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Gravitational wave (GW) memory is an important prediction of general relativity. Existing works on the
GW memory detection targeted the nonoscillatory strain. It is hard for the wave strain analysis method to
detect the GW memory due to its quasidirect current behavior and weakness. We implement a completely
different scheme in this work to estimate the GW memory. In this scheme, we first apply the Bondi-
Metzner-Sachs method to calculate the GW memory of a binary black hole based on numerical relativity
simulation. Then we construct a surrogate model to relate a binary black hole’s parameters and the GW
memory. Afterwards we apply this surrogate model together with Bayesian techniques to estimate the GW
memory of the 48 binary black hole events recorded in GWTC-2. The GWmemory corresponding to all 48
events has been estimated.
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I. INTRODUCTION

The memory of gravitational wave (GW) was first
found by Zeldovich, Braginsky, Thorne and their co-
workers [1–4]. This kind of GW memory is produced by
the change of a quadrupole moment for slowly moving
sources. Christodoulou found that gravitational wave
itself can also produce memory [5,6]. This kind of
memory is usually called nonlinear memory. The GW
memory detection [7–9] may be used to study the
gravitational theory [10] and spacetime dimension
[11]. Several works in the past years [12–20] have
investigated the possibility of detecting the nonlinear
memory. All of the works focused on trying to extract
memory from its direct effect on the interferometer data,
rather than inferring it indirectly from the source param-
eters. Because the GW memory behaves mainly as a
quasidirect current signal, the detector responds to it
weakly. Such fact makes direct detection of GW
memory hard.
In this paper, we implement an alternative method to

investigate the GW memory of the binary black hole
merger events recorded by LIGO and VIRGO. First, we
design a Bondi-Metzner-Sachs method to calculate the GW
memory based on numerical relativity simulation of binary
black holes. Then we apply this method to the SXS catalog
[21] and construct a database of binary black hole intrinsic

parameters and the corresponding GW memory due to the
gravitational radiation. Based on such a database we use
Gaussian process regression to construct a surrogate model
describing the relationship between the binary black hole’s
parameters and the gravitational wave memory. Afterwards
we apply such surrogate model together with Bayesian
techniques to infer the GW memory of the 48 binary black
hole (BBH) events in GWTC-2. We can well estimate the
GW memory of these BBH events.
Our work is similar but different from that of [22]. The

authors of Ref. [22] only studied the spherical harmonic
mode h20 while we investigate the projection of the GW
memory onto the detector. Mode h20 only depends on GW
source’s intrinsic parameters while the projection depends
also on extrinsic parameters. Such projection corresponds
to GW strain for usual GW detection.
In the next section we describe the Bondi-Metzner-Sachs

(BMS) method of GW memory calculation used in the
current work [23]. Then we combine the BMS method and
numerical relativity simulations to construct a surrogate
model of GW memory for BBHs. After that we apply our
surrogate model to GW memory estimation of the binary
black hole events in GWTC-2 of LIGO. Finally we give a
summary and a discussion.

II. METHOD OF GRAVITATIONAL WAVE
MEMORY CALCULATION

The Newman-Penrose components of Weyl tensor
Ψμ; μ ¼ 0;…; 4 admit the following relation in the wave
zone [24–26]:
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_Ψ2 ¼ ðΨ3 þ σΨ4; Ψ3 ¼ −ð _̄σ; Ψ4 ¼ − ̈σ̄: ð1Þ

Here σ corresponds to the shear of the ðθ;ϕÞ coordinate
sphere in the Bondi-Sachs coordinate [27–29]. The overbar
means complex conjugate. The ð operator is related to the
sphere geometry. The overdot means the time derivative.
The shear σ is related to the gravitational wave strain
through

σ ¼ D
2
ðhþ þ ih×Þ; ð2Þ

where D is the luminosity distance between the observer
and the source, hþ and h× correspond to the two polari-
zation modes of the gravitational wave. The relations (1)
result in

∂
∂t ðΨ2 þ σ̄ _σÞ ¼ j _σj2 − ð2 _̄σ þ σ̄σ̈ − σ ̈σ̄: ð3Þ

We can use spin-weighted −2 spherical harmonic functions
to decompose the gravitational wave strain h≡ hþ − ih× as
follows [30–32]:

hðt; θ;ϕÞ≡X∞

l¼2

Xl

m¼−l
hlmðtÞY−2lmðθ;ϕÞ; ð4Þ

where Yslm means spin-weighted s spherical harmonic
function. Plugging the above decomposition into Eq. (3)
we get

hlmjþ∞
−∞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s �
4

D

Z
Ψ2Y0l0 sin θdθdϕ

����
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−∞

−D
X∞

l0¼2

X∞

l00¼2

Xl0

m0¼−l0

Xl00

m00¼−l00
Γl0l00lm0−m000

×

�Z þ∞

−∞
_hl0m0 _̄hl00m00dt − _hl0m0 h̄l00m00

����
þ∞

−∞

��
: ð5Þ

Γl0l00lm0−m00−m

≡
Z

Y−2l0m0 Ȳ−2l00m00 · Ȳ0lm sin θdθdϕ: ð6Þ

Here and afterwards we use jþ∞
−∞ to denote the difference

between t ¼ ∞ and t ¼ −∞. Now we decompose
hlm ¼ hosclm þ hmem

lm , where hosclm is the oscillation part which
means hosclm ð−∞Þ ¼ hosclm ðþ∞Þ ¼ 0 and hmem

lm is the memory
part which means _hmem

lm ≈ 0 due to the quasidirect current
behavior of the GW memory [33]. Then Eq. (5) becomes

hmem
lm jþ∞

−∞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!
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4

D

Z
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m00¼−l00
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×
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_hoscl0m0 _̄h

osc
l00m00dt

�
: ð7Þ

If we take the mass center frame of the BBH system at the
past infinity time as the inertial frame, we have
Ψ2ð−∞; θ;ϕÞ ¼ M. Here M corresponds to the BBH’s
initial total mass (Bondi mass) [34]. At the future infinity
time, the BBH’s total massM0 ¼ M − EGW measured in the
above inertial frame is smaller than the initial value M
because the gravitational wave carries away some energy
EGW. The spacetime will settle down to a Kerr black hole
with mass M̃ at the future infinity time. But importantly the
mass center frame at the future infinity time is different from
the above inertial frame corresponding to the mass center
frame at the past infinity time due to the kick velocity. These
two inertial frames corresponding to the mass center frame at
past infinity time and the mass center frame at the future
infinity time are related by a boost transformation described
by the kick velocity. Consequently M̃ ¼ M0=γ, where γ is
the Lorentz factor. So corresponding to Eq. (5) we have [34]

Ψ2ðþ∞; θ;ϕÞ ¼ −
M̃
γ3

ð1 − vx sin θ cosϕ

− vy sin θ sinϕ − vz cos θÞ−3; ð8Þ

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð9Þ

where vx, vy and vz are the Cartesian components of the kick
velocity v.
Since the gravitational wave energy EGW, the kick

velocity and the oscillation part hosclm have already been
accurately obtained by numerical relativity simulation [35],
we can plug them into Eq. (7) to calculate the gravitational
memory hmem

lm jþ∞
−∞. In Ref. [23] we investigated the wave-

form of GW memory. Differently here we care about the
overall GW memory of BBH coalescence.
In Fig. 1 we compare our calculation results:

htlm ≡ D
M

hmem
lm

����
þ∞

−∞
ð10Þ

for spin aligned equal mass BBH systems based on SXS
simulations to the numerical relativity results by direct
calculation in [36]. In the above equation, the upper index
“t” means the overall GW memory corresponding to the
difference between t ¼ þ∞ and t ¼ −∞. In addition the
recent memory calculation results by the SXS group [35]
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are also shown in the figure for comparison. Following the

convention of [36] we use the effective spin χeff ≡
m1 χ⃗1·N̂þm2 χ⃗2·N̂

m1þm2
as the horizontal axis, where N̂ is the direction

of the orbital angular momentum and χ⃗1;2 denotes the
dimensionless spin of the two black holes with massesm1;2.
The perfect consistency indicates the reliability of our
method for GWmemory calculation. For these spin aligned
BBHs, we confirm previous approximation that hmem

lm ≈ 0,
m ≠ 0 and hoscl0 ≈ 0. For precession BBHs, our results
obtained through the Bondi-Metzner-Sachs method are
also consistent to that of SXS results [35] like Fig. 1.

III. SURROGATE MODEL OF GRAVITATIONAL
WAVE MEMORY FOR BBH

The effect of GW memory of BBH merger on the
interferometry detector can be well described by [37]

hmem ¼ M
D

ℜ

�
ðFþðθ;ϕ;ψÞ þ iF×ðθ;ϕ;ψÞÞ

×
X∞

l¼2

Xl

m¼−l
htlmY−2lmðι; βÞ

�

≈
M
D
Fþðθ;ϕ;ψÞht20Y−220ðιÞ; ð11Þ

Fþðθ;ϕ;ψÞ≡ −
1

2
ð1þ cos2θÞ cos 2ϕ cos 2ψ

− cos θ sin 2ϕ sin 2ψ ; ð12Þ

F×ðθ;ϕ;ψÞ≡þ 1

2
ð1þ cos2θÞ cos 2ϕ sin 2ψ

− cos θ sin 2ϕ cos 2ψ ; ð13Þ

where ι is the inclination angle of the BBH orbit plane with
respect to the observation direction, β is the longitude angle
describing the observation direction in the source frame,
ðθ;ϕÞ is the angular position of the BBH and ψ is the
polarization angle of the GW. Equivalently hmem denotes
the overall GW memory projected to the detector.

Because of the approximation of GW memory by just
(2,0) mode in (11), the parameter β can be ignored.
Regarding the binary black hole coalescence systems the
(2,0) mode overwhelmingly dominates the GW memory.
The six leading contribution modes are compared in Fig. 2.
We can see that (2,0) mode is stronger than the next
strongest memory mode (4,0) more than 30 times.
Consequently the approximation Eq. (11) is safely satis-
fied. For each BBH system, ht20 is determined completely
by the BBH intrinsic parameters ðq; χ⃗1; χ⃗2Þ, where q ≥ 1 is
the mass ratio. We have calculated the corresponding
memory according to Eq. (7) for 1370 simulations of
generic, fully precessing BBHs with mass ratios 1 ≤ q ≤ 4
and spin magnitudes jχ⃗1j; jχ⃗2j < 0.8. The resulting memory
data ht20NR are available online.1

Based on the above 1370 GW memory results for generic
fully precessingBBHs,wehave constructed a surrogatemodel
to describe the relation between the BBH intrinsic parameters
ðq; χ⃗1; χ⃗2Þ and ht20. Our construction procedure closely
follows [38,39]. Due to the precession, BH spins χ⃗1, χ⃗2 will
change with time. We take the spin at time t ¼ −100M with
respect to themerger time as the initial parameterswhich is the
same as [38,39]. We randomly choose 1301 samples among
the above-mentioned 1370 simulations to train and obtain a
surrogate model NRSurMemory_7qd4. The rest of the
69 samples are used to check the accuracy of our model
NRSurMemory_7qd4. The difference between ht20NR and
ht20Sur for these 69 samples is plotted in the top panel of Fig. 3.
Also, we notice that such difference will decrease along
withmass ratio q and is independent of the spin parameters. In
the meantime, we plot the estimated error by our Gaussian
process regression type model NRSurMemory_7qd4 in
the bottom panel of Fig. 3. We can see the estimated error

FIG. 1. GW memory ht20 of spin aligned equal mass BBH
respect to the effective spin. The NR result of GW memory is
borrowed from Table 1 of [36]. FIG. 2. Comparison of different memory modes contribution.

The factor Y−2lmðι; βÞ corresponds to the effect of the spin
weighted spherical harmonic function. The maximal is taken
with respect to ι and β. This plot indicates that (2,0) mode is
greater than the next strongest mode (4,0) more than 30 times.

1https://github.com/Zhi-ChaoZhao/NRSurMemory_7qd4/blob/
main/Data_of_Paper/Training_Data.csv
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by the model NRSurMemory_7qd4 is consistent with the
difference between the model prediction and the numerical
relativity result. This feature indicates the reliability of the
NRSurMemory_7qd4model. The related PYTHON code and
the model involved data of NRSurMemory_7qd4 are also
available online.2

Our surrogate model for memory is based on Gaussian
process regression. Here we check the effect of the number
of training data on the accuracy of the resulted surrogate
model. In all we have 1370 numerical relativity results for
GW memory based on SXS simulations. Denote the
number of the training data N < 1370. We randomly take
N samples from the 1370 results to train the surrogate
model and use the rest 1370 − N samples as a test set. We
repeat this process 50 times and average the resulted error.
Here 50 is arbitrarily chosen and it does not affect the test
result. We plot such averaged error with respect to N in
Fig. 4. We found that when the number is larger than 1200,
the results will not change any more. This is also the reason
we chose 1301 samples for training above.

IV. GW MEMORY ESTIMATION OF THE BBH
EVENTS IN GWTC-2

Given a distribution probability of parameters ðM; q; χ⃗1;
χ⃗2; D; ι; θ;ϕ;ψÞ for a BBH system, our GW memory
model (11) can result in an estimation of GW memory
with a corresponding probability. For each detected BBH
system by LIGO and VIRGO, the parameters ðM; q; χ⃗1;
χ⃗2; D; ι; θ;ϕ;ψÞ can be estimated with a posterior

probability based on a given prior probability [40]. So
we can accordingly estimate the GW memory for each
BBH event in GWTC-2. At the same time we can also
present the corresponding prior and posterior probability
for the GW memory. Different to our work, the authors in
[22] estimated the intrinsic factor ht20 only through the
intrinsic parameters ðq; χ⃗1; χ⃗2Þ for O1/O2 BBH events.
The 38 BBH events during O3a have been announced in

GWTC-2 [41] by the LIGO Scientific collaboration (LSC).
The ten BBH events reported in the GWTC-1 [42] do not
include the full information of black hole spin. We use the
analysis results by the Bilby group [43] where the full
information is available. We estimate the GW memory
based on these two analysis results.
We first plot the posterior probability and the prior

probability of (2,0) mode GW memory ht20 for the 48 BBH
events recorded in GWTC-2 in Fig. 5. Note that our ht20 is
different from Δh20 of [22], ht20 ¼ D

MΔh20. For all events
the posterior distribution of ht20 is clearly different from that
of the prior distribution. This means we have already well
estimated (2,0) mode GW memory for the 48 BBH events.
But this quantity cannot be related to any detection directly.
That is why we consider the overall GW memory projected
onto each detector hmem in the current work.
We plot the prior distribution and the posterior distri-

bution for hmem of the 48 BBH events respectively in Fig. 6.
The GW memory means the permanent change of the
gravitational wave strain affected on each detector. So there
are three plots corresponding to each BBH event. If the
specific detector did not work properly when a BBH event
happened the corresponding plot is absent.
In order to quantify how much information our GW

memory estimation has gotten from the gravitational wave
detection, we investigate the Kullback-Leibler (KL) diver-
gence between the prior and posterior distribution. We plot
the resulted KL divergences for the memory estimation
with respect to the 48 BBH events in Fig. 7 and list the
corresponding KL divergence in Table I. There are 16
events admitting KL divergence bigger than 1. These big
KL divergences indicate that good information has been
obtained by our GW memory estimation.

FIG. 4. The averaged accuracy of the surrogate model with
respect to the number of training data. We have used 50 runs and
taken the corresponding average.

FIG. 3. Accuracy of the surrogate model NRSurMemory_
7qd4 against the 69 test samples. These 69 samples correspond
to general BBHs including precessing ones. Top: the difference
between the model prediction ht20Sur and the direct calculation
result ht20NR through the Bondi-Metzner-Sachs method based on
the numerical relativity simulations. Bottom: the estimated error
by the NRSurMemory_7qd4 model.

2https://github.com/Zhi-ChaoZhao/NRSurMemory_7qd4
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Among the above-mentioned 16 events with goodmemory
estimation, we find that GW190412, GW190519_153544,
GW190814 and GW190910_112807 admit clear nonvanish-
ing mean values for the posterior distributions of the GW
memory strain hmem affected on each detector. All prior
distributions are approximated Gaussian distribution with
vanishing mean value. If the detection data gives little
information to the memory, approximated Gaussian posterior
distribution with vanishing mean value will be the result.
Correspondingly small KL divergence will be obtained. In

contrast, if the detection data introduce significant informa-
tion to the memory, the posterior distribution will admit
nonvanishing mean value. GW190412, GW190519_153544,
GW190814 and GW190910_112807 fall in this category.
We show the violin plot for the prior and posterior distribu-
tion of the GW memory strain in Fig. 8. Due to the
configurations of H1 and L1, we know the GW memory
strains on H1 and L1 admit different signs. But Fig. 8
definitely tells us the signs of the GWmemory affected on H1
and L1 for the first time.

FIG. 5. The posterior probability and the prior probability of (2,0) mode GW memory for the 48 BBH events recorded in GWTC-2.
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V. THE EFFECTOFWAVEFORMMODELON THE
ESTIMATION OF GRAVITATIONAL WAVE

MEMORY

We surely know that the gravitational waveform model
may affect the parameters estimation. People call such
effect the systematic bias of the waveform template
[44,45]. The most typical example is GW190521. A
significant difference shows up among SEOBNR wave-
form families, IMRPhenom waveform families and
NRsurrogate waveform model. These three waveform
families are the most advanced waveform templates
available to gravitational wave data analysis. The reported
analysis results by LSC have already counted the wave-
form accuracy issue. In addition, LSC has also considered
the waveform models combination and prior distribution
of related parameters based on detailed astrophysical
issues. Since the parameters estimation done by LSC
group is extremely delicate; the posterior samples given
by LSC are the most reasonable starting point for the
application of our technique to the LIGO GWevents. This
is the guide idea for the GW memory estimation done in
the above section.
But it is still interesting to ask how the waveform model

and the prior distribution of related parameters affect the
GW memory estimation. We do such investigation here.

A. The impact of waveform model systematics

In the GWTC-2 paper [46], the LSC group has released the
posterior distribution of GW source parameters. The result of
GW190412used thecombinationof IMRPhenomPv3HMand
SEOBNRv4PHM; the result of GW190519_153544 used the
combination of NRSur7dq4 and SEOBNRv4PHM; the result
of GW190814 used the combination of IMRPhenomPv3HM
and SEOBNRv4PHM; and the result of GW190910_112807
used SEOBNRv4PHM.
In order to explore the effect of waveform models on our

GW memory estimation, we use the individual posterior of
the above-mentioned waveform models to estimate GW
memory instead of using the combined posterior. The

FIG. 6. The posterior probability and the prior probability of
memory for the 48 BBH events recorded in GWTC-2 for the three
detectors. For some events, some detectors were not working
properly where the plot is absent.

FIG. 7. KL divergence of the GWmemory estimation for the 48
BBH events in GWTC-2. The horizontal axis corresponds to the
48 BBH events. For most events there are three estimation results
corresponding to the three detectors, LIGO Hanford (H1), LIGO
Livingston (L1) and VIRGO (V1).
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results are plotted in Fig. 9. In this figure, we can see that
different waveform models may affect the GW memory
estimation. Just as the effect of waveform models on GW
source parameters estimation [41], the result shown in
Fig. 9 is consistent with our expectation. But we would like

to emphasize that the results reported in the above section
are robust to waveform model choices. The interesting
features of the GW memory of the four events do not
change. The corresponding GW memory of GW190814 is
always about −1 × 10−23 and 1 × 10−23 for the Hanford

TABLE I. The Kullback-Leibler (KL) divergence between the prior and posterior distribution for the GWmemory strain hmem affected
on each detector of the 48 BBH events recorded in GWTC-2.

Event DKL;H1 DKL;L1 DKL;V1 Event DKL;H1 DKL;L1 DKL;V1

GW150914 2.394 1.748 � � � GW190521_074359 0.410 0.761 � � �
GW151012 0.532 0.529 � � � GW190527_092055 0.213 0.239 � � �
GW151226 3.441 3.662 � � � GW190602_175927 0.135 0.185 0.057
GW170104 1.307 1.138 � � � GW190620_030421 � � � 0.361 0.047
GW170608 5.060 2.278 � � � GW190630_185205 � � � 1.180 0.809
GW170729 0.272 0.218 0.017 GW190701_203306 0.112 0.127 0.603
GW170809 0.488 0.745 0.041 GW190706_222641 0.303 0.149 0.021
GW170814 1.487 1.555 1.315 GW190707_093326 0.363 0.495 � � �
GW170818 0.515 0.918 1.378 GW190708_232457 � � � 0.723 0.025
GW170823 0.205 0.227 � � � GW190719_215514 0.137 0.152 � � �
GW190408_181802 0.104 0.065 0.459 GW190720_000836 4.636 3.508 3.310
GW190412 0.460 0.869 1.214 GW190727_060333 0.342 0.211 0.018
GW190413_052954 0.132 0.132 0.090 GW190728_064510 3.946 4.622 0.546
GW190413_134308 0.074 0.049 0.144 GW190731_140936 0.077 0.037 � � �
GW190421_213856 0.054 0.024 � � � GW190803_022701 0.061 0.058 0.017
GW190424_180648 � � � 1.795 � � � GW190814 1.782 2.195 1.422
GW190426_152155 0.970 0.383 0.186 GW190828_063405 0.767 0.394 0.081
GW190503_185404 0.171 0.049 0.079 GW190828_065509 0.109 0.069 0.256
GW190512_180714 0.375 0.707 0.076 GW190909_114149 0.208 0.160 � � �
GW190513_205428 0.140 0.119 0.216 GW190910_112807 � � � 2.641 0.233
GW190514_065416 0.064 0.053 � � � GW190915_235702 0.282 0.088 0.063
GW190517_055101 0.604 0.668 0.609 GW190924_021846 0.896 1.665 0.097
GW190519_153544 2.920 2.736 0.309 GW190929_012149 0.471 0.492 0.065
GW190521 0.114 0.113 0.031 GW190930_133541 1.459 1.861 � � �

FIG. 8. Violin plot for the prior (right) and posterior (left) distribution of the GW memory hmem for four BBH events in GWTC-2. The
memory of these four BBH events has been estimated most accurately among the 48 BBH events of GWTC-2. The memory is with
respect to specific detector. So each plot responds to a specific detector. During the time of the event GW190910_112807, H1 detector
did not work well, so the corresponding plot is absent.
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detector and the Livingston detector respectively which is
independent of waveform models.

B. The effect of prior assumptions

According to Bayesian theorem, prior distribution may
affect the posterior distribution. Here we check how the
prior distribution assumptions would affect the GW
memory estimation.
We use IMRPhenomXPHM [47] as the waveform model

to check the dependence of GW memory estimation on the
prior distribution. We use two different priors for the
comparison. For both prior distributions, we take uniform
distribution for the BH’s spin magnitudes and isotropic

distribution for the BH’s spin orientations, binary’s sky
location and the orbital orientation. The prior distribution of
the luminosity distance corresponds to a uniform merger
rate in the comoving frame of the source. The difference of
the two priors is about the masses of the two components.
With prior A, we assume that the chirp mass is uniformly
distributed. With prior B, we assume that the component
masses of the binary are uniformly distributed. We plot the
resulted distribution of the total massMtot and mass ratio q
in Fig. 10 corresponding respectively to the two priors.
From Fig. 10 we can see the two prior distributions with
respect to the total mass Mtot and mass ratio q are
significantly different to each other.

FIG. 9. GW memory estimations based on different waveform models. For each violin plot, the left panel corresponds to the posterior
distribution and the right panel corresponds to the prior distribution. The three waveform models are IMRPhenomPv3HM,
SEOBNRv4PHM, and NRSur7dq4 respectively which have been listed in the legend.

FIG. 10. Prior distribution of the total massMtot and the mass ratio q of the binary. The left panel of each violin plot corresponding to
prior A, and the right panel of each violin plot corresponding to prior B. The blue violin plots are forMtot, and the orange plots are for q.
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We plot the resulted GW memory estimation based on
the two different prior distributions in Fig. 11. From this
figure we can see the two GW memory estimation results
are roughly the same when the prior distributions are
significantly different as shown in Fig. 10. Such indepen-
dent behavior of GW memory estimation on the prior
distribution is consistent with the high KL divergence result
obtained in the above section.
Based on the above analysis, we conclude that the

estimated GW memory shown in Fig. 8 is robust to the
waveform models and the prior assumptions.

VI. SUMMARY AND DISCUSSION

We have implemented a completely different GWmemory
measurement scheme compared to the existing works in the
literature. In order to realize our measurement scheme, we
have applied the Bondi-Metzner-Sachs method to accurately
calculate the GW memory for BBH. Combining this method
and the SXS numerical relativity simulation we construct a
database to relate BBH initial parameters and the corre-
sponding GW memory. Aided with this database we have
constructed a Gaussian process regression type surrogate
model NRSurMemory_7qd4 for GW memory of BBH.
With this powerful model, we have done an estimation of the
GW memory for the 48 BBH events of GWTC-2. Different
from the GW memory waveform models [23,48], our
surrogate model NRSurMemory_7qd4 describes the over-
all GW memory instead of the waveform.
Previous GW memory measurements targeted the

nonoscillatory strain. There is no hope to detect GW
memory in the near future with such a waveform analysis
method [8]. The measurement method used in the current
work is completely different [40]. The key bases for the

current method are the Bondi-Metzner-Sachs GW
memory calculation technique and the powerful model
NRSurMemory_7qd4.
Different from the previous qualitative estimate on the

strength of GW memory [8,19], we present the first quanti-
tative measurement of GWmemory for the 48 BBH events in
GWTC-2. Together with the median value, the posterior
distribution of GW memory is also presented. According to
the KL divergence between the prior distribution and the
posterior distribution, we found 16 GW memory measure-
ments are trustable. This feature is different from the behavior
of kick velocity [40]. More interestingly we found 4 GW
memorymeasurements definitely tell the signs of thememory
on LIGO detectors. In the future, when other GW memory
detection results are available [8], the comparison to our
estimation can strongly constrain general relativity [10].
Our estimation technique and our estimation results pre-

sented in the current paper can guide people to more suitably
choose the GW events for memory detection with multiple
events. Aidedwith our estimation technique, theGWmemory
detectionmethodwithmultiple events [19]will become easier
to detect GW memory. In addition, the GWmemory features
found in ourwork canbe used to strongly test general relativity
together with the future GW memory detection.
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FIG. 11. GW memory estimations based on different prior distributions shown in Fig. 10. For each violin plot, the left panel
corresponds to the posterior distribution and the right panel corresponds to the prior distribution. The corresponding prior distributions
have been listed in the legend.
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