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Pure Yang-Mills theory in two spacetime dimensions shows exact Casimir scaling. Thus, there are
infinitely many string tensions, and this has been understood as a result of nonpropagating gluons in two
dimensions. From ordinary symmetry considerations, however, this richness in the spectrum of string
tensions seems mysterious. Conventional wisdom has it that it is the center symmetry that classifies string
tensions, but being finite it cannot explain infinitely many confining strings. In this paper, we resolve this
discrepancy between dynamics and kinematics by pointing out the existence of a noninvertible 1-form
symmetry, which is able to distinguish Wilson loops in different representations. We speculate on possible
implications for Yang-Mills theories in three and four dimensions.
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I. INTRODUCTION

In quantum gauge theories, string tensions are character-
istic properties of confinement phenomena, as they specify
the static quark-antiquark potentials. We can compute them
theoretically as expectation values of Wilson loops for the
gauge representation α of the test quark. For confining
SUðNÞ Yang-Mills theory in three or four dimensions, it is
expected that Wilson loops behave very differently over
three different length scales (see Fig. 1) [1–8]:
(1) At short distances, the potential obeys Coulomb’s

law, with a coefficient given by the Casimir invari-
ant cα.

(2) At intermediate distances, the potential becomes
linear, with a string tension Tα depending on α.

(3) At long distances, the potential remains linear, but
the string tension Tα depends only on the N-ality
of α.

The last property can be understood as a result of string
breaking via soft-gluon exchange. Moreover, we can nicely
describe the relevant selection rule using the center sym-
metry [9,10], or the 1-form symmetry [11,12]. However,
this is not the whole story of confinement. In particular, the
behavior at intermediate distances is curious: the theory is

already confining, but the string tensions are not charac-
terized by center symmetry alone.
Driven by this curiosity, the authors were led in Ref. [13]

to explore a similar phenomenon in a simpler confining
gauge theory in three dimensions, where string tensions at
any distance scale do not obey the N-ality rule. In that
investigation, it was realized that a noninvertible 1-form
symmetry is present in that model, and that it can
distinguish Wilson loops in different representations even
when their N-alities are the same. Thus, the following
question naturally arises: does noninvertible 1-form sym-
metry also exist in Yang-Mills theory? If so, can it be used
to classify various string tensions at intermediate distances?
In this paper, we consider properties of the confining

strings of pure Yang-Mills theory in two spacetime

FIG. 1. Characteristic behavior of the derivative of the inter-
quark potential in some representations α in d ¼ 3; 4 SUðNÞ
Yang-Mills theory. Here, we take the Young tableaux α ¼
ð1; 0;…; 0Þ; ð1; 0;…; 0; 1Þ; ð2; 0;…; 0; 1Þ for the red, blue, and
black curves, respectively.
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dimensions. It is well known that 2D Yang-Mills theory is
exactly solvable [14,15], and the string tensions obey the
Casimir scaling law, which says that the confining force is
proportional to the Casimir invariant cα of the test quark. In
this case, we can understand from dynamical consider-
ations why the string tensions need not be characterized
by center symmetry. In two dimensions, there are no
propagating gluons, and string breaking never occurs.
Nevertheless, it behooves us to explain this phenomenon
purely from considerations of symmetry, which must be an
important step towards the harder cases of Yang-Mills
theories in higher dimensions.
We find that there is in fact a good symmetry-based

justification for the rich spectrum of confining strings in 2D
Yang-Mills theory. After a brief review of the exact
solution, we define a topological point-like disorder oper-
ator that can distinguish Wilson loops in different repre-
sentations of the gauge group. At the end, we speculate on
possible implications for the behavior of the confining
strings of Yang-Mills theories in three and four dimensions
at intermediate distances.

II. 2D YANG-MILLS AND CASIMIR SCALING

Let us begin by reviewing some exact results in 2DYang-
Mills theory [14,15]. Let G be an arbitrary gauge group,
which is assumed to be simple, connected, and simply
connected.
Pure Yang-Mills theory on a spacetime X with

Riemannian metric ds2 ¼ gijdxi ⊗ dxj is described by
the action

S ¼ −
1

e2

Z
X
trðF ∧ �FÞ; ð1Þ

where F is the field strength of the G gauge field A,

F ¼ dAþ A ∧ A: ð2Þ

A particularly special feature of the theory in two dimen-
sions is its invariance under area-preserving diffeomor-
phisms. This becomes self-evident when we rewrite the
action (1) in terms of the adjoint scalar ϕ ¼ �F:

S ¼ −
1

e2

Z
X
trðϕ ∧ �ϕÞ ¼ −

1

e2

Z
X
trðϕ2Þ ffiffiffi

g
p

d2x; ð3Þ

where g ¼ detðgijÞ. Here, it should be noted that the metric
gij enters only through the area form

ffiffiffi
g

p
d2x.

As the only invariant of a top-degree form is its total
integral, the partition function can depend on the metric gij
only through the total area A ¼ R

X
ffiffiffi
g

p
d2x. Furthermore,

since in two dimensions the gauge coupling e has the
dimensions of inverse length, the partition function is a
function of the dimensionless combination e2A. In view of

these considerations, we set e ¼ 1 and denote the partition
function by ZXðAÞ.
For our purposes, it is most useful to work with a

particular lattice regularization known as the heat-kernel
formulation, or the generalized Villain formulation [14,16–
18]. Let us denote links by l, G-valued link variables by
Ul, plaquettes by p, and holonomies around ∂p by
Up ≔ P

Q
l∈∂p Ul, where P denotes path ordering.

Here, there is no restriction on the shapes of the plaquettes;
they can be any polygon (e.g., triangles, squares, penta-
gons, etc.). The heat-kernel lattice formulation is defined by
taking the one-plaquette weight to be

Z△ðUp;ApÞ ¼
X
α

dαχαðUpÞ exp ð−cαApÞ; ð4Þ

where α runs through unitary irreducible representations of
G, cα denotes the quadratic Casimir invariant of α, χα∶G →
C is the character of α, dα ¼ χαðIÞ is the dimension of α,
and Ap denotes the area of p. Here, I ∈ G is the identity
element. The partition function is then given by

ZXðAÞ ¼
Z Y

l

dUl

Y
p

Z△ðUp;ApÞ; ð5Þ

where the link variables are integrated with respect to the
normalized Haar measure of G.
In two spacetime dimensions, the heat-kernel formu-

lation has a remarkable property: the partition function (5)
is invariant under subdivisions. More precisely, if two
plaquettes p1, p2 meet at a common link l, then one has the
“sewing” property:Z

dUlZ△ðUp1
;Ap1

ÞZ△ðUp2
;Ap2

Þ

¼ Z△ðUp1∪p2
;Ap1

þAp2
Þ: ð6Þ

To see this, let us write the one-plaquette weights on the
left-hand side explicitly as

Z△ðUp1
;Ap1

Þ ¼
X
α

dαχαðU1UlÞ exp ð−cαAp1
Þ; ð7Þ

Z△ðUp2
;Ap2

Þ ¼
X
β

dβχβðU−1
l U2Þ exp ð−cαAp2

Þ; ð8Þ

where we set Up1
¼ U1Ul, Up2

¼ U−1
l U2 so that

Up1∪p2
¼ U1U2. Using the following formula on

characters,

Z
dgχαðagÞχβðg−1bÞ ¼ δα;β

χαðabÞ
dα

; ð9Þ

we readily obtain Eq. (6). Therefore, this specific lattice
formulation is already at the fixed point of the renormalization
group, and reproduces the results of the continuum theory.
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The partition function on any genus-g spacetime X ¼ Σg
is readily obtained as

ZΣg
ðAÞ ¼

X
α

d2−2gα exp ð−cαAÞ: ð10Þ

We note that, in the infinite area limit, which will give us
the partition function on R2, we have

ZR2 ¼ ZΣg
ðA → ∞Þ ¼ 1; ð11Þ

as only the trivial representation α ¼ 1 contributes.
Let us now compute the expectation value of a single

Wilson loop WγðΓÞ on R2. For convenience, we initially
take X ¼ S2, and then take A → ∞ at the end while
keeping the area AΓ “enclosed” by Γ held fixed (see
Fig. 2). We have

hWγðΓÞiS2 ¼
1

ZS2

X
α;β

dαdβe−cαðA−AΓÞ−cβAΓ

×
Z

dUχαðUÞχγðUÞχβðU−1Þ: ð12Þ

We then use another formula on characters,Z
dgχαðgÞχγðgÞχβðg−1Þ ¼ Nβ

αγ; ð13Þ

where Nβ
αγ is the multiplicity of β in the decomposition of

α ⊗ γ into irreducible representations. This gives the
Wilson loop average on S2 as

hWγðΓÞiS2 ¼
1

ZS2

X
α;β

Nβ
αγdαdβe−cαðA−AΓÞ−cβAΓ : ð14Þ

Taking the infinite area limit, only α ¼ 1 contributes as
above, and as we clearly have Nβ

1γ ¼ δβ;γ , it follows that the
Wilson loop average on R2 is given by

hWγðΓÞiR2 ¼ dγ exp ð−cγAΓÞ: ð15Þ

Thus, Wilson loops in all representations obey area-law
decay, and the string tensions are precisely dictated by
Casimir scaling:

Tγ ¼ cγ: ð16Þ

In particular, 2D pure Yang-Mills theory has infinitely
many string tensions, which cannot be solely characterized
by the center symmetry, or “N-ality.” Is there any kin-
ematical way to understand this result?

III. NONINVERTIBLE 1-FORM SYMMETRY

For a spacetime point x and a conjugacy class ½U� ¼
fgUg−1jg ∈ Gg ofG, we define a disorder operator V ½U�ðxÞ
by the following injunction:

Delete the point x from spacetime, and perform the
path integral over gauge fields A with holonomy
holCðAÞ ∈ ½U� for small clockwise-oriented circles C
surrounding x.

This is a 2D version of Gukov-Witten surface operators in
4D gauge theories [19,20]. We note that this operator is
gauge invariant, as we fix the conjugacy class of the
holonomy instead of the holonomy itself. Furthermore,
this operator is topological thanks to the invariance under
area-preserving diffeomorphisms. But as we will see by
explicit calculation, this operator does not necessarily have
an inverse. Hence, we must view V ½U�ðxÞ as the generator of
a noninvertible 1-form symmetry.
From a modern perspective on symmetry in relativistic

field theory, a conservation law is interpreted as the
existence of topological operators [11]. Noninvertible
symmetry is a new kind of symmetry based on this idea,
but the requirement that the symmetry elements obey a
group-like multiplication law is relaxed. So far, the utility
of this notion has been demonstrated mainly in the context
of 2D field theories [21–28].1 Our operator V ½U�ðxÞ has an
analogous property, but it acts on line operators instead of
point-like operators.
Using the heat-kernel lattice formulation, we can easily

compute correlation functions of these disorder operators.
All one needs to do is to pick out an infinitesimal plaquette
p containing the point x of the dual lattice and a
representative U of the conjugacy class [U], and then fix
the path-ordered product of link variables Up to be U−1.
For example, the n-point function of the disorder

operators on S2 can be computed as2

�Yn
i¼1

V ½Ui�ðxiÞ
�

S2
¼ 1

ZS2

X
α

d2αe−cαA
Yn
i¼1

χαðUiÞ
dα

: ð17Þ

FIG. 2. Expectation value of a Wilson loop WγðΓÞ on S2.

1For applications to 3D gauge theories, see Refs. [13,29].
2We note that in the axiomatic approach to 2D Yang-

Mills theory, the two- and three-point functions here are precisely
the “cylinder” and “pants” amplitudes from which all other
amplitudes are built according to the general cutting-and-gluing
law [15].
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In particular, the locations of the insertion points xi do not
appear in the vacuum expectation values, which confirms
that these operators are topological.
For us, the important thing about the disorder operators

V ½U�ðxÞ is that they act nontrivially on Wilson loops. What
is more, they can distinguish Wilson loops in different
representations. In particular, on R2, we have

hWγðΓÞV ½U�ðxÞi¼
( χγðUÞ

dγ
hWγðΓÞi for x insideΓ;

hWγðΓÞi for xoutsideΓ:
ð18Þ

Let us point out that the noninvertible 1-form symmetry
generated by the V ½U�ðxÞ actually contains the 1-form center
symmetry as a special case, which is similar to the 3D semi-
Abelian theory [13]. Namely, the 1-form center symmetry
is generated by the V ½U�ðxÞ with U in the center of G. For
G ¼ SUðNÞ, the center elements can be written as U ¼ ωI
with ωN ¼ 1, and we have

χγðωIÞ
dγ

¼ ωjγj; ð19Þ

where jγj is the N-ality of γ. Thus, for this specific choice,
V ½ωI�ðxÞ is invertible.
Let us now prove Eq. (18). As before, we initially

work on S2 and take the infinite area limit at the end.
Consider first the case where x is inside Γ. According to
Fig. 3, we get

hWγðΓÞV ½U�ðxÞiS2

¼ 1

ZS2

X
α;β

dαdβ expð−cαðA −AΓÞ − cβAΓÞ

×
Z

dU1dU2χαðU1ÞχγðU1ÞχβðU2U−1
1 U−1

2 UÞ: ð20Þ

We can easily evaluate the group integrals with the help of
yet another formula on characters,

Z
dgχαðgag−1bÞ ¼

χαðaÞχαðbÞ
dα

; ð21Þ

together with Eq. (13). Then, Eq. (20) becomes

hWγðΓÞV ½U�ðxÞiS2

¼ 1

ZS2

X
α;β

Nβ
αγdαχβðUÞe−cαðA−AΓÞ−cβAΓ : ð22Þ

Now taking the A → ∞ limit, this becomes

hWγðΓÞV ½U�ðxÞi ¼ χγðUÞ expð−cγAΓÞ: ð23Þ
Comparison with Eq. (15) gives the first half of Eq. (18).
Now consider the case where x is outside of Γ. Then,

hWγðΓÞV ½U�ðxÞiS2

¼ 1

ZS2

X
α;β

dαdβ expð−cαðA −AΓÞ − cβAΓÞ

×
Z

dU1dU2χαðU2UU−1
2 U1ÞχγðU1ÞχβðU−1

1 Þ: ð24Þ

We evaluate the group integrals as before using Eqs. (21)
and (13), obtaining

hWγðΓÞV ½U�ðxÞiS2 ¼
1

ZS2

X
α;β

Nβ
αγχαðUÞdβe−cαðA−AΓÞ−cβAΓ :

ð25Þ
Taking A → ∞, this becomes

hWγðΓÞV ½U�ðxÞi ¼ dγ expð−cγAΓÞ: ð26Þ
We now get the second half of Eq. (18), which completes
the proof.
This result (18) shows that we can measure the repre-

sentation of the Wilson loop by using the topological
defect operator V ½U�. In order to see this, let us rephrase this
result in terms of canonical quantization on S1 ×Rtime.
Performing the canonical quantization in the temporal
gauge, an eigenstate wave function is given by a Wilson
loop with some irreducible representation α wrapping S1,
and let us denote it as jαi. Then, Eq. (18) gives

V ½U�ðxÞjαi ¼
χαðUÞ
dα

jαi: ð27Þ

This tells that, using the local operator V ½U�, we can
construct the projection operator onto a specific state
as jαihαj ¼ dα

R
dgχαðg−1ÞV ½g�ðxÞ.3

FIG. 3. Defect operator V ½U�ðxÞ inside and outside of the
Wilson loop WγðΓÞ.

3This shows that the Hilbert space for 2D Yang-Mills theory
decomposes into distinct sectors labeled by α. It has been known
that such a decomposition occurs with conventional ðd − 1Þ-form
symmetry in d spacetime dimensions [30–32]. In this viewpoint,
we have found that noninvertible 1-form symmetry also decom-
poses the Hilbert space.
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As an example, consider the case G ¼ SUð2Þ, and let us
detect its adjoint test quark. The center symmetry, V½−I�,
does not detect it because the adjoint representation has
trivial N-ality. On the other hand, if we choose U ¼ iσ3 for
instance, then we find

χadjðiσ3Þ
dadj

¼ −
1

3
≠ 1: ð28Þ

Therefore, V ½U� can distinguish the adjoint string from the
trivial one, and it allows us to explain the linear confine-
ment of adjoint quarks very naturally. We also note that this
operator is not invertible: by acting on the fundamental
Wilson loop, we have

χfdðiσ3Þ
dfd

¼ 0; ð29Þ

and thus the inverse element cannot exist. In this way, the
noninvertible topological operators V ½U� successfully
explain the violation of the N-ality rule in 2D Yang-
Mills theory from the viewpoint of symmetry.

IV. SUMMARY AND DISCUSSION

In this work, we considered the question of why Casimir
scaling should be exact in 2D Yang-Mills theory. This has
been understood as a result of dynamics, as gluons in two
dimensions do not propagate. However, it was not known if
it could be understood from symmetry. The conventional
center symmetry cannot explain why such a selection rule
can exist. We have resolved this discrepancy by showing
the existence of noninvertible 1-form symmetry generated
by the defect operator V ½U�ðxÞ.
This success for 2D Yang-Mills theory is encouraging

for the prospect of a similar thing happening in three and

four dimensions. For 3D Yang-Mills theory, the ground-
state wave functional has been well studied numerically in
Ref. [33], based on theoretical proposals in Refs. [34,35].
There, it was observed that the wave functional is propor-
tional to the Boltzmann weight of 2D Yang-Mills theory at
long distances. This “dimensional reduction” is supposed
to be relevant to explain Casimir scaling at intermediate
distances in higher dimensions, and it may give us a good
hint for extending our study in two dimensions to higher
dimensions.
At the same time, the N-ality rule should set in at large

enough distances, so it seems that the noninvertible
symmetry cannot be exact in three or four dimensions.
While this is actually correct at finite N, we can still be
optimistic in the N ¼ ∞ theory. In the large-N limit, the
factorization theorem tells us that, for example,

hWadjðCÞi ¼ jhWfdðCÞij2 þOðN−2Þ: ð30Þ

Therefore, at N ¼ ∞, the adjoint confining string never
breaks, and its tension must be twice as large as that of the
fundamental string. It is an interesting problem for the
future to determine whether this can be interpreted as a
result of (large-N emergent) noninvertible 1-form
symmetry.
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