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We study observational constraints on the nonmetricity fðQÞ-gravity which reproduces an exact ΛCDM
background expansion history while modifying the evolution of linear perturbations. To this purpose we
use cosmic microwave background (CMB) radiation, baryonic acoustic oscillations (BAO), redshift-space
distortions (RSD), supernovae type Ia (SNIa), galaxy clustering (GC) and weak gravitational lensing (WL)
measurements. We set stringent constraints on the parameter of the model controlling the modifications to
the gravitational interaction at linear perturbation level. We find the model to be statistically preferred by
data over the ΛCDM according to the χ2 and deviance information criterion statistics for the combination
with CMB, BAO, RSD and SNIa. This is mostly associated to a better fit to the low-l tail of CMB
temperature anisotropies.
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I. INTRODUCTION

The scientific goal of ongoing and next generation of
cosmological surveys is to understand the true nature of the
cosmic acceleration which relies on testing the standard
cosmological model, Λ cold-dark-matter (ΛCDM), and any
deviation from it. Still considering the cosmological con-
stant Λ as the main source of this phenomenon, one can
construct gravity theories which are indistinguishable from
ΛCDM at the background level but showing interesting and
distinguishable signatures on the dynamics of perturba-
tions. In the following we will investigate whether there
exists a gravity theory with these features able to challenge
the ΛCDM scenario.
We will consider an extension of the symmetric tele-

parallel General Relativity, the fðQÞ-gravity, for which
gravity is attributed to the nonmetricity scalar Q [1–5].
Detailed investigations of this theory have been performed
in many directions [2,3,5–14]. If we require the expansion
history to match the one of ΛCDM, the functional form of
fðQÞ is selected and can be derived analytically [3]. Then
precise and measurable effects can be identified on the
matter density power spectrum, the cosmic microwave
background (CMB) radiation angular power spectrum
and the lensing spectrum [11]. Cosmological constraints
on this model are limited to background probes [7] and
when considering redshift space distortion (RSD) data,
constraints are obtained only on the additional parameter of
the fðQÞ-model and on the amplitude of the matter power
spectrum at present time and scale of 8 h−1Mpc, σ08 (while
fixing the base cosmological parameters to the ΛCDM best
fit values) [8]. According to RSD data the so called σ8
tension [15] between Planck and Large Scale Structure data
is alleviated for this fðQÞ model.

In this work we provide for the first time cosmological
constraints by means of Markov chain Monte Carlo
(MCMC) methods and we use large sets of data spanning
from measurements of the background expansion of the
Universe to those of gravitational potentials, matter density
and temperature fluctuations power spectra. We conclude
our investigation with a model selection analysis which will
inform us whether the fðQÞ model analyzed is supported
by data over the ΛCDM scenario.

II. THE MODEL

The action for the fðQÞ-gravity can be written as
follows [16]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

2κ2
½Qþ fðQÞ� þ Lmðgμν; χiÞ

�
; ð1Þ

where g is the determinant of the metric gμν, κ2 ¼ 8πGN

with GN being the Newtonian constant, Q is the non-
metricity scalar and it is defined as Q ¼ −QαμνPαμν.
The latter expression includes the nonmetricity tensor
Qαμν, which reads Qαμν ¼ ∇αgμν and Pα

μν ¼ −Lα
μν=

2þ ðQα − Q̃αÞgμν=4 − δαðμQνÞ=4, where Qα ¼ gμνQαμν,

Q̃α ¼ gμνQμαν and Lα
μν ¼ ðQα

μν −QðμνÞαÞ=2. The action
includes also a general function of the nonmetricity scalar
fðQÞ and the Lagrangian, Lm, of standard matter fields, χi.
Let us note that in flat space the action (1) has been

shown to be equivalent to general relativity (GR) for
fðQÞ ¼ 0 [17]. Thus in this context any deviation from
GR can be cast in fðQÞ.
We will now consider a background defined by the

flat Friedmann-Lemaître-Robertson-Walker (FLRW) line
element:
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ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð2Þ

where aðtÞ is the scale factor and t is the cosmic time. It can
be shown that on a FLRW background the nonmetricity
scalar becomes Q ¼ 6H2 [3,16] where as usual we define
H ≡ _a=a as the Hubble parameter. Here the dot stands for a
derivative with respect to t.
The modified Friedmann equations can then be derived

and have the form [16]

H2 þ 2H2fQ −
1

6
f ¼ κ2

3
ρi; ð3Þ

ð12H2fQQ þ fQ þ 1Þ _H ¼ −
κ2

2
ðρm þ pmÞ; ð4Þ

where fQ ≡ ∂f=∂Q, fQQ ≡ ∂2f=∂Q2 and ρm and pm are
respectively the energy density and pressure of the matter
components. The latter satisfy the continuity equation for
perfect fluids, _ρm þ 3Hðρm þ pmÞ ¼ 0.
In this work we select the form of the fðQÞ function in

such a way the main source of cosmic acceleration is Λ, in
doing so we can investigate how modifications appearing
only at the level of the perturbations can impact the
cosmological constraints. We note that this is indeed a
common practice [18–22]. Then, assuming we want to
mimic the ΛCDM background evolution, the form of the
fðQÞ function can be analytically obtained from the first
Friedmann equations and it is [3]

fðQÞ ¼ αH0

ffiffiffiffi
Q

p
þ 6H2

0ΩΛ; ð5Þ

where α is a dimensionless constant, H0 is the present day
value of the Hubble parameter andΩΛ is the energy density
parameter of the cosmological constant.
The α parameter does not enter in the evolution of the

expansion history by construction but it can largely affect
the dynamics of the linear matter perturbations and gravi-
tational potentials Φðt; xiÞ and Ψðt; xiÞ. This will allow us
to investigate whether the inclusion of one additional
parameter, defining the deviation from GR, can lead to a
better fit to data1.
Considering the Newtonian gauge, the perturbed line

element, around the FLRW background, is

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ð1 − 2ΦÞδijdxidxj: ð6Þ

Furthermore assuming the quasistatic approximation, it can
be shown that for fðQÞ-gravity the two gravitational
potentials coincide, Φ ¼ Ψ, as in GR [3]. However the
Poisson equation, which defines the relation between the
linear matter perturbations, δρm, and the gravitational
potentials, in Fourier space reads [3]:

−k2Ψ ¼ 4π
GN

1þ fQ
a2ρmδm; ð7Þ

where δm ≡ δρm=ρm is the density contrast. Therefore fQ
modifies the strength of the gravitational interaction toward
an effective gravitational coupling μ ¼ 1=1þ fQ.
In a recent work [11] it has been shown that an effective

gravitational coupling of the form (7) has measurable and
interesting features on cosmological observables which
strongly depend on the sign of α. In detail, for α < 0, the
gravitational interaction is stronger than in GR (μ > 1),
then the growth factor is suppressed and the matter power
spectrum is predicted to be enhanced compared to the
one of the ΛCDM (sharing the same cosmological para-
meters). For the same reason it enhances the lensing
power spectrum, being the lensing gravitational potential
defined as ϕlens ¼ ðΦþ ΨÞ=2. A time variation of the latter
impacts the late-time integrated Sachs-Wolfe (ISW) effect
whose signature is a suppressed low-l tail of the temper-
ature-temperature power spectrum. A completely opposite
behavior is instead found when α > 0which corresponds to
a weaker gravity (see [11] for details).

III. METHODOLOGY AND DATASETS

In the present cosmological analysis, we employ the
Planck 2018 [24] (hereafter ”PLK18”) measurements of
CMB temperature likelihood for large angular scales
(l ¼ ½2; 29� for TT power spectrum) and for the small
angular scales a joint of TT, TE and EE likelihoods
(l ¼ ½30; 2508� for TT power spectrum, l ¼ ½30; 1996�
for TE cross-correlation and EE power spectra).
We then include baryonic acoustic oscillation (BAO)

data from the 6dF Galaxy Survey [25] and from the Sloan
Digital Sky Survey (SDSS) DR7 Main Galaxy Sample
[26]. Furthermore, we consider the combined BAO and
RSD datasets from the SDSS DR12 consensus release [27].
We complement the dataset with the Joint Light-curve

Array (JLA) of Supernova Type IA from the Supernova
Legacy Survey (SNLS) and SDSS [28]. We will consider
the joint analysis with PLK18þ BAOþ RSDþ SNIa and
we will refer to it as “PBRS.”
Finally we will include galaxy clustering (GC) and weak

gravitational lensing (WL) measurements from the Dark
Energy Survey Year-One (DES-1Y) data [29]. We use a
standard cut of the nonlinear regime following [30,31],
because we do not have a prescription for nonlinear

1Usually when more parameters are included in the para-
metrization defying the deviation from GR, there are certain
disadvantages: it might lead to lose the constraining power of data
[23] and the increasing complexity (i.e., the number of free
parameters) which in principle can lead to a better fit with the data
needs to be accurately evaluated using a model selection analysis
in order to provide the model assessment in comparison to the
standard cosmological model. The parametrization in Eq. (5)
considers one extra parameter and as such will reduce these
contingencies.
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corrections. We refer to this dataset simply as “DES” and
we use it in combination with the previous data, here-
after “PBRSD.”
We use a modified version of the Einstein-Boltzmann

code MGCAMB [31,32] in which the fðQÞ-model in Eq. (5)
has been implemented [11]. For the MCMC likelihood
analysis we use the MGCOSMOMC code [32]. We impose
a flat prior on α ∈ ½−3; 3� and we vary the base cosmo-
logical parameters: the physical densities of cold dark
matter Ωch2 and baryons Ωbh2 (with h ¼ H0=100), the
reionization optical depth τ, the primordial amplitude
lnð1010AsÞ, the angular size of the sound horizon at
recombination θMC and spectral index ns of scalar pertur-
bations. We include massive neutrinos with a fixed total
mass of Σmν ¼ 0.06 eV.

IV. RESULTS

In Table I we show the constraints at 95% C.L. of a
selection of the cosmological parameters H0, ns, σ08, Ω0

m
and of the parameter α for the fðQÞ model. For reference
we include the results for the ΛCDM model also. In Fig. 1
we show the marginalized constraints at 68% and 95% C.L.
for the fðQÞ-model.
The fðQÞ-model has cosmological parameters which are

consistent with the ΛCDM scenario. The weaker con-
straints are obtained with PLK18 only, but the joint
analysis, with BAO, RSD and SNIa and then with DES,
strengthen the bounds. This is particularly evident for H0.

Additionally the bounds on α are compatible among the
datasets and negative mean values are preferred in all cases,
with PLK18 selecting the smaller value. The reason is
because negative values of α suppress the large-scale
temperature anisotropies accommodating better the CMB
data. However, the larger negative values of α allow for
higher values of σ08 as expected from the phenomenology of
the model. Then when including RSD and DES data α
moves toward higher values (less negative α) and hence
smaller values for σ08. As a side effect, the exclusion of its
larger values leads to narrower bounds compared to
PLK18. When DES data are considered we can also notice
that positive values of α are also allowed at both 68% and
95% C.L.. This is because a positive α suppresses the
matter power spectrum compared to ΛCDM allowing for a
lower σ08, which is known to be preferred by DES Y1 data.
In a previous work [8] it has been found only positive
values for α (α ¼ 2.0331þ3.8212

−1.9596 ) using RSD data. This
result is expected because such measurements allow for a
lower growth rate of matter density perturbations, thus
preferring α > 0. The main difference with our result is in
the inclusion of a larger combination of data sets and in
particular of the CMB data which, as previously discussed,
select the negative branch of α.
We conclude our analysis by computing the deviance

information criterion (DIC) [33], which will allow us to
quantify the preference of the fðQÞ model with respect to
ΛCDM. The DIC is defined as

TABLE I. Marginalized constraints on cosmological and model parameters at 95% C.L. for the ΛCDM and fðQÞ models.

Model α ns H0 Ω0
m σ08

ΛCDM (PLK18) � � � 0.97� 0.01 68.0� 1.4 0.31� 0.02 0.85� 0.04
ΛCDM (PBRS) � � � 0.970þ0.008

−0.007 68.1� 0.80 0.30� 0.01 0.843þ0.032
−0.037

ΛCDM (PBRSD) � � � 0.970� 0.008 68.33þ0.76
−0.77 0.302þ0.010

−0.0097 0.829� 0.031

fðQÞ (PLK18) −0.64þ0.64
−0.60 0.97� 0.01 68.3þ1.5

−1.4 0.304� 0.019 0.848þ0.038
−0.037

fðQÞ (PBRS) −0.56þ0.58
−0.57 0.968þ0.007

−0.008 68.14þ0.79
−0.84 0.305þ0.011

−0.010 0.839þ0.032
−0.031

fðQÞ (PBRSD) −0.05þ0.34
−0.36 0.970þ0.008

−0.007 68.35� 0.80 0.302� 0.010 0.828� 0.032

FIG. 1. Marginalized constraints at 68% (darker) and 95% (lighter) C.L. on the model parameter α and four cosmological parameters
H0, ns, σ08 andΩ0

m obtained with the CMB data from Planck 2018 (PLK18, red), its combination with BAO, RSD and SNIa data (PBRS,
green) and with DES data (PBRSD, blue).
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DIC ≔ χ2eff þ 2pD; ð8Þ

where χ2eff is the value of the effective χ
2 corresponding to

the maximum likelihood and pD ¼ χ̄2eff − χ2eff , with the bar
being the average of the posterior distribution. The DIC
accounts for both the goodness of fit (through the χ2eff ) and
for the bayesian complexity of the model (with pD),
disfavoring more complex models. Models with smaller
DIC should be preferred to models with larger DIC. See
Refs. [13,34–39] for applications to alternative cosmologi-
cal scenarios. Therefore we define the following quantity

ΔDIC ¼ DICfðQÞ − DICΛCDM; ð9Þ

which will indicate a preference for the fðQÞ model over
the ΛCDM scenario if ΔDIC < 0. We show in Table II the
values for both the Δχ2eff and ΔDIC, for each of the data
sets we used.
We notice that all the combinations of data sets

employed produce a lower χ2eff for the fðQÞ model
compared to the standard cosmological scenario. Thus
fðQÞ-gravity can fit the data better than ΛCDM. The
better agreement with data is due to the ability of the fðQÞ
scenario to lower the ISW tail of the TT power spectrum, as
previously discussed. This is further proved by the negative
ΔDIC values we obtain for the PLK18 data and its
combination with BAO, RSD and SNIa, which show a
significant support in favor of the fðQÞ model. When
considering the most complete data set we realize that the
preference is instead for the ΛCDM scenario. This is due
to the inclusion of the DES data which prefers the larger
mean value for α in order to have a lower σ08, thus degrading
the better fit to the low-l tail of the TT power spec-
trum. Therefore in this case a better χ2eff is not sufficient
to compensate the bayesian complexity of the model

introduced by the additional parameter α. Let us note that
in this analysis we have performed a cut at linear scales for
the GC andWLmeasurements of DES Y1. Thus in order to
draw any conclusion a further analysis including these
scales is necessary.

V. CONCLUSION

We have provided stringent bounds at linear scales on the
cosmological and model parameters of the fðQÞ-model
defined in Eq. (5). We have used a large sample of data
including CMB, BAO, RSD, SNIa, WL and GC. We have
showed that for all combinations of data considered the χ2eff
statistics indicates that the fðQÞ model can fit better the
data compared to the standard cosmological scenario, due
to the ability of the model to lower the ISW tail compared to
ΛCDM. The DIC statistical criterion significantly favors
the fðQÞ-model over ΛCDM when PLK18 and PBRS are
employed, while the DES data support the latter. In this
case we stress that a further investigation is required in
order to extend our analysis to nonlinear scales. We also
note that the recent results from DES Y3 [40] show a better
agreement on σ8 with Planck data compared to DES Y1. In
this regards it can be informative to reconsider the fðQÞ
model when the DES Y3 data will be available.
Given the compelling features of the fðQÞ model, it can

be counted among the challenging candidates [13,35,37] to
the ΛCDM scenario. It would be of interest to compare
these scenarios among each other to find under the same
conditions (datasets, priors, methodology, etc) which is the
most promising model. We leave this investigation for the
future.
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[16] J. Beltrán Jiménez, L. Heisenberg, and T. Koivisto, Phys.

Rev. D 98, 044048 (2018).
[17] J. B. Jiménez, L. Heisenberg, and T. S. Koivisto, Universe 5,

173 (2019).
[18] Y.-S. Song, W. Hu, and I. Sawicki, Phys. Rev. D 75, 044004

(2007).
[19] L. Pogosian and A. Silvestri, Phys. Rev. D 77, 023503

(2008); 81, 049901(E) (2010).
[20] G.-B. Zhao, B. Li, and K. Koyama, Phys. Rev. D 83, 044007

(2011).
[21] A. Hojjati, A. Plahn, A. Zucca, L. Pogosian, P. Brax,

A.-C. Davis, and G.-B. Zhao, Phys. Rev. D 93, 043531
(2016).

[22] S. Bag, S. S. Mishra, and V. Sahni, Phys. Rev. D 97, 123537
(2018).

[23] V. Salvatelli, F. Piazza, and C. Marinoni, J. Cosmol.
Astropart. Phys. 09 (2016) 027.

[24] N. Aghanim et al. (Planck Collaboration), Astron.
Astrophys. 641, A5 (2020).

[25] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-
Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson,
Mon. Not. R. Astron. Soc. 416, 3017 (2011).

[26] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A.
Burden, and M. Manera, Mon. Not. R. Astron. Soc. 449,
835 (2015).

[27] S. Alam et al. (BOSS Collaboration), Mon. Not. R. Astron.
Soc. 470, 2617 (2017).

[28] M. Betoule et al. (SDSS Collaboration), Astron. Astrophys.
568, A22 (2014).

[29] T. M. C. Abbott et al. (DES Collaboration), Phys. Rev. D 98,
043526 (2018).

[30] T. M. C. Abbott et al. (DES Collaboration), Phys. Rev. D 99,
123505 (2019).

[31] A. Zucca, L. Pogosian, A. Silvestri, and G.-B. Zhao,
J. Cosmol. Astropart. Phys. 05 (2019) 001.

[32] A. Hojjati, L. Pogosian, and G.-B. Zhao, J. Cosmol.
Astropart. Phys. 08 (2011) 005.

[33] D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. van der
Linde, J. R. Stat. Soc. Ser. B 76, 485 (2014).

[34] A. R. Liddle, Annu. Rev. Nucl. Part. Sci. 59, 95 (2009).
[35] S. Peirone, G. Benevento, N. Frusciante, and S. Tsujikawa,

Phys. Rev. D 100, 063540 (2019).
[36] S. Peirone, G. Benevento, N. Frusciante, and S. Tsujikawa,

Phys. Rev. D 100, 063509 (2019).
[37] N. Frusciante, S. Peirone, L. Atayde, and A. De Felice,

Phys. Rev. D 101, 064001 (2020).
[38] N. Frusciante and M. Benetti, Phys. Rev. D 103, 104060

(2021).
[39] M. Rezaei and M. Malekjani, Eur. Phys. J. Plus 136, 219

(2021).
[40] T.M. C.Abbott et al. (DESCollaboration), arXiv:2105.13549.

CAN fðQÞ GRAVITY CHALLENGE ΛCDM? PHYS. REV. D 104, 064052 (2021)

064052-5

https://doi.org/10.1103/PhysRevD.103.063505
https://doi.org/10.1103/PhysRevD.103.063505
https://doi.org/10.1016/j.dark.2020.100616
https://doi.org/10.1016/j.dark.2020.100616
https://doi.org/10.1103/PhysRevD.103.044030
https://doi.org/10.1103/PhysRevD.103.044030
https://doi.org/10.1016/j.physletb.2020.135970
https://doi.org/10.1016/j.physletb.2020.135970
https://doi.org/10.1103/PhysRevD.103.044021
https://doi.org/10.1103/PhysRevD.103.103521
https://doi.org/10.1103/PhysRevD.103.103521
https://arXiv.org/abs/2104.15123
https://arXiv.org/abs/2105.12582
https://arXiv.org/abs/2105.12582
https://doi.org/10.1016/j.astropartphys.2021.102604
https://doi.org/10.1016/j.astropartphys.2021.102604
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.3390/universe5070173
https://doi.org/10.3390/universe5070173
https://doi.org/10.1103/PhysRevD.75.044004
https://doi.org/10.1103/PhysRevD.75.044004
https://doi.org/10.1103/PhysRevD.77.023503
https://doi.org/10.1103/PhysRevD.77.023503
https://doi.org/10.1103/PhysRevD.81.049901
https://doi.org/10.1103/PhysRevD.83.044007
https://doi.org/10.1103/PhysRevD.83.044007
https://doi.org/10.1103/PhysRevD.93.043531
https://doi.org/10.1103/PhysRevD.93.043531
https://doi.org/10.1103/PhysRevD.97.123537
https://doi.org/10.1103/PhysRevD.97.123537
https://doi.org/10.1088/1475-7516/2016/09/027
https://doi.org/10.1088/1475-7516/2016/09/027
https://doi.org/10.1051/0004-6361/201936386
https://doi.org/10.1051/0004-6361/201936386
https://doi.org/10.1111/j.1365-2966.2011.19250.x
https://doi.org/10.1093/mnras/stv154
https://doi.org/10.1093/mnras/stv154
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1051/0004-6361/201423413
https://doi.org/10.1051/0004-6361/201423413
https://doi.org/10.1103/PhysRevD.98.043526
https://doi.org/10.1103/PhysRevD.98.043526
https://doi.org/10.1103/PhysRevD.99.123505
https://doi.org/10.1103/PhysRevD.99.123505
https://doi.org/10.1088/1475-7516/2019/05/001
https://doi.org/10.1088/1475-7516/2011/08/005
https://doi.org/10.1088/1475-7516/2011/08/005
https://doi.org/10.1111/rssb.12062
https://doi.org/10.1146/annurev.nucl.010909.083706
https://doi.org/10.1103/PhysRevD.100.063540
https://doi.org/10.1103/PhysRevD.100.063509
https://doi.org/10.1103/PhysRevD.101.064001
https://doi.org/10.1103/PhysRevD.103.104060
https://doi.org/10.1103/PhysRevD.103.104060
https://doi.org/10.1140/epjp/s13360-021-01200-w
https://doi.org/10.1140/epjp/s13360-021-01200-w
https://arXiv.org/abs/2105.13549

