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We study notions of complexity for link complement states in Chern-Simons theory with compact gauge
group G. Such states are obtained by the Euclidean path integral on the complement of n-component links
inside a 3-manifold M3. For the Abelian theory at level k we find that a natural set of fundamental gates
exists, and one can identify the complexity as differences of linking numbers modulo k. Such linking

numbers can be viewed as coordinates which embeds all link complement states into Z⊗nðn−1Þ=2
k , and the

complexity is identified as the distance with respect to a particular norm. For non-Abelian Chern-Simons
theories, the situation is much more complicated. We focus here on torus link states and show that the
problem can be reduced to defining complexity for a single knot complement state. We suggest a systematic
way to choose a set of minimal universal generators for single knot complement states and then evaluate the
complexity using such generators. A detailed illustration is shown for SUð2Þk Chern-Simons theory, and
the results can be extended to a general compact gauge group.
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I. INTRODUCTION

Quantum information concepts play an important role
in high energy and gravitational research. For example, in
the context of holographic duality there are well-known
calculational tools for entanglement entropy via the Ryu-
Takayanagi formula and its extensions [1–3]. Other
quantum information concepts such as complexity have
also been conjectured to have dual gravitational inter-
pretations[4–10], although this is much less understood.
Generally, the problem is that notions such as complexity
are difficult to formulate in quantum systems with many
degrees of freedom, such as quantum field theories or
gravity. It is thus of interest to explore these concepts in
simple field theories (see for example [11] for early
attempts).
In the context of quantum circuits, circuit (or computa-

tional) complexity is defined as follows: given a reference
state jϕRi and a set of fundamental gates, i.e., a set of
unitary operators fÛIg, the complexity of a target state jϕTi
is the minimum number N of fundamental gates needed to
map jϕRi to jϕTi,

jϕTi ¼ Û i1 Û i2 � � � Û iN jϕRi:

Clearly, there are many features of this description that imply
that the notion of circuit complexity may be ambiguous. For
example, the number and nature of the fundamental gates
presumably matters. In simple qubit circuits, one often
requires the gates to be “small,” involving only one or
two qubits. As the quantum theory becomes more compli-
cated (and generic quantum field theories are indeed
complicated), these choices become more involved.
In some situations, complexity may be addressed

through Nielsen’s geometric approach [12], which identi-
fies the complexity as the length of a geodesic on the space
of operators spanned by such generators. In this approach,
for given reference state jϕRi and target state jϕTi, one tries
to find a unitary operator Û such that

ÛjϕRi ¼ jϕTi: ð1Þ

The operator Û satisfying the above equation is not unique.
One then expresses such operators in path integral form:

Û ¼ P exp

�
i
Z

1

0

ds
X
I

YIðsÞÔI

�
; ð2Þ

where fÔIg are a set of fundamental generators, and
fYIðsÞg describes a path from the identity operator to Û
in the space of operators. The next step is to define a costD
for each possible path

D ¼
Z

1

0

dsF

�
YIðsÞ;

d
ds

YIðsÞ
�
; ð3Þ
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where F is some local cost function. The cost of each path
can be interpreted as length in a Finsler geometry. The
complexity of Û is defined as the minimal cost of all
possible paths satisfying (2)

CÛ ≡minD:

The geometric complexity of a target state is defined as the
minimal complexity among all possible Û satisfying (1)

CjϕT i ≡min CÛ:

In [12] it was shown that such a definition can be related to
circuit complexity up to a polynomial polyðnÞ in n, where n
is the number of fundamental generators.1 This approach
gives a geometrical interpretation to computational com-
plexity. The polyðnÞ is some nontrivial polynomial factor
depending on the set of generators, cost function, and the
target state. In most applications, such a factor is ignored
and geometric complexity is taken as an estimation of
circuit complexity. On the other hand, since the definition
of circuit complexity in quantum field theory is unclear,
geometric complexity may be viewed as a definition of
complexity. This approach associates complexity to a
geometric object and can be potentially extended to
continuous state space. However, the form of a cost
function F is still ambiguous, except in some models for
which a natural candidate appears [13,14]. Some usual
choices are the one-norm, i.e.,

F1 ≡
X
I

���� dYI

ds

���� ð4Þ

or two-norm

F2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
I

�
dYI

ds

�
2

s
: ð5Þ

For example, [11] considered Gaussian states in free field
theory, which can be generated by a finite set of generators.
They test κ norms for κ ∈ Rþ as cost functions and
conclude that complexity defined by κ ¼ 1 has the cutoff
dependence most similar to wormhole volume [6].
There are, on the other hand, different proposals to define

complexity in quantum field theories which do not rely on
geometric methods. For example, the so-called “path-
integral complexity” is defined for conformal field theory
by minimizing certain functionals [15,16]. This approach
also shows similar cutoff dependence structure to the
volume or action [16],2 and a recent study [17] suggests

that this path-integral complexity is related to geometric
complexity in some models [13,14].
In this paper, we study the complexity in the context of

Chern-Simons theory. Explicitly, we are interested in
Chern-Simons theory for compact gauge group G with
level k. We consider these theories on 3-manifolds MLn ,
which are link complements of n-component links in S3.
Such manifolds have disconnected boundaries, which we
take to be n linked tori. The Euclidean path integral defines
states in the tensor product of Hilbert space associated to
each torus. These states provide a good stage to study
complexity for two reasons. First, as a topological field
theory, such Chern-Simons theories have a Hilbert space of
finite dimension. Furthermore, since the objects we are
interested in are topological invariants, the complexity is
reflected in topological properties, encoded in the colored
Jones polynomials.
As we will see, there is a natural way to define the

fundamental gates for Uð1Þk Chern-Simons theory so
the complexity of the link complement states is well defined.
In this case the complexity is directly connected to the Gauss
linking numbers between components of the link Ln. This
observation provides the first example that topological
properties can manifest in complexity. Then we move on
to non-Abelian Chern-Simons theory, in which defining
complexity is considerably more complicated. To attack the
problem, we first focus on torus link states and use the fact
that such states always have (at least in a certain framing)
Greenberger–Horne–Zeilinger (GHZ)-like structure [18].
This property allows us to reduce the problem to defining
complexity for a single knot state. We choose a minimal set
of fundamental generators by physical considerations, and
then show that by using such generators a systematic
algorithm to calculate the computational complexity can
be constructed. Our work provides a different way to define
complexity for link complement states from [19], in which
the authors defined “topological complexity” as the minimal
number of topological operations, such as modular trans-
formations, and subsequently suggested that topological
complexity provides an upper bound for circuit complexity.
The rest of this paper is organized as follows: In Sec. II

we review the properties of link complement states in
Chern-Simons theory. We then discuss the framing ambi-
guity in Sec. II A. In Sec. III Awe study the complexity for
Uð1Þk Chern-Simons theory and show that a natural
definition of fundamental gates and complexity is available.
In Sec. III B 1 we turn to discuss torus link states for non-
Abelian Chern-Simons theory. We review the result that
such states have GHZ-like structure and show that by
introducing controlled-NOT (CNOT) operators the prob-
lem is reduced to defining complexity of a single knot state.
In Sec. III B 2 we investigate how to define a set of minimal
fundamental generators for a single knot by some physical
considerations. In Sec. III B 3 and Sec. III B 4 we compute
the complexity as the minimal effort needed to prepare the

1In Nielsen’s original paper [12], n was the number of qubits.
2However, the coefficients do not match in general.

ROBERT G. LEIGH and PIN-CHUN PAI PHYS. REV. D 104, 065005 (2021)

065005-2



target state using such fundamental generators. We then
briefly discuss how these constructions can be extended to
more general states by releasing the constraint of small
generators in Sec. III B 5. In Sec. III C detailed computa-
tions of complexity are illustrated for the simplest class of
torus links. Finally, summary and discussion are provided
in Sec. IV.

II. LINK COMPLEMENT STATES IN CHERN-
SIMONS THEORY

Consider Chern-Simons theory on a closed 3-manifold
M, which has the action

SCS½A� ¼
k
4π

Z
M
Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
;

where A is a connection for a principal bundle on M with
structure group G, and k is the (integer) level. The classical
equation of motion is F ¼ dAþ A ∧ A ¼ 0, which
requires the connection to be flat. If M has boundary Σ,
then the path integral on M with boundary conditions
AjΣ ¼ A0

Ψ½A0� ¼
Z
AjΣ¼A0

½DA�eiSCS½A� ð6Þ

is interpreted as the wave function of a state in the Hilbert
spaceHðΣ;G; kÞ associated to Σ. As in [18,20], we consider
the case that M is a link complement of the 3-sphere S3,
which is denoted byMLn. Such a manifold is constructed by
first putting a non-self-intersecting n-component link,
Ln ¼ ⊔n

i¼1Li, on S3 and then removing the tubular neigh-
borhood of the link from S3 (see Fig. 1 for an example). By
this construction we have

Σn ¼ ∂MLn ¼ ⊔n
i¼1T

2:

In other words, the boundary of MLn is a disjoint union of
T2’s, which surround the n components of Ln. The Hilbert
space is the n-fold tensor product H⊗n, where H ¼
HðT2;G; kÞ is the Hilbert space of Chern-Simons theory
for the group G at level k on each torus. Hence the path
integral (6) on MLn associates the link Ln with a state in
H⊗n, which we will denote by jLni. We can expand such
link complement states in the basis ofHðT2;G; kÞ, fjqig. It
is well known that for compact gauge group G, the Hilbert
space on a torus HðT2;G; kÞ has finite dimension, and the
basis fjqig is related one-to-one to the irreducible repre-
sentationsRq of G with level k [21]. Given a link Ln with n
components fL1; L2;…; Lng, the associated link comple-
ment state jLni can be expressed as

jLni ¼ C0

X
q1;q2;…;qn

CLnðq1; q2;…; qnÞjq1i1

× ⊗ jq2i2 ⊗ � � � ⊗ jqnin
≡ C0

X
q1;q2;…;qn

CLnðq1; q2;…; qnÞjq1; q2 � � � qni; ð7Þ

where fjqiiig is the basis for the Hilbert space associated to
the torus surrounding the ith component, and C0 is a
normalization constant. The coefficients can be determined
by surgery methods [21]:

CLnðq1; q2;…; qnÞ ¼ hq1; q2 � � � qnjLni
¼ hWR�

q1
ðL1Þ � � �WR�

qn
ðLnÞiS3 ;

where WRq
ðLÞ ¼ TrRq

ðei
R
L
AÞ is the Wilson loop operator

along knot L in the representation Rq. In other words,
CLnðq1; q2;…; qnÞ is the expectation value of Wilson loop
operators along the link Ln, also known as the colored link
invariant. Therefore, the topological properties of the linkLn

is encoded in its corresponding state jLni through the
coefficients, and we expect that complexity must also
manifest these properties in some way.
In the remainder of this paper, we will investigate how to

define complexity for such link complement states in
various cases. To do this we need to choose a reference
state first. It is natural to choose this to be the simplest link,
the n component unknot, which we denote by L⊗n

0 , i.e.,

jϕRi ¼ jL⊗n
0 i:

A. Framing ambiguity

Before studying complexity of link complement states, we
should deal with the issue of framing [21] of each component
comprising the link Ln. The framing ambiguity can be

FIG. 1. A case of ML2 ¼ S3=L2. To construct this manifold,
one starts from S3, represented by the total gray region, and then
removes the tubular neighborhood of a link L2. The resulting
manifold has two disjoint torus boundaries, corresponding to the
two components.
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thought of as self-linking, if we view each component as a
ribbon instead of a circle. To fix the ambiguity, one must pick
a framing for each component. If one chooses different
framing such that the ith component varies by ti units, then
the link complement state will differ by ti Dehn twist on the
corresponding basis fjqiig. Explicitly the states will trans-
form as

jLni → ðT t1
1 ⊗ T t2

2 ⊗ …T tn
n ÞjLni≡ jLniD; ð8Þ

where T i is a Dehn twist on the ith torus. However, since T i
are all unitary, such framing factors can be always absorbed
by redefining gates as follows:

ÛI → ðT t1
1 ⊗ T t2

2 ⊗ …T tn
n ÞÛIðT t1

1 ⊗ T t2
2 ⊗ …T tn

n Þ−1
≡ ÛI

D:

Given a combination of gates which can map the reference
state to the target state

jLni ¼ Û i1 Û i2 � � � Û iN jL⊗n
0 i;

one can immediately find the corresponding circuit which
has the same feature under the different choice of framing

jLniD ¼ Û i1
DÛ

i2
D � � � Û iN

D jL⊗n
0 iD;

so any reasonable definition of complexity remains
unchanged. In the case of the geometric approach the
situation is similar. One can redefine generators fÔIg in
the same way to create the corresponding circuit under
different framing, without changing the path in operator
space YIðsÞ. It again implies that the complexity is invariant.
Therefore, the framing factor can always be absorbed into
the choice of gates or generators, and complexity can be
defined without ambiguity.

III. COMPLEXITY FOR LINK COMPLEMENT
STATES

A. Uð1Þk case

We start with the simplest Abelian case, in which the
gauge group is Uð1Þ with level k. It is well known that
HðT2;Uð1Þ; kÞ is k dimensional. Furthermore, the colored
Jones polynomials for Uð1Þk Chern-Simons only depend
on the linking numbers between components of Ln.
Denoting the linking number between La and Lb by lab,
the normalized link complement state is [21]

jLni ¼ 1

kn=2
X

q1;q2;…;qn

exp

�
2πi
k

X
a<b

labqaqb

�
jq1; q2 � � � qni;

where qi ¼ 0; 1;…; k − 1. In this section we will denote
the link complement state as jLnðlabÞi since it only depends

on the linking numbers. We can view the nðn−1Þ
2

linking
numbers flabg as “coordinates” on the space of n-link
complement states HLn . It is clear that these coordinates
have the periodicity lab ∼ lab þ k. Therefore, HLn is a
discrete compact space, with the topology

HLn ¼ Z⊗nðn−1Þ=2
k :

Since the components of L⊗n
0 do not wind around each

other, the reference state is simply

jϕRi ¼ jL⊗n
0 i ¼ 1

kn=2
X

q1;q2;…;qn

jq1; q2 � � � qni;

which we take as the “origin” of HLn . The evolution from
the reference state jL⊗n

0 i to the target state jLnðlabÞi can be
done by the following unitary operation:

jLnðlabÞi ¼ exp

�
2πi
k

X
a<b

labq̂a ⊗ q̂b

�
jL⊗n

0 i; ð9Þ

where q̂a is the local operator acting on ath site as

q̂ajq1; q2 � � � qni ¼ qajq1; q2 � � � qni:

The mapping (9) can be viewed as a quantum circuit, and it
can be prepared by a finite number of fundamental gates,
which we define as

Ûab ≡ exp
�
2πi
k

q̂a ⊗ q̂b

�
ð10Þ

and their inverses. These are the analogue of 2-qubit gates.
In terms of these gates we can write the operator in (9) as

exp
�
2πi
k

X
a<b

labq̂a ⊗ q̂b

�
¼

Y
a<b

ðÛabÞlab : ð11Þ

Therefore, we act with each Ûab ðlabmodkÞ times on the
reference state to obtain the target state. If ðlabmodkÞ > k

2
,

then we should use ðÛ−1
abÞk−ðlabmodkÞ instead of ðÛabÞlab to

get a shorter circuit. The complexity of a link complement
state is then defined as

CðjLnðlabÞiÞ ¼
X
a<b

min½ðlabmodkÞ; k − ðlabmodkÞ�: ð12Þ

The meaning of the fundamental gates is clear: acting with
Ûab once is equivalent to adding one linking number

between La and Lb, i.e., lab → lab þ 1, while Û−1
ab
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corresponds to decreasing the linking number by one. In
other words, the gates are unit translation operators inHLn .
The complexity (12) turns out to be the minimal number of
steps needed to translate from jL⊗n

0 i to jLnðlabÞi.
So far we have considered the case that the reference

state is jL⊗n
0 i, which is the origin of HLn . However, jL⊗n

0 i
plays no special role in the above discussion. We are free to
set any link complement state jLnðl0abÞi as the reference
state. Since

exp

�
2πi
k

X
a<b

labq̂a ⊗ q̂b

�
jLnðl0abÞi ¼ jLnðl0ab þ labÞi;

jL⊗n
0 i is just the special case that l0ab ¼ 0. The complexity

with the general reference state is now defined as

CðjLnðlabÞiÞjϕRi¼jLnðl0abÞi ¼
X
a<b

min½ðΔlabmodkÞ; k

− ðΔlabmodkÞ�Δlab
≡
����lab − l0abj:

We see that the complexity of link complement states in
Uð1Þk Chern-Simons is naturally defined. In this case all
link complement states form a discrete compact space

Z⊗nðn−1Þ=2
k . The number of fundamental gates is the same as

the dimension of Z⊗nðn−1Þ=2
k , which is sensible because we

can span the state space by such gates. The complexity is
identified as the distance with respect to the l1-norm on
this space.
As expected, the complexity of a link complement state

is related to the link’s topological properties. In this
simplest Abelian case we see that the fundamental gates
just correspond to increasing or decreasing Gauss linking
numbers between components of a link, which are
sufficient to determine the corresponding state in Uð1Þk
Chern-Simons. An important property of such gates is that
they are all commuting so the structure of complexity is so
simple that one can separate the contribution from each
gate. In the next section we will find that for the non-
Abelian gauge group the situation is much more compli-
cated so we need to use a different strategy to define the
complexity.

B. SUð2Þk link complement states

For non-Abelian Chern-Simons it is harder to define
complexity because the link complement states are more
involved. Recall that a link complement state

jLni ¼ C0

X
q1;q2;…;qn

CLnðq1; q2;…; qnÞjq1; q2 � � � qni ð13Þ

is determined by the colored link invariants. Unlike the
Abelian case, colored link invariants for non-Abelian

Chern-Simons depend on more than the Gauss linking
numbers. There is no simple analytic form for arbitrary
link complement states.3 To simplify the question, we will
restrict the target states considered to be a subset of all link
complement states. If the subset has some symmetry
property, then one can use fewer parameters to describe
it so defining complexity could be simpler. We will focus
on torus link complement states in the remainder of this
paper and leave further generalizations to future work.
The topological complexity of torus knots was studied in
[19], which was defined as the minimal number of
modular transformations required to map an unknot to
the target torus knot. It was then argued that topological
complexity could be related to the circuit complexity of
the corresponding state. However, given a modular trans-
formation which maps a torus knot to another, in general,
the corresponding modular matrix is not a map between
the corresponding knot complement states. Therefore, we
do not expect torus knot complement states to form a
representation of the modular group SLð2;ZÞ. This fact
prevents the identification of topological complexity of
knots with the circuit complexity of their complement
states. Here we provide a different approach to define the
circuit complexity by directly investigating torus link
complement states. Such links are highly symmetric
and, as we will see, the fusion rule and Verlinde formula
allow us to reduce the problem to defining the complexity
of states corresponding to single knots.

1. GHZ-like structure of torus link complement states

A torus link with n components can be labeled by
ðnP; nQÞ, where (P, Q) are two coprime integers. We first
recall that all torus link states have a GHZ-like structure
[18]. Such states can be expressed as [25–27]

jLnðnP; nQÞi ¼ C0

X
q1;…;qn

Jq1;…;qnðLnÞjq1;…; qni; ð14Þ

where Jq1;…;qnðLnÞ is the colored Jones polynomial for the
torus link, and C0 is a normalization constant. The
coefficients can be represented in the following form:

Jq1;…;qnðLnÞ¼
X

j1;…;jn−1

Nq1q2j1Nj1q3j2 ���Njn−2qnjn−1Jjn−1ðP;QÞ;

where Nijk are the fusion coefficients, and JjðP;QÞ are the
colored Jones polynomials of the ðP;QÞ torus knot.
Although JjðP;QÞ can be computed in terms of modular
matrices [28], we will not need it here. Using the Verlinde
formula [29]

3In principle one can calculate the colored Jones polynomials
by braiding operations [22–24], but the expression apparently
cannot be written as a quantum circuit acting on some reference
state.
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Nijk ¼
X
l

SilSjlSkl
S0l

;
where S is the modular transformation matrix implement-
ing τ → −1=τ along with the fact that S ¼ ST and S2 ¼ 1,
we arrive at

Jq1;…;qnðLnÞ ¼
X

l1;���ln−1

X
j1;���jn−1

Sq1l1Sq2l1Sj1l1
S0l1

Sj1l2Sq3l2Sj2l2
S0l2

� � � Sjn−2ln−1Sqnln−1Sjn−1ln−1
S0ln−1

Jjn−1ðP;QÞ

¼
X
l

X
js

Slq1Slq2 � � � Slqn
ðS0lÞn−1

SljsJjsðP;QÞ:

Therefore, (14) becomes

jLnðnP; nQÞi ¼ C0

X
q1;…;qn

X
l

X
js

Slq1Slq2 � � �Slqn
ðS0lÞn−1

Sljs

× JjsðP;QÞjq1;…; qni: ð15Þ

The above form can be further simplified if we (unitarily)
change the basis to jl̃i≡ Sljjji:

jLnðnP; nQÞi ¼
X
l

fljl̃;…; l̃i; ð16Þ

where

fl ≡ C0

X
js

1

ðS0lÞn−1
SljsJjsðP;QÞ: ð17Þ

Obviously (16) has the GHZ-like structure.4 Let us also
write the reference state jL⊗n

0 i in the new basis:

jL⊗n
0 i ¼

X
q1;…;qn

S0q1S0q2 � � � S0qn jq1;…; qni ¼ j0̃; 0̃;…; 0̃i:

One can see that the reference state takes a simple form in
the jq̃i basis. It is convenient to introduce the so-called
CNOT gates. In the context of quantum computation,
CNOT is a quantum logic gate involving two qubits, which
operates as

ĈNOT jai ⊗ jbi ¼ jai ⊗ jðaþ bÞmod2i;

where a; b ¼ 0; 1. Here we define similar gates, denoted as
Ĉij
NOT , which act on the ith and jth sites as follows

(assuming i < j):

Ĉij
NOT jq̃1i ⊗ � � � jeqii � � � jeqji � � � ⊗ j eqni ¼ jq̃1i
× ⊗ � � � jeqii � � � jðq̃i þ q̃jÞmodDi � � � ⊗ j eqni;

where D is the dimension of the Hilbert space for a single
site, i.e., qi ¼ 0; 1;…; D − 1. Therefore, if we start from a
state jϕni, which has the following form:

jϕni ¼
X
q

fqjq̃; 0̃; 0̃;…; 0̃i;

then the CNOT gates act on it as

Ĉ12
NOT jϕni ¼

X
q

fqjq̃; q̃; 0̃; 0̃; 0̃;…; 0̃i

Ĉ13
NOTĈ

12
NOT jϕni ¼

X
q

fqjq̃; q̃; q̃; 0̃; 0̃;…; 0̃i

·

·

·

Ĉ1n
NOT � � � Ĉ13

NOTĈ
12
NOT jϕni ¼

X
q

fqjq̃; q̃; q̃; q̃; q̃;…; q̃i:

In other words, once we know how to prepareX
q

fqjq̃; 0̃; 0̃;…; 0̃i ð18Þ

from the reference state j0̃; 0̃; 0̃;…; 0̃i, then the torus link
state can be obtained by further acting with n − 1 CNOT
gates. The problem reduces to defining the complexity of
the state on a single site, i.e., the state corresponding to a
single knot. The total complexity is then the sum
Ctot ¼ Csin gleknot þ CCNOT .

2. Universal minimal generators for single knot states

In this section, we discuss how to define the complexity
for a single knot state Cknot. This is equivalent to defining
the complexity for a target state jϕTi ¼

P
q fqjq̃i, given

the reference state jϕRi ¼ j0̃i. For simplification we will
focus on SUð2Þk Chern-Simons theory in the rest of this
paper, but the result can be extended to general compact
gauge groups. It is known that HðT2; SUð2Þ; kÞ has
dimension kþ 1, so q ¼ 0; 1; 2;…k. Let us begin by

4This GHZ-like structure manifests for a specific choice of
framing. We admit such framing as a natural one since this
structure reflects the symmetry of torus links clearly.
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considering the geometric approach [12]. In this approach
for given reference state jϕRi and target state jϕTi in CPkþ1

one looks for an operator Û ∈ SUðkþ 1Þ such that

jϕTi ¼ ÛjϕRi: ð19Þ

One then writes such operators in integral form:

Û ¼ P exp

�
i
Z

1

0

X
I

YIðsÞÔIds

�
: ð20Þ

In the geometric approach, fÔIg are supposed to be all the
small generators, which here means all generators of
SUðkþ 1Þ since we are considering a single site. A cost
D is defined for each possible path

D ¼
Z

1

0

F

�
YIðsÞ;

d
ds

YIðsÞ
�
ds; ð21Þ

where F is some local cost function. Taking inspiration
from quantum circuits, it is natural to consider the l1-norm,

F1 ≡
X
I

���� dds YIðsÞ
����: ð22Þ

However, this choice breaks the homogeneity of SUðkþ 1Þ
so using different bases of generators will give different
answers. On the other hand, if one uses the l2-norm as the
cost function so that the homogeneity is preserved, then
the resulting complexity is simply the “angle” separating
the reference and target states. This is unsatisfying since we
expect complexity to involve more features of the target
state. It is still possible to consider a more complicated local
function, which also respects the homogeneity, but the
relation to computational complexity becomes ambiguous.
A possible solution is to break the homogeneity by some

physical considerations so that one can obtain a natural
nontrivial definition of complexity. For example, in [30] the
authors study the complexity of a single qubit, and they set
the cost of σz to be smaller than σx and σy by assuming that
some laboratory design, such as magnetic field Bz, makes
rotation in the z direction easier. More precisely, the cost
function used in [30] is

F¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ixx

�
d
ds

YxðsÞ
�

2

þIyy

�
d
ds

YyðsÞ
�

2

þIzz

�
d
ds

YzðsÞ
�

2

s
;

where Ixx ¼ Iyy ≪ Izz.
In this paper we will use a different strategy to break the

homogeneity. We take inspiration from the previous analy-
sis of the Abelian case. Recall that forUð1Þk Chern-Simons
we find the number of fundamental gates is nðn − 1Þ=2,
which equals the dimension of the state space Z⊗nðn−1Þ=2

k .
This makes sense because the minimal number of

generators to span a space is equal to its dimension.
Similarly, since we are considering states in CPkþ1, which
has 2k degrees of freedom, we may expect the minimal
number of generators needed to prepare arbitrary target
states is also 2k. If we construct the quantum circuit by only
using 2k generators instead of all generators of SUðkþ 1Þ,
the homogeneity will be broken, and one can define a
nontrivial complexity.
Breaking homogeneity means, as we mentioned above,

that some basis of Hilbert space plays a special role. From
the above discussion we see that fjq̃ig is a natural
candidate for three reasons. First of all, one of the basis
elements, j0̃i, corresponds to the reference state directly.
Secondly, the GHZ-like structure of torus link complement
states manifests in this basis. Finally, fjq̃ig is a natural
choice in the context of Chern-Simons theory since they are
defined by Wilson loop operators and modular transfor-
mation, while arbitrary linear combinations do not have
clear physical meaning in general.
Once we understand that fjq̃ig is a special basis in the

analysis, we can introduce 2k universal generators based on
it to define the complexity. By universal we mean that such
generators are sufficient to generate all states in CPkþ1.
Since we start from the reference state, the 2k generators
can be chosen as rotation generators from j0̃i to jĩi, where
i ¼ 1; 2;…; k. To illustrate how to choose such generators,
let us consider the simplest case k ¼ 1, in which the map
from reference state to target state can be written as�

1

0

�
⟶
Ô1

�
f0
f1

�
;

where Ô1 ∈ SUð2Þ. If we choose the phase such that f0 is
real, then the general form of Ô1 is

Ô1 ¼
�
f0 f�1
f1 f�0

�
¼

�
cos θ sin θe−iϕ

sin θeiϕ cos θ

�
;

where we express ðf0; f1Þ in terms of two new variables
ðθ;ϕÞ. We would like to express the above form using two
universal generators. A naive choice may be ðσz; σyÞ so that

Ô1 ¼ e
iϕ
2
σzeiθσye−

iϕ
2
σz :

According to the above form, we might suggest that the
complexity of Ô1 could be defined as

CðÔ1Þ ∝ jθj þ jϕj

as the amount needed for each generator. However, the
contribution of the phase term jϕj is ambiguous because it
depends on the choice of generators. For example, if one
had decided to use ðσz; σxÞ as fundamental generators
instead, then the net result would be to replace the phase
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term by jϕ − π
2
j, but we do not have a good reason to

distinguish the two choices. Actually, since σz does not
change the reference state, the more natural choice of
generators seems to be ðσx; σyÞ. The operator can then be
written as

Ô1¼ exp½iθð−sinϕσxþcosϕσyÞ�≡exp½iðnxσxþnyσyÞ�:

The above is not of the conventional form for a quantum
circuit. We expect that the contributions from σx and σy
should be symmetric since they are not distinguishable by
the reference state. Therefore, we are led to define the
complexity as

CðÔ1Þ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y

q
¼ jθj:

Such a definition is invariant if we choose another basis
ðσ0x; σ0yÞ on the x-y plane, and the phase term ϕ is absorbed
into the rotation symmetry. One can interpret this to mean
that the minimal path simply goes in the right direction
towards the target state, traversing the straight path from.
So far we have just reproduced the usual angle between

two rays in a Hilbert space:

jθj ¼ cos−1 f0 ¼ cos−1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhϕRjϕTij2

q
Þ;

but this analysis will be helpful in finding a nontrivial
definition of complexity for larger k.
The next case we will consider is k ¼ 2, in which the

reference state and target state have the following form:

jϕRi ¼

0B@ 1

0

0

1CA; jϕTi ¼

0B@ f0
f1
f2

1CA: ð23Þ

Similar to the previous case, we seek four universal
generators and a systematic process to map jϕRi to jϕTi.
One such process is composed of two steps:

0B@ 1

0

0

1CA⟶
Û01

0B@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jf1j2

p
f1
0

1CA⟶
Û02

0B@ f0
f1
f2

1CA; ð24Þ

where we again set f0 real. The above process corresponds
to two SUð2Þ rotations, Û01 and Û02, analogous to Ô1 in the
k ¼ 1 case. The minimal number of generators of them is
four, as expected. The explicit forms of the two rotations
are determined by the coefficients of the target state:

Û01 ¼

0B@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jf1j2

p
f�1 0

f1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jf1j2

p
0

0 0 1

1CA

≡
0B@ cos θ1 sin θ1e−iϕ1 0

sin θ1eiϕ1 cos θ1 0

0 0 1

1CA

Û02 ¼

0B@ f0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jf1j2

p
0 f�2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jf1j2

p
0 1 0

f2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jf1j2

p
0 f0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jf1j2

p
1CA

≡
0B@ cos θ2 0 sin θ2e−iϕ2

0 1 0

sin θ2eiϕ2 0 cos θ2

1CA; ð25Þ

where we reparametrize the coefficients by ðθ1;ϕ1; θ2;ϕ2Þ.
Now it is natural to define the complexity of this process as

CðÛ01Þ þ CðÛ02Þ ∝ jθ1j þ jθ2j:

Notice that the above form is not the usual inner-product
distance in the Hilbert space. The reason is that in our
construction the two rotations, Û01 and Û02, are distinguish-
able: mixing of their generators are not allowed. This
distinction makes sense because we are using a physically
meaningful basis.
In the above discussion we see that the generators of Û01

and Û02 are universal because we can always find at least
one circuit of the form (24) mapping the reference state to
an arbitrary target state. However, given these generators
the process (24) may not be the process of minimal
complexity. In the next subsection we will discuss how
to find the minimal process.

3. The path of minimal complexity

We have chosen the minimal universal 2k generators
corresponding to the rotations between the reference state
and basis fjq̃ig. Here we discuss how to construct a circuit
of minimal complexity using these generators. For sim-
plicity we start with the k ¼ 2 case and then extend the
result to higher k.
For k ¼ 2 the reference state and the target state take the

form (23) in the basis fjq̃ig. The four fundamental
generators are

σ̂01x ≡
0B@ 0 1 0

1 0 0

0 0 0

1CA σ̂01y ≡
0B@ 0 i 0

−i 0 0

0 0 0

1CA
σ̂02x ≡

0B@ 0 0 1

0 0 0

1 0 0

1CA σ̂02y ≡
0B@ 0 0 i

0 0 0

−i 0 0

1CA; ð26Þ
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fσ̂0jx;yg generate SUð2Þ rotations between j0̃i and jj̃i. As
discussed in the last subsection, one expects that the phase
of the jth coefficient, argðfjÞ, can be absorbed into the

rotation symmetry of fσ̂0jx;yg. Therefore, the complexity only
depends on the magnitudes of coefficients fjfijg, and the
problem reduces to finding the following process of
minimal complexity:

0B@ 1

0

0

1CA!PðsÞ
0B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jf1j2 − jf2j2

p
jf1j
jf2j

1CA ð27Þ

by using only σ̂01y and σ̂02y . A possible process PðsÞ
is described by a path on the first quadrant of the unit

sphere parametrized by 0 ≤ s ≤ 1, on which states are
denoted by

jϕðsÞi ¼

0B@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xðsÞ2 − yðsÞ2

p
xðsÞ
yðsÞ

1CA ð28Þ

with the boundary conditions (see Fig. 2)

xð0Þ ¼ 0 yð0Þ ¼ 0

xð1Þ ¼ jf1j yð1Þ ¼ jf2j: ð29Þ

Now we want to compute the complexity of a given path.
Consider the infinitesimal segment from ðxðsÞ; yðsÞÞ to
ðxðsþ dsÞ; yðsþ dsÞÞ; the starting point and endpoint are

0BB@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xðsÞ2 − yðsÞ2

p
xðsÞ
yðsÞ

1CCA →

0BB@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xðsþ dsÞ2 − yðsþ dsÞ2

p
xðsþ dsÞ
yðsþ dsÞ

1CCA

¼

0BB@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xðsÞ2 − yðsÞ2

p
− x_xdsþy_ydsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−xðsÞ2−yðsÞ2
p

xðsÞ þ _xds

yðsÞ þ _yds

1CCAþOðds2Þ:

ð30Þ

This segment can be implemented by fundamental gen-
erators (26) via two infinitesimal angles dθ1 and dθ2:

expðiσ01y dθ1Þ ¼

0B@ 1 −dθ1 0

dθ1 1 0

0 0 1

1CAþOðdθ21Þ

expðiσ02y dθ2Þ ¼

0B@ 1 0 −dθ2
0 1 0

dθ2 0 1

1CAþOðdθ22Þ:

They map the starting point to

expðiσ01y dθ1Þ expðiσ02y dθ2Þ

0BB@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xðsÞ2 − yðsÞ2

p
xðsÞ
yðsÞ

1CCA

¼

0BB@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xðsÞ2 − yðsÞ2

p
− ðxdθ1 þ ydθ2Þ

xðsÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xðsÞ2 − yðsÞ2

p
dθ1

yðsÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xðsÞ2 − yðsÞ2

p
dθ2

1CCAþOðdθ2Þ:

ð31Þ

The order in (31) does not matter since their commutator is
higher order. Comparing (30) and (31) we get

FIG. 2. Reference state and target state on the x-y plane, and
two possible paths connecting them.
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dθ1 ¼
_xdsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − xðsÞ2 − yðsÞ2
p

dθ2 ¼
_ydsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − xðsÞ2 − yðsÞ2
p :

Hence the complexity of this infinitesimal segment is
naturally defined as

dC≡ jdθ1j þ jdθ2j ¼
ðj_xj þ j_yjÞdsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xðsÞ2 − yðsÞ2

p : ð32Þ

Thus we can compute the complexity of any process PðsÞ
through the functional

C½PðsÞ� ¼
Z

dC ¼
Z
PðsÞ

ds
j_xj þ j_yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − xðsÞ2 − yðsÞ2
p : ð33Þ

By the variational method, one can solve for the path of
minimal complexity for the given boundary conditions
(29). Without loss of generality let us assume that
jf1j ≤ jf2j. To simplify the problem, first consider a subset
of all possible paths Fþ, defined as
Definition 1.—Fþ ¼ fPðsÞj ∀ s ∈ ½0; 1�; _xðsÞ ≥ 0;

_yðsÞ ≥ 0; satisfying boundary conditions ð29Þg.

It is easy to compute the Euler-Lagrange equations in
Fþ, and later on we will see that the path of minimal
complexity is contained in this subset. One can immedi-
ately recognize the following property:
Property 1.—if PðsÞ ∈ Fþ; then ∀ ðx; yÞ onPðsÞ;

x ≤ jf1j and y ≤ jf2j.
The complexity of paths in this subset is given by

C½PðsÞ ∈ Fþ� ¼
Z

1

0

_xþ _yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2 − y2

p ds

≡
Z

1

0

Lðx; y; _x; _yÞds ð34Þ

and the Euler-Lagrange equations are

d
ds

∂L
∂ _x −

∂L
∂x ¼ 0 ⇒

ðy − xÞ_y
ð1 − x2 − y2Þ3=2 ¼ 0

d
ds

∂L
∂ _y −

∂L
∂y ¼ 0 ⇒

ðx − yÞ_x
ð1 − x2 − y2Þ3=2 ¼ 0:

These equations suggest that the minimal path must be
x ¼ y. However, this does not, in general, satisfy the
boundary conditions (29), so we have to consider the path
in Fþ which is closest to x ¼ y. Such a path is constructed
piecewise as (see Fig. 3)

P�ðsÞ ≔
�
xðsÞ ¼ yðsÞ ¼ 2sjf1j; 0 ≤ s ≤ 1

2

x ¼ jf1j; yðsÞ ¼ jf1j þ 2ðjf2j − jf1jÞðs − 1
2
Þ; 1

2
≤ s ≤ 1:

ð35Þ

The above is composed of two straight lines on the x-y
plane: from (0,0) to ðjf1j; jf1jÞ, and then to ðjf1j; jf2jÞ.

Note that the segment with x ¼ const is a solution of the
reduced one-dimensional problem for yðsÞ, but we will

FIG. 3. Left: two paths in Fþ. The dash arrows indicate the deviation flow to smaller complexity, which is given by (36). Notice that
the flow always points toward to x ¼ y. Right: path P�ðsÞ. Any deviation through the flow will give a new path no longer in Fþ because
it violates Property 1, so P�ðsÞ is the path closest to x ¼ y in Fþ.
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elaborate on this in what follows. Now we would like to
prove the following:
Claim 1.—P�ðsÞ is the path of minimal complexity

in Fþ.
We can use the variational method to prove this claim.

Consider two nearby paths in Fþ, PðsÞ and PðsÞ þ δPðsÞ.
The difference in complexity is

δC¼
Z

1

0

� ðx−yÞ_y
ð1−x2−y2Þ3=2δxðsÞþ

ðy−xÞ_x
ð1−x2−y2Þ3=2δyðsÞ

�
ds

þOðδx;δyÞ2; ð36Þ

where we have used integration by parts and the fact that
ðδx; δyÞ vanish at endpoints. Since we are considering the
case _x; _y ≥ 0, (36) suggests that we deform the path toward
the following direction:

signðδxÞ ¼ −signðδyÞ ¼ signðy − xÞ ð37Þ

to get smaller complexity. Such direction always points
toward x ¼ y (see Fig. 3). Hence, for paths in Fþ, the
closer to x ¼ y, the smaller complexity we get. Since P�ðsÞ
is the path closest to x ¼ y in Fþ, we have established
Claim 1. The next step is to prove that P�ðsÞ is actually the
one of minimal complexity among all possible paths. To do
this, first define the concept of a “turnback segment”:
Definition 2.—A turnback segment is a path parame-

trized by s ∈ ½si; sf� ⊂ ½0; 1�, satisfying one of the follow-
ing conditions (see Fig. 4):

(A) yðsiÞ ¼ yðsfÞ and ∀ s ∈ ðsi; sfÞ; yðsÞ > yðsiÞ.
(B) xðsiÞ ¼ xðsfÞ and ∀ s ∈ ðsi; sfÞ; xðsÞ > xðsiÞ.
.
We will also use the following property:
Property 2.—If P0ðsÞ is a path satisfying the boundary

conditions (29) but is not in Fþ, then P0ðsÞ contains at least
one turnback segment.
Now one can prove that for a path containing a turnback

segment of type (A), we can always find another path with
smaller complexity via replacing this segment by a

horizontal one, y ¼ yðsiÞ. For such a turnback segment,
we haveZ

sf

si

j_xjþj_yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−xðsÞ2−yðsÞ2

p ds>
Z

sf

si

j_xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−xðsÞ2−yðsiÞ2

p ds

ð38Þ

by using the definition of the type (A) turnback segment.
The lhs of (38) is the complexity of the original segment
and the rhs is for the horizontal segment, so we prove the
above statement. Similarly, if a path contains a turnback
segment of type (B), then one can replace it by a vertical
segment to get a new path with smaller complexity.
Therefore, say we start from a path P0ðsÞ satisfying the
boundary conditions (29), but which is not in Fþ, by
replacing all of its turnback segments by horizontal or
vertical segments, we get a new path PðsÞ ∈ Fþ with
smaller complexity. Thus we prove the following:
Claim 2.—For any P0ðsÞ satisfying the boundary con-

ditions (29) but not in Fþ, one can find a path PðsÞ ∈ Fþ
which has smaller complexity (see Fig. 5).
Combining Claim 1 and Claim 2 we conclude that P�ðsÞ

is the path of smallest complexity. Therefore, the complex-
ity of the target state jϕTiwith respect to the reference state
is, given (35),

CðjϕTiÞ ¼
Z
P�ðsÞ

_xþ _yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xðsÞ2 − yðsÞ2

p ds

¼
Z

1=2

0

4jf1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8s2jf1j2

p dsþ
Z

1=2

0

2jf2j − 2jf1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jf1j2 − ðjf1j − 2s0jf1j þ 2s0jf2jÞ2

p ds0

¼
ffiffiffi
2

p
tan−1

� ffiffiffi
2

p jf1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2jf1j2

p �
þ tan−1

� jf2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jf1j2 − jf2j2

p �
− tan−1

� jf1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2jf1j2

p �
:

The first term arises from the first integral and is
ffiffiffi
2

p
times

the angle between jϕRi and ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2jf1j2

p
; jf1j; jf1jÞ.

The second integral gives the angle between

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2jf1j2

p
; jf1j; jf1jÞ and ðjf0j; jf1j; jf2jÞ. For general

target states, we can define m≡minðjf1j; jf2jÞ and
M≡maxðjf1j; jf2jÞ. Then the complexity is defined as

FIG. 4. Examples of turnback segments of (A) (left curve) and
(B) (right curve).
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CðjϕTiÞ ¼
ffiffiffi
2

p
tan−1

� ffiffiffi
2

p
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− 2m2
p

�
þ tan−1

�
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−m2−M2
p

�
− tan−1

�
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− 2m2
p

�
:

We pause here to make a comparison between our
definition of complexity and Nielsen’s geometric approach.
One sees a similarity since, in both cases, complexity is
identified as some extremal functional. So, our definition
can be viewed as a notion of geometric complexity. The
difference is that we do not compute geodesic length in the
whole space of unitary operators, but in a subspace. For
example, in the k ¼ 2 case, we consider unitary operators
which can be expressed as

Û ¼ P exp

�
i
Z

1

0

ðY1xðsÞσ̂01x þ Y1yðsÞσ̂01y

þ Y2xðsÞσ̂02x þ Y2yðsÞσ̂02y Þds
�
;

i.e., they can be generated by four fundamental generators.
Such operators only form a subspace of SUð3Þ, but they are
sufficient to map the reference state to an arbitrary target
state in CP3. The effective cost function in our approach is

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_Y2
1x þ _Y2

1y

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_Y2
2x þ _Y2

2y

q
:

The square root form ensures that the phases argðfjÞ can be
absorbed into the rotation symmetry of fσ̂0jx;yg.

4. Extension to higher k

For k ¼ 3 we have

jϕRi ¼

0BBB@
1

0

0

0

1CCCA; jϕTi ¼

0BBB@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− jf1j2 − jf2j2− jf3j2

p
f1
f2
f3

1CCCA:

Similar to the k ¼ 2 case, we seek a path P�ðsÞ on the first
quadrant of the unit 3-sphere which satisfies boundary
conditions

xð0Þ ¼ 0 yð0Þ ¼ 0 zð0Þ ¼ 0

xð1Þ ¼ jf1j yð1Þ ¼ jf2j zð1Þ ¼ jf3j ð39Þ

and minimizes the complexity functional

C½PðsÞ� ¼
Z
PðsÞ

j_xj þ j_yj þ j_zjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xðsÞ2 − yðsÞ2 − zðsÞ2

p ds: ð40Þ

We can define a set of paths, Fþ, analogous to Definition 1
and show that P�ðsÞ ∈ Fþ. The Euler-Lagrangian equa-
tions for Fþ are

ðy − xÞ_yþ ðz − xÞ_z
ð1 − x2 − y2 − z2Þ3=2 ¼ 0

ðx − yÞ_xþ ðz − yÞ_z
ð1 − x2 − y2 − z2Þ3=2 ¼ 0

ðx − zÞ_xþ ðy − zÞ_y
ð1 − x2 − y2 − z2Þ3=2 ¼ 0:

FIG. 5. Left: path P0ðsÞ satisfying the boundary conditions (29) but not in Fþ. Such a path contains at least one turnback segment.
Right: by replacing all turnback segments by vertical or horizontal lines, one can find a new path PðsÞ ∈ Fþ having smaller complexity
than P0ðsÞ.
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These equations can be satisfied if

x ¼ y ¼ z: ð41Þ

Again, in general, (41) does not satisfy the boundary
conditions (39). The minimal path P�ðsÞ is the one in
Fþ which is closest to x ¼ y ¼ z. If jf1j ≤ jf2j ≤ jf3j,
then it takes the following form:

P�ðsÞ ≔

8>><>>:
xðsÞ ¼ yðsÞ ¼ zðsÞ ¼ 3sjf1j; 0 ≤ s ≤ 1

3

x ¼ jf1j; yðsÞ ¼ zðsÞ ¼ jf1j þ 3ðjf2j − jf1jÞðs − 1
3
Þ; 1

3
≤ s ≤ 2

3

x ¼ jf1j; y ¼ jf2j; zðsÞ ¼ jf2j þ 3ðjf3j − jf2jÞðs − 2
3
Þ; 2

3
≤ s ≤ 1;

which is composed of three straight lines in x-y-z space. The complexity is given by the functional

CðjϕTiÞ ¼
Z
P�ðsÞ

j_xj þ j_yj þ j_zjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xðsÞ2 − yðsÞ2 − zðsÞ2

p ds

¼
ffiffiffi
3

p
tan−1

� ffiffiffi
3

p jf1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3jf1j2

p �
þ

ffiffiffi
2

p �
tan−1

� ffiffiffi
2

p jf2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jf1j2 − 2jf2j2

p �
− tan−1

� ffiffiffi
2

p jf1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3jf1j2

p ��
þ tan−1

� jf3jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jf1j2 − jf2j2 − jf3j2

p �
− tan−1

� jf2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jf1j2 − 2jf2j2

p �
:

The above can be generalized to any target state by finding
an ordered permutation such that jfpð1Þj ≤ jfpð2Þj ≤ jfpð3Þj
and then replacing fi by fpðiÞ. Extending the above
discussions to higher k, we obtain a systematic way to
write down the complexity for any target state jϕTi with
respect to jϕRi:
(1) Expand the target state in terms of jq̃i,

i.e., jϕTi ¼
P

k
q¼0 fqjq̃i.

(2) Find a permutation p ∈ Sk such that
jfpð1Þj ≤ jfpð2Þj ≤ � � � jfpðkÞj.

(3) Define

C1 ≡
ffiffiffi
k

p
tan−1

0B@ ffiffiffi
k

p jfpð1Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− kjfpð1Þj2

q
1CA

Ci ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k− iþ 1

p �
tan−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k− iþ 1

p jfpðiÞjffiffiffiffiffiffiffiffiffiffiffiffiffi
1− Fi

p
�

− tan−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k− iþ 1
p jfpði−1Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− Fi−1
p

��
for 2 ≤ i ≤ k;

where

Fi ≡ ðk − iÞjfij2 þ
Xi

j¼1

jfjj2:

(4) The complexity of the target state is defined
as CðjϕTiÞ ¼

P
k
i¼1 Ci.

Ci is the complexity of the ith straight line in the minimal
path P�ðsÞ. The permutation step ensures that exchanging

any two coefficients fi, fj for i, j ≠ 0 does not change the
complexity.
Although we have constructed a notion of complexity in

the context of Chern-Simons theory, the above algorithm
can be applied to any single qubit state (with k-dimensional
Hilbert space). The requirement of this construction is to
specify a set of physical basis states, which contain the
reference state as one of its elements. Once such a basis is
determined, one can naturally define 2k − 2 minimal
universal fundamental generators, which can map the
reference state to arbitrary target states. The complexity
is then a function of the magnitudes of coefficients
expanded in this basis, as described in the above algorithm.

5. Extension to general link complement states

So far we have only considered torus link complement
states because their symmetry properties reduce them to an
effective Hilbert space on a single site. This feature allows
us to use only small gates and generators to prepare any
torus link complement states. Then via CNOT operators,
which only involve two sites, we implement the GHZ-like
structure. If we eliminate the restriction of only using small
generators, then such a definition can be extended to
prepare any link complement state.
For example, consider n-component link complement

states in SUð2Þk Chern-Simons theory which can be
expressed as

jLni ¼
X

q1;…;qn

Cðq1;…; qnÞjq̃1;…; q̃ni;
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which is in CPðkþ1Þn . Such states do not have a GHZ-like
structure in general. Again, the reference state is chosen to
be the unknot state, which takes a simple form in the basis
fjq̃ig:

jϕRi ¼ j0̃;…; 0̃i:

Similar to the single site case, one can choose 2ðkþ 1Þn − 2
minimal universal fundamental generators to prepare any
states in CPðkþ1Þn from jϕRi. Such generators can be chosen
as rotation generators from j0̃;…; 0̃i to jq̃1;…; q̃ni, for
ðq1;…; qnÞ ≠ ð0;…; 0Þ. Each rotation contains two gener-
ators (analogous to σx, σy) so the degrees of freedom match
the dimension of CPðkþ1Þn . Then one can compute the
complexity in the same way used in the above subsections.
For torus link complement states, this approach reproduces
the same result obtained in previous sections, up to the term
CCNOT . This difference is due to the fact that there is no need
to useCNOT operators to implement the GHZ-like structure
sincewe allow rotation between j0̃;…; 0̃i and jq̃;…; q̃i. The
price is to eliminate the constraint that only small generators
are used.

C. Complexity for some particular torus link states

In this section we calculate the complexity of some of the
simplest torus links in SUð2Þk Chern-Simons and discuss
their features. Recall that the modular matrices in this case
are given by

Tmn ¼ e2πi
mðmþ1Þ
kþ2 δmn

Smn ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

kþ 2

r
sin

�
πðmþ 1Þðnþ 1Þ

kþ 2

�
:

In particular, we consider
(i) Hopf link: This is the first nontrivial torus link with

two components. The state takes the form [21]

jHoft linki ¼ C0

X
j1;j2

X
q

ðSTSÞ0q
Sj1qSj2q
S0q

jj1j2i

¼ C0

X
q

ðSTSÞ0q
S0q

jq̃ q̃i:

The above form has GHZ-like structure, as expected.
Using ðSTÞ3 ¼ 1 and S2 ¼ 1 one can further sim-
plify the expression:

jHopf linki ¼ C0

X
q

ðT−1ST−1Þ0q
S0q

jq̃ q̃i

¼ C0

X
q

e−2πiðhqþh0Þjq̃ q̃i: ð42Þ

The normalization constant is C0 ¼ 1ffiffiffiffiffiffi
kþ1

p . We see

that for the Hopf link, the magnitudes of every
coefficient are the same: jfqj ¼ 1ffiffiffiffiffiffi

kþ1
p . This implies

that the Hopf link state is always on the path x ¼ y,
suggested by the Euler-Lagrange equation above.
The complexity of Hopf link can be obtained
explicitly:

CHopf ¼
ffiffiffi
k

p
cos−1

�
1ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p
�
: ð43Þ

For large kwe have CHopf ∼
ffiffiffi
k

p
· π
2
. Generally in our

construction, the maximal complexity can be
shown to be just π

2

ffiffiffi
k

p
, and so for large k, the

Hopf link state has nearly maximal complexity. In
fact, it was shown in [20] that the Hopf link is
maximally entangled and is analogous to a Bell
pair. Although there is no reason to expect that our
complexity can be related to entanglement entropy,
we see here a relation between maximal complex-
ity and entanglement entropy. It will be interesting
to investigate whether complexity and entropy
have a deeper connection, but we leave this to
future study.

(ii) 2N2
1 links: Next we consider a family of two

component torus links, whose members are similar
to the Hopf link, but the components have 2N
crossing numbers instead, denoted as 2N2

1, see Fig. 6.
Note that 2N2

1 states are of the form [21]

j2N2
1i ¼ C0

X
j1;j2

X
q

ðSTNSÞ0q
Sj1qSj2q
S0q

jj1j2i

¼ C0

X
q

ðSTNSÞ0q
S0q

jq̃ q̃i: ð44Þ

The normalized coefficients are

FIG. 6. The 2N2
1 links. The Hopf link is a special case of this

family with N ¼ 1.
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fq ¼
ðSTNSÞ0q

S0qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPj

ðSTNSÞ0j
S0j

j2
r :

One can solve for the complexity by the algorithm of
Sec. III B 4. Using Mathematica, we have generated
the complexity for N ¼ 2 and N ¼ 3 for various
values of k as in Figs. 7. The complexity rises with k
in both cases.5 This feature is partly due to the fact
that the Hilbert space dimension is kþ 1 and the
number of generators is 2k. For larger k one has
“more space” to measure the complexity. In other
words, the complexity defined in this paper can
reflect the size of the Hilbert space. This is different
from the standard inner-product distance of Hilbert
space, which is always bounded by 2π.

IV. SUMMARY AND DISCUSSION

In this paper, we have studied the computational
complexity of link complement states in Chern-Simons
theory. We set the reference state as the one correspond-
ing to n unlinked unknots. For the Abelian case, we find a
natural set of fundamental gates, which can be thought of
as raising and lowering operators of the Gauss linking
number between pairs of components. The complexity is
then determined by these linking numbers modulo the
level k. This observation provides a simple and interest-
ing connection between complexity and knot theory.
In the non-Abelian case, we have chosen to focus on
torus link complement states, and in that context we have
shown that using their GHZ-like structure one can reduce
the problem to defining the computational complexity

of a single knot state. We have defined an algorithm
through an extremization procedure that gives a system-
atic way to define complexity for these torus link
complement states.
In both Abelian and non-Abelian cases, we have seen

that the complexity depends on the number of degrees of
freedom N of the system. For the Uð1Þk case, link
complement states are described by N ¼ nðn − 1Þ=2 link-
ing numbers, and the maximal complexity is Cmax ∝ N. On
the other hand, for SUð2Þk Chern-Simons, the torus link
complement states are described by N ¼ 2k independent
coefficients, and one has Cmax ∝

ffiffiffiffi
N

p
. The two cases behave

differently because they have different structures of gen-
erators. In the Abelian case, the fundamental gates are all
commuting so the contribution from each can be counted
separately. This fact implies that the complexity grows
linearly, as we found. On the other hand in SUð2Þk,
generators do not commute, and the complexity grows
more slowly.
The reference state jϕRi and the basis fjq̃ig play

a central role in our construction of complexity for the
non-Abelian case because we choose the fundamental
generators corresponding to the rotations between them.
This choice breaks the homogeneity because we only use
2k minimal generators among the total ðkþ 2Þðkþ 1Þ=2
generators of the operator space SUðkþ 1Þ. Since jϕRi
and fjq̃ig are natural physical states in the context of
Chern-Simons theory, our construction provides a non-
trivial definition of complexity based on physical con-
siderations. Furthermore, this definition is related
to circuit complexity directly because it just counts
the amount needed for each fundamental generator. If
the constraint of using only small generators is released,
then one can use the same method to define the complex-
ity for arbitrary states.
It would be of interest to investigate if our methods can

be applied to other cases. For example, in [20], link
complement states with hyperbolic structure were shown

FIG. 7. Left: complexity of 421 link for various k. Right: complexity of 621 link for various k.

5The oscillation comes from the twist operator in (44). If we fix
N ¼ 2, then gcdðN; kþ 2Þ is different for even k and odd k. A
similar oscillation pattern also appears in the entanglement
entropy of link complement states [20].
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to have interesting properties. It would be of interest to
investigate how our notion of complexity might be related
to other geometric notions of complexity in that context.
We note the recent related paper [31].
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