay, but the
action thus obtained might be relevant to bound the true
decay action in that range of κ (similarly to what happens
when a CdL bounce only exists at asymptotic infinity). The
situation might be worth looking at in more detail but goes

FIG. 8. For the example in Sec. VII D and the indicated values of θ. Left plot: field profile ϕðξÞ of the Euclidean bounce. Right plot:
profile of the Euclidean metric function ρðξÞ.

FIG. 9. For the example in Sec. VII E, varying κ. Left plot: limits, ϕ0�, of the CdL interval and ϕB, location of the barrier maximum of
V. Right plot: for the fixed Vt, several V’s in the CdL range for the indicated values of κ.
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beyond the goals of this paper. We can also examine
dS½Vt�=dκ, discussed in Sec. IV. Performing the integral
(4.2) numerically, we get the behavior shown in Fig. 10,
right plot, with both signs of dS½Vt�=dκ being possible
although dS=dκ > 0 occurs only in the suspicious case
with κ < 3=2.
The special case κ ¼ 3=2 (still with A ¼ 1=2 and a ¼ 2)

is particularly interesting. For that critical value of κ, the
potential simplifies dramatically to

VðϕÞ ¼ 4

9
eϕ −

2

3
e2ϕ: ð7:20Þ

Although the CdL field range is infinite,
ðϕ0þ;ϕ0−Þ ¼ ð− log 6;∞Þ, the CdL part of the action
turns out to be finite and can be computed exactly:
ΔSCdL ¼ 48π2. This leads to a total action S¼ΔSHMþ
ΔSCdL¼ð24π2=κ2Þð1=Vþ−1=V0þÞþ48π2. Remarkably,
this is the same as the HM action SHM ¼ ð24π2=κ2Þ
ð1=Vþ − 1=VBÞ. Therefore, in this case, both instantons
coexist and have the same action. Notice that this is very
different from previous cases in which the HM case is
reached as a limit in which the CdL instanton disappears. It
is also interesting that, in the current case, one has
−3V 00

B ¼ 4κVB ¼ 4=9, saturating the usual bound (5.7)
for the onset of HM.
In this simple example, one can also obtain analytic

expressions for the Euclidean bounce and metric profiles,
by integrating (2.9) and (2.10), as

ϕðξÞ ¼ log
ξ2e

6ð2ξe − ξÞξ ; ρðξÞ ¼ ξðξe − ξÞð2ξe − ξÞ
ξ2e

;

ð7:21Þ

with ξe ¼ 6
ffiffiffi
6

p
. The instanton is compact with the ξ

interval being ð0; ξeÞ. In this case, ξe < ξdS;B≡
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ðκVBÞ

p
, so that the CdL bounce fits comfortably

inside the ϕB horizon.

VIII. CONCLUSIONS

In this work, we have resorted to the tunneling potential
(Vt) formulation of vacuum decay in quantum field theory,
including gravitational corrections [5], to obtain exactly
solvable potentials in which to study such decays. The idea
is to find a simple Vt function (or the auxiliary function F
introduced in Sec. VI) whose differential equation of
motion can be integrated to get V. The method can be
used to study decays from any type of false vacua,
Minkowski, anti-de Sitter, or de Sitter, although we have
focused on the latter, which is especially interesting and
was lacking in Ref. [5]. Section VII contains a selection of
several examples of such dS decays, including some
strikingly simple ones, like the one in Sec. VII D. The
method is quite powerful, and many other examples can be
found. Previous solvable examples discussed in the liter-
ature include some simple cases, like a conformally
coupled scalar with a quartic potential with a particular
value of the quartic coupling and an AdS false vacuum [22]
or more general methods based on postulating the
Euclidean metric function ρðξÞ, either by deforming the
one of Hawking-Moss instantons [21] or by imposing
necessary constraints on the general form of ρðξÞ [20].
Compared with this last more general method, the one we
follow has some built-in advantages: for instance, the null-
energy condition _ρ2 − ρρ̈ − 1 ≥ 0, imposed by Ref. [20]
(and identified in that reference as the most challenging
condition to find a physically meaningful ρ), is automati-
cally satisfied by the Vt formulation [as one can check by
substituting in the condition above the relations in (2.10)].
As wewere particularly interested in finding examples of

solvable dS decays, we first examined how the Vt formu-
lation describes such decays. In particular, we showed how
these transitions are composed of two different pieces: a
Hawking-Moss part (with Vt ¼ V) and a Coleman-de
Luccia part (with Vt < V). These two pieces cannot be
minimized simultaneously and their relative weights result
from a balance between competing minimization demands.
The illuminating discussion of Ref. [13] described a similar
split between a thermal excitation part (corresponding to

FIG. 10. For the example in Sec. VII E, ratio of action for decay via Hawking-Moss instanton (SHM) to action via Coleman-De Luccia
bounce (S) as a function of κ (left plot). For κ > 2, only the HM transition is possible. Right plot: slope dS=dκ for the action via the CdL
bounce, showing that both signs are possible.
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our HM part) and a tunneling CdL part (corresponding to
our Vt < V part). Our formalism also allows one to derive
in a straightforward way the simple relation between the
actions for two-way transitions between dS vacua and
how, as the energy scale of the potential is raised, the dS
decay is dominated by HM instantons. The method also
allows one to understand the influence of the shape of the
barrier top on this switch from CdL-dominated to HM-
dominated decays. For potentials with a quadratic barrier
top, we derived in a simple manner the critical value of V 00
at the top of the barrier below which only the HM persists,
showing also how the CdL instanton shrinks away and
disappears at that critical value. For potentials with a
flatter top, the switch from the CdL-dominated decay to
the HM-dominated one is qualitatively different, with the
CdL instanton coexisting with the HM one, although with
higher action.
In addition, the general expression for the tunneling

action integral allows one to obtain several scaling proper-
ties of the action for dS decays:
(1) Increasing all potential scales by an overall factor

(thus increasing the height of the false vacuum but
also that of the barrier and of the true vacuum by the
same amount) lowers the action, making the poten-
tial more unstable.

(2) Increasing gravitational effects (e.g., by increasing
all mass scales towardmP) lowers the action of dS to
dS transitions but can have the opposite effect for dS
to AdS transitions, depending on the potential shape
and the relative balance of dS and AdS parts of the
CdL range.

(3) As one would expect, wider barriers make the decay
action larger, making the vacuum more stable.

(4) There is a limit to the effects in (2) and (3) above,
given by the relations in (4.7) which give lower and
upper bounds on the action after the indicated
rescalings.
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APPENDIX: CONFORMAL INVARIANT
EXAMPLE

Without gravity, the scale invariant potential VðϕÞ ¼
−λϕ4=4 has a false vacuum at ϕ ¼ 0 that can decay via
Fubini-Lipatov [23] instanton configurations

ϕðrÞ ¼ ϕ0

1þ λϕ2
0r

2=8
; ðA1Þ

where ϕ0 ¼ ϕð0Þ is arbitrary, all having the same tunneling
action S ¼ 8π2=ð3λÞ. In the Vt formulation, this family
of instantons corresponds to the family of tunneling
potentials

VtðϕÞ ¼ −
1

4
λϕ3ϕ0: ðA2Þ

In the presence of gravity, the previous family of
instanton field configurations still describes the decay of
the false vacuum, provided the Lagrangian includes a
nonminimal coupling of the field to the Ricci scalar,
δL ¼ GðϕÞR, where

GðϕÞ≡ −
1

2κ
þ 1

2
ξϕ2; ðA3Þ

with the conformal value ξ ¼ 1=6. In the Vt formulation,
the tunneling potentials now are

VtðϕÞ ¼ −
1

4
λϕ3

�
ϕ0 − κϕ3=6
1 − κϕ2=6

�
: ðA4Þ

The previous discussion is done in the so-called Jordan
frame, and it is interesting to see how the previous potential
and Vt look in the Einstein frame, after removing the
nonminimal coupling by a Weyl rescaling of the metric

gμν →
GE

GðϕÞ g
E
μν; ðA5Þ

where GE ¼ Gð0Þ and the index E indicates Einstein frame
quantities. This transformation changes the potentials and
kinetic term of the scalar field as

VE¼
�
GE

G

�
2

V; VtE¼
�
GE

G

�
2

Vt;
1

2
_ϕ2
E¼

GE

G
1

2
_ϕ2:

ðA6Þ

The latter expression can be integrated exactly, leading to

ϕ ¼
ffiffiffiffiffiffiffiffi
6=κ

p
tanh ð

ffiffiffiffiffiffiffiffi
κ=6

p
ϕEÞ: ðA7Þ

Using this relation and the expressions above, one ends up
with

VEðϕEÞ ¼ −
9λ

κ2
sinh4ð

ffiffiffiffiffiffiffiffi
κ=6

p
ϕEÞ;

VtEðϕEÞ ¼ VEðϕEÞ −
9λ2

8κ2
sinh3ð2

ffiffiffiffiffiffiffiffi
κ=6

p
ϕEÞ

× ½tanh ð
ffiffiffiffiffiffiffiffi
κ=6

p
ϕE0Þ − tanh ð

ffiffiffiffiffiffiffiffi
κ=6

p
ϕEÞ�; ðA8Þ

where ϕE0 is arbitrary and is related to ϕ0 in the Jordan
frame by (A7).
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