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Parametrized second post-Newtonian framework with conservation laws
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We parametrize the second post-Newtonian (2PN) metric for a gravitating system of fluids in the
generalized harmonic gauge, and find that there are only three independent 2PN parameters (i.e., @, § and
0,) for satisfying some conservation laws including the conservations of energy, momentum, angular
momentum and the uniform motion of the center-of-mass.
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I. INTRODUCTION

Was Einstein right? Put general relativity (GR) to the test
[1]! The experimental tests prevail in every gravitational
observation predicted by GR in different scales. For
instance, the solar system provides a terrific weak-field
regime [2,3] where the tests like light deflection and
perihelion advance of Mercury are conducted, and the
binary-pulsar as a strong-gravity astrophysical system [4]
gives access to the comparison between the decrease in its
orbital period and gravitational-wave energy loss. In recent
years, the thrilling detection of gravitational waves origi-
nated from binary black holes [5] and the image of black
holes [6,7], through possible direct reflection of the strong
field of black holes, mark the advent of a new era for
gravitational tests.

GR has passed all the gravitational tests so far with flying
colors, but due to the nonrenormalizability of the theory itself
and the interpretation puzzle for the cosmological constant
problem, the efforts to seek its alternatives have never ceased.
However, from an observational point of view, in order to
incorporate the possible deviation from GR systematically
rather than focus on a certain modified gravitational theory,
parametrizing gravitational theory from different aspects
according to the application range of experiments is an
effective method. For instance, the parametrized post-
Newtonian (PPN) framework, parametrized post-Keplerian
(PPK) framework [8] and parametrized post-Einsteinian
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(PPE) framework [9] have been constructed. Among them,
the PPN formalism is a powerful tool governing the realm of
weak-field tests. The idea of the PPN framework was
originated from Eddington. He parametrized the first post-
Newtonian (1PN) limit' of a Schwarzschild metric with two
arbitrary parameters (namely, y and ) in 1922 [10], where y
and f can be regarded to separately measure the spatial
curvature and nonlinearity produced by gravity. Will and
Nordtvedt extended the approach during 1968-1972 by
introducing another eight arbitrary parameters in addition
to y and g in front of the independent 1PN potentials to
develop the modern version of the PPN framework [11-15],
where the new parameters are classified according to whether
there exists preferred-location/frame effects and conserved
total momentum. The PPN framework encompasses a large
amount of alternative metric theories [2,16—18] and provides
a broad range of testable phenomena. Up to now, the
experimental tests performed in the solar system put rela-
tively strong constraints on the PPN parameters and therefore
on the modified gravitational theories [2].

After the success of the PPN framework, the attempts to
generalize the parametrization to the second post-
Newtonian (2PN) order were made from different direc-
tions. For example, the Schwarzschild metric is directly
expanded to the 2PN  order and then is parametrized in the
spatial-spatial component g;; to account for a future more

'In order to avoid ambiguity, we use “1PN (order)” to refer to
“the first post-Newtonian (order),” and “PN (theory)” to refer to
“post-Newtonian (theory) of all orders.” However, the traditional
notation “PPN (metric)” specially refers to parametrized post-
Newtonian (metric) at the first order.
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accurate measurement of the light deflection [19,20]. A
more ambitious effort from Nordtvedt and Benacquista
tried to include any possible metric theory at this order and
has obtained the independent parameters on the require-
ment of Lorentz invariance of the Lagrangian [21-23]. But
Demour pointed out that these parameters are not indeed
constants and introduced a field-theory-based framework to
find out that only two independent 2PN parameters are
needed in the “tensor-multiscalar” theories [24]. Thereafter,
several specific modified theories have also been calculated
to their 2PN approximation [25,26], but a parametrized
second post-Newtonian (P2PN) theory parallel to PPN
theory has not been actually constructed.

On one hand, the traditional weak-field tests are expected
to obtain unprecedented precision with present and future
astrometric missions, such as Gaia [27] and the Laser
Astrometric Test of Relativity [28], to O(107 ~ 1077) of
the size of relativistic effects, which is beyond the level of
IPN effects, (GMy/(Rgc?) ~ O(107°)), and requires tak-
ing the 2PN effects into account. On the other hand, the
information of a 2PN parameter also resides in the strong
field in a parametrized Kerr metric [29], and can be
extracted with present and future gravitational-wave tests
[30] and the horizon-scale images of black holes [31]. The
reason is that the n-th post-Newtonian approximation acts
as the asymptotic form of a black hole metric. Actually, the
parametrized Kerr metrics in [29,32] match with the PPN
metric in the weak-field region [29,32]. If we require a
higher order accuracy, in order to keep the compatibility of
parametrization in the weak-field and strong-field regions, a
reasonable P2PN formalism is also necessary.

In this paper, we will mainly follow Will’s approach to
construct a reasonable P2PN framework. However, it is
rather difficult to seek out all the possible 2PN potentials,
especially the ones absent in the 2PN limit of GR. Through
a brief analysis on the PPN framework, we find a com-
promise to simplify the P2PN structure and concentrate on
searching the independent P2PN parameters under fairly
stringent constraints on the metric theory; that is, the theory
should contain no preferred-location/frame effects and
satisfy the conservation laws. Our paper is organized as
follows. We give a brief review on the PPN framework in
Sec. II. In Sec. III, we construct a primitive P2PN metric
and establish the gravitational stress-energy pseudotensor
with the help of some transformation tricks and obtain the
parameter constraints. The gauge that the metric with the
constraints satisfies is also discussed. Finally, we give a
summary and a brief discussion in Sec. I'V. Some details are
added in Appendixes A and B.

We adopt the following conventions and notations in the
paper. The signature of metric takes (—,+, +, +). Greek
indices take the values from O to 3, while Latin indices take
the values from 1 to 3. Einstein’s summation rule over
repeated indices is used, even when we only have spatial
indices and are not careful about raising and lowering the

indices. Parentheses around the indices indicate the indices
being symmetrized and square brackets indicate antisym-
metrization; for example, A;B; = 1(A;B;+A;B;) and
ABj = 1(A;B; — A;B;). Bold letters v = v' denote spatial
vectors. Since the post-Newtonian expressions of GR are
essentially the retarded solutions to wave equations
expanded in the near-zone field and involve Poisson-like
potentials and their generalizations, here we take the
definitions of the Poisson potential, superpotential and
superduperpotential for a soure f following Will’s notation
in [33],

f,x

/)| &y,

VR(f) =,
S(f) =45 [ FEX) =X, VS(F)=2P(1),

SD(/) Ei/f(t,x’)|x—x’|3d3x’, V2SD(f) = 125(f).
(1)

We also set G =1 throughout the paper, where G the
gravitational constant.

II. A BRIEF REVIEW OF THE PARAMETRIZED
POST-NEWTONIAN FRAMEWORK

Before constructing the P2PN formalism, we give a brief
review on the PPN framework and delineate the method for
parametrization of the metric.

For a self-gravitating fluid system with the energy-
momentum tensor expressed by the proper mass density
p, the internal energy per unit mass I, the pressure P and
the four-velocity field u® as follows:

T = (p(1 +11/c?) + P/ uv’ + Pg?,  (2)

the PPN metric in the generalized standard gauge is

2
goo = —1+—5U
¢
1
+ F( —2BU? + 34, @) — 2$, D, + 2/;D; + 64, Dy)
1
F (Be®s + EDy + DFF) + O(c70),
4 1 1 g
2 —4

Here U is the Newtonian gravitational potential given by

U(x,1) / ’—/ Py
|x—x X —X/|

= P(4zp"), (4)

064050-2



PARAMETRIZED SECOND POST-NEWTONIAN FRAMEWORK WITH ...

PHYS. REV. D 104, 064050 (2021)

where p* is the rescaled mass density related to the proper
mass density p by p* = \/—_gpuo /c. The rescaled mass
density is also called the conserved mass density because it
satisfies the continuity equation, [34],

0p* + 8j(p*1)j) =0, (5)

where o/ is a three-velocity field in u® namely
u® = (u°/c)(c,v). Some other potentials in Eq. (3) are

@, =P(4np*v?),
@3 = P(4np*Il),

@, =P(4np*U),
&, =P(4znP),

Vi =P(4np*r’), X= /p*’|x —x'|d*x = S(4zp*),

*/U/~U/ x_x/ j x_x/ k
o= [P0
[x — x|
*/ kI / i i
PP (x =) [(X =" (x = X))
b, = _ d3 /d3 //;
v / x—xP { x—x =
(6)
and the rest are preferred-frame potentials,
OFF = WU + ayw/wk 0 X + azwV/;,
O = ayw;U + aswk 0 X, (7)

where w/ is the velocity of the PPN coordinate system
relative to the universal preferred frame. We make some
clarifications in regard to the metric in Eq. (3):

(1) When f=p=p=p=pp=0=A=y=1
and all other parameters vanish, the metric reduces
to the 1PN metric in GR.

(2) The additional potentials absent in GR, i.e., ®g, Oy,
@ and @, are related to preferred-location/frame
effects. ®g and @y, appear in theories with preferred-
location effects caused by, for example, a galaxy-
induced anisotropy [2], while ®*F and ®'* are involved
in some well-motivated vector-tensor [35] and tensor-
vector-scalar [36] theories that include a dynamical
timelike vector field, such as Einstein-ZAther theory.

(3) A metric theory based on an invariant action principle
automatically admits a conservation law for total
momentum and is called “semi-conservative”.
Furthermore, if the theory also admits a conserved
angular momentum and a center-of-mass with a
uniform motion (which means the existence of a
preferred frame is impossible due to the break of local
Lorentz invariance), it is called “fully conservative”.
For a fully conservative metric theory without
preferred-location effects, only two independent
parameters, f3, y, retain, and the other nonvanishing
parameters, including S, £, fs, s, A, Ay, are all
determined by fp, y. Scalar-tensor theories [37],
such as Brans-Dicke theory, fall into this category.

So we conclude that in a fully conservative PPN theory
without preferred effects (g == = =3 =y =
as = 0), the potentials are just the same as those in GR but
with the coefficients in front of them replaced by the 1PN
parameters; furthermore, we can extract the independent
ones, y and f, from all these 1PN parameters.

III. THE PARAMETRIZED SECOND
POST-NEWTONIAN FORMALISM

We expand the metric components to the following
orders [33]:

goo to O(c™), go; to O(c™), gy to O(c™). (8)

In principle, the general P2PN framework can be con-
structed parallel to that of PPN in the original paper [13]
through listing all the possible 2PN potentials and para-
metrizing them with arbitrary parameters, and then choos-
ing a gauge to get rid of the redundant degrees of freedom
(nonindependent potentials). However, difficulties also
reside in the two sides correspondingly: one is to find
potentials absent in GR, similar to @y, in the PPN [see
Eq. (6)], that need elaborate construction; the other is to
choose a suitable gauge that is compatible from the 1PN
order to the 2PN order since the gauge-fixing process
involves both orders.

Therefore, instead of trying to build the general P2PN
framework once and for all, we focus on seeking the
independent P2PN parameters in a fully conservative theory
without preferred-location/frame effects first. From the dis-
cussion in Sec. II, this can be achieved by first parametrizing
the 2PN metric in GR in a specific gauge, and then figuring
out the constraints on these parameters by considering some
conservation laws. Such a method of parametrization will
certainly break the gauge that stands in GR, but we may find
the corresponding gauge for the parametrized metric that
meets the parameter constraints hopefully.

A. The P2PN metric

We need to note that the choice of generalized standard
gauge of the PPN metric in Eq. (3) is only a reflection of
historical development based on Chandrasekhar’s work
[38] on the classic approach to post-Newtonian theory. By
contrast, the harmonic gauge prevails in the modern
approach to post-Newtonian (PN) theory, and hence we
choose to parametrize the 2PN metric in the harmonic
gauge [33,39],

’A systematic method to calculate the post-Newtonian
approximation to 3.5 order for unspecified matter fields is given
in [33], and the matter fields are only consisting of baryons in
[39]. Here, we need to generalize the calculation to perfect fluid
to 2PN order in Appendix A.
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2 1 1 (4
goo_—1+?U+?(—2ﬁU2+‘P,)+§<§5U3+U‘P2+8/1V2+5+X+Q+H>,
4 1 S
ng = —?AVJ +;(){UVJ+V]),

2 1 1
gjk: 1—|—c2]/U+c4(2(1)U2—|—T3):|5Jk+c4Mjk, (9)
in which

Y, =38,D; — 26,®, + 26,5 + 65,P4 + SoX,
W, = —66,@, + 45, — 45,D; — 126,®, — 26,X,
5 = 3KZ(U2) - 3K12(q)1) - 2K'22(q)2) - 2]('32(@3) + 2]('42(@4) - Koz(X)

7 .
+ 1012(1}4) +96,Z(v?U) — 803(v,;V7) + 30,Q(v?) + 405T(v?) — 206Q(U) + 120,T(U),

X = %Ml}fl — 11X + w3 X5 + 3us Xy + 11—2/10(4Y),
G =—126,G; — 85,G, + 165,G; + 16E,G, + E5Gs,
H = -8y H, —8nH,,
Vi = =21 V] = 41,V — 43V = dra V) + 8xsph — 250X — 161 K] — 120K,
Vs = -0, @) — 20,D; + 20;D3 — 20, D, + wpX,
Mt = 40,00 + 40,P" (10)

@
where the overdot denotes the derivative with respect to the time coordinate and Y = 8?4) Y. Here most of the potentials in
Egs. (9) and (10) can be conveniently classified into several particular classes given in Eq. (1), namely

p*lf/ 3 ) p*/ U/jf/ )
2(f) = d’x' =P4np*f), Y(f) = Bx' = P(drp vl f),
(f) |X—X/| X ( p f) (f) |X—X/| ( TP ’Uf)
N 1 ) 1) 1 1 o
El](f) = /wd?)xl — P(4ﬂp*v”v~’f),

X(f) = / pfIx — X[ = S(dnp'f).  XI(f) = / pIfx = X|d = S(dmp if),
Y(f) = / pfx = x'Pdx = SD(4ap" f), (11)
and then the unspecified potentials can be defined by
Vi=Y(?).  Vi=T(U). Vi=Z@).  vi=¥(P/p)
Py=2(vi), Xi=Xi(1), K| =PUVN),  K,=PUIU),
oY =3(1), P} =PU'UY), P, =P} :<I>2—§U2,

Q(v?) = X(IIv?), T(v?) = Z(P/p*v?), Q(U) = (1V), T(U) = Z(P/p*U),

X, =X(?),  X=X({U), X=X, X,=X(P/p"), Y=Y(1),
G, =P(U%), G,=PUU), Gy=-PU'*,  G,=P(ViVii),  Gs=-P(VU¥)
H, =P(®YUY),  H,=P(PJU), (12)
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where the commas in the definition denote the partial
derivatives with respect to the chosen coordinates. Note that
terms of half-odd-integer PN order, i.e., 1.5 PN order
exactly in g, representing the dissipative radiation-reac-
tion, are not taken into account. Equation (9) recovers the
2PN metric in GRif y = &5 = 0 and the other parameters in
Egs. (9) and (10) are all equal to 1.

B. The conservation laws and parameter constraints

Even though a large number of parameters are intro-
duced in the general metric Eq. (9), many of them are not
actually independent once the metric is required to satisfy
some conservation laws.

It is well known, for example in [40], that the usual
version of energy-momentum conservation expressed by
the vanishing of convariant divergence of T%,

VT =0, (13)

cannot afford the global conserved quantities since it is a
direct consequence of local conservation of energy momen-
tum (7% and the contribution from gravitational fields is
implicit. On the other hand, another version compatible
with Eq. (13), expressed by the vanishing of ordinary
divergence of a pseudotensor @*, namely

8,07 = 0, (14)

can be exploited to determine the conserved quantities.
Here an appropriate ®% should follow two rules: (1) it
should contain contributions from both the matter fields
and the gravitational fields; and (2) it should reduce to 7%
in the flat spacetime. For example, in GR, the exact version
of @7 takes @Y = (—5)(T% + 1), where § is the
determinant of the metric, and tZﬂL, the famous Landau-
Lifshitz pseudotensor, acts as the contribution from the
gravitational fields [40]. Then, the total momentum over a
region V can be formally defined by the three-dimensional
integral [34],

1
pr=l / 0N, (15)
v

c
When we take the limit of V to include all of the three-
dimensional space of an asymptotically flat spacetime, P*
can be proven to be invariant over time by use of Eq. (14).

Similarly, the total angular momentum can be formally
defined by

2
Job :=—/x["®ﬁ]0d3x, (16)
cJy

which is conserved over all of the three-dimensional space
only when @ is also symmetric. More specifically, the

limit of P* and J% of an asymptotically flat spacetime are
identified: P is the total energy, P’ the total three-
momentum, J% the total angular-momentum three-tensor
and J% determines the motion of the center-of-mass.
From now on, the metric in Eq. (9) is considered to be
fully conservative, or equivalently we need to find the
corresponding symmetric ®* satisfying Eq. (14). In the
PPN formalism, such a ©% assumed to be (1+
c¢2AU)(T* + 1) has been found by determining the
constant A and the symmetric gravitational stress-energy
pseudotensor 1% with the use of Egs. (13) and (14) in [14].
When we extend to the P2PN case and follow the rules for
an appropriate ®%, without loss of generality, we assume

1 1
@rx/)’ _ (1 4 —ZAU + — (BU2 —+ ‘P4)> (T(l/)’ + t(l/)’), (17)
C C

with
¥, = B|®, + B,®, + B;®; + B,®, + ByX,  (18)

where A, B and B, (k =0, 1, ...,4) are constants. We need
to point out that % acting as the contribution from
gravitational fields should be constructed from various
gravitational potentials [e.g., U, V/ and potentials con-
tained in Eq. (10)] and their derivatives, but should not
contain any of the fluid variables (p*, v/, II and P)
explicitly.

Substituting Eq. (17) into Eq. (14) and utilizing Eq. (13),
which can be rewritten by

0= VyT% = 0,T% + Te,TW + T, T (19)
we convert Eq. (14) for @ to the equation for 1%,
1 1 2 aff
sl 1 +?AU+?(BU + W) |t

1 1
— (¢4 2 ﬂ Q
= (1 +5AU+ (BU? + ‘P4)> (Do, T T, T)

1 1
- (zAa,,,U + ?8,,(BU2 + l114)> T, (20)

where the energy-momentum tensors to the required order
are given by
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11 1[3 1 1 .
2T —p*{l + [5”2 + (2—3;/)U+H] +— [§v4+ (2—§y> Uv? +§H02+P/p*1)2—4AvjV/
C C

1

15 3
+(4—2ﬁ—6}’+772—30)>U2+(2—37/)UH+LP1 —§T3—§M:|},

. : 11 1[3 1 1 .
c 1% :p*vf{l + [592+ (2—37)U—|—H+P/p*] +— [§v4+ (2—57/) Uv? +§H1)2 + P/p*v* — 4Av;Vi
C C

15 3 1 4 .
—|—(4—2ﬂ—6y+7y2 - 3a)> U? + (2-3y)UNl +2UP/p* + ¥, —ELPS _EM] } - — APV,
C

. . 1|1 113 1 1 .
Tk :p*v/vk{l +— {—1}2 + (2—3}/)U+H+P/p*] +— [—04 + (2——}/) Uv? +§H1;2 + P/p*v* —4Av; VI
c c

2 8 2
15, , 3., 1
2 1, , S R
+ Py = SyU +— (477 = 20) U = W3] b7 — — PMIY, (21)
C C C

with M = M, and the Christoffel symbols are given by

1 1
F80 - —gatU"_

1
= [(—2 +2P)UOU - 0¥, + 4AV18,U} ,

1 1 1
0 4 1|1
ij = ?Aaovk) +§ 58,Mjk + (—87/A —)()V(jak)U -+ (SA —;()Ué?(jvk) - (9(ij)

1 1 1

_ !

2

i 1 1

1 . . .
+ {(—4A +2)\VIOU + (8YA + ) U, VI + OV — 8IVKD,VF + (—4py — 4y = 26 + 2w)U8;U

1 . 1 1

+

i 4 111 .

1 1 1
+ {;]/alU +C—5 |:(—2]/2 + 2w)U6tU+§8,‘I‘3} }5jkv

1

; 1 1 1 1
F{(n = ?y(éjnakU +5jk3,,U - 5k,,8jU) +F {Eak./\/ljn +§8n/\/ljk —Eaijn

1 1 1
+ 5jn8k |:(—]/2 + CO)UV2 + 51P3:| + 5jk8n |:(—}’2 + CU)U2 +§lP3:| - 5kn8j |:(—]/2 + G))Uz + 5‘1’3:| } (22)

In principle, the form of a symmetric 1% and the constants A, B and B, (k = 0, 1, ..., 4) can be obtained by solving Eq. (20).
In the following part of this subsection, we only work out the constraints on the parameters by taking into account the
conservation laws, but not the explicit form of 1P,

We notice that Eq. (20) is to turn the quantities involving the fluid variables on the right-hand side into a combination of
gradients and time derivatives of gravitational fields on the left-hand side. In order to solve Eq. (20), several transformation
tricks could be used. For example, we take advantage of Eq. (1) and also Eq. (11) in a reverse direction to convert the various
source into field quantities,

064050-6
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_f:VZP(f) =0OkP(f), —4np*f =010 Z(f), —4ﬂﬂ*”jf:8kak2j(f>7 —4”P*Uivjf:3kak2ij(f)a (23)
and use the following transformation identity, valid for any potential ®:

—[0,® = =0,[0,POP(f)] + k[0, POP(f)] + 0, POOP(f),
or -— faaq) = _aa[akq)akp(f)] + Zak [a(aq)ak)P(f)] - a(zp(f)vzq) (24)

Some identities between potentials,

8,U +d;Vi =0, (25)
0,U +0;(UVI + V] — ¢} + 2K} +2K}) =0, (26)
B, (TU2 420, =20, +4®; +2X) +9,(8UVI + 2V + 4V} +4V] + 4V — 8¢} +2X7 + 16K + 12K)) = O(c™2),  (27)

O, VI + 9,[40Y 4 4PY — 5 (U2 = 20, — 40,)] = O(c72), (28)

are also useful. The identities in Egs. (25) and (26) are actually the results of the continuity equation, Eq. (5), because the
continuity equation (5) leads to 0,F = [ p*(8,h + v'*0ph)d*x’ for any function F(t,x) = [ p*h(t,x,x')d’x" defined by
p*. The third identity in Eq. (27) and the fourth in Eq. (28) are equivalent to the conservation equation of Newtonian total
energy (the sum of kinetic, gravitational and internal energies) [14] and Euler’s equation, respectively,

1 (1 . :
e (E v+ l'[> +p /0, (5 v+ l'[> + 0;(Pv/) — p*v10,U = O(c™?),

*d’L)j * -2

which can be directly derived from Eq. (19) for @ = 0 and a = j to corresponding order after inserting the continuity
equation, Eq. (5). Equipped with the transformation relations in Eqs. (23)—(28), we are ready to solve Eq. (20) and obtain
the corresponding parameter constraints.

Substituting Egs. (21) and (22) into Eq. (20) and taking advantage of Egs. (23)—(28), for @ = 0, we have

1 1
Iy Kl + AU +— (BU? + l114)) toﬂ]
Cc c

11 1 11

11 23 1 3 1
c’4rn 2 2 2 2

1 1 1 i}
~5B+A=3)® +5(A+3-3)), - (3+A=3))D; - (3 +A—3y)x}a,U

- (3+A-3y) <(’)J-U8th - %ajvkakw) +2A(0, VIO V) — 3

La +A—3y—ﬂo><atu>2}

11 1 ..

3 3

4 1
+16(1 —7)K ;) + 12<1 —§r> KZA,-]}a,{U+ 204V 0k <_§T‘ +§‘P3 -, +§M)
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. 1.
— MO VIO (—U? 420, — 4Dy) + A V!0 (D1 + Pojyy) — 44 <Vk8jU8kU -5 VfakUakU>
+2(=3=2B+ 6B+ 6y — 157> —=2A + 6Ay + 60 — 4(3 + A — 3y)1) U0 U0V j

‘ 19 27 9
—(B4+A=3))AVId,V+ <7+ZB—4ﬁ—ﬂ2 ~ 152+ A—6rA+28 —6a)) Ud,Ud,U
3
—at(—lPIqLE% ¥, - M)6U+8[ (B+A—3y— 3ﬁ1)<l>1+2(3y AA 428, —A—3)D,
1 1
3 A= 3P0y + (A= 30+ 56+ A= = X |OU |+ 50 (30)

where 7 is a new free parameter introduced during transformation for the full use of the identities in Eq. (26) and Eq. (27),
and

0 =0,U %(—3ﬁ1 +2r + 1)p*v? = 82) 7 (=1 + 28 = f2)UOLU + (1 = B3)p* TL+ (=3B, +3y)P|.  (31)

Note that apart from the terms in Q;, the solution has been arranged into a combination of time derivatives and gradients of
gravitational fields with the use of transformation tricks [the representative examples are given in Appendix B; in particular,
7 is introduced in Eq. (B5)]. Therefore, in order to keep the result compatible with the expression
9pl(1 + c2AU + ¢™*(BU? +¥,))1”], Q; must vanish, or equivalently, all the coefficients in Q; must vanish, namely

p=52r+1), pr=2p-1, p3=1, Pa=v. (32)

Wl»—t

For a = j in Eq. (20), we first solve the equation to the 1PN order, i.e., to O(c™2),

1 1 .
Iy Kl +—AU+—(BU? +‘I‘4)> t/ﬂ]
Cc c

+4 18{(8A+2(A Sy 4+ 1))0,U0, V. + (45— o+ A~ 5y +1)(0,U0,U)}
+ 1241 ak{4A[8kV181VJ +0,V'IO,VE -0, VIOV —0,VioVE+0,VioU 4 0,VF0;U + 6,0,V ,, 04V ) — 80,V 9,U]
—5(4A —Po+A=5y+1)8,(0,U0,U) +%80U8k)‘1’1 —%@@,U@,wl
+(2B-A=2+457-p,) [—(U@kUE)jU) +%5.,-k(ua,Ua,U)}
+(A=5y+1) [ajvla,vk +0,VkO;U+ 0, VIO, U -5 (%a,vmamvl + a,vla,Uﬂ
+(A=5y+1) [%ajUak(—zcbz + U? +4,) —% 10, U0, (— D, + U? +2c1>4)}
+ (A =5y + 1)[0(®] + P})d,U -, (@] +Pg’<)a,u]} +Cl—2Q§‘ +0(c™), (33)

where

| 13
QézajUK_E_HEﬂl)py + (87)7 (28— B — DOUU + (1 + By)p T+ (=3 + 36)P|.  (34)
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Similarly, requiring that all the coefficients in Q, vanish leads
to the same constraints on parameters as those in Eq. (32).
However, the symmetry of #/* has not been fully considered
in the above transformation. For example, the symmetric
counterpart of the term ak(d){l + P;")a, U, namely
9;(®Y + P5)o,U, is not contained in Eq. (33). Here ¢/ is
required to be symmetric, and hence the coefficients of such
nonsymmetric terms should vanish, which leads to a con-
straint on the constant A introduced in Eq. (17), i.e.,

A=5y-1. (35)
In addition, #° should also be symmetric. Comparing the

time derivative part of Eq. (33) and the gradient part
|

Iy

1 1 .
(1 +—5AU +—(BU? +lP4)> tfﬂ}
C 4

of Eq. (30) at the 1PN order, we get another two
constraints,

1
A:E(}"*‘l)» po=1. (36)

As a matter of fact, the solution for @ = j to the 1PN order
and the consequent parameter constraints have been obtained
in the fundamental work for the PPN formalism by Will in
[14], despite some different arguments.

For a = j, at the 2PN order, substituting Egs. (21) and
(22) and inserting the PPN parameter constraints in
Egs. (32), (35) and (36) into Eq. (20), we obtain

1 . ) ) ) )
D?{(—l —2B+2—10y + 157% + 10w)p* v/ v* UOLU + (=8 A+ 3 ) p* v*Vid, U + p* v' vk O, MU + PO MI* + p* MI*H, U

5
2

. 1 1 . )
+p*v/vk8k (—Elpl +—lP3 —lP4 +§M) +[)* vk[—Zsz - (4A —)()U—4AH—4AP]8ka +,0* vkakV/

1
—5P 0i(G+HA X+ E) + (=1 =2B+2-Tr + 12y +4w)PUO;U + (=1 +2p)p" TIUO;U

5

15 1 1

+p*v? [(_%_V) v?+ (—%+ﬁ—2y—2w> U+ (—%—y)l'[—k(—l —y)P/p*} QU+ (4A—y)p*okvko,U

8 2

4 2

1 1 1 1 1 1
+p*l)28j (——‘Pl ——T:;) —l—p*Uaj <—§"P1 —§T2> +p*H6/ <—§T1) +Paj (—Elyl +lP'; —lP4)

1
—8Ap* VRO, VE+ p*v* [2A0% 4 (4A — y)U +4ATT+4AP)O,VF — p* vk 0, Wk —Ep*vkvlaj/\/lkl

5
2

. . (1 1
4 (=1=2B+28— 10y + 1572+ 100)p* Uv/0,U + (=4A + )p*VIid,U + p* 170, <—§‘P1 +Iy,-p, +§M)

+p* 0RO, MUK+ p* [-2A0% — (4A — ) U —4ATN)0, VI + p* 0, VI } (37)

Here D denotes that only the terms at 2PN order are
included. To make the transformation procedure easier, we
can first determine several 2PN parameter constraints by
requiring the symmetry of (% at the 2PN order. For
example, 9;[(1+c2AU+c*(BU*+¥,))] in Eq. (30)
contains the terms (4mc®)'9;{—1/2(3 +A - 3y)x
8[k[2V1j] +4(1 - ZT)VZJ-] + 4V3j] + 4V4j] -8(1- T>¢2j] +
2Xj] +16(1 —7)Ky;) + 12(1 —4/37)K,;]0, U} and
(4nc3)710,{8A8, V!0 (®y ) + Pajyr)}. and then the solu-
tion of 9y[(1 + ¢ AU + ¢~*(BU? + ¥,))#°] in Eq. (37)
should correspondingly contain (4zc*)~'0,{-1/2(3+A -
3)/)8[/([2VU] +4(1 —2T)V2j] +4V3j] +4V4j] —8(1 —T)(ﬁzj] +

|
2X;+16(1-7)K;;+12(1-4/37) K]0, U} and
(4mc*)710,{8A0, V'O (®y;; + Pajy)}. which can be ob-
tained respectively from p*9,V7 and p*v*9, M/* in Eq. (37).
Specifically, we take the transformations as follows:

|
p*a,V/ = Ea,(ﬁkUa[kVJ])
1 .
+Ea,€[—ak UOVI =0;UdVE +6,,(0,Ud V"))
1

+47r

(=0,0,UB V! +0,0,Ud V4 0,U0,0,V%),
(38)
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) 1 1 .
,[)*Ukat./\/l]k = %8,(8;{V16[k./\/lj],) + Eak[—aleatMﬂ - aleathl + 5jk(81V’”0tMlm)]

+ % (=040, V'O MI + 0,0, V10, MM + 0,V19,0,MH), (39)

and then the match between %/ and #° provides constraints on the parameters in 1/ and M/¥,

r+D-7), u=

N[ =

(r+1)(-27), ys=

Since (47)7'0;U0,0,V* and (47)~'0;V'9,0,M" on the right-hand sides of Eq. (38) and Eq. (39) satisfying the above
constraints can be rel@ted to the identities of potentials in Egs. (26), (27) and (28), for convenience, we introduce two new
expressions, V/ and M*, as follows:

_ . ) ) . . ) . ) 4 ,
Vi=—8(1 —2)UVI =2V —4(1 = 20)V] — 4V —4VI 4-8(1 — 7)) — 2%/ — 16(1 — 1)K — 12(1 —51)1(5,

Sk = 4 4+ 4pJk. (41)

Using Eq. (40) and V/ and M/, after a tedious calculation, we obtain

I

1 1 .
<1 +—2AU+—4(BU2+‘P4))t/ﬂ]
C Cc

11

D -
ctarn

8,{A [2ak((7 —87)U% + 2@ — 2B, +4D3 +2X)0|;Vyy +20,((7 - 87) U* 2@ — 2@, +4®D; +2X)9 ;) U
i} 1. .
+20, U8y V) +32(1 — 1)U UV ; +4 (—vkakUajUJrEwak UoU— a,vkakw)
. 4 _
- 8ij6k(2q)2 - U2 —4(I)4> - 8tU8j(2q)2 - U2 —4(134) - 20 <1 —§T> U@,U@1U+2akV18[kM/]l]

3 1 1 3 1 .
+490,U0; <_ZM1¢)1 +§ll2¢’2 - 5M3¢3 - 5/44@4 - Z’MOX> }

11 — . _ _ . _ _ . _. _
a3 {A [—(akvla,w +0,VIO VK 4+ 9, V0,V 40,V 0,VE =20, V19, V! =20,V 50,V + 0, U8, Vi +0,U0,V¥)

.. 1 _ _ . _ _ _ _
+20((7 - 87)U* 4 2@, — 2D, +4®; +2X)0,V ) +7 (amM“amMﬂ — O M™D, M=, M™ 5, MM

+§aka’ajM"” +2M*9,U8,U —4M™ 9, UD,, U —4M"™9,,UD; U) - VoM =0,VI0, MM
1 _ _
+§(a( M= 0 M i )0,(2®, — U? —4@,) +20,V ;)0,(2®, — U? +4Dy) =20,V 10, (2D, — U? —4®y)

1 1 1
+2(20; ~ U2~ 40,)0,U0,U ~ 20, (20; ~ U? = 40,)0, (20, ~ U? ~ 40, 470 U0 (2c1>2 —5U? —4c1>4>
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1 .
+ 16(—§V(k8j>U8tU - 2(1 - T)Ua(kvlalvj) + (1 —T)UaleajV[ + (1 - T)UBIV"GZVJ
1 .
—2(1 - T)Ua(kUa,Vj) + (1 - T)V’(?(leaj)U+18,Vk8,V1>}

()
4 2#22 3

1 1 1 3
_Za(k |: < }’+2a)1)®1+<—5+ﬂ+a)2>®2+<—§—w3>®3+<—§y+a}4>®4]

1 1 1
— 28,39 [ 1+ 2)®; — S P; 3}/@4 — 28D, [5 (—1 +2B—28, + §A> @, + (=37 + 654 — A)CDJ

.. 3 1 1 3 1 .
+ 6(kU3j)(g+ H + 5 + X) - 28(kX8j) <——/,[1(I)1 + = ——/l3q>3 _5”4(1)4 —gﬂ()X)

[\ R

+ %iaj{A [—(a,vma,vm -9, V"a,V! = 0,U0 V") — 0,((7 — 87)U? 4 2d — 2d, + 4d5 + 2X)0,V!

—0,((7 = 87)U? + 2@, — 2@, + 4d; + 2X)9,U + 10(1 - g%’) Ud,Ud,U + 8,Ud,(2®, — U? + 4@,)

+ 411 G 0, M9, MM — %8,,1/\_/1"18,"/\_/1”1 +2M™9,, Ud,U + 4a,vma,/\'/1’m> - %alwa, (2(1)2 - % U? - 4<I>4)
+ 16((1 —)UdUd,V! +%V181U8,U - % (1-17)V'9,V'0,U - % (1 =2)UO,V™O, V™ + % (1- T)Ualvmamvl)
+0,V10,20, — U? — 4®,) — (20, — U? — 4®,)0,U0,U + %81(2®2 - U? - 49,)9,2®, — U? - 4@)}

1 3 1 1 3 1 .
—EGIU(?I(Q-I—H—I—S—I—X) 28 U8< —ﬂ1®1+2 2®2—§u3(1)3—§,u4<l>4—1/40X)

2 2 2
1 1 1 1 1 3
+ 0,919, s\Ta 37 T @, + —E‘F/”‘f’wz D, + 57 ®s D; + SV T @,

1 1 1

.. 3 1 1 3 1 ..
+ 0,X0, <—ZM1‘D1 + 512 ®y — Sz P3 — S py Oy — §M0X>

+0,®,0, B (—B4 =3y — 2w, — 6A)d>4} } + 14 0], (42)
C
where
0} = ic’w {6(A<1 —g) - é,>6,UatU+ 4(A = £)UD,D,U + 8(A — &)VF0,0,U — 8(A(1 — 1) — £,), V'O,V

1
+ EfsﬁthakU + 4(A - nl)(Dkl@k@[U + 4(A - nz)PélﬁkalU + S(A(l - T) - l)p*ka?]Vk
+ (x = 8AT)[=p* kU (,VF = 8, VI) + p*Vid,U + p*U,Vi + p*1kVig, U]
. 1 5 1 - 1
+,0*Uj1)kak |:—5"P1 +§"F3 - T4 +§M + A(2CI>2 - l]2 — 4(D4) +§(—1 - 2B + 2ﬂ— 10}’ + 15}/2 + 1060)U2:|

. 1 5 1 - 1
+p*v/3t |:—5‘~P1 +§lP3 — ‘P4 +§M + A(2d>2 — U2 —4(134) +§(—1 —2B +2ﬁ— 107/+ 15]/2 + 106())U2:|
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5 3
+8JU{,0*|:<—1 —B] —2}/+35] —5601 +2A—§K])q)] +(—2—Bz +4ﬂ—252—5602+6A—K2)q)2

5 1 ..
+ (—2 - B3 —|— 253 + 5603 - K3)q)3 + (—B4 - 6]/ + 654 - 50)4 + K4 — 8A)(I)4 + <_BO - 1 + 50 +§0)0 —§K0>X:|

* .2

31 7 3 9 1 3
X p*o K—g—iy—l—gal)vz—k(—§+ﬁ—2y—2w+§62>U+<—§—y+§64>1'[+(—1—y+205)P/p*]
15, 3
+pU —2—B+4ﬂ—5y+7}/ —25+5a)—3A+§K U+ (-1+2—-06)ll
+ (=1 =2B+2B-"Ty + 12y* + 4w + 60, —4A)P/p*] + (4A —)(—463)/)*UIVI}
. 5 11 3 . . 11 ..
+,01)aj —Z—Ea)o‘l—zﬂ] X +p HBJ (—y+a)3)<l>l+ —§+§ﬂ3 X

1 1 ..
+[)*U(9] |:(—}’+ 351 —ﬂ—(l)2>q)1 + (253 - 2ﬂ)¢3 + <_§+50 —§M2>X:|

1 3
+Paj|:<—§—Bl — Y — W +§}/—604>(D] +(—1—Bz+2ﬂ—2a)2+4A+3}/—654)q)2+(—1—B’;+2a)';+3]/)q)';

1 3 ..

Here D also denotes that only the terms at 2PN order are included, and we guarantee the symmetry of #/* during transformation.

Similarly, requiring that all of the coefficients in Qjé vanish, and matching the time derivative part of Eq. (42) with the spatial
derivative part of Eq. (30) at the 2PN order, we finally obtain

x=4(1+y)z,
wy=y, o==2(+t+p o=y, 0=(=20+2)+y. w3=y, w;=2-1,

1
mo=1 m=x2r+l). p=2-1 m=1L =y

1 1
So=p. S=52r=p+2). &=p G=r-p+1. A=5+1){1-7)

1 1 1 1
01:7(47+3>7 02:5(47—8(1+}’)T+2ﬁ+3)7 03:5(74‘1)(1—27)’ 0425(274'1)’

1 1
6525(7+1)7 o5 =2p—-1, 67:5(}’2—}’—4(7"‘1)7"'2/3)’
1 1
K0:2ﬂ—1, K:§(Y—6ﬁ+4(5+4), K1:§(2y—2ﬁ+3), K2:]/+2ﬁ—252, K3:2ﬁ—1, K4:—}/+6ﬂ—4,

1 4 1 1 1
5122(Y+1)(1—37>’ 5225325(7+1)7 §4=§(y+1)(1—f), &5 =0, ﬂ1=772=§(7+1), (44)

1 1 1
By=5(y=1),  B=5(57+126-12y=20(y+ 1)t =3),  Bi=—5(5r - 1),
By=3(—y+48-3), By=5y—1, B,=-3(57-1). (45)

After taking all of the constraints, there remain three independent 2PN parameters which are chosen as 9, d, and .
To summarize, there are two independent 1PN parameters (y and ) and three independent 2PN parameters (3, 6, and w)

in the P2PN metric Eq. (9) with conservation laws. Here we make a list of all the other parameters in Eq. (9) in terms of the
independent parameters:
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b %(27’+1) Pr=20-1, p3=1, Ps=7, Po =1, A= %(er])

0 %(27 p+2). o3 = p, op=y—-p+1, 6o = P, A= %(2}’ p+wo+2),
%(7/ 6 +46+4), 1:%(2;/ 26+ 3), Ky =y + 2B —25,, K3 =2p-1, Ky = —y+6B—4,

o= 2p—1. %(4}/—1—3) 62:%(4y—2ﬂ+4w+3), 63:%(y—ﬁ+w+1), %(2}/—1—1),
%(er) o6 =261, oy %(7 —7 +2w),

Hi %(2y+1) Hy =24 -1, uz =1, Ha =7, Ho =1,

E=g(r-%42043),  &H=30+1).  &=g(+1). &= @r-fret2, &=0,

i %(7+1) 772:%(74'1),

(=2p-0) =01, m=sh-pre+l)  m=aG+D z=y0+ 1),

1 1 1
x5 =+ 2r=p+w+2), Zo—E(Y‘H)v 1121(2y—ﬂ+w+2), ) 6(3}’ 26+ 2w +3),
w; =7, w, = (=2 +2) +v, w3 =7, wy =2y —1, wy =7y,
1 1
0, —E(Y‘F 1), 0, —5(74' 1); (46)

and all the constants in the total energy-momentum pseudotensor ®% in Eq. (17) read
A=5y—-1,
1 1
B:§(15y2+2ﬂ—12y+10w—3), Blz—i(Sy—l), B, =3(—y+4p-3),

By=5y—1, B,=-3(5r-1). (57— 1). (47)

l\)l'—

Before closing this subsection, we take some concrete examples into account:

(1) In GR, we have y = f = @ = § = §, = 1, and the solution for (1 + %AU +C—14 (BU? 4+ ¥,))t* in Egs. (30), (33)
and (42) is exactly (— g)taﬁ to the 2PN order given in [33].

(2) In the scalar-tensor theories [41], the action is given by

5 = (162)"! / (BR — ()3 0,00,]\/ e x + S, (1.3, (48)

where R is the Ricci scalar of the spacetime metric Gyu» Where @(¢p) is an arbitrary function of the scalar field ¢,
where §,, only involves the matter fields m and the metric, and where ¢ does not couple to the matter directly.
We introduce the notation ¢ = ¢po(1 + c~2f), where ¢, is asymptotic value of the scalar field far away from
the system and f measures the variation in ¢ from ¢y. Then @(¢) can be expanded as @(¢p) =

@y + C—lquo(ff) 2 64 0( a ¢2) f2, where the subscript “0” denotes that the variable takes value at ¢,. With other
notations defined by

1 5 (dd/d¢)eo P (@ /dd?)opf
’ ' (34 2a0) (4 + 200) 27T (3420 (4 + 200

(49)
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we find that the independent parameters given in this paper are

y=1-2¢, p=1+0,
o=1+(-4+42+1).

§=1-(=34 +

— 43 +h)., S =1+4EB+2).  (50)

(3) In the tensor-multiscalar theories [24], Damour and Esposito-Farese found there are two independent 2PN
parameters labeled as € and ¢ via a field-theory approach, and the 2PN deviations from GR caused by two of our new
parameters, 6 and &,, and their related potentials, U3, U®,, X(U?) and Z(®,), are given by

1 [4(6-1)
Agoy = —
Joo c(’{ 3 c
y—1p-1 ow-1
AgO]‘:O< PERRRPCIERC )
y=1p-1 o-1\
Agjk_0< C4 s C4 P C4 P

C6’C6

U3+4<5—1>2<U2>} +%[4(52—1>U<1>2+4<52—1>z<q>2>]+o< —1r-] w—1>,

(1)

then the parameters ¢ and ¢ adopted in [24] are related to § and &, by 4(6 — 1) =€ and 2(5, — 1) = ¢.

C. Generalized harmonic gauge

After introducing these PN parameters, the harmonic gauge used in GR is no longer valid. However, Will proposed a
generalized harmonic gauge matched with his PPN metric in [3], and we suppose such a gauge can be similarly extended to
our P2PN metric in Eq. (9) with all the parameter constraints in Eq. (46).

We assume that the generalized harmonic gauge to the 2PN order takes the form

1
0 { [1 +—5CU + (DU + D@ + D)@, + D3®5 + Dy @y + DOX)} (\/—gg’“’)} =0, (52)

where C, D and D, (k=0,1,...,

4) are constants to be determined. With the help of identities of potentials in Egs. (26),

(27) and (28), we find that Eq. (52) automatically vanishes if these constants satisfy

CZ_}""L

(372 =2y — 28— 2w + 3),

NI>—

Dy =—-y+1, D, =3(y-1),

For y = f = w = 1, all the above constants are equal to
zero and Eq. (52) goes back to the genuine harmonic gauge.

IV. SUMMARY AND DISCUSSION

In this paper, going along with the way in which Will
parametrized the 1PN metric and obtained the parameter
constraints by requiring some conservation laws, we
extended to parametrize the 2PN metric and obtain the
corresponding parameter constraints. We chose to para-
metrize the 2PN metric in the harmonic gauge, and the final
metric meeting the constraints has proven to be in a
generalized harmonic gauge. It turns out that three 2PN
parameters, @, 6 and &,, appear independently under the

Dy =

(r—=1), D, =3-4p+y.

(=r+1). (53)

[\)|>—l\)|'—

|
restriction of conservation laws, which enabled our frame-
work to encompass, for example, the scalar-tensor theories
properly. In addition, our calculations were also in con-
sistency with the tensor-multiscalar theories when consid-
ering the deviation from GR caused by ¢ and 6,.
Another important issue we need to note is about the
gravitational tests. Within the PPN framework, the solar
system tests put tight bounds on parameters y and f:
ly — 1] £ O(107°) (by time delay) and | — 1| < O(1079)
(by perihelion shift of Mercury) [2]. When it comes to the
2PN order, Damour and Esposito-Farese investigated the
experimental tests for the only two independent parameters
(e and ¢) in the tensor-multiscalar theories. Since these two
parameters only appear in gy, at O(c~®), they concluded
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that the light-deflection and time-delay experiments to
second order cannot probe any 2PN deviation from GR
[24]. However, the appearance of another 2PN parameter @
in our present framework makes the problem more com-
plicated, because @ is involved in g;; at O(c¢™*) and
possibly enters into the equation of motion of light
[19,42]. Reference [24] also pointed out that other weak-
field tests, like perihelion shift and Nordtvedt effect, are
difficult to give effective access to 2PN parameters because
the 2PN contribution blends in with the high-precision of
IPN parameters. On the other hand, the binary-pulsar
experiments [24] lead to significant limits, € < O(1072)
and ¢ < O(107%), in the tensor-multiscalar theories, and
other tests in the strong-field regime, like the gravitational-
wave [30] and black-hole-shadow [31] experiments, can
also provide bounds on the 2PN parameters for a para-
metrized Kerr metric. It is likely that the combination of
gravitational tests from different scales would eventually
reveal to us the nature of the gravitational theory.
Moreover, the present P2PN metric meeting the con-
straints is constructed under fairly stringent conservation
conditions; for a broader P2PN framework that permits the
preferred-reference frames, we need other new 2PN param-
eters and potentials to describe the effects when the
coordinates transform from the universal rest-frame to
the moving frames relative to it. From an intuitive angle,
there will be more than 49 2PN parameters [see Egs. (9) and
(10)] in a more general P2PN framework. Compared to the

13 05
Goo=—(1--N+2N>— N3
Jo0 ( PR T )

. 1
oy ==K (1=38) + 0(c™)

1
2

1PN potentials, the 2PN potentials are bigger in quantity
but smaller in magnitude, and the individual or joint effects
of the corresponding parameters remain to be investigated.
We will leave this for future work.
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APPENDIX A: THE METRIC TO 2PN ORDER IN
GR WITH REGARD TO PERFECT FLUID

Pati and Will calculate the near-zone metric to 3.5 PN
order via direct integration of the relaxed Einstein equations
in [33]. Here we summarize the main results for the metric
to 2PN order (see [33] for details):

1 |
+—B<1 —§N> +§KJKJ +O(C_7),

y 11 .
QU:M<H5N—§W)+HhEBM+O@4)

—§g=14+N-B+0(c?),

in which

4 1 . 1 .
N =—5U, +— (TU; — 4@, +2®,, + 2X,,) + s (—16U6q>,5 +8U,®,, +7U X, +—U3

C C
4

20 .
3 —4ViVE —16Z,(®,,)

. O BC)
+£Axg+smu¢paxw+x%+6Yf4mw—1&5,+9G%+auaf-MG%—lwh,-MH%)

B = ? (U(Zr + 4q)10 - 2@20_) + E (UO'XO' + 4V¥FV{7 - ZG(XJ) - 82{’(‘/{7) + 1622((]0) + 2X1(T - X2(s - 20G1(r

+ 8G4(7 + 16G56)’

4
Ki=—Vi
C3

B =~ 4, + 4P, - 520, — U2))

+ 5 8V}, — 84, +8U, Vi + 16K}, + 12K}, +2K3).
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[7Pt)

Here the potentials with the subscript “o
namely

are defined by the provisional “densities” for unspecified matter fields 7%,

o= c2(TO + Tk, o/ =c'TY, ol =TV, (A3)

through the integrals

E/Ixaif;qu '=P(nof).  %(f) E/ Gﬂf/, &3x' = P(4nolf),

x—x]
Gij/f/ B
x4 = Plénof).

X(f) = [ oFx=X|d% =Slra).  Xif)= [ o Flx=x|aW = Stanaly),

J(f) =

XJ(f) = /aif’f’|x —X'|d*x' = S(4nclif),

Y, (f) = /0’f’|x —xX'|Pd*x’ = SD(4zncf); (A4)
specifically, they are given by
Z,(1),
Vé—zj(l)’ ch(;Ezii(l)’ ¢)2(FEZ(7(U(7)’ XUEX(T(I)’
V3, =5U). ), =%,(Vs). K|, =P(UsVs'). Ky, =PUIU,). X;=X;(1), @,=%J(1). Py,=PU;U7).
X, =Xi(1), Xp,=X(U), Y,=Y,(1), G,=P(U%). Gy, =PU,U,), Gs,=-P(UV¥),
G4nEP(Vf7:jV{)}i)7 G5GE_P(V§U§)1 HlGEP((DKyU;Yij)’ H2UEP(P£jUgj)' (AS)

When the matter field is specified to be perfect fluid with the energy-momentum tensor in Eq. (2), we usually convert the
potentials from integrals over o, ¢/ and ¢/ to integrals over the conventional conserved mass density p* = \/=gpu’/c. In
terms of p*, the energy-momentum tensor takes the form

T = p*(1 +11/2) (/=) (/)P + P(u®/c)? /v P + PG?, (A6)

where v* = (¢, v) and u°/c = (\/—QOO — 2go;v’ /¢ — g;jv'v/ /c*)~'. Combining Egs. (A3) and (A6), as well as the metric

Eq. (A1) and the functions in Eq. (A2), we express the provisional “densities” in terms of p* to the required order,

1 /3 1 (7 1 3 3
=p* {1 + <§v2 -U, +H+3P/p*> +— <§v4 +§U61;2 +§H02 +2P/p*v? — 4'VE +§U,2, - U,
C C

1..
—6U,,P/p*+4CD10—2¢25—§X{,>:|,
* 0 1 1 2 *
ol = p*v/ 1—}—? ok —-U,+11+P/p* ||,
6l = p*viv) + 5P,

) 1 1
o' = p*v* + 3P + — [p*vz <§ > U, +T1+ P/p*> - 6U{,P} ) (A7)
C

Substituting these formulas into the definitions in Eq. (A5) and iterating successively, we obtain the conversion
relationships between the old potentials defined by o, 6/ and ¢/ and the new potentials defined by p* to required order: for
the Newtonian potential and 1PN potentials,
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1 5
U,=U+—
? +cz(2

... 3
i _vie (i iy
Vi=V +? EVI_V2+V3+V4 .
1 /1
D, =D + 3D +— <§Z(v4) - 2(v?U) + Q(v?) + T(v?) — 6T(U)>,
C

®, — @, +% (%2@1) 3 (@) + (D) + 35(d,) + 32(@2(]) _S(U%) 4+ QU) + 3T(U)),

1 /3
X0:X—|—2<2X1—X2+X3+3X4>;

for some 2PN potentials,

oY = @Y 4 5id,, U,®,, = UD, +3UD,, T, (D) = Z(D)) + 3Z(Dy),
X1, = X1 +3Xy, Hy, = H; = 2X(®y), TH(U) = Z(v*U) +3T(U),

3 1 (7 1 .3
O —P, + D3 + 3<1>4> + 7 <§Z(v4) +§Z(1)2U) — 43 (V) +§Z(U2) +§2(c1>,) —3(®,)

(A8)

(A9)

and the remaining 2PN potentials in Eq. (A5) keep their forms when they are defined by p*, for example, ¢£,, = é
X5, = X,. Substituting the conversions into Eq. (A5) for the metric Eq. (A1), we finally obtain the 2PN metric with regard

to perfect fluid, i.e., Eq. (9) with y = &5 = 0 and the other unspecified parameters are all equal to 1.

APPENDIX B: TRANSFORMATION TRICKS

Some skillful transformations are needed in solving Eq. (20), and we list representative examples with regard to the

equation for @ = 0 in Eq. (30):
(1) the transformation most frequently used:

—4np*0,®, = V2UO,®, = —0,(0;@,0;U) +20;(0,®0;)U) + Adrp*v?0,U;
(2) different transformations for the same component:

{ —4mp* U, U = V2®,0,U = —0,(0,2,0,U) + 0;(8,Ud;®,) + 0,U9,0,®,,

{ ~4np*VIO;U = V2®L0,U = —0,(0,Udyesy)) + 0,UD 0,4}

—4np*Vio,U = VIN2UO,U = 0,(VI9,Ud;U) = 10;(VIO,UdU) —30,Ud,Ud U — 9, VIO U, U,
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(3) synthetical transformation by use of identities of potentials:
—4np*VIid,U — 4mp* vl vk 0, VI

[ ) 1 ) 1 ) . . : )
= | (VIO UD;U) = 50,(VIOLUOU) = 5 B UBUAU | + 0,0,PF Vi + 8,0,00, Vi

i . 1 . 1 1 .
= |0,(VI9,Ud,U) - Ea,(VfakuakU) — 50UV | — 20,0, VIO (Papj + ®1y;)] + 0,V19,0, (@] + PLY)
= |0,(VI9,Ud,U) - %aj(vfakuaku) - %atuakyak — 20,[0 V) (Pay; + @1p))]

- 0,VI0, 0,V + - 81V1618 (2®, — U? — 4d,)

_ 4 4 : }
1 ) . 1 ) 1
- 58,(61V18,VJ) + Zaj[a,wal(mz —U? - 40,)] +18,6tU81(2<I>2 - U? - 4@,), (B4)

—4x[(20* +4U +4I1+4P/p*)p*v/0,U —8p*ViD, U +8p* VD, U + 8p*v/ U, U]
= —47[(2v? +4(1=27)U +4I1+4P/p*)p* v/ 0;U —8(1 = 1)p*VId;U +8(1 —7)p* VIO,;,U +8(1 —1)p*v/ U, U]
—64rntp* v/ UO;U

:v2[2Vfl+4(1—2T)V§+4Vg+4vg—8(1—1)¢§+8(1—T)(UV)J+16(1—T)K{+12(1—§T>K§+2X1]6,U
4 .
+12(1—gr)akUakUatU—48,0,V’8jU—161[28](U8kU8[kV]])+UakUﬁthU]
4 .,
+0,0; [2V’+4(1 20) V] +4VE 44V - (1—7)¢§+8(1—7)(UV/)+16(1—T)Kjl+12<1—§T>K§+2X1}8kU
4
+12(1——T>8kU8kU8U 40,0,V10,U —167[20;(U ULV ) + Ud U, U]
:—281{8[,([ZVU]+4(1—21)V2]]+4V3J]+4V4J]—8(1—7)(1)2]]+8(1—T)(VJ]U)+16(1—1)K1]]

4 .

.. 4 . )
—8k8t((7—8¢)u2+2d>1—2<1>2+4c1>3+2X)akU+12<1—§r>akUakUa,U—m,(a,wajU)+2a,(ajv’<akv1)
—48j(8kV18th)—3218J(U8kU6[ij])—16TU8kU8k8,U

4 .,
+12(1=57 | Ky +2X; [0.U

—00,(TU? +20, =20, + 45 +2X)0, U + 120, U0, UO,U (B5)
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