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In this work, we reanalyze the possibility of finding bound states (scalar clouds) of a test, charged and
complex-valued scalar field with mass μ and charge q in the background of a Reissner-Nordstrom black
hole (RNBH). In order to determine the existence of such scalar clouds, we impose suitable regularity
conditions for the scalar field at the event horizon. We find numerical evidence for the absence of such
clouds in the subextremal and extremal RNBH when the field is massive but not self-interacting. More
importantly, we put forward a theorem that proves that such clouds cannot exist. On the other hand, when a
suitable self-interacting potential is included, the theorem no longer applies, providing a heuristic
justification behind the existence of charged clouds (dubbed Q-clouds) that were reported recently.
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I. INTRODUCTION

In a previous investigation [1], we presented numerical
solutions that represent bound states of a complex-valued
massive scalar field Ψ in the test field limit around a
subextremal Kerr black hole (BH) of mass M and angular
momentum per unit mass a. This type of solutions, dubbed
clouds, were found originally by Herdeiro and Radu [2,3]
in the test field limit and also when taking into account the
backreaction of the field in the spacetime. More recently in
[4], we extended the analysis of [1] by considering clouds
in extremal Kerr black holes (a ¼ M). For the latter, it was
necessary to consider the extremality condition exactly and
not in the limit when a → M, as in this limit the bounded-
ness of the radial derivative of the field was not secured.
Thus, the extremal case required a separate treatment and
different regularity conditions. These superregular con-
ditions are different from those considered in the past by
Hod [5] in that we demanded boundedness on the radial
derivatives at the horizon in addition of regularity of the
field itself. The exact solutions found by Hod in the
extremal Kerr BH [5] were further extended by the author
to the extremal Kerr-Newman black hole [6] by considering
a charged and massive field Ψ. In this direction, it is worth
mentioning the analysis in [7] where the authors report
numerical solutions of charged scalar clouds around sub-
extremal Kerr-Newman BH’s. Prior to those solutions,
Degollado and Herdeiro [8] had shown that it is possible to
find scalar clouds around an extremal Reissner-Nordstrom
BN (RNBH) only when the mass μ of the scalar field Ψ

turns to be equal to its electric charge (i.e., μ ¼ jqj), dubbed
double extremal limit. From that analysis, it seems that the
nontrivial solution is possible if the boundedness condition
for the radial derivative of the field is dropped. Otherwise,
the solution reduces to the trivial one Ψ ¼ 0 in the domain
of outer communication of the RNBH.
In this work, we reanalyze the possibility of finding

nontrivial charged scalar clouds in the subextremal and
extremal RNBH when the boundedness of the field and its
radial derivatives are imposed at the horizon along the lines
proposed in our previous works [1,4]. The numerical
analysis shows that such clouds do not exist when the
field is massive but not self-interacting. Moreover, we put
forward a (no-hair) theorem based on standard techniques
which shows that such clouds cannot exist even when the
boundedness condition on the radial derivatives at the
horizon is dropped, while keeping the scalars formed from
the derivatives of the field regular, casting doubts on the
significance of the purported regular configurations found
in [8]. Finally, we consider a similar scenario but taking
into account a self-interacting potential for the field. In this
case, the no-hair theorem no longer applies, which allows
us to understand heuristically the existence of the so-called
Q-clouds that were reported lately by several authors
[9–11].

II. THE BOSON CLOUDS

We assume a RNBH described by the usual metric given
in area coordinates,1
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ds2 ¼ −
�
1 −

2M
r

þQ2

r2

�
dt2 þ

�
1 −

2M
r

þQ2

r2

�−1
dr2

þ r2dθ2 þ r2sin2θdφ2; ð1Þ

where M is the mass and Q is the charge associated with
the RNBH. Under these coordinates,

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
ð2Þ

provides the location of the external ðrþÞ and the internal
horizon ðr−Þ of the black hole, where the metric has
coordinate singularities. We are interested solely in solving
the differential equation for the boson fieldΨ in the domain
of outer communication of the RNBH while providing
regularity conditions for Ψ at rH ≡ rþ, in particular, in the
extremal case rextH ¼ rþ ¼ r− ¼ M ¼ jQj.
We consider a complex-valued, massive, charged scalar

field Ψ which has the following energy-momentum tensor
(EMT)

Tab ¼
1

2
½ðDaΨÞ�ðDbΨÞ þ ðDbΨÞ�ðDaΨÞ�

− gab

�
1

2
gcdðDcΨÞ�ðDdΨÞ þUðΨ�ΨÞ

�
; ð3Þ

where Da ≡∇a − iqAa stands for the covariant derivative
associated with the gauge field Aa, which in the present
case is given in terms of the electric potential,

Aa ¼ −ΦðdtÞa ¼ −Q=rðdtÞa; ð4Þ

associated with the RNBH solution; q is the gauge coupling
(i.e., electric charge) for the field Ψ. The potential for a free
massive field is given by Eq. (6) provided below, but later in
Sec. VI we analyze a scenario with self-interaction terms.
The EMT (3) is invariant under the Uð1Þ local symmetry,
and the field Ψ obeys the Klein-Gordon equation,

DaDaΨ¼ð∇a− iqAaÞð∇a− iqAaÞΨ¼ 2
∂UðΨ�ΨÞ

∂Ψ� ; ð5Þ

where

UðΨ�ΨÞ ¼ 1

2
μ2Ψ�Ψ: ð6Þ

We are interested in finding “bound states” solutions and
consider a scalar field Ψðt; r; θ;φÞ with temporal and
angular dependence of the form,

Ψðt; r; θ;φÞ ¼ ϕðr; θÞeið−ωtþmφÞ; ð7Þ

where ϕðr; θÞ is a real-valued function, and m is an integer.
The bound states correspond to a real-valued frequency ω
equal to the critical frequency ωc ≡ qΦH [8],

ω ¼ ωc ¼ qΦH; ð8Þ

where ΦH is the electric potential at the horizon rH,

ΦH ¼ Q
rH

: ð9Þ

III. THE SUBEXTREMAL RNBH AND
REGULARITY CONDITIONS

In order to solve the Klein-Gordon equation (5) for a free
field, we assume a mode expansion in the form

Ψnlmðt; r; θ;φÞ ¼ RnlmðrÞSlmðθÞe−iωtþimφ; ð10Þ

where the angular functions Slmðθ;φÞ obey the angular
equation

1

sin θ
d
dθ

�
sin θ

dSlm
dθ

�
þ
�
Kl −

m2

sin2θ

�
Slm ¼ 0; ð11Þ

where Kl are separations constants that relate the radial and
angular parts of the Klein-Gordon equation (5). We observe
that Eq. (11) corresponds to the Associated Legendre
equation, and SlmðθÞeimφ define the spherical harmonics
Ym
l ðθ;φÞ, where the separation constants Kl are given by

Kl ¼ lðlþ 1Þ; ð12Þ

where l is a positive integer. We stress that in this scenario
the separation constants do not depend on the magnetic
number m, in contrast with clouds solutions around a Kerr
BH [1–3].
Since the separation constants do not depend on the

integer m, we can change the notation of the radial
function Rnlm that appears in Eq. (10) by the form Rnl
to describe the radial functions that obey the radial
Teukolsky equation [12],

Δ
d
dr

�
Δ
dRnl

dr

�
þ ½H2 − ðKl þ μ2r2ÞΔ�Rnl ¼ 0; ð13Þ

where

Δ ¼ r2 − 2MrþQ2; ð14Þ

and

H≡ ωr2 − qQr ¼ qQr2

rH
− qQr ¼ qQr

�
r
rH

− 1

�
; ð15Þ

where we used Eqs. (8) and (9). Notice that H vanishes
at r ¼ rH.
Like in quantum mechanics, the integer parameters

ðn; l; mÞ used to label the scalar-field configurations
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correspond, respectively, to the number of nodes, n ≥ 0, for
the radial function Rnl, and the angular momentum l ≥ 0,
and finally, the “magnetic” number m satisfies jmj ≤ l.
Given that the background spacetime is spherically sym-
metric, intuitively one would not expect the existence of
cloud configurations with an angular dependence, for
instance, a dependence on l. Nevertheless, we keep this
dependence explicitly without assuming the value l ¼ 0 in
the radial equation for Rnl.
In order to find configurations that represent bound

states, we assume that asymptotically the scalar field
vanishes sufficiently fast. From (13), one obtains that for
rH ≪ r the radial function behaves as

Rnl ∼
e−μeffr

r
; ð16Þ

where we introduced the effective mass

μeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − q2Φ2

H

q
: ð17Þ

Therefore, we assume μ2≥ω2¼q2Q2

r2H
.2 In Secs. IV and VA,

we examine solutions within the background of an extremal
RNBH for which the strict equality μ2 ¼ ω2 ¼ q2 is
considered in our attempt to recover the solutions reported
in [8].
Furthermore, for the bound state solutions to be physi-

cally meaningful, we impose regularity conditions on the
scalar field Ψðt; r; θ;φÞ at the BH horizon rH. In particular,
we impose that the field and its derivatives are bounded at
the horizon. More specifically, RnlðrÞ, R0

nlðrÞ, and R00
nlðrÞ

have finite values at r ¼ rH, where primes indicate the
derivative with respect to the radial coordinate. Thus,
assuming that R00

nlðrHÞ is bounded in Eq. (13), the regularity
condition for R0

nlðrHÞ in the subextremal case (jQj < M)
turns out to be

R0
nlðrHÞ ¼

�
lðlþ 1Þ þ μ2r2H
2ðrH −MÞ

�
RnlðrHÞ: ð18Þ

The value RnlðrHÞ is a priori arbitrary, and we can choose,
for instance, RnlðrHÞ≡ 1. To find R00

nlðrHÞ, we need to
differentiate Eq. (13) one more time and demand that
R000
nlðrHÞ is bounded. We find

R00
nlðrHÞ ¼

�
4μ2rHðrH −MÞ − q2Q2

8ðrH −MÞ2
�
RnlðrHÞ

þ
�
lðlþ 1Þ þ μ2r2H − 2

4ðrH −MÞ
�
R0
nlðrHÞ: ð19Þ

We see that the radial derivatives in Eqs. (18) and (19) are

finite on the horizon rH ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
. However, we

appreciate that in the extremal RNBH one requires a
separate analysis, as in this case these derivatives blow
up when rextH ¼ M ¼ jQj (see Sec. IV).
Similar regularity conditions are obtained when

analyzing clouds in the background of a subextremal
Kerr-Newman black hole [13], and when considering the
nonrotating limit a ¼ 0, we checked that they reduce to the
conditions (18) and (19).
We performed a numerical analysis to solve radial

Eq. (13) under the regularity conditions (18) and (19)
and find that the only solution that vanishes asymptotically
is the trivial one Rnl ≡ 0. Given that the background
spacetime is spherically symmetric, one would expect
cloud solutions respecting such symmetry. Nonetheless,
spherically symmetric (l ¼ 0) nontrivial cloud solutions
were not found either.

IV. THE EXTREMAL RNBH AND
REGULARITY CONDITIONS

Let us now focus on the extremal RNBH associated with
rextH ¼ jQj ¼ M, with metric

ds2 ¼ −
ðr −MÞ2

r2
dt2 þ r2

ðr −MÞ2 dr
2

þ r2dθ2 þ r2sin2θdφ2: ð20Þ

From Eq. (8), the critical frequency for the extremal
case is

ωc ¼
qQ
M

¼ qQ
jQj ¼ qsignðQÞ: ð21Þ

For instance, ωc ¼ q when choosing Q > 0, and thus,
ΦH ¼ 1.
The radial function Rext

nl obeys the equation

d
dr

�
Δext

dRext
nl

dr

�
þ
�
H2

ext

Δext
− ðKext

l þ μ2r2Þ
�
Rext
nl ¼ 0; ð22Þ

where

Δext ¼ ðr −MÞ2; ð23Þ

Hext ≡ ωr2 − qQr ¼ qrðr −QÞ ¼ qrðr −MÞ: ð24Þ

2If one allows the existence of configurations with μ2 < ω2,
then asymptotically Rnl ∼ �eikμeff kr

r . Therefore, the radial gradients
and the scalar-field potential would behave asymptotically as
∼1=r2, and thus, energy-momentum tensor would behave asymp-
totically in this way too. As a consequence, if one takes into
account the backreaction of the field into the spacetime, this kind
of configuration would not lead to an asymptotically flat
spacetime, as the Komar mass would diverge asymptotically
as ∼r.
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Like in the subextremal scenario, Hext also vanishes at the
horizon r ¼ rH ¼ M.
Assuming again boundedness of the field and the radial

derivatives at the horizon, we find the following regularity
conditions:

Rext0
nl ðMÞ ¼

�
2Mðq2 − μ2Þ

2þM2ðq2 − μ2Þ − Kext
l

�
Rext
nl ðMÞ; ð25Þ

Rext00
nl ðMÞ ¼ −

�
2ðq2 − μ2Þ

6þM2ðq2 − μ2Þ − Kext
l

�
Rext
nl ðMÞ

−
�

4Mðq2 − μ2Þ
6þM2ðq2 − μ2Þ − Kext

l

�
Rext0
nl ðMÞ: ð26Þ

Notice that Eqs. (25) and (26) are finite at the horizon
rextH ¼ M assuming jRext

nl ðMÞj < ∞.
The fact that Δext ¼ ðr −MÞ2 and its derivative Δ0

ext ¼
2ðr −MÞ vanish at the horizon lead to the following form
for the separation constants Kext

l in the extremal case while
assuming Rext

nl ðMÞ ≠ 0, otherwise the solution becomes the
trivial one by virtue of Eqs. (25) and (26),

Kext
l ¼ ðq2 − μ2Þr2H: ð27Þ

These separation constants are different from those given
by Eq. (12), which are associated with the values required
by the spherical harmonics (i.e., the angular part of the
field) to be well behaved. We thus face a similar consis-
tency problem that we found when analyzing clouds in the
extremal Kerr background [4]. In particular, the separation
constants given by (27) are not even integers and are
nonpositive since q2 ≤ μ2. Thus, both types of the sepa-
ration constants match

lðlþ 1Þ ¼ ðq2 − μ2ÞM2; ð28Þ

only if μ2 ¼ q2 and, therefore, only if l ¼ 0. The condition
μ ¼ jqj ¼ jωj (extremal test field) is precisely the one
imposed by Degollado and Herdeiro [8] to report nontrivial
cloud solutions. Nevertheless, from the above considera-
tions, not only the angular dependency is absent, but also
nontrivial spherically symmetric solutions are absent as
well since the regularity conditions (25) and (26) reduce to

Rext0
nl ðMÞ ¼ Rext00

nl ðMÞ ¼ 0; ð29Þ

and the only possible radial regular solution is

Rext
nl ðrÞ≡ const: ð30Þ

In particular, choosing const ¼ 0, for the solution to vanish
asymptotically, we are led to the trivial solution

Ψðt; r; θ;φÞ≡ 0; ð31Þ

which indicates that it is not possible to find nontrivial
scalar clouds or bound states in the extremal RNBH under
the scenario proposed in [8].
This conclusion has, however, some caveats. Here, we

assumed regularity in the radial derivatives for the field.
This is a sufficient condition leading to well behaved
scalars formed from the “kinetic” term gabðDaΨÞ�DbΨ,
but it is not necessary a priori. For instance, given that in
the subextremal scenario RH is a free parameter, one could
choose RH ¼ ðrH −MÞβB, where B is a constant, and that
we can take B ¼ 1. If 0 < β < 1, then from Eq. (18) we see
that in the extremal limit RH → 0 and R0

H → ∞, and in this
way, the trivial solution is avoided. Moreover, in such
kinetic term appears grrðΨ0Þ2, and since grr ¼ ðr −MÞ2=r2
in the extremal RNBH, in principle, one could afford a
divergence at r ¼ M in the radial derivative of the type
Ψ0 ∼ ðr −MÞ−α with 0 < α < 1, while still allowing for the
kinetic scalars to be bounded at the extremal horizon. This
happens in the extremal Kerr cloud solutions found by Hod
[5], where the radial functions vanish at the horizon, but the
derivatives blow up there. But even with this caveat in
mind, in the next section, we proof a no-hair theorem that
excludes this possibility as well. In fact, we have verified
that if we propose the ansatz Rext

nl ðrÞ ¼ ðr −MÞαLðrÞ for
solving Eq. (22) such that Rext

nl ðrHÞ ¼ 0 and LðrHÞ ≠ 0,
then we find an algebraic equation for α that depends
implicitly on M and a differential equation for LðrÞ
together with its regularity conditions.3 However, we find
that the only well behaved solutions for LðrÞ are those with
α < 0, leading to bad-behaved solutions for Rext

nl ðrÞ at the
horizon. Thus, the only possibility for a regular solution in
the domain of outer communication of the extremal RNBH
with a vanishing field asymptotically is the trivial solution
Rext
nl ðrÞ≡ 0. This conclusion is further supported by a no-

hair theorem presented in the next section.

V. NO-HAIR THEOREM

As a complementary analysis, we now present a more
heuristic study to justify the existence (or absence) of
nontrivial boson clouds in the background of a RNBH. This
analysis is based upon an integral technique developed by
Bekenstein [14], with variants provided by other authors to
prove no-hair theorems in different scalar-field theories
[15,16] and which we implemented recently [1,4] to
analyze the existence of noncharged clouds in the back-
ground of a Kerr BH.

3Originally, we implemented this technique for the extremal
Kerr BH in collaboration with P. Grandclément and E. Gour-
goulhon that we plan to present in a forthcoming report [13]. In
that scenario, the resulting regular solutions for the equivalent of
LðrÞ have 0 < α < 1. Hence, the radial solutions vanish at the
horizon, and the kinetic term turns out to be also bounded there,
as we have discussed in the main text for the extremal RNBH,
despite the divergent behavior of dRext

nl =dr at r ¼ M.
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Let us consider the Klein-Gordon equation for the
charged boson field in the form4

DaDaΨ ¼ ∂ŨðΨ�ΨÞ
∂Ψ� ; ð32Þ

where ŨðΨ�ΨÞ5 is the potential associated with the com-
plex scalar field Ψ ¼ ϕðr; θÞe−iðωt−mφÞ. Multiplying both
sides by Ψ� in the last equation and integrating over a
spacetime volume V within the domain of outer commu-
nication of the BH we obtain

Z
V
Ψ�DaDaΨ

ffiffiffiffiffiffi
−g

p
d4x ¼

Z
V
Ψ� ∂ŨðΨ�ΨÞ

∂Ψ�
ffiffiffiffiffiffi
−g

p
d4x:

Integrating by parts the lhs and using the Gauss theorem, a
straightforward calculation leads to

Z
∂V

Ψ�saDaΨdS

¼
Z
V

�
ðDaΨÞ�ðDaΨÞ þ Ψ� ∂ŨðΨ�ΨÞ

∂Ψ�

� ffiffiffiffiffiffi
−g

p
d4x: ð33Þ

The surface integral associated with the boundary ∂V has
four contributions: one at a portion of the BH horizon, one at
spatial infinity, and two contributions corresponding to
integrals over two spatial hypersurfaces Σt1 and Σt2 . The
latter two cancel each other because the spacetime is static,
and the scalar-field contributions are stationary. Thus, these
two integrals differ only by the normals to both hyper-
surfaces, which are opposite. The surface integral associated
with the asymptotic region at spatial infinity vanishes when
demanding that the field Ψ falls off sufficiently rapid,
namely, exponentially due to the presence of a mass term,
which would produce an asymptotically flat spacetime if the
backreaction of the field were taken into account. Finally, it
remains the surface integral at the horizon, which is a null
hypersurface, with normal sa given by the timelike Killing
field ξa ¼ ð ∂∂tÞa at the horizon. Therefore, gabξaξb vanishes
at the horizon: gabξaξbjrH ¼ gttjrH ¼ ð1 − 2M

r þ Q2

r2 ÞjrH ¼ 0.
Thus, Ψ�saDaΨjrH ¼ −iΨ�Ψðωþ qAtÞjrH . Assuming that
Ψ�Ψ is bounded at the horizon, the surface integral at rH
vanishes due to the condition (8), ω ¼ −qAtjrH ¼ qΦH. We
conclude

Z
V

�
ðDaΨÞ�ðDaΨÞ þΨ� ∂ŨðΨ�ΨÞ

∂Ψ�

� ffiffiffiffiffiffi
−g

p
d4x ¼ 0: ð34Þ

The first term in the integrand corresponds to the kinetic
contribution,

K ¼ ðDaΨÞ�ðDaΨÞ
¼ gttðDtΨÞ�ðDtΨÞ þ gijðDiΨÞ�ðDjΨÞ; ð35Þ

where

gijðDiΨÞ�ðDjΨÞ¼ gijð∇iΨÞ�ð∇jΨÞ
¼ grrð∇rϕÞð∇rϕÞþgθθð∇θϕÞð∇θϕÞ
þgφφð∇φΨ�Þð∇φΨÞ

¼ gIJð∇IϕÞð∇JϕÞþgφφm2ϕ2; ð36Þ

which is non-negative in the domain of outer communica-
tion. Here, lower-case latin indices i, j run r, θ, ϕ, and we
usedDi ¼ ∇j, becauseAa has a component only in the time
direction and also used the harmonic dependency of the field
with respect to the angle φ following (7). Moreover, the
indices I, J run r, θ. The term with time derivatives in the
kinetic term K reads explicitly as follows:

gttðDtΨÞ�ðDtΨÞ ¼ gttðωþ qAtÞ2ϕ2; ð37Þ

where we used again the harmonic time dependency of the
field following (7).
Collecting these results, the integrand in (34) reads

I ¼ gttðωþ qAtÞ2ϕ2 þ Ψ� ∂ŨðΨ�ΨÞ
∂Ψ�

þ gIJð∇IϕÞð∇JϕÞ þm2gφφϕ2: ð38Þ

Below, in Secs. VA, and VI, we present the following
two scenarios: one analyzed by Degollado and Herdeiro [8]
like in Sec. IV, where we show that the integrand (38) is not
negative, and thus, a no-hair theorem can be established,
and another one presented more recently by several authors
[9–11], where the integrand has no definite sign. Thus, it is
not possible to establish a no-hair theorem.
The idea is to justify in a heuristic way the existence or

absence of scalar clouds around a charged, static, and
spherically symmetric black hole in these two scenarios.

A. Absence of charged clouds within a RNBH

We assume a RNBH where

gtt ¼ −
r2

ðr − rHÞðr − r−Þ
: ð39Þ

4In [17] the authors use a Klein-Gordon equation with the
equivalent form DaDaΨ ¼ ∂ŨðjΨj2Þ

∂jΨj2 Ψ.
5Equation (32) is equivalent to Eq. (5) when we consider the

following relation between both UðΨ�ΨÞ ¼ ŨðΨ�ΨÞ
2

. In [17], they
consider a energy-momentum tensor associated with the scalar
field Tab ¼ ∇ðaΨ∇bÞΨ� − 1

2
gab½∇cΨ∇cΨ� þ ŨðjΨj2Þ�.
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In this case, the term (37) reads

gttðωþ qAtÞ2ϕ2 ¼ −
r2ðωþ qAtÞ2ϕ2

ðr − rHÞðr − r−Þ

¼ −
q2Q2ðr − rHÞϕ2

r2Hðr − r−Þ
; ð40Þ

where we used the condition (8) for ω and the electric
potential (4) like in [8].
Furthermore, we take the potential Ũ for a massive but

free field as follows:

ŨðΨ�ΨÞ ¼ μ2jΨj2: ð41Þ

In this way, the integrand in (38) reads

I ¼
�
μ2 −

q2Q2ðr− rHÞ
r2Hðr− r−Þ

�
ϕ2 þ gIJð∇IϕÞð∇JϕÞ þm2gφφϕ2

¼
�
μ2 −

q2Q2

r2H
þ q2Q2ðrH − r−Þ

r2Hðr− r−Þ
�
ϕ2 þ gIJð∇IϕÞð∇JϕÞ

þm2gφφϕ2: ð42Þ

The term within the brackets is positive semidefinite (i.e., a

non-negative quantity) because μ2 ≥ ω2 ¼ q2Q2

r2H
in order for

the scalar field to fall off asymptotically as in (16), and also
because the third term in the brackets is not negative since
r > r− and rH ≥ r− in the domain of outer communication
of the RNBH. The equalities ω2 ¼ q2 and rH ¼ r− ¼
jQj ¼ M occur in the extremal RNBH. The remaining
terms of the integrand I in (42) are non-negative in the
domain of outer communication. Thus, for an extremal
RNBH the integrand reduces to

I ¼ ðμ2 − q2Þϕ2 þ gijð∇iΨÞ�ð∇jΨÞ
¼ ðμ2 − q2 þm2gφφÞϕ2 þ gIJð∇IϕÞð∇JϕÞ: ð43Þ

Therefore, in general, the integral (34) becomes

Z
V

��
μ2 −

q2Q2

r2H
þm2gφφ þ q2Q2ðrH − r−Þ

r2Hðr − r−Þ
�
ϕ2

þ gIJð∇IϕÞð∇JϕÞ
� ffiffiffiffiffiffi

−g
p

d4x ¼ 0: ð44Þ

So, in either scenario, the subextremal and extremal ones,
the integrand in the above integral is not negative, and
thus, in general, the equality in (44) holds only if the scalar
field vanishes identically, i.e., ϕðr; θÞ≡ 0. Therefore,
Ψðt; r; θ;φÞ≡ 0. We have thus proved that nontrivial
regular charged clouds in the background of a RNBH
with a non-self-interacting potential are not possible. In
particular, this conclusion holds also for the extremal
scenario considered by Degollado and Herdeiro [8] where

μ ¼ jqj ¼ jωj, dubbed double extremal limit. For that case,
the integral (44) reduces to

Z
V
½m2gφφϕ2 þ gIJð∇IϕÞð∇JϕÞ�

ffiffiffiffiffiffi
−g

p
d4x ¼ 0; ð45Þ

leading to ϕðrÞ≡ 0 if m ≠ 0 and ϕðrÞ≡ const if m ¼ 0.
Nevertheless, since we demand that ϕðr → ∞Þ → 0 for the
integral surface at spatial infinity to vanish, then ϕðrÞ≡ 0
also for m ¼ 0. Thus, contrary to what it is claimed in [8],
nontrivial and regular charged clouds with μ ¼ jqj ¼ jωj
cannot exist in the background of an extremal RNBH, even
if m ¼ 0.
This conclusion is consistent with the one presented in

Sec. IV, albeit more general. For instance, in this analysis, it
was not necessary to impose the boundedness of the radial
derivative, R0

nl, at the horizon. What matters in this analysis
is that each term in (44) is bounded in the domain of outer
communication, notably, at the horizon, in particular,
gIJð∇IϕÞð∇JϕÞ, namely, grrð∂rϕÞ2. Thus, ∂rϕ, or equiv-
alently R0

nl, might diverge near the extremal horizon as
R0
nl ∼ ðr −MÞ−α, with 0 < α < 1, so that grrð∂rϕÞ2 ¼ ðr −

MÞ2ð∂rϕÞ2=r2 ∼ ðr −MÞ2−2α=r2 is bounded at r ¼ M.
Finally, this analysis also shows that the exact solution

for charged clouds obtained by Hod [6] in the extremal
Kerr-Newman do not admit the static limit a ¼ 0, where a
is the Kerr parameter associated with the spin of the
black hole.

VI. CHARGED Q-CLOUDS

Several authors [9–11] analyzed the existence of spheri-
cally symmetric scalar clouds with a self-interacting poten-
tial, within the background of a RNBH, and also by
taking into account the backreaction of the boson field
into the spacetime. For the latter case, a charged, static, and
spherically symmetric black hole is assumed with a
spacetime metric in the following form:

ds2 ¼ −σ2ðrÞNðrÞdt2 þ 1

NðrÞ dr
2

þ r2ðdθ2 þ sin2θdφ2Þ: ð46Þ

For these kinds of clouds, a complex-valued and charged
scalar field with no angular dependency was considered,

Ψðt; rÞ ¼ ψðrÞe−iω̃t; ð47Þ

submitted to a potential Ũ,

ŨðΨ�ΨÞ ¼ μ2Ψ�Ψ − λðΨ�ΨÞ2 þ νðΨ�ΨÞ3
¼ μ2ψ2 − λψ4 þ νψ6; ð48Þ

where λ and ν are positive real numbers, with ν > λ2=4μ2

for Ũ to be a true vacuum at ψ ¼ 0 [9]. Figure 1 depicts this
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potential. For the RNBH, and the test-field approximation,
which is the only problem that we analyze here, σðrÞ≡ 1,
and

NðrÞ ¼ −gtt ¼ 1 −
2M
r

þQ2

r2
; ð49Þ

given by (1).
At this point, it is important to remark that the theory

considered so far is invariant with respect to a local phase
transformation in the field Ψ. This local transformation is
compensated by the gauge transformation in the electro-
magnetic potential. In particular, the theory is invariant with
respect to a transformation,

ω ¼ ω̃þ ζ; ð50Þ

At ¼ Ãt − ζ=q; ð51Þ

where ζ is a constant. This can be appreciated by a direct
substitution in the full-fledged set of equations [10].
Nonetheless, this invariance is apparent from the field
equations of the full theory since At and ω appear always in
a combination ωþ qAt, which remains invariant under the
above transformation, and also because the radial deriva-
tives for At are unaffected by this shift. As a consequence,
one can use a gauge different from the one of previous
sections where

ω̃ ¼ 0; ð52Þ

Ãt ¼ VðrÞ ¼ Q
rH

−
Q
r
: ð53Þ

This gauge was employed in [11] and previously in [10].
Notice that under this gauge, the electric potential VðrÞ
vanishes at the horizon, but asymptotically it takes a

nonzero value. In our case, whether one uses this or the
original gauge where ω ≠ 0, it is irrelevant since our
treatment is gauge invariant. Therefore the integrand (38)
remains the same. In particular, the integrand (42) takes the
same form, except that we have to replace the mass term for
the corresponding term obtained from the potential (48),
and also taking m≡ 0 and ∇θϕ ¼ 0, since in this scenario
we are assuming only a time and radial dependency in the
field. Thus, the integral (44) becomes

Z
V

��
μ2 − 2λψ2 þ 3νψ4 −

q2Q2

r2H
þ q2Q2ðrH − r−Þ

r2Hðr − r−Þ
�
ψ2

þ grrðψ 0Þ2
� ffiffiffiffiffiffi

−g
p

d4x ¼ 0; ð54Þ

where we used

Ψ� ∂ŨðΨ�ΨÞ
∂Ψ� ¼ Ψ�½μ2Ψ − 2λðΨ�ΨÞΨþ 3νðΨ�ΨÞ2Ψ�

¼ μ2ψ2 − 2λψ4 þ 3νψ6: ð55Þ

Unlike the scenario with no self-interaction, the inte-
grand in (54) has not a definite sign due to the presence of
the self-interaction terms, notably,

ΛðψÞ≡ ψ2ðμ2eff;∞ − 2λψ2 þ 3νψ4Þ; ð56Þ

where μ2eff;∞ ¼ μ2 − q2Q2

r2H
corresponds to the mass intro-

duced in (17) for the non-self-interacting model, and like in
that model, μ2eff;∞ ≥ 0, so that the boson field also behaves
asymptotically like in (16).
In this way, the integral (54) reads

Z
V

�
ΛðψÞ þ q2Q2ðrH − r−Þ

r2Hðr − r−Þ
ψ2 þ grrðψ 0Þ2

� ffiffiffiffiffiffi
−g

p
d4x ¼ 0;

ð57Þ

or even

Z
V
½μ2effðrÞψ2 þ ΣðψÞψ2 þ grrðψ 0Þ2� ffiffiffiffiffiffi

−g
p

d4x ¼ 0; ð58Þ

where

ΣðψÞ≡ ψ2ð−2λþ 3νψ2Þ; ð59Þ

μ2effðrÞ≡ μ2eff;∞ þ q2Q2ðrH − r−Þ
r2Hðr − r−Þ

; ð60Þ

is a position-dependent effective squared mass.
The integrands in (57) or (58) are not positive semi-

definite (i.e., they can be negative) due to the presence of
ΛðψÞ and ΣðψÞ, respectively. The terms containing the

−1

 0

 1
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 3

 4

 5

 6

−2 −1.5 −1 −0.5  0  0.5  1  1.5  2

U~

ψ

FIG. 1. The scalar-field potential Ũ (48) as a function of ψ ,
assuming the values μ ¼ 1 ¼ λ and ν ¼ 9=32 as in Ref. [11].
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charges and the kinetic term (the one with the radial
derivative) are positive semidefinite for r ≥ rH. In particu-
lar, Λ is negative at the two minima corresponding to

ψΛ
� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ
9ν

h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 9νμ2eff;∞

4λ2

q ir
, and Σ is also negative at

the two minima ψΣ
� ¼ �

ffiffiffiffi
λ
3ν

q
. Thus, the integrand in (54)

has no definite sign. Figures 2 and 3 depict Λ and Σ,
respectively, for values of the parameters used in [11],
showing that both quantities can be negative, namely, at the
two minima.6 As a consequence, a no-hair theorem cannot
be established in this case. Not only that theorem cannot be
established for this kind of self-interacting scalar field
potential, but, as we stressed before, several authors have
showed that the presence of this kind of potential allows for
the existence of nontrivial charged clouds, termedQ-clouds
[9–11].7 As argued in [10,11], these clouds can exist even
in a Schwarzschild background, but in the presence of a test
electric field. Moreover, a stability analysis of Q-hair was
presented in [20].
For the extremal RNBH (rextH ¼ M ¼ jQj), the integral

(58) keeps the same form, except that μ2effðrÞ ¼ μ2eff;∞;ext ¼
μ2 − q2 is a non-negative constant, and

NðrÞ ¼ ðr −MÞ2
r2

¼ grr; σ2ðrÞ ¼ 1: ð61Þ

More specifically, the integrand in (58) reduces to

I¼ðμ2−q2−2λψ2þ3νψ4Þψ2þðr−MÞ2
r2

ð∂rψÞ2; ð62Þ

which does not have a definite sign. Therefore, one cannot
establish a no-hair theorem either in the extremal scenario.
Figure 4 depicts the term

ΛextðψÞ≡ ðμ2 − q2 − 2λψ2 þ 3νψ4Þψ2; ð63Þ

that appears in the integrand (62). We can rewrite this
function as

-1.5
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 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

Λ

ψ

q = 1.55
q = 1.35
q = 1.15
q = 0.95
q = 0.75

FIG. 2. The function ΛðψÞ (56) for different values of q, taking
μ ¼ 1 ¼ λ and ν ¼ 9=32 as in Fig. 1. Here, we assume Q ¼ 0.09
and rH ¼ 0.15. The minima are located at ψΛ

� where ΛðψÞ is
negative.
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FIG. 3. The function ΣðψÞ (59), taking μ ¼ 1 ¼ λ and ν ¼
9=32 as in Fig. 1. The minima are located at ψΣ

� ≈�1.0887
where ΣðψÞ is negative.
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FIG. 4. The function ΛextðψÞ, taking μ ¼ 1 ¼ λ and ν ¼ 9=32
for different values of q in the extremal Reissner-Nordstrom
scenario.

6The specific values of the parameters provided in this section
amount toM, r, andQ given in units of 1=μ, q in units of μ, and λ
and ν in units of μ1=2, while ψ is dimensionless (cf. Ref. [9]).

7At first sight, it is puzzling that in Ref. [18] a no-hair theorem
for a theory similar to the one presented in this section was
established. That is, a static, spherically symmetric, asymptoti-
cally flat, and charged subextremal black hole within Einstein’s
general relativity cannot support a nontrivial, regular, and charged
complex-valued scalar field endowed with a positive semidefinite
scalar-field potential. However, in the proof of this theorem,
oddly enough, the mass term associated with the scalar field is not
taken into account, and as remarked in [10,19], it is precisely the
mass term that allows one to avoid such a theorem.
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ΛextðψÞ ¼
�
3ν

�
ψ2 −

λ

3ν

�
2

þ
�
μ2eff;∞;ext −

λ2

3ν

��
ψ2; ð64Þ

which indicates that when μ2eff;∞;ext ≥ λ2=3ν the integrand
of the integral (58) is positive semidefinite, in which case,
the only possible Q-cloud solutions are the trivial ones

ψðrÞ≡ 0 and ψðrÞ ¼ �
ffiffiffiffi
λ
3ν

q
when μ2eff;∞;ext ¼ λ2=3ν or

ψðrÞ≡ 0 when μ2eff;∞;ext > λ2=3ν. These are trivial solu-
tions of Eq. (65) (see below) when M ¼ Q which corre-

spond to the three minima (ψ ¼ �
ffiffiffiffi
λ
3ν

q
, ψ ¼ 0) of the

potential which is introduced below in Eq. (68), and when
assuming the extremal case (denoted Uext

eff in the main text).
These minima correspond also to the zeros of ΛextðψÞ.
Notice that the two minima ψΛ

� associated with ΛðψÞ
degenerate in the extremal case when μ2eff;∞;ext ¼ λ2=3ν and
become two zeros of ΛextðψÞ (cf. the discussion at the end
of Sec. VI A). Notwithstanding, as we show below, there
exist nontrivial solutions in the near extremal scenario
when μ2eff;∞;ext < λ2=3ν.

A. Subextremal Q-clouds solutions

In order to find Q-cloud solutions, we solve numerically
the radial equation associated with the scalar field ψðrÞ,

N2ðrÞψ 00 þ
�
2

r
NðrÞ þ N0ðrÞ

�
NðrÞψ 0 þ ðω̃þ qÃtÞ2ψ

¼ 1

2

∂Ũ
∂ψ NðrÞ ¼ ðμ2ψ − 2λψ3 þ 3νψ5ÞNðrÞ; ð65Þ

in the background of a subextremal RNBH, where NðrÞ is
given by (49) and ω̃ and Ãt by (52) and (53), respectively.
Equation (65) is solved by implementing the following
regularity conditions for first and second derivatives at the
horizon rH,

ψ 0
H ¼ 1

2N0ðrÞ
∂Ũ
∂ψ

����
r¼rH

¼ r3Hðμ2ψH −2λψ3
Hþ3νψ5

HÞ
ðr2H −Q2Þ ; ð66Þ

ψ 00
H ¼ ψ 0

H

4N0ðrHÞ
�∂2Ũ
∂ψ2

����
r¼rH

−
4

rH
N0ðrHÞ − 3N00ðrHÞ

�

−
q2Q2ψH

2½r2HN0ðrHÞ�2
þ N00ðrHÞ
2½2N0ðrHÞ�2

∂Ũ
∂ψ

����
r¼rH

¼ ψ 0
H

4½r2H −Q2�
�
2ðμ2 − 6λψ2

H þ 15νψ4
HÞr3H

þ 2rH −
8Q2

rH

�
−

q2Q2r2HψH

2½r2H −Q2�2

−
ðμ2ψH − 2λψ3

H þ 3νψ5
HÞðr2H − 2Q2Þr2H

2½r2H −Q2�2 ; ð67Þ

where ψH ≡ ψðrHÞ, ψ 0
H ≡ ψ 0ðrHÞ and ψ 00

H ≡ ψ 00ðrHÞ.

Equation (65) is solved numerically given the parameters
λ, ν, μ, and q, and fixing the value of the horizon rH and the
charge Q of the RNBH. The values for ψ 0

H and ψ 00
H are

determined once the specific value for ψH is provided. This
value is found by a shooting method such that the field ψðrÞ
vanishes asymptotically. At this point, it is important to
stress that the field ψðrÞ is indeed submitted to an effective
potential that in the asymptotic region takes the form
[cf. Eq. (65)]

Ueff ¼ μ2eff;∞ψ
2 − λψ4 þ νψ6; ð68Þ

where μ2eff;∞ ¼ μ2 − q2Q2=r2H.
Figure 5 depicts the effective potential (68) associated

with different values for q taking μ ¼ λ ¼ 1, ν ¼ 9=32,
rH ¼ 0.15, andQ ¼ 0.09. The shooting method aims at the
local minimum of this effective potential located at ψ ¼ 0,
where Ueff vanishes, starting from trial values ψH that
depend on the value for q. In general, a numerical
exploration shows that these trial values (assuming
only positive ones for concreteness) are such that 0 <
ψH < ψþ

min where ψþ
min is associated with one of the two

global minima of Ueff given by ψþ
min, with ψ�

min ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ
3ν

h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3μ2eff;∞ν

λ2

q ir
. As we stressed above, the local

minimum of Ueff is at ψ ¼ 0 and corresponds to the
asymptotic value of the field ψðrÞ. Therefore, for some
q, the field ψðrÞ must climb one of the local maximum of
Ueff before reaching the local minimum. A bad shooting
can make the field oscillate around any of the two ψmax
associated with the local maxima of Ueff (cf. Fig. 8 below)
or can make the field to go to �∞. As remarked in [11],
giving Q, μ, and rH, the charge q is limited from above
by the condition μ2eff;∞ ≥ 0, which corresponds to
jqj ≤ μrH=jQj. On the other hand, the zeros of Ueff are
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FIG. 5. The effective potential Ueff (68), taking μ ¼ 1 ¼ λ,
ν ¼ 9=32, Q ¼ 0.09, and rH ¼ 0.15 for different values of q.
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given by ψ ¼ 0 and ψ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ
2ν

h
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4μ2eff;∞ν

λ2

q ir
. So

when μ2eff;∞ ¼ λ2

4ν, we see that the charge q is limited from

below jqjmin ≲ q where jqjmin ≈
rHμ
jQj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

4νμ2

q
, assuming

ν > 0. All this analysis is qualitative but gives a fair
description of the actual numerical study. In particular,
the lower bound jqjmin is approximate, since in this analysis
we are neglecting the contribution of the metric function
NðrÞ in Ueff and taking it as if NðrÞ ¼ 1. Moreover, for this
particular value of μ2eff;∞; the potential Ueff “degenerate” in
that the two global minima ψ�

min become also two of its

three zeros at ψ ¼ �
ffiffiffiffi
λ
2ν

q
. In this degenerate situation,

ψðrÞ ¼ ψþ
min is an approximate solution. So when

jqj → jqjmin, the actual positive value is ψH → ψþ
min, and

since in this limit situation ψþ
min is an approximate solution

for the field, then the field ψðrÞ remains very close to the
constant value ψþ

min for relatively large values r and then
interpolates to the asymptotic value ψ ¼ 0 associated with
ψðr → ∞Þ. The actual numerical solution resembles a step
function, as we can appreciate from Fig. 6. This figure
depicts some examples of Q-clouds solutions ψðrÞ for
different values of q for a RNBH with charge Q ¼ 0.09,
horizon rH ¼ 0.15, and a scalar field with mass μ ¼ 1. As q
approaches its minimum value, we see that the Q-cloud
solution starts looking like a step function. Our results are
in agreement with those obtained in [11].
Figure 7 shows the quantity ΛðψÞ that appears in

Eq. (57), when using the solutions ψðrÞ that are plotted
in Fig. 6. From Fig. 7, we appreciate that ΛðψÞ has indeed
negative contributions to the integrand of the integral (57).
The fact that the integrand has negative and positive
contributions allow us to understand why this integral
vanishes when ψðrÞ is not necessarily the trivial solution

ψðrÞ≡ 0, in contrast with the scenario of Sec. V where the
self-interaction terms are absent leading to an integrand
which is never negative and therefore implying that
ψðrÞ≡ 0 is the only possible well behaved solution.
Figure 8 shows three numerical solutions for ψðrÞ with

q ¼ 1 associated with three different (albeit very similar)
values ψH. The two oscillating solutions correspond to the
two values ψH that undershoot and overshoot the desired
asymptotic value ψ ¼ 0, and which asymptotically oscil-
late around ψmax associated with the local maxima of Ueff ,
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FIG. 7. The quantity ΛðψÞ associated with the solutions of
Fig. 6. Notice that this quantity can be negative and contributes
nontrivially to the integral (57).
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FIG. 6. Q-cloud solutions ψðrÞ for a RNBH with Q ¼ 0.09,
rH ¼ 0.15, and μ ¼ 1 ¼ λ, ν ¼ 9=32, taking different values
for q.
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FIG. 8. Solutions ψðrÞ (solid lines) with q ¼ 1 for three
different values of ψH within a RNBH with Q ¼ 0.09,
rH ¼ 0.15, μ ¼ 1 ¼ λ, and ν ¼ 9=32. The three solutions cor-
respond to ψH: 1.3820 (purple line), 1.381958 (green line), and
1.381959590 (red line). The horizontal dotted lines represent the
two values ψmax ≈�0.6175 associated with the local maxima of
the effective potential Ueff depicted in Fig. 5 for q ¼ 1. The
solution corresponding to an asymptotically vanishing field,
which is the relevant for the current analysis, is marked in
red color.
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given by ψmax ≈�0.6175.8 These two values are repre-
sented by the horizontal dotted lines. The nonoscillating
solution corresponds to the optimal shooting value ψH
leading to an asymptotically vanishing solution.
We have also obtained Q-cloud solutions in the near

extremal RNBH scenario Q ≈M which are consistent with
those reported in [9]. In this scenario, the charge q is

bounded as follows: qmin ≲ q≲ μ, where qmin ≈ 1=3, and
this value is obtained from jqminj in the near extremal limit
and when ν saturates the bound λ2=4μ required for the
scalar-field potential (48) to have a true vacuum at Ψ ¼ 0.
Figure 9 shows four solutions of this kind as Q approaches
M, and Fig. 10 shows the effective potential associated with
these solutions. From the regularity conditions (66) and
(67), we appreciate that as Q → M the derivatives diverge
at the horizon, a feature that can be appreciated also in
Fig. 9. Due to this divergent behavior at the horizon, the
exact extremal case (Q ¼ M) requires a separate analysis
that demands a different numerical technique [13].
Moreover, this analysis is also necessary to prove that if
a nontrivial physically meaningful solution exists for the
field ψðrÞ in the exact extremal scenario, then the kinetic
term in the integral (57), namely, grrðψ 0Þ2, remains well
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FIG. 9. Q-cloud solutions ψðrÞ for near extremal RNBH
Q ≈M, taking M ¼ 2, μ ¼ 1 ¼ λ, ν ¼ 9=32, and q ¼ 0.8. The
charge of the black hole is taken to be Q ¼ ð1 − εÞM with
ε ¼ 10−2, 10−3, 10−4, and 10−5.
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FIG. 10. The effective potential Ueff (68) associated with the
radial solutions for the near extremal RNBH (Fig. 9), taking
λ ¼ 1, ν ¼ 9=32, μ ¼ 1, and q ¼ 0.8. The charge of the black
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10−5. For reference, the exact extremal case rH ¼ M ¼ Q is
depicted by the black dashed line.
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FIG. 11. The effective potential Uext
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FIG. 12. Q-cloud solutions ψðrÞ for near extremal RNBH
Q ≈M, taking M ¼ 2, μ ¼ 1 ¼ λ, and ν ¼ 9=32. The charge
of the black hole is taken to be Q ¼ ð1 − εÞM with ε ¼ 10−4 and
for values q approaching 1=3.

8If the backgrounds were not fixed, the equivalent of those two
solutions would lead to a spacetime that is not asymptotically flat
but perhaps asymptotically de Sitter (e.g., if the oscillations falls
off sufficiently fast) with an effective cosmological constant
given by Umax

eff ¼ UeffðψmaxÞ.
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behaved, notably at the horizon, despite a divergent ψ 0
H. At

this respect, it is also interesting to remark that nontrivial
Q-cloud solutions in the extremal scenario with bounded
derivatives at the horizon are absent [13], and the only ones
allowed that have bounded derivatives are the trivial ones
corresponding to the zeros of ΛextðψÞ (cf. Fig. 4) or
equivalently to the extrema (minima and maxima) of
Uext

eff depicted by Fig. 11. Thus, in the near extremal case
when q approaches 1=3, something similar happens to the
subextremal solutions when q ≈ qmin. Namely, the solu-
tions have a “step function” shape, where ψðrÞ remains
near the global minima of Ueff for larger values of r as
q → 1=3 and then interpolates to the local minimum ofUeff
associated with the asymptotic value ψ → 0 passing

through a local maximum. This behavior is depicted by
Fig. 12, and the corresponding effective potentials are
displayed in Fig. 13.
As mentioned before, within the exact extremal scenario

μ2effðrÞ given by (60) reduces to μ2effðrÞ ¼ μ2eff;∞;ext ¼ μ2 −
q2 which is not position dependent anymore, and then the
extrema (minima and maxima) of Uext

eff become exact but
trivial Q-cloud solutions. Moreover, when μ2eff;ext;∞ ¼ λ2

3ν,
the effective potential (68) with μ2eff ¼ μ2eff;ext;∞ has only
one global minima at ψ ¼ 0 (see Fig. 14), which is the only
possible solution since in this case the function ΛextðψÞ is
positive semidefinite, and therefore, the integral (57) only
holds if ψðrÞ≡ 0. In this particular extremal scenario, there
is not even a real valued q that satisfies the condition
μ2eff;ext;∞ ¼ μ2 − q2 ¼ λ2

3ν unless ν ≥ λ2=3μ2.

VII. CONCLUSION

A massive, charged, and complex-valued scalar field
coupled to a Reissner-Nordstrom black hole has been
studied for the subextremal and extremal scenarios, by
imposing regularity conditions on the field, notably, in the
radial part. When the scalar-field potential has no self-
interactions terms it is not possible to find nontrivial
superregular numerical solutions or scalar clouds (i.e.,
solutions where the field and its radial derivatives are
bounded in the domain of outer communication of the BH
and at the BH horizon as well). The extremal scenario with
an extremal scalar field (jqj ¼ μ), dubbed double extremal,
was previously studied by Degollado and Herdeiro [8]
reporting nontrivial solutions, but it is unclear to what
extent those solutions are regular at the horizon, given that
using an integral method we have proven a theorem
establishing that such nontrivial configurations cannot exist
even if one allows a certain singular behavior on the radial
derivative of the field at the extremal horizon while keeping
the kinetic scalars associated with the boson field bounded
there. Therefore, this conclusion casts doubts about the
physical significance of the solutions found in [8].9 On the
other hand, by implementing the same integral method to
the case where the scalar-field potential has self-interaction
terms, it is not possible to prove a similar theorem, which in
turn provides a heuristic justification and understanding for
the existence of regular and spherically symmetric cloud
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and ε ¼ 10−4.
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RNBH (rH ¼ jQj ¼ M), taking μ ¼ 1 ¼ λ and ν ¼ 9=32 and
for μ2eff;ext;∞ ¼ λ2=3ν ¼ 32=27.

9In [8], the authors provide solutions called quasi-bound states
through a method similar to the one used to compute quasi-
normal modes of black holes. Using a limit process, the authors
report that the following limits are reached: ImðωÞ → 0,
jQj → M, and jqj → μ ¼ ReðωÞ, which correspond to the double
extremal regime. Nevertheless, in such a limit, the resulting
configurations seem to be singular at the horizon or pointlike
singularities (“pointlike scalar-field sources”) that are found in
the domain of outer communication. Due to these anomalies,
these kinds of “cloud” configurations are termed marginal scalar
clouds in [21].
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solutions within this variant of the theory (termed
Q-clouds) which have been reported recently by several
authors [9–11] and that we have reproduced here in the
background of a subextremal (including a near extremal)
RNBH. Finally, given that the radial derivative of the field
may diverge at the BH horizon in the extremal scenarios
(cf. [5,6] for noncharged and charged clouds in the back-
grounds of an extremal Kerr and an extremal Kerr-Newman
black holes, respectively) while keeping the solutions for
the clouds physically meaningful [13], a more detailed
study is in order for the numerical analysis of Q-clouds in
the presence of an exact extremal RN black hole and not
only in the near extremal limit [13].
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APPENDIX: NONEXISTENCE OF BOUND
STATES FOR A FREE SCALAR FIELD

AROUND A REISSNER-NORDSTROM BH

It is instructive to recover the no-hair theorem presented
in Sec. V in a much more simplified fashion. We begin by
considering Eq. (13) for the radial function R ¼ RðrÞ,

ðΔR0Þ0 ¼
�
ðKl þ μ2r2Þ −H2

Δ

�
R; ðA1Þ

where multiplying both sides by R and integrating both
sides from rH to infinity, we obtain

Z
∞

rH

RðΔR0Þ0dr ¼
Z

∞

rH

�
Kl þ μ2r2 −

H2

Δ

�
R2dr: ðA2Þ

Integrating by parts the left-hand side of the previous
equation reads

Z
∞

rH

RðΔR0Þ0dr ¼ RΔR0j∞rH −
Z

∞

rH

ðΔR0ÞR0dr: ðA3Þ

Assuming the following conditions at the horizon and
asymptotically [cf. Eq. (16)]

RðrHÞ; R0ðrHÞ < ∞ ðfinite values at rHÞ; ðA4Þ

Rðr → ∞Þ; R0ðr → ∞Þ → 0; ðA5Þ

and given that Δ vanishes at the horizon,

ΔH ≡ r2H − 2MrH þQ2 ¼ 0;

we conclude

RΔR0j∞rH ¼ 0: ðA6Þ

Therefore Eq. (A2) reduces to

Z
∞

rH

½ΔR02 þ αðrÞR2�dr ¼ 0; ðA7Þ

where we have defined

αðrÞ≡ Kl þ μ2r2 −
H2

Δ
: ðA8Þ

We observe that the first term ΔR02 is positive semidefinite;
however, the second term αðrÞR2 does not have an apparent
definite sign. Nevertheless, below we prove that αðrÞ is not
negative. Since H is given by Eq. (15) and

Δ ¼ ðr − rHÞðr − r−Þ; ðA9Þ

then

αðrÞ ¼ Kl þ μ2r2 −
q2Q2

r2H

ðr − rHÞr2
ðr − r−Þ

: ðA10Þ

Using

r − rH
r − r−

¼ 1þ r− − rH
r − r−

; ðA11Þ

it is possible to rewrite equation (A8) as

αðrÞ ¼ Kl þ ðμ2 − ω2Þr2 þ ω2r2
ðrH − r−Þ
ðr − r−Þ

: ðA12Þ

We now appreciate that the function αðrÞ is positive
semidefinite for r ≥ rH and μ2 ≥ ω2, and rH ≥ r−, which
includes the extremal scenario. In the subextremal case
rH > r−, the function αðrÞ is strictly positive. Therefore the
integrand that appears in the integral (A7) is non-negative,
and for this integral to vanish, it is necessary that each term
in the integrand vanishes identically for all r ≥ rH. In
particular, if μ2 > ω2,

R0ðrÞ≡ 0 and RðrÞ≡ 0; ðA13Þ

which leads to the trivial solution Ψ≡ 0. We conclude that
there are no bound states when the scalar field is coupled to
a subextremal Reissner-Nordstrom BH with μ2 > ω2. In
the extremal case (rH ¼ M ¼ Q), the function αðrÞ
reduces to

αðrÞ ¼ Kl þ ðμ2 − ω2Þr2; ðA14Þ
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where ω2 ¼ q2 in this case. Again, if μ2 > ω2, then αðrÞ is
strictly positive for all r ≥ rH, and the same conclusion
follows about the absence of nontrivial scalar clouds.
Finally, when focused on the scenario studied by

Degollado and Herdeiro [8] about charged scalar clouds
in the extremal RNBH with an extremal test field with
μ ¼ jqj, then

αðrÞ ¼ Kl ¼ lðlþ 1Þ ≥ 0: ðA15Þ

Thus, αðrÞ is nonzero except for l ¼ 0 (i.e., spherically
symmetric clouds), and then, the integral (A7) vanishes
for all l ≥ 0 only if the radial function satisfies for all
r ≥ rH ¼ M,

R0ðrÞ≡ 0 and RðrÞ≡ 0; for l ≠ 0; ðA16Þ

and

R0ðrÞ≡ 0 and RðrÞ≡ const; for l ¼ 0: ðA17Þ

Since we demand that Rðr → ∞Þ → 0, then RðrÞ≡ 0 also
for l ¼ 0. Thus, even in the particular extremal scenario of
Ref. [8], our analysis shows that nontrivial clouds are not
possible.
The final conclusion is that nontrivial regular bound

states for a free scalar field (massive and charged) in the
background of a Reissner-Nordstrom black hole, extremal
or subextremal, are absent.
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