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The Palatini gravitational action is enlarged by an arbitrary function fðXÞ of the determinants of the
Ricci tensor and the metric, X ¼ jdet:Rj=jdet:gj. The resulting Ricci-determinant theory exhibits novel
deviations from general relativity. We study a particular realization where the extension is characterized by

the square-root of the Ricci determinant, fðXÞ ¼ λEdd
ffiffiffiffi
X

p
, which corresponds to the famous Eddington

action. We analyze the obtained equations for perfect fluid source and show that the affine connection can
be solved in terms of the energy density and pressure of the fluid through an obtained disformal metric. As
an application, we derive the hydrostatic equilibrium equations for relativistic stars and inspect the
significant effects induced by the square-root of the Ricci tensor. We find that an upper bound on λEdd, at
which deviations from the predictions of general relativity on neutron stars become prominent, corresponds
to the hierarchy between the Planck and the vacuum mass scales. The Ricci-determinant gravity that we
propose here is expected to have interesting implications in other cosmological domains.

DOI: 10.1103/PhysRevD.104.064049

I. INTRODUCTORY REMARKS AND
MOTIVATION

The new advances in cosmological observations have
indicated that the standard model of cosmology, which
stands on general relativity (GR), necessarily requires
extensions [1]. The missing mass problem (or the dark
matter), the luminosity of type Ia supernovae at large
distances indicating to accelerated expansion of the
Universe (the dark energy problem) and the lack of a
consistent quantum theory of gravity are some of the facts
that bespeak going beyond GR. This has led to numerous
attempts to modify GR in various contexts including the
familiar fðRÞ gravity and others [2,3].
GR is purely a metric theory of gravity and these

modifications are often formulated in this formalism. In
the Palatini formalism the metric and the connection are
assumed to be totally independent. Interestingly, the
Palatini version of the Einstein-Hilbert action involves
only the first derivatives of the connection and leads to
the Einstein field equations without requiring an additional
boundary term as in the standard action of GR which
contains the second derivative of the metric [4]. In the last

decades, extensions through the Palatini (or metric-affine)
formulation have gained much interests [5]. On the other
hand, one of the most important consequences of this
formulation is that it is free of ghosts that are usually
present in metric theories of gravity due to the higher order
equations for the metric.
Extensions of GR à la Palatini, which are called gener-

alized Palatini theories, are usually constructed in terms of the
powers of the traces of the Ricci tensor, i.e., generic functions
of the form fðgμνRμν; RμνRμνÞ [5]. Despite being the standard
way of building the gravitational theories, polynomial terms
formed by contractions of the curvature (mainly the Ricci
tensor) are not the only objects one can use in constructing
invariant actions. In this respect, the determinant of the Ricci
tensor also stands viable for the gravitational theories. Indeed,
Eddington gravity as well as Eddington-inspired-Born-Infeld
theories are modeled by the determinant of the Ricci tensor
[6,7]. Therefore, at least from a theoretical perspective, there
is no rationale that prevents incorporating the determinant of
the Ricci tensor into the Palatini formalism, given that it also
is a Ricci-based object.
Motivated by these statements, in this paper, we enlarge

the Palatini action by the determinant of the Ricci tensor. The
extension will involve an arbitrary function fðXÞ where the
scalar X incorporates the determinant of the Ricci tensor.
Since the latter is not an invariant scalar under general
coordinate transformations, we also introduce the scalar

*hmazri@uaeu.ac.ae; hemza.azri@cern.ch
†eksi@itu.edu.tr
‡ckarahan@itu.edu.tr
§snasri@uaeu.ac.ae; salah.nasri@cern.ch

PHYSICAL REVIEW D 104, 064049 (2021)

2470-0010=2021=104(6)=064049(11) 064049-1 © 2021 American Physical Society

https://orcid.org/0000-0002-5982-3656
https://orcid.org/0000-0001-5999-0553
https://orcid.org/0000-0003-1218-0451
https://orcid.org/0000-0002-5985-4567
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.064049&domain=pdf&date_stamp=2021-09-20
https://doi.org/10.1103/PhysRevD.104.064049
https://doi.org/10.1103/PhysRevD.104.064049
https://doi.org/10.1103/PhysRevD.104.064049
https://doi.org/10.1103/PhysRevD.104.064049


density formed by the determinant of themetric tensor so that
the new invariant quantity reads X ¼ jdet:Rj=jdet:gj. This
quantity has been used recently to enlarge Eddington gravity
and incorporate matter [8]. Therefore, fðXÞ is, indeed, a
metric-affine scalar (à la Palatini) but formed by scalar
densities rather than the traces of the curvature tensor. The
purpose of this article is to determine the role of the Ricci
determinant in the Palatini formulation of gravity, and reveal
its dynamical effects that may not be present in theories
with traces and powers of the Ricci tensor. Nonetheless,
generalized Palatini theories can be improved by Ricci-
determinant functions fðXÞ unless a fundamental symmetry
prohibits them.
We derive the extended gravitational field equations of

this Ricci-Determinant theory by varying the total action
with respect to the metric and the connection independently
(see Sec. II). The simplest case of the theory occurs when
fðXÞ is merely constant. This only improves the Palatini
(Einstein-Hilbert) action by a cosmological constant term.
We show, in Sec. III, that an interesting and simple model
arises from the general theory when fðXÞ ¼ λEdd

ffiffiffiffi
X

p
, with

λEdd being a dimensionless constant. It turns out that in this
case the extension will be described by only the square-root
of the Ricci determinant which coincides with the familiar
Eddington action. We will focus on this model and study it
in detail for the following reasons: First, the effects of the
Eddington term and the role it plays in this enlarged theory
is worth exploring in its own. More interestingly, the Ricci
determinant in this case will arise only in the dynamical
equation obtained from varying the action with respect to
the connection. Hence, the Ricci tensor will be easily
written in terms of matter and the equation for the
connection becomes linear and easy to solve.
As a relevant application, we study the stellar structure

equations of the fðXÞ ¼ λEdd
ffiffiffiffi
X

p
model (see Sec. III C). We

then solve these equations numerically, for 4 different
equations of state, to obtain the mass-radius relations of
neutron stars. These mass-radius relations, when confronted
with the most recent observational measurements, allow us
to constrain the sole free parameter of this model, λEdd.
We thendiscuss themass scale associatedwith the obtained

constraint on λEdd and conclude in Sec. IV. Some details on
deriving the TOV equation are given in the Appendices.

II. RICCI-DETERMINANT GRAVITY

A. Action and gravitational field equations

In what follows the spacetime is assumed to be endowed
with a Lorentzian metric g and an independent symmetric
connection Γ. One extends the Palatini action as

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet:gj

p �
M2

Pl

2
ðgμνRμνðΓÞ − 2ΛÞ þ LM½g�

�

þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet:gj

p
fðXÞ; ð1Þ

where Λ is a constant, “det.” refers to the determinant, and
LM½g� is the Lagrangian density of matter fields. In this
work, we will assume that LM½g� does not depend on the
connection Γ.
The scalar fðXÞ is an arbitrary function of the scalar X

which in turn involves the determinant of the Ricci tensor.
Since the determinant is a scalar density, the general
covariance implies that the X must be described by the
ratio of two determinants, namely

X ≡ jdet:Rj
jdet:gj : ð2Þ

In this work we will consider only the symmetric part of
the Ricci tensor. Therefore, Rμν simply refers to RðμνÞ
throughout the paper. To that end, action (1) has the
following properties:

(i) The first line describes the Palatini version of GR
with matter sources where the connection and the
metric are independent fields.

(ii) The last term enlarges the Palatini action with an
arbitrary functions of the Ricci determinant, not by
generic functions fðgμνRμν; RμνRμνÞ of the Ricci
traces. Nevertheless, the latter are also allowed as
in generalized Palatini theories and can be included
in our setup.

(iii) The Ricci tensor in the overall action (1) is linear in
the derivatives of the connection, therefore the
principle of variation will lead to the gravitational
field equations without requiring any additional
boundary term like the standard (purely metric)
Einstein-Hilbert action.

Variation with respect to the metric tensor leads to the
generalized Einstein field equations

RμνðΓÞ ¼ Λgμν þ κ

�
TM
μν −

1

2
gμνgαβTM

αβ

�
þ κð2Xf0ðXÞ − fðXÞÞgμν; ð3Þ

where TM
μν ¼ LMgμν − 2δLM=δgμν is the standard energy-

momentum tensor of matter, κ¼1=M2
Pl and f

0ðXÞ¼df=dX.
Clearly, deviations from the standard Palatini gravita-

tional equations manifest through the last term that involves
fðXÞ and its derivative. In the absence of matter sources,
TM
μν ¼ 0, the above equation reads

RμνðΓÞ ¼ ðΛþ κð2Xf0ðXÞ − fðXÞÞÞgμν: ð4Þ

This accepts a vacuum solution [when fðXÞ is constant]
where the Ricci tensor is proportional to the metric and an
effective cosmological constant. We will illustrate this case
with a specific model in the following section.
The second field equation, namely the dynamical equa-

tion, is obtained from variation with respect to the con-
nection which leads to
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∇α

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet:gj

p
gμν þ 2Xf0ðXÞ

M2
Pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet:gj

p
ðR−1Þμν

�
¼ 0:

ð5Þ

There are some important remarks on this equation
which describes the evolution of the arbitrary connection
Γ. First, unlike the standard Palatini theories, we notice the
emergence of the inverse of the Ricci tensor; therefore, the
Ricci tensor itself must not vanish in the first place to
guarantee the existence of solutions to this equation. As we
shall see in the next section, this will require a nonzero
cosmological constant. Second, since the Ricci tensor
(hence its determinant) involves the derivative of the
connection, this equation is highly nonlinear and its
solution is generally not trivial. In this respect, one can
follow the same procedure used in generalized Palatini
theories based on the Ricci scalar and Ricci-squared terms
when solving the previous equation [5]. This stands on
rewriting the Ricci tensor, which is the source of the
nonlinearity, in terms of the metric and the stress-energy of
matter with the aid of equation (3). However, generally
speaking, this procedure may also not be simple due to the
presence of the determinants in the last terms of (3).
Nonetheless, in the next part of the paper, we will propose
a model where this procedure can be applied directly and
lead to an exact solution for the connection in terms of the
metric, the energy density, and pressure of a perfect fluid.

III. MODEL WITH THE SQUARE-ROOT OF THE
RICCI DETERMINANT

As we have explained so far, one way to solving the
dynamical equation (5) is to make it linear in the con-
nection. In other words, one writes the Ricci tensor in terms
of matter with the aid of equation (3). This could have been
trivial if the last term in (3) was proportional to the Ricci
tensor not to its determinant. A much simpler and interest-
ing case is when this equation is free of the effects of fðXÞ,
i.e., the model in which the Ricci-determinant term
manifests through the equation for the connection (5)
solely. This arises simply when the last term of (3) vanishes

2Xf0ðXÞ − fðXÞ ¼ 0; ð6Þ

which is characterized by the function

fðXÞ ¼ λEdd
ffiffiffiffi
X

p
; ð7Þ

where λEdd is a dimensionless constant.
Returning to the theory (1), one notices that this case

corresponds to the Palatini action enlarged by the
Eddington action

λEdd

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet:Rj

p
: ð8Þ

Needless to say, this action could have been proposed as
an extension of Palatini theory even if it does not involve
the metric. Interestingly, it appears now as a particular
model of the Ricci-determinant theory (1).
Therefore, the gravitational field equations (3) and the

dynamical equation (5) read

RμνðΓÞ ¼ Λgμν þ κ

�
TM
μν −

1

2
gμνgαβTM

αβ

�
; ð9Þ

∇α

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet:gj

p
gμν þ λEdd

M2
Pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet:Rj

p
ðR−1Þμν

�
¼ 0; ð10Þ

respectively.
As expected from this model, unlike the general case

described by Eq. (3), the square-root of the Ricci deter-
minant (the Eddington term) does not contribute to the
right-hand side of the field equations (9). This particular
feature is not present in the standard generalized Palatini
theories because the extensions are usually invariant terms
formed by tensors contracted by the metric itself. However,
it is known that one can build an invariant action from the
square-root of any rank-two tensor such as the Ricci tensor
without invoking the metric. In other words, if one is able to
remove the metric from the last term of (1), the gravitational
equations (3) would not involve the Ricci determinant. It
turns out that this is possible only for the particular
model (7).
Again, the emergence of the inverse of the Ricci tensor

which then requires that the latter must not vanish.
However, from Eq. (9), the curvature vanishes for the
purely vacuum case in which Tμν ¼ 0 and Λ ¼ 0. Hence,
this requires that a nonzero cosmological constant is
essential in the theory. Therefore, the vacuum case will
be described here by Tμν ¼ 0 and Λ ≠ 0. It is worth noting
that apart from the issue behind the theoretical estimation of
its value, nonzero cosmological constant is strongly sug-
gested by cosmological observations [1,9–11].
In this vacuum case, the previous gravitational equations

simply read

RμνðΓÞ ¼ Λgμν; ð11Þ

∇α

��
1þ λEddΛ

M2
Pl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet:gj

p
gμν

�
¼ 0: ð12Þ

Since the factor that appears in (12) is only a constant, one
can easily show that this system of equations describes GR
with a rescaled cosmological term Λ=ð1þ λEddΛ=M2

PlÞ.
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A. Solving for the connection

Returning to the case with matter, we notice that Eq. (10)
is not linear in the connection Γ since it incorporates the
Ricci curvature. Hence, a direct solution in terms of the
metric might be complicated. However, the Ricci tensor is
eventually written in terms of matter fields thanks to the
gravitational field equations (9). Therefore, Eq. (10) is now
linear since the connection comes out only through the
covariant derivative. To solve this equation analytically, we
follow the same procedure in generalized Palatini theories
and introduce an “auxiliary” tensor hμνðxÞ given in its
matrix form as

ĥ ¼
	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

det:P̂
p 


P̂−1ĝ; ð13Þ

where the quantity P̂ incorporates matter via the Ricci
curvature as

P̂ ¼ Î þ λEdd
M2

Pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdet:Rjp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffijdet:gjp R̂−1: ð14Þ

Here, the curvature and its inverse are calculated from
the gravitational equations (9) which will be finally written
in terms of matter solely. This completes the solution of the
dynamical equation (10). As an application, we study
below the case in which matter manifests as a perfect fluid
which describes matter in various astrophysical and cos-
mological domains.

B. The case of perfect fluids

Here, we take the stress-energy tensor in terms of energy
density ρ and pressure P as

Tμν ¼ ðρþ PÞuμuν þ Pgμν: ð15Þ

Hence, one can show that from Eq. (9) the inverse of the
Ricci curvature in a matrix form reads

ðR−1Þνμ ¼
2M2

Pl

ðρ − PÞ δ
ν
μ þ

4M2
Plðρþ PÞ

ðρ − PÞðρþ 3PÞ uμu
ν; ð16Þ

where we have neglected the cosmological constant.
Finally, in terms of its components, the matrix P̂ in (14)

takes the form

Pμ
ν ¼

�
1þ λEdd

2M4
Pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ − PÞðρþ 3PÞ

p �
δνμ

þ λEdd
M4

Pl

ðρþ PÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ − P
ρþ 3P

s
uμuν; ð17Þ

from which one calculates its determinant

det:P̂ ¼ ð1þ aÞ3ð1þ a − bÞ; ð18Þ

and its inverse

ðP−1Þ ν
μ ¼ −bð1þ aÞ−1ð1þ a − bÞ−1uμuν

þ ð1þ aÞ−1δνμ; ð19Þ

where the functions a and b are given in terms of the energy
density, pressure, and the parameter λEdd as

a ¼ λEdd
2M4

Pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ − PÞðρþ 3PÞ

p
ð20Þ

b ¼ λEdd
M4

Pl

ðρþ PÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ − P
ρþ 3P

s
: ð21Þ

With these quantities, we finally find the exact form of the
tensor hμν from (13) in terms of the physical metric gμν as

hμν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þaÞð1þa−bÞ

p
gμν−b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa

1þa−b

r
uμuν: ð22Þ

In short, the spacetime connection in this model is
reduced to the Levi-Civita of the tensor field (22) which
involves both physical metric and matter (energy density
and pressure). Therefore, the new effects arise in the matter
sector by bringing out nonlinear terms in the energy density
and pressure into the gravitational field equations. It is
worth noticing that relation (22) has the form of the so-
called disformal transformation. This type of transforma-
tions have been studied and applied to various models
including the relativistic modified Newtonian dynamics
[12]. However, relation (22) is not an imposed trans-
formation of the metric but a result of the theory.
Another remarkable point is that functions a and b that

form the new tensor field hμν are proportional to the inverse
of the fourth power of the Planck mass. Therefore, in the
regimes where the energy densities (or pressure) are less
than M4

Pl, one is able to consider only first order terms in a
and b. Hence, in this case the previous expression reads

hμν ≃
�
1þ a −

b
2

�
gμν − buμuν: ð23Þ

Notice here the GR limit, hμν → gμν, as the zeroth order.
This is clearly compatible with the case fðXÞ ¼ 0 in action
(1). In spacetime regions where the energy density reaches
the Planck density, i.e., mostly near singularities, one must
consider the general solution (22).
In the following section, we will consider the gravita-

tional equations (9) with the Levi-Civita connection of (23).
We will apply the resulting equations to a static spherically
symmetric spacetime, and then derive the stellar structure
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equations, namely, the Tolman-Oppenheimer-Volkov equa-
tions that correspond to this model.

C. Stellar structure equations

The field equations (9) will now be adapted to a static
spherically symmetric spacetime with a line element given
in terms of the physical metric gμνðxÞ as

ds2¼−e2νðrÞdt2þe2λðrÞdr2þr2dθ2þr2 sin2θdϕ2; ð24Þ

where νðrÞ and λðrÞ are functions of the radial coordinate.
One writes the gravitational equations (9) with mixed

indices as

Rν
μðhÞ ¼ κ

�
Tμ

ν −
1

2
δμ

νT

�
≡ T μ

ν: ð25Þ

Notice here that the curvature is now given in terms of hμν;
hence, it will certainly involve the metric gμν, the energy
density, and pressure of the perfect fluid thanks to expres-
sion (23). The set of equations arising from (25) which
describe the evolution of the gravitational potentials are
derived with some details in the Appendix. Here we
summarize the stellar structure in two main equations as
follows:

dΨ
dr

¼ κðρþ PÞr2
2ðr − 2mÞ −

κðρþ PÞr3
4ðr − 2mÞ

�
a0 −

b0

2

�

−
κðρþ 3PÞr2
4ðr − 2mÞ b −

b0

2
þ r
2

�
a00 −

b00

2

�
; ð26Þ

where we have introduced the mass mðrÞ representing the
total mass within the coordinate radius r, and the potential
function ΨðrÞ such that

e2λðrÞ ¼
�
1 −

2mðrÞ
r

�
−1
; ΨðrÞ ¼ νþ λ; ð27Þ

and the prime signs refer to the derivatives with respect to
the coordinate r.
The second equation of the stellar structure takes the

form

dm
dr

¼ κρr2

2
þ
�
r −

3m
2

−
κρr3

4

��
a0 −

b0

2

�

þ r2

2

�
1 −

2m
r

��
a00 −

b00

2

�

−
κðρþ 3PÞr2

8
b: ð28Þ

From both equations one can easily extract the GR-limit
which is obtained at the zeroth order, i.e., when the
functions a, b and their derivatives are ignored. Hence,

the crucial difference from GR is that the additional terms
incorporates not only the nonlinear terms in the energy
density and pressure but the derivative of the latter too.
Therefore, one expects that the modified TOV equation
cannot be linear in the derivative of the pressure as in the
case of GR.
To derive the TOV equation, one turns to the conserva-

tion equation ∇μTμν ¼ 0 which reads

dP
dr

¼ −ðρþ PÞν0

¼ −ðρþ PÞ
�
Ψ0 −

�
1 −

2m
r

�
−1m0

r

�

− ðρþ PÞ
�
1 −

2m
r

�
−1 m

r2
: ð29Þ

The first part of this equation that includes Ψ0ðrÞ and m0ðrÞ
can be obtained now by combining the previous expres-
sions (26) and (28), and finally one obtains a modified TOV
equation

dP
dr

¼ −
ðρþ PÞ
rðr − 2mÞ

�
mþ κPr3

2

�

þ ðρþ PÞ
2ðr − 2mÞ

�
mþ κPr3

2

��
a0 −

b0

2

�

þ ðρþ PÞa0 þ κðρþ PÞðρþ 3PÞr2
8ðr − 2mÞ b: ð30Þ

The first line in this equation shows the GR-limit. One
notices that the new effects come through the nonlinear
terms of the energy density, pressure and its derivative.
Therefore, solution to this equation cannot obtained trivi-
ally even for the simplest equations of state relating
pressure to energy density. Nevertheless, in the following
section we will solve this equation perturbatively by
considering the known GR solution at the zeroth order.

1. Constraints via neutron stars

In this section, we constrain the value of the parameter
λEdd by demonstrating its effect on the mass-radius relation
of neutron stars.
Neutron stars are very good laboratories for probing the

strong gravity regime [13]. The compactness and curvature
of neutron stars at the surface [14] and interior domain [15]
are orders of magnitude larger than the values probed in the
solar system tests. Stellar mass black holes have slightly
higher compactness and curvature at their horizon, but,
since vacuum solutions in many theories of gravity are
similar [16], it is not possible to see the differences in
the predictions of these theories from that of GR by the
astrophysical observations of black holes. Although the
equation of state of neutron stars is not well constrained
[17,18], the existing mass and radius measurements [19,20]
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can be used to constrain the free parameters of the gravity
models, as an order of magnitude, for which deviations
from GR becomes more prominent at higher curvatures.
Accordingly, neutron stars have been used to constrain
many models of gravity in the strong field regime [21–27].

2. Numerical method

The hydrostatic equilibrium of a relativistic star is
described by Eqs. (28) and (30). To close the set of
equations we need to supplement these equations with
an equation of state (EoS), P ¼ PðρÞ. The EoS of dense
matter prevailing at the cores of neutron stars is not strictly
constrained by the nucleon scattering experiments. Several

EoS with different assumptions about the nucleon-nucleon
interactions and possible composition exist in the literature
(see e.g., [28]). We thus solve the equations for four
different representative EoS to demonstrate the effect of
the term (7). As stated above, we use a perturbative method
similar to the one employed in [27] where we calculate the
higher order derivatives, such as d2P=dr2, within GR.
Since Eqs. (28) and (30) are nonlinear and we use a

complicated EoS, we need to obtain the solutions numeri-
cally. To this end we employ the second order Runge-Kutta
method (midpoint method) and use adaptive radial step
sizes which are adjusted according to the local mass and
pressure gradients [29]

FIG. 1. Mass-radius relation of neutron stars in the Ricci-determinant model (7). Each panel corresponds to a different equation of
state. The gray shaded region in each panel shows R < RS ≡ 2GM=c2. The horizontal line shows the maximum measured mass
M ¼ 2.14þ0.10

−0.09 for a neutron star [19]. The cyan colored shaded region is the measured radius R ¼ 12.391.30−0.98 km [20].
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Δr ¼ 0.01

�
1

m
dm
dr

−
1

P
dP
dr

�
−1
: ð31Þ

This allows us to obtain sufficient radial resolution near the
crust where the pressure gradient is large. We do not allow
for the steps to grow larger than 103 cm.
We start from the origin (r ¼ 0) by choosing a central

density Pc, employ the boundary condition mð0Þ ¼ 0 and
integrate outwards until we reach the surface i.e., where the
pressure vanishes. This marks the radius of the star R and
the mass contained within (mðRÞ) is then the total mass of
the star, M.
We then vary the central pressure within the range

3 × 1033– 9 × 1036 dyne cm−2 to obtain the corresponding
mass and radius for each central pressure. We repeat this
process for four different values of λEdd to obtain the mass-
radius relation for each value of this parameter.

3. Equations of state

The above process is repeated for four different EoS: AP4
[30], SLY4 [31],MPA1 [32], andMS1 [33]which correspond
to different assumptions about the composition and inter-
actions of the dense nuclearmatter. The order ofmagnitude of
the constraint we obtain belowwill not change significantly if
other EoS are used, but depends on the observational
constraints on the mass and radius of neutron stars.
Instead of employing the tabulated EoS by interpolation,

we used an analytical representation [34]. This eliminates
spurious oscillations in the radial structure solutions
and mass-radius relations due to the presence of higher
derivatives.

4. Results

The mass-radius relations we obtained are depicted in
Fig. 1 where each panel stands for a different EoS. We find
that a choice of λEdd ∼ 1058 leads to prominent changes in
the mass-radius relation of neutron stars.
The maximum mass measured from a neutron star is

M ¼ 2.14þ0.10
−0.09 [19]. In order that an EoS and λEdd pair is

eligible, the mass-radius curve should have a maximum
value exceeding this. The radius of the same neutron star,
PSR J0740þ 6620, is measured to be R ¼ 12.391.30−0.98 km
[20]. This also can be used to constrain EoS and λEdd pairs,
and here it clearly favors MPA1 with λEdd < 1 × 1058.
There are, of course, many other EoS that are compatible
with these observations. Since our purpose is not to
constrain the EoS of neutron stars, but to obtain an order
of magnitude constraint on the value of λEdd we find it
sufficient to present results only for four EoS.
We find that the maximum mass increases with the

parameter λEdd. This allows one to obtain neutron stars with
higher masses even with soft EoS. It is not possible to
exploit this freedom to obtain arbitrarily large masses since
λEdd is not entirely free, as we explain below.

Another constraint comes basically from the requirement
that the mass within radial coordinate increases as one
integrates outwards from the center (dm=dr > 0). This is
guaranteed in Newtonian gravity and general relativity
while we find that this can not be taken for granted in the
theory we consider here due to the presence of negative
terms on the right hand side of Eq. (28). We find that at the
highest densities there can be a narrow domain within the
star where dm=dr < 0 as shown in Fig. 2. We plot the part
of the M-R curves within which dm=dr > 0 with dashed
lines. This implies that the theory becomes incompatible
with the existence of neutron stars at such high densities
for λEdd ∼ 0.5 × 1058.
It is worth noting here that the obtained constraint on

λEdd is expected from the model at hand. Being large can be
explained simply by the hierarchy between two relevant
mass scales in the theory, namely, the Planck scale and a
sub-eV scale of order the neutrino mass scale. While the
former describes the gravitational mass scale, the latter
characterizes the vacuum mass scale, i.e., the only and
necessary source for Eddington gravity. In other words, one
writes the gravitational action (8) with λEdd ¼ M2

Pl=M
2
0 and

the above value implies M0 ∼ 0.1 eV. This assures again
that the vacuum energy (nonzero cosmological constant) is
an unavoidable feature in Eddington (square-root of the
Ricci determinant) theory of gravity [35–45].

IV. CONCLUSION

We have extended the Palatini action for gravity to
involve any generic function of the scalar density
X ¼ jdet:Rj=jdet:gj. We have studied the new features
and the dynamical aspects of this Ricci-determinant gravity.

FIG. 2. The mass contained within radial coordinate r for EoS
AP4 with central pressure Pc ¼ 2.05 × 1036 dyne cm−2. All
curves look normal, but the inset shows that there is a tiny
region at which dm=dr < 0 near r ¼ 0.3 km, i.e., close to the
center. This situation, however, arises at very high densities
corresponding to the near maximum of the M-R curves in Fig. 1.
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The obtained theory differs crucially from the familiar
extensions of gravity that augment GR by quadratic or
higher order (or even arbitrary) terms of the curvature such
as fðRÞ or other types of modified gravity theories.
We have focused on a particular model that arises from the

general theory and coincides with the addition of the famous
Eddington action that involves only the square-root of the
Ricci determinant. We have shown that, unlike the general
casewhere solutions for the connection in terms of the metric
are expected to be non-trivial, the equation for the connection
in this model can bemade linear and are easy to solve. To that
end, following the same procedure in generalized Palatini
theories,wehave solved the equation for the affineconnection
in terms of the metric for a perfect fluid, and examined the
novel contributions to the gravitational equations induced by
the Eddington term which manifest as nonlinear functions in
energy density and pressure of the fluid.
These new contributions are found to be proportional to

the square of the gravitational constant; therefore, we
proceeded to a perturbative approach. By considering a
static and spherically symmetric spacetime, we have been
able to derive the associated hydrostatic equilibrium
equations appropriate for astrophysical processes. We have
then solved these equations for different EoS to obtain the
radial structure and mass-radius relations. The observatio-
nal constraints on the mass and radius of neutron stars, and
the stability constraint dm=dr > 0, allowed us to put an
upper limit on the value of the free parameter of the model
as λEdd ≲ a few × 1058. We find that this upper limit
corresponds to the vacuum energy scale when the gravi-
tational action is rewritten in terms of mass.
The Ricci-determinant gravity, in its general framework,

must be explored more. This is expected to reveal more
interesting features when applied to other cosmological
domains. Whether it can serve for an explanation of the
missing mass without invoking nonluminous matter, or has
a potential impact on the early universe singularity, are
worth exploring and will be studied elsewhere.

ACKNOWLEDGMENTS

The work of H. A. and S. N. is supported by the United
Arab Emirates University (UAEU) under UAEU Program
for Advanced Research (UPAR) Grant No. 12S004. The
work of C. K. is supported by İstanbul Teknik Üniversitesi
Bilimsel Araştırma Projeleri (İTÜ BAP) Grant No. TAB-
2020-42312.

APPENDIX A: CONNECTION AND CURVATURE
COEFFICIENTS

The components of the physical metric are given by
gμν ¼ diagð−e−2ν; e2λ; r2; r2 sin2 θÞ which leads to the fol-
lowing components of the auxiliary metric (23):

h00 ¼
�
1þ aþ b

2

�
g00 ðA1Þ

hij ¼
�
1þ a −

b
2

�
gij: ðA2Þ

The Levi-Civita connection of hμν is written as

Γλ
μνðhÞ ¼

1

2
hλαð∂μhαν þ ∂νhμα − ∂αhμνÞ: ðA3Þ

Due to the smallness of the parameters a and b [see (20)–
(21)], only linear terms will be considered in the following
calculations. First, the connection (A3) has the nonzero
coefficients

Γr
00 ¼

1

2
eðν−λÞ

�
2ν0 þ a0 þ b0

2
þ 2ν0b

�
ðA4Þ

Γ0
0r ¼

1

2

�
2ν0 þ a0 þ b0

2

�
ðA5Þ

Γr
rr ¼

1

2

�
2λ0 þ a0 −

b0

2

�
ðA6Þ

Γr
θθ ¼ −

1

2
e−2λ

�
2rþ

�
a0 −

b0

2

�
r2
�

ðA7Þ

Γr
ϕϕ ¼ −r sin2θ e−2λ

�
1þ 1

2

�
a0 −

b0

2

�
r

�
ðA8Þ

Γθ
rθ ¼

1

r

�
1þ 1

2

�
a0 −

b0

2

�
r

�
ðA9Þ

Γθ
ϕϕ ¼ − sin θ cos θ ðA10Þ

Γθ
θϕ ¼ cot θ; ðA11Þ

where the remaining components are obtained from the
symmetric character of the connection, Γλ

νμ ¼ Γλ
μν.

Now, the Ricci tensor constructed from this connection,

Rμν ¼ ∂λΓλ
μν − ∂μΓλ

λν þ Γρ
ρλΓλ

μν − Γλ
μρΓ

ρ
λν; ðA12Þ

has the nonzero components
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R00 ¼ eðν−λÞ
�
ν00 þ ν02 − ν0λ0 þ 2ν0

r

�

þ eðν−λÞ
�
ν00 þ ν02 − ν0λ0 þ 2ν0

2

�
b

þ 1

2
eðν−λÞ

�
3ν0 − λ0 þ 2

r

�
a0

þ 1

4
eðν−λÞ

�
ν0 − λ0 þ 2

r

�
b0

þ 1

2
eðν−λÞ

�
a00 þ b00

2

�
ðA13Þ

and

Rrr ¼ −ν00 − ν02 þ ν0λ0 þ 2λ0

r

þ 1

2

�
3λ0 − ν0 −

2

r

�
a0 −

1

4

�
3ν0 þ λ0 −

2

r

�
b0

−
3

2
a00 þ 1

4
b00; ðA14Þ

and

Rθθ ¼ 1þ e−2λðrλ0 − rν0 − 1Þ

þ 1

2
r2e−2λ

�
λ0 − ν0 −

4

r

�
a0 −

1

4
r2e−2λ

�
λ0 − ν0 −

2

r

�
b0

−
1

2
r2e−2λ

�
a00 −

1

2
b00
�
: ðA15Þ

The final component is Rϕϕ ¼ Rθθ sin2 θ. With these
components, one is now able to derive the main set of
equations (26), (28), and (30) as we shall do below.

APPENDIX B: STELLAR STRUCTURE
EQUATIONS

We start with the field equations (25), examine the
quantities ð1 − bÞR0

0 − Rr
r and Rθ

θ, and equate them to
ð1 − bÞT 0

0 − T r
r and T θ

θ, respectively. Using the curvature
components (A13) and (A14), one finds

ð1 − bÞR0
0 − Rr

r ¼ −
2

r
e−2λðν0 þ λ0Þ

−
1

2
e−2λð2a0 − b0Þðν0 þ λ0Þ

−
1

2
e−2λ

�
2b0

r
− 2a00 þ b00

�
: ðB1Þ

In terms of the parameters ΨðrÞ and mðrÞ defined by (27),
one easily writes the last equality as

ð1 − bÞR0
0 − Rr

r ¼ −
2

r

�
1 −

2m
r

�
Ψ0

−
1

2

�
1 −

2m
r

�
ð2a0 − b0ÞΨ0

−
1

r

�
1 −

2m
r

�
b0

þ 1

2

�
1 −

2m
r

�
ð2a00 − b00Þ: ðB2Þ

With this expression, one now sets up the equality
ð1 − bÞR0

0 − Rr
r ¼ ð1 − bÞT 0

0 − T r
r, dividing both sides

by 1 − 2m=r and get the main equation (26).
Second, from the curvature component (A15), we simply

have

Rθ
θ ¼

1

r
þ 1

r
e−2λðrðλ0 − ν0Þ − 1Þ

þ 1

2
e−2λ

�
λ0 − ν0 −

4

r

�
a0 −

1

4
e−2λ

�
λ0 − ν0 −

2

r

�
b0

−
1

2
e−2λ

�
a00 −

1

2
b00
�
: ðB3Þ

In terms ofΨðrÞ andmðrÞ in (27), one can easily check that

e−2λðλ0 − ν0Þ ¼ 2m0

r
−
2m
r2

−
�
1 −

2m
r

�
Ψ0: ðB4Þ

By substituting this into the last expression, we find

Rθ
θ ¼

2m
r2

−
�
1

2
−
m
r

��
2

r
þ a0 −

b0

2

�
Ψ0

þ
�
m0

r
−
m
r2

��
a0 −

b0

2

�
−
�
1

2r
−
m
r2

�
ðb0 − 4a0Þ

−
�
1

2
−
m
r

��
a00 −

b00

2

�
: ðB5Þ

Notice here that the term

�
2

r
þ a0 −

b0

2

�
Ψ0 ðB6Þ

can be extracted from Eq. (26). Hence, by performing this
step the equalityRθ

θ ¼ T θ
θ finally leads to our equation (28).
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