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The existence of black holes is one of the key predictions of general relativity (GR) and therefore a basic
consistency test for modified theories of gravity. In the case of spherical symmetry in GR the existence of
an apparent horizon and its regularity is consistent with only two distinct classes of physical black holes.
Here we derive constraints that any self-consistent modified theory of gravity must satisfy to be compatible
with their existence. We analyze their properties and illustrate characteristic features using the Starobinsky
model. Both of the GR solutions can be regarded as zeroth-order terms in perturbative solutions of this
model. We also show how to construct nonperturbative solutions without a well-defined GR limit.
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I. INTRODUCTION

General relativity (GR), one of the two pillars of modern
physics, is the simplest member of the family of metric
theories of gravity. It is the only theory that is derived from
an invariant that is linear in second derivatives of the metric.
However, interpretations of astrophysical and cosmological
data as well as theoretical considerations [1,2] encourage
us to consider GR as the low-energy limit of some effective
theory of quantum gravity [3–5]. Extended theories of
gravity, such as metric theories that involve higher-order
invariants of the Riemann tensor, metric-affine theories,
and theories with torsion, include additional terms in the
action functional. Here we focus on metric modified
theories of gravity (MTG).
A prerequisite for the validity of any proposed gener-

alization of GR is that it must be compatible with current
astrophysical and cosmological data. In particular, a viable
candidate theory must provide a model to describe the
observed astrophysical black hole candidates. Popular
contemporary models describe them as ultracompact
objects with or without a horizon [6]. While there is a
considerable diversity of opinions on what exactly con-
stitutes a black hole, the presence of a trapped region—a
domain of spacetime from which nothing can escape—is its
most commonly accepted characteristic [7]. A trapped
spacetime region that is externally bounded by an apparent
horizon is referred to as physical black hole (PBH) [8].
A PBH may contain other features of black hole solutions
of classical GR, such as an event horizon or singularity,
or it may be a singularity-free regular black hole. To be of

physical relevance, the apparent horizon must form in finite
time according to a distant observer [9].
It is commonly accepted that curvature invariants, such

as the Ricci and Kretschmann scalar, are finite at the
apparent horizon. When expressed mathematically, the
requirements of regularity and finite formation time provide
the basis for a self-consistent analysis of black holes. In
spherical symmetry (to which we restrict our considerations
here), this allows for a comprehensive classification of the
near-horizon geometries. There are only two classes of
solutions labeled by k ¼ 0 and k ¼ 1, where the value of k
reflects the scaling behavior of particular functions of the
components of the energy-momentum tensor (EMT) near
the apparent horizon. The properties of the near-horizon
geometry lead to the identification of a unique scenario for
black hole formation [9,10] that involves both types of PBH
solutions. We summarize its main results in Sec. III.
Understanding the true nature of the observed ultra-

compact objects requires detailed knowledge of the black
hole models, their alternatives, as well as the observational
signatures of both classes of solutions in GR and extended
theories of gravity [6,11]. Vacuum black hole solutions
exist in a variety of MTG [1,2,12]. On the other hand, these
theories are also used to construct models of horizonless
ultracompact objects. A generic property among some of
them is the absence of horizon formation in the final stage
of the collapse [13].
Even the simplest MTG require perturbative treatment

due to the mathematical complexity inherent to the higher-
order nature of the equations [2,14,15]. We briefly review
the relevant formalism and its relationship to the self-
consistent approach in Sec. II. In Sec. IV, we derive a set
of conditions necessary for the existence of a PBH in an
arbitrary metric MTG. The solutions are presented as
expansions in the coordinate distance from the apparent
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horizon and do not require a GR solution as the zeroth-
order perturbative solution of a MTG. Using the
Starobinsky model [2,16] (Sec. V) we demonstrate the
application of the general results, illustrating the well-
known features of matching solutions of systems of partial
differential equations of different orders [2,14,15]: we find
that the two classes of GR solutions can be regarded as
zeroth-order perturbative solutions of this MTG, and
identify a MTG solution without a well-defined GR limit.

II. MODIFIED GRAVITY FIELD EQUATIONS
IN SPHERICAL SYMMETRY

A. General considerations

We work in the framework of semiclassical gravity, use
classical notions (e.g., metric, horizons, trajectories), and
describe dynamics via the modified Einstein equations.
We do not make any assumptions about the underlying
reason for modifications of the bulk part of the gravitational
Lagrangian density, but we organize it according to powers
of derivatives of the metric as commonly done in effective
field theories [3,4,17], i.e.,

L g
ffiffiffiffiffiffi
−g

p ¼ M2
P

16π
ðRþ λFðgμν; RμνρσÞÞ;

¼ M2
P

16π
Rþ a1RμνRμν þ a2R2 þ a3RμνρσRμνρσ þ � � � ;

ð1Þ

where MP is the Planck mass that we set to one in what
follows, the cosmological constant was omitted, and the
coefficients a1, a2, a3 are dimensionless. The dimension-
less parameter λ is used to organize the perturbative
analysis and set to one at the end of the calculations.
Many popular models belong to the class of fðRÞ theories,
where L g

ffiffiffiffiffiffi−gp ¼ fðRÞ. The prototypical example is the
Starobinsky model with F ¼ ςR2, ς ¼ 16πa2=M2

P.
Varying the gravitational action results in

Gμν þ λE μν ¼ 8πTμν; ð2Þ

where Gμν is the Einstein tensor, the terms E μν result from
the variation of Fðgμν; RμνρσÞ, and Tμν ≡ hT̂μνiω denotes
the expectation value of the renormalized EMT. We do not
make any specific assumptions about the state ω.
In fact, apart from imposing spherical symmetry,

we assume only that (i) an apparent horizon is formed
in finite time of a distant observer; (ii) it is regular, i.e.,
the scalars T ≔ Tμ

μ ¼ R=8π þOðλÞ and T ≔ TμνTμν ¼
RμνRμν=64π2 þOðλ2Þ are finite at the horizon.
A general spherically symmetric metric in Schwarzschild

coordinates is given by

ds2 ¼ −e2hðt;rÞfðt; rÞdt2 þ fðt; rÞ−1dr2 þ r2dΩ; ð3Þ

where r denotes the areal radius. The Misner-Sharp mass
[18,19] Cðt; rÞ is invariantly defined via

1 − Cðt; rÞ=r ≔ ∂μr∂μr; ð4Þ

and thus the function fðt; rÞ ¼ 1 − Cðt; rÞ=r is invariant
under general coordinate transformations. For a
Schwarzschild black hole C ¼ 2M. We use the definition
of Eq. (4) for consistency with the description of solutions
in higher-dimensional versions of GR. The apparent
horizon is located at the Schwarzschild radius rgðtÞ that
is the largest root of fðt; rÞ ¼ 0 [19].
The Misner-Sharp mass of a PBH can be represented as

C ¼ rgðtÞ þWðt; r − rgÞ; ð5Þ

where the definition of the apparent horizon implies

Wðt; 0Þ ¼ 0; Wðt; xÞ < x; ð6Þ

and x ≔ r − rg is the coordinate distance from the apparent
horizon.
The modified Einstein equations take the form

fr−2e2h∂rCþ λE tt ¼ 8πTtt; ð7Þ

r−2∂tCþ λE t
r ¼ 8πTt

r; ð8Þ

2f2r−1∂rh − fr−2∂rCþ λE rr ¼ 8πTrr: ð9Þ

The notation

τt ≔ e−2hTtt; τt
r ≔ e−hTt

r; τr ≔ Trr ð10Þ

is useful in dealing with equations in both GR and MTG.
Regularity of the apparent horizon is expressed as a set of

conditions on the potentially divergent parts of the scalars T
and T. In spherical symmetry Tθ

θ ≡ Tϕ
ϕ and we assume that

it is finite as in GR [9]. The constraints can therefore be
represented mathematically as

T ¼ ðτr − τtÞ=f → g1ðtÞfk1 ; ð11Þ

T ¼ ððτtÞ2 − 2ðτtrÞ2 þ ðτrÞ2Þ=f2 → g2ðtÞfk2 ; ð12Þ

for some g1;2ðtÞ and k1;2 ≥ 0. There are a priori infinitely
many solutions that satisfy these constraints. After review-
ing the special case of GR and presenting the two
admissible solutions we discuss this behavior in Sec. IV.
Many useful results can be obtained by means of

comparison of various quantities written in Schwarzschild
coordinates ðt; rÞ with their counterpart expressions written
using the ingoing v or outgoing u null coordinate and the
same areal radius r. Using ðv; rÞ coordinates,
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dt ¼ e−hðehþdv − f−1drÞ; ð13Þ

is particularly fruitful. EMT components in ðv; rÞ and ðt; rÞ
coordinates are related via

θv ≔ e−2hþΘvv ¼ τt; ð14Þ

θvr ≔ e−hþΘvr ¼ ðτtr − τtÞ=f; ð15Þ

θr ≔ Θrr ¼ ðτr þ τt − 2τt
rÞ=f2; ð16Þ

where Θμν labels EMT components in ðv; rÞ coordinates.

B. Perturbative expansion

From a formal perspective the pure GR case can be
described as a system of field equations [20]

Eðḡ; T̄Þ ¼ 0; ð17Þ

where the EMT T̄ and metric ḡ near the apparent horizon
are described in a spherically symmetric setting in Sec. III.
It is then usually assumed that any solution

Eλðgλ; TλÞ ¼ 0 ð18Þ

of the MTG belongs to a one-parameter family of analytic
solutions [14,15]. The EMT Tλ depends on λ through
the metric gλ, and potentially also through effective
corrections resulting from perturbative corrections to the
modified field equations Eqs. (7)–(9). The self-consistent
approach is based on the assumption of at least continuity
of the curvature invariants, but uses the Schwarzschild
coordinate system where the metric is discontinuous [9,10].
Imposing the requirement of regularity then allows to
identify the valid black hole solutions, whose analytic
properties become apparent once they are written in their
“natural” coordinate system [21].
The field equations are supplemented by a set of initial

and boundary conditions or constraints. Higher-order terms
in the action lead to higher-order equations. Even fðRÞ
theories already result in systems with fourth-order metric
derivatives. However, it is worth pointing out that the
unperturbed solution may not satisfy the boundary con-
ditions since its corresponding equations do not involve the
higher-order derivatives [15,22].
For our purposes it suffices to restrict all considerations

to first-order perturbation theory. In any given theory
higher-order contributions can be successfully evaluated.
There are methods to produce a consistent hierarchy of the
higher-order terms and deal with additional degrees of
freedom that result from the presence of derivatives of order
higher than two. Nevertheless, including terms of order
Oðλ2Þ and higher may not be justified without detailed
knowledge of the relative importance of all possible terms

in the effective Lagrangian and the cutoff scale that is used
to derive it.
Spherical symmetry prescribes the form of the metric

for all values of λ. We assume that there is a solution of
Eq. (2) with the two metric functions Cλ and hλ. To avoid
spurious divergences we use the physical value of rgðtÞ
that corresponds to the perturbed metric gλ, Cλðrg; tÞ ¼ rg.
We set

Cλ ≕ rgðtÞ þ W̄ðt; rÞ þ λΣðt; rÞ; ð19Þ

hλ ≕ h̄ðt; rÞ þ λΩðt; rÞ; ð20Þ

and define C̄ ≔ rg þ W̄. Similarly, the EMT Tλ ≡ T is
decomposed as

Tμν ≕ T̄μν þ λT̃; ð21Þ

where T̄ is extracted from Eðḡ½rg; W̄; h̄�; T̄Þ ¼ 0.
The perturbative terms must satisfy the boundary

conditions

Σðt; 0Þ ¼ 0; ð22Þ

lim
r→rg

Ωðt; rÞ=h̄ðt; rÞ ¼ Oð1Þ; ð23Þ

where the first condition follows from the definition of the
Schwarzschild radius, and the perturbation can be treated as
small only if the divergence of Ω is not stronger than that
of h̄. Substituting Cλ and hλ into Eq. (2) and keeping only
the first-order terms in λ results in

Ḡμν þ λG̃μν þ λĒ μν ¼ 8πðT̄μν þ λT̃μνÞ; ð24Þ

where Ḡμν ≡ Gμν½rg; W̄; h̄�, G̃μν is the first-order term in the
Taylor expansion in λ where each monomial involves either
Σ or Ω, and Ē μν ≡ E μν½rg; W̄; h̄�, i.e., the modified gravity
terms are functions of the unperturbed solutions.
The explicit form of the equations can be obtained as

follows. First note that

e2h ¼ e2h̄ð1þ 2λΩÞ þOðλ2Þ: ð25Þ

We introduce the splitting τ ¼ τ̄ þ λτ̃ such that, for in-
stance, the EMT terms of the tt equation can be written as

T̄tt þ λT̃tt ¼ e2h̄ð1þ 2λΩÞðτ̄t þ λτ̃tÞ; ð26Þ

¼ e2h̄ðτ̄t þ λð2Ωτ̄t þ τ̃tÞÞ þOðλ2Þ; ð27Þ

with Tt
r and Trr expanded analogously. The regularity

conditions Eqs. (11) and (12) imply that τ̃ terms should
either have the same behavior as their τ̄ counterparts when
r → rg, or go to zero faster.
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Consequently, the schematic of Eq. (24) implies

Ḡtt ¼
e2h̄

r3
ðr − C̄Þ∂rC̄; ð28Þ

G̃tt ¼
e2h̄

r3
½−Σ∂rC̄þ ðr − C̄Þð2Ω∂rC̄þ ∂rΣÞ�; ð29Þ

and thus the explicit form of Eq. (7) is

−Σ∂rC̄þ ðr − C̄Þ∂rΣþ r3e−2h̄Ē tt ¼ 8πr3τ̃t: ð30Þ
Similarly, Eqs. (8) and (9) can be written explicitly as

∂tΣþ r2Ē t
r ¼ 8πr2eh̄ðΩτ̄tr þ τ̃t

rÞ; ð31Þ

Σ∂rC̄ − ðr − C̄Þð4Σ∂rh̄þ ∂rΣÞ
þ 2ðr − C̄Þ2∂rΩþ r3Ē rr ¼ 8πr3τ̃r: ð32Þ

III. SELF-CONSISTENT SOLUTIONS IN GR

Here we give a brief summary of the relevant properties
of the self-consistent solutions in GR [9,10,21]. In accord
with the previous section (and in anticipation of the
notation we use in Sec. IV), we label functions of pure
classical GR (i.e., λ ¼ 0) with a bar, e.g., the metric
functions C̄ and h̄. The Einstein field equations for Ḡtt,
Ḡt

r, and Ḡrr are expressed in terms of the metric functions
C̄ and h̄ as follows:

∂rC̄ ¼ 8πr2τ̄t=f̄; ð33Þ
∂tC̄ ¼ 8πr2eh̄τ̄tr; ð34Þ

∂rh̄ ¼ 4πrðτ̄t þ τ̄rÞ=f̄2: ð35Þ
Only two distinct classes of dynamic solutions are

possible [21]. With respect to the regularity conditions
of Eqs. (11) and (12), they correspond to the values k ¼ 0
and k ¼ 1.

A. k= 0 class of solutions

In the k ¼ 0 class of solutions, the limiting form of the
reduced EMT components is given by

τ̄t→−ϒ̄2ðtÞ; τ̄r→−ϒ̄2ðtÞ; τ̄t
r→�ϒ̄2ðtÞ; ð36Þ

for some function ϒ̄ðtÞ. The leading terms of the metric
functions are

C̄ ¼ rg − 4πr3=2g ϒ̄
ffiffiffi
x

p þOðxÞ; ð37Þ

h̄ ¼ −
1

2
ln
x
ξ̄
þOð ffiffiffi

x
p Þ; ð38Þ

where ξ̄ðtÞ is determined by the asymptotic properties of
the solution. Higher-order terms depend on the higher-
order terms in the EMT expansion and will be discussed in
Sec. IV. Consistency of the Einstein equations implies

r0g ¼ �4ϒ̄
ffiffiffiffiffiffiffiffiffi
πrgξ̄

q
: ð39Þ

The null energy condition requires Tμνlμlν ≥ 0 for all
null vectors lμ [20,23]. It is violated by radial vectors
lâ ¼ ð1;∓ 1; 0; 0Þ for both the evaporating and accreting
solutions, respectively.
The accreting solution r0gðtÞ > 0 leads to a firewall:

energy density, pressure and flux experienced by an
infalling observer diverge at the apparent horizon [21].
The resulting averaged negative energy density in the
reference frame of a geodesic observer violates a particular
quantum energy inequality [23,24]. Unless we accept that
semiclassical physics breaks down already at the horizon
scale, this contradiction implies that a PBH cannot grow
after its formation [21]. Hence we consider only evapo-
rating r0gðtÞ < 0 PBHs in what follows.
Matching our results with the standard semiclassical

results on black hole evaporation (and accepting that the
metric is sufficiently close to the ingoing Vaidya metric
with decreasing mass, see [25] for details) results in

ξ̄ ∼
α

rg
; ð40Þ

where the black hole evaporates according to r0gðtÞ ¼
−α=r2g [20,26]. Outside of the apparent horizon the geom-
etry differs from the Schwarzschild metric at least on the
scale r − rg≕ x ∼ ξ̄.

B. k= 1 solution

In the second class of solutions k ¼ 1 and the limiting
form of the EMT expansion is given by functions τ̄a ∝ f̄.
Again, accretion leads to a firewall and thus we will
consider only evaporating solutions. It has been shown
that dynamic solutions are consistent only in a single
case [10], where in the Schwarzschild frame the energy
density ρðrgÞ ¼ Ē and pressure pðrgÞ ¼ P̄ at the apparent
horizon are given by

Ē ¼ −P̄ ¼ 1=ð8πr2gÞ: ð41Þ

Since this is their maximal possible value this k ¼ 1
solution is referred to as extreme [10]. The k ¼ 1 metric
functions are

C̄ ¼ r − c32x3=2 þOðx2Þ; ð42Þ

h̄ ¼ −
3

2
ln
x
ξ̄
þOð ffiffiffi

x
p Þ: ð43Þ
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Consistency of the Einstein equations then implies

r0g ¼ −c32ξ̄3=2=rg: ð44Þ

For future reference we note here that for the k ¼ 1 solution
the Ricci scalar is given by

R̄ ¼ 2=r2g þOðxÞ: ð45Þ

Evaporating black holes are conveniently represented in
ðv; rÞ coordinates, and the limiting form of the k ¼ 0
solution as r → rg is a Vaidya metric with decreasing
Misner-Sharp mass CþðvÞ0 < 0 [25]. Using ðv; rÞ coordi-
nates to describe geometry at the formation of the first
marginally trapped surface reveals how the two classes of
solutions are connected (see Ref. [10] for details): at its
formation, a PBH is described by a k ¼ 1 solution with
Ē ¼ −P̄ ¼ 1=ð8πr2gÞ. It immediately switches to the k ¼ 0

solution. However, the abrupt transition from f1 to f0

behavior does not lead to discontinuities in the curvature
scalars or other physical quantities that could potentially be
measured by a local or quasilocal observer.

IV. SELF-CONSISTENT SOLUTIONS IN MTG

To describe perturbative PBH solutions in MTG the
equations must satisfy the same consistency relations as
their GR counterparts. Taking the GR solutions as the
zeroth-order approximation, we express the functions
describing the MTG metric gλ ¼ ḡþ λg̃ and thus represent
the modified Einstein equations as series in integer and
half-integer powers of x ≔ r − rg. Their order-by-order
solution results in formal expressions for Σðt; rÞ and
Ωðt; rÞ. However, we also obtain a number of consistency
conditions that must be satisfied identically in order for a
given theory to admit formation of a PBH. The GR
solutions with k ∈ f0; 1g are sufficiently different to merit
a separate treatment provided in Secs. IVA and IV B,
respectively.
In both instances, power expansions in various

expression have to match up to allow for self-consistent
solutions of the modified Einstein equations. Moreover, the
relations between the EMT components that are given by
Eqs. (14)–(16) must hold separately for both the unper-
turbed terms and the perturbations.
For a given MTG [that is defined by the set of parameters

fa1; a2; a3; � � �g in Eq. (1)] these constraints may conceiv-
ably lead to several outcomes: first, it is possible that some
of the terms in the Lagrangian Eq. (1) contribute terms to
Ē μν such that their expansions around x ¼ 0 lead to terms
that diverge stronger than any other terms in Eqs. (30)–(32).
If only one higher-order curvature term is responsible for
such behavior, then such a theory cannot produce pertur-
bative PBH solutions, and only nonperturbative solutions
may be possible or the corresponding coefficient ai ≡ 0.

If the divergences originate from several terms, they can
either cancel if a particular relationship exists between
their coefficients ai; ai0 ;…, or not. In the former case the
existence of perturbative PBH solutions imposes a con-
straint, not on the form of the available terms, but on the
relationships between their coefficients.
It is also possible that, as it happens in the Starobinsky

model (Sec. V), divergences of the terms Ē μν match the
divergences of the GR terms. The constraints can then be
satisfied (i) identically (providing us with no additional
information); (ii) only for a particular combination of the
coefficients ai, thereby constraining the possible classes
of MTG; (iii) only in the presence of particular higher-
order terms, irrespective of the coefficients, and only for
certain unperturbed solutions. In the last scenario, where
only certain GR solutions are consistent with a small
perturbation, this should be interpreted as an argument
against the presence of that particular term in the
Lagrangian of Eq. (1).
There is a priori no reason why ḡμν ≫ λg̃μν should hold

in some boundary layer around rg [15,22]. If this condition
is not satisfied, then the classification scheme of the GR
solutions and a mandatory violation of the null energy
condition are not necessarily true. We discuss some of the
properties of the solutions without a GR limit and derive the
necessary conditions for their existence in Sec. IV C.
Throughout this section we use the letter j ∈ Z 1

2
to label

integer and half-integer coefficients and powers of x in
series expansions and l to refer to generic coefficients.
Since we give explicit expressions only for the first few
terms in each expression, we write c12 instead of c1=2,
h12 instead of h1=2, and similarly for higher orders and
coefficients of the EMT expansion.

A. Black holes of the k= 0 type

For the k ¼ 0 class of solutions the leading terms in the
metric functions of classical GR are given as a series in
powers of x ≔ r − rg as

C̄ ¼ rg − c12
ffiffiffi
x

p þ
X∞

1≤j∈Z1
2

cjxj;

¼ rg − c12
ffiffiffi
x

p þ c1xþOðx3=2Þ; ð46Þ

h̄ ¼ −
1

2
ln
x
ξ̄
þ
X∞

1
2
≤j∈Z1

2

hjxj;

¼ −
1

2
ln
x
ξ̄
þ h12

ffiffiffi
x

p þOðxÞ; ð47Þ

where

c12 ¼ 4
ffiffiffi
π

p
r3=2g ϒ̄; c1 ¼

1

3
þ 4

ffiffiffi
π

p
r3=2g ðτ̄tÞ12
3ϒ̄

; ð48Þ
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h12 ¼
2ϒ̄þ ffiffiffi

π
p

r3=2g ð3ðτ̄rÞ12 − ðτ̄tÞ12Þ
6
ffiffiffi
π

p
r3=2g ϒ̄2

; ð49Þ

and higher-order coefficients of the metric functions are
related to higher-order terms in the EMT expansion

τ̄a ¼ −ϒ̄2 þ
X∞

1
2
≤j∈Z1

2

ðτ̄aÞjxj; ð50Þ

where a ∈ f t; t
r; rg≡ f tt; t

r; rrg. We omit the explicit
specification j ∈ Z 1

2
from the summation range in what

follows.
Regularity of the metric at the apparent horizon and

consistency of the Einstein equations establish algebraic
and differential relations between various coefficients. In
particular, using Eqs. (14)–(16) and (34), we find

ðτ̄tÞ12 þ ðτ̄rÞ12 ¼ 2ðτ̄trÞ12; ð51Þ

and

r0g ¼ −4ϒ̄
ffiffiffiffiffiffiffiffiffi
πrgξ̄

q
: ð52Þ

The expansion of e2h that is given by Eq. (25) is obtained
as follows: separating the logarithmically divergent part of
hðt; xÞ from the rest, Eq. (23) allows us to write

e2h ¼ ξ̄þ λξ̃

x
e2χ̄þ2λω ð53Þ

for some ξ̃ðtÞ, where χ̄ ¼Pj hjx
j and ω ¼Pj ωjxj are

convergent functions. First-order expansion in λ then leads
to Eq. (25) with

Ω ¼ ξ̃

2ξ̄
þ ω: ð54Þ

Therefore, the first-order corrections of Eqs. (19)–(20)
to the metric functions of Eqs. (46)–(47) are given by
the series

Σ ¼
X∞
j≥1

2

σjxj ¼ σ12x1=2 þ σ1xþOðx3=2Þ; ð55Þ

Ω ¼ ξ̃

2ξ̄
þ
X∞
j≥1

2

ωjxj ¼
ξ̃

2ξ̄
þ ω12x1=2 þOðxÞ: ð56Þ

These two functions can be expressed in terms of the
unperturbed solution and corrections τ̃a to the EMT from
the series expansion of Eqs. (30)–(32). These equations
contain various divergent expressions. For example, the

term Σ∂rC̄ as well as all other terms apart from e−2h̄Ē tt in
Eq. (30) are finite when x → 0. Then Eq. (47) implies
that the series expansion of Ē tt starts with a term that is
proportional to 1=x. Performing the same analysis for the
two remaining Einstein equations Eqs. (31)–(32) yields the
decompositions

Ē tt ¼
æ1̄

x
þ æ12ffiffiffi

x
p þ æ0x0 þ

X∞
j≥1

2

æjxj; ð57Þ

Ē t
r ¼ œ12ffiffiffi

x
p þ œ0x0 þ

X∞
j≥1

2

œjxj; ð58Þ

Ē rr ¼ =o0 þ
X∞
j≥1

2

=ojxj; ð59Þ

of the modified gravity terms that should hold for any
Fðgμν; RμνρσÞ, where indices of coefficients of negative
exponents of x are labeled by a bar.
From the requirement that the Ricci scalar R½gλ� be finite

at the horizon, we obtain the condition

σ12jR ¼ ξ̃

2ξ̄
c12 ¼

2
ffiffiffi
π

p
r3=2g ξ̃ ϒ̄
ξ̄

: ð60Þ

We use additional subscripts (e.g., “jR” in the expression
above) to indicate what equation was used to derive the
explicit expression.
The perturbative contributions Eqs. (55)–(56) to the

metric functions Eqs. (46)–(47) are obtained order-by-order
from the series solutions of Eqs. (30)–(32). Expressions for
every expansion coefficient can be obtained separately
from each equation. Matching of the expressions then
allows us to identify the coefficients æl, œl, =ol of the
modified gravity terms Eqs. (57)–(59). Expressions for σ12
for instance are obtained from the lowest-order coefficients
of Eqs. (30)–(32). As a result, we obtain three independent
constraints

σ12jR ¼ σ12jtt ¼ σ12jtr ¼ σ12jrr: ð61Þ

They are simultaneously satisfied (see Appendix A 1) if

æ1̄¼−8πξ̃ϒ̄2; œ12¼−
8πξ̃ϒ̄2ffiffiffī

ξ
p ; =o0¼−

8πξ̃ϒ̄2

ξ̄
: ð62Þ

These three equations not only identify the function ξ̃ðtÞ
in terms of unperturbed quantities, but also establish the
two relations

æ1̄ ¼
ffiffiffī
ξ

q
œ12 ¼ ξ̄=o0 ð63Þ
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between the leading expansion coefficients of the MTG
terms. Similarly, the next-highest order coefficients of
Eqs. (30)–(32) allow to obtain expressions for σ1, see
Appendix A 1. Comparison of

σ1jtrðω12Þ ¼ σ1jrrðω12Þ ð64Þ

gives an expression for ω12. Substitution into Eq. (64) and
subsequent comparison of σ1jtr ¼ σ1jrr with σ1jtt gives a
relation between the next-highest order coefficients, namely

æ12 ¼ 2

ffiffiffī
ξ

q
œ0 − ξ̄=o12: ð65Þ

The modified gravity terms Ē μν must adhere to the expan-
sion structures in Eqs. (57)–(59), and the relations Eqs. (63)
and (65) between their coefficients must be satisfied iden-
tically. Otherwise the MTG solutions do not exist. For terms
in the metric functions of orderOðx3=2Þ and higher the three
equations Eqs. (30)–(32) for the tt, tr, and rr component
contain three additional independent variables ðτ̄aÞj≥3=2 and
will therefore not lead to any additional constraints.
It is worth pointing out that the analogs of Eqs. (63)

and (65) are also satisfied by the coefficients of the
corresponding metric tensor and Ricci tensor components
themselves, i.e.,

ðḡttÞ1̄ ¼
ffiffiffī
ξ

q
ðḡtrÞ12 ¼ ξ̄ðḡrrÞ0 ¼ 0; ð66Þ

ðR̄ttÞ1̄ ¼
ffiffiffī
ξ

q
ðR̄t

rÞ12 ¼ ξ̄ðR̄rrÞ0 ¼ −c212ξ̄=ð2r3gÞ; ð67Þ

and

ðḡttÞ12 ¼ 2

ffiffiffī
ξ

q
ðḡtrÞ0 − ξ̄ðḡrrÞ12 ¼ −c12ξ̄=rg; ð68Þ

ðR̄ttÞ12 ¼ 2

ffiffiffī
ξ

q
ðR̄t

rÞ0 − ξ̄ðR̄rrÞ12; ð69Þ

where Eq. (66) is satisfied trivially and Eq. (68) simplifies
to ðḡttÞ12 ¼ −ξ̄ðḡrrÞ12 due to the diagonal form of the
metric tensor ḡtr ¼ 0 [see Eq. (3)]. Explicit expressions for
the coefficients of the Ricci tensor components in Eq. (69)
are provided in Appendix B, see Eqs. (B1)–(B3).

B. Black holes of the k= 1 type

The EMT expansion for the k ¼ 1 solution is given in
terms of x ≔ r − rg by

τt ¼ τ̄t þ λτ̃t ¼ f̄ðĒþ λẼÞ þ
X
j≥2

ejxj; ð70Þ

τt
r ¼ τ̄t

r þ λτ̃t
r ¼ f̄ðΦ̄þ λΦ̃Þ þ

X
j≥2

ϕjxj; ð71Þ

τr ¼ τ̄r þ λτ̃r ¼ f̄ðP̄þ λP̃Þ þ
X
j≥2

pjxj; ð72Þ

where Ē ¼ −P̄ ¼ 1=ð8πr2gÞ and Φ̄ ¼ 0. To improve read-
ability and clarify the connection to physical quantities
(energy, pressure, flux) we set ðτ̄tÞj≕ ēj, ðτ̄rÞj≕ p̄j, and
ðτ̄trÞj ≕ ϕ̄j, and analogously for the perturbative coeffi-
cients ðτ̃aÞj. Additional relations between the coefficients
are obtained from Eqs. (14)–(15), i.e.,

Ẽþ P̃ ¼ 2Φ̃; ð73Þ

ē2 ¼ p̄2 ¼ ϕ̄2; ē52 þ p̄52 ¼ 2ϕ̄52; ð74Þ

ẽ2 þ p̃2 ¼ 2ϕ̃2; ẽ52 þ p̃52 ¼ 2ϕ̃52; ð75Þ

for the two next-highest orders j ¼ 2; 5
2
. Recall that

[cf. Eqs. (42)–(43)] the leading terms in the metric
functions of classical GR are given as series in powers
of x ≔ r − rg as

C̄ ¼ rg þ x − c32x3=2 þOðx2Þ; ð76Þ

h̄ ¼ −
3

2
ln
x

ξ̄
þ h12

ffiffiffi
x

p þOðxÞ; ð77Þ

with coefficients

c32 ¼ 4r3=2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−πē2=3

p
; ð78Þ

h12 ¼
3

14ē2

�
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3ē2=π

p
r5=2g

þ 5ē52 − 7p̄52

�
: ð79Þ

Higher-order coefficients are obtained from higher-order
terms of the EMT expansion using consistency of the
Einstein equations, e.g., the next-highest order coefficient
of Eq. (76) is

c2 ¼
4

7rg

 
1þ r5=2g

ffiffiffiffiffiffi
3π

p
ē52ffiffiffiffiffiffiffiffi

−ē2
p

!
: ð80Þ

In addition, consistency of the Einstein equations requires
Eq. (44) and

p̄52 ¼
2
ffiffiffiffiffiffiffiffi
−ē2

pffiffiffiffiffiffi
3π

p
r5=2g

þ ē52: ð81Þ

Substituting Eq. (81) into Eq. (79) we obtain the identity

c2 ¼ c32h12; ð82Þ

which leads to many simplifying cancellations, e.g., the
absence of the

ffiffiffi
x

p
term in the Ricci scalar R̄ [cf. Eq. (45)]
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due to R12 ∝ c32h12 − c2, where R12 denotes the
ffiffiffi
x

p
coefficient of R̄.
Again, the expansion of e2h that is given by Eq. (25) is

obtained by separating the logarithmic part of hðt; xÞ from
the rest. From the expansion

e2h ¼
�
ξ̄þ λξ̃

x

�
3

e2χ̄þ2λω; ð83Þ

we then obtain Eq. (25) with

Ω ¼ 3ξ̃

2ξ̄
þ ω: ð84Þ

The series expansions of the perturbative corrections of
Eqs. (19)–(20) are therefore given by the power series

Σ ¼
X∞
j≥3

2

σjxj ¼ σ32x3=2 þ σ2x2 þOðx5=2Þ; ð85Þ

Ω¼3ξ̃

2ξ̄
þ
X∞
j≥1

2

ωjxj¼
3ξ̃

2ξ̄
þω12

ffiffiffi
x

p þω1xþOðx3=2Þ: ð86Þ

Finiteness of the Ricci scalar at the horizon requires
Eq. (44) and

σ32jR ¼ 3ξ̃

2ξ̄
c32 ¼

2r3=2g ξ̃
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−3πē2

p
ξ̄

: ð87Þ

The expansion structure of the modified gravity terms Ē μν

is obtained analogous to Sec. IVA. We find

Ē tt ¼
æ32

x3=2
þ æ1̄

x
þ æ12ffiffiffi

x
p þ æ0 þ

X∞
j≥1

2

æjxj; ð88Þ

Ē t
r ¼ œ0 þ

X∞
j≥1

2

œjxj; ð89Þ

Ē rr ¼
X∞
j≥3

2

=ojxj: ð90Þ

The equation for the x0 coefficient of the tr component
Eq. (31) allows us to identify

Ẽjtr ¼
œ0rg

8πξ̄3=2c32
: ð91Þ

Substitution of Eq. (91) into the expression σ32jttðẼÞ
obtained from Eq. (30) and subsequent comparison with
the expression σ32jrr obtained from Eq. (32) establishes the
relation

æ32 ¼ 2ξ̄3=2œ0 − ξ̄3=o32 ð92Þ

between the lowest-order coefficients of the MTG terms,
see Appendix A 2. Similarly, by substituting Eq. (91) into
the expression for σ2jtt, and ξ̃jtr obtained from the

ffiffiffi
x

p
coefficient of Eq. (31) into the expression Eq. (87) for σ32jR,
we can derive two distinct expressions for the sum ẽ2 þ p̃2

by comparison of σ2jtt and σ2jrr obtained from Eqs. (30) and
(32), respectively, as well as comparison of σ32jR and σ32jtt.
Their identification establishes the additional relation

æ1̄ ¼ 2ξ̄3=2ðh12œ0 þ œ12Þ − ξ̄3ð2h12=o32 þ =o2Þ ð93Þ

between the modified gravity coefficients of Eqs. (88)–(90).
A detailed derivation with explicit expressions is provided in
Appendix A 2. Analogous to the class of k ¼ 0 black hole
solutions discussed in Sec. IVA, the modified gravity terms
Ē μν of any self-consistent MTG must follow the expansion
structures prescribed by Eqs. (88)–(90) and identically
satisfy the two relations Eqs. (92)–(93) to be compatible
with black hole solutions of the k ¼ 1 type. Again, con-
sideration of higher-order coefficients in Eqs. (30)–(32)
introduces new independent variables and will thus not
yield any additional constraints.
Once more, the analogs of the MTG coefficient relations

Eqs. (92)–(93) are also satisfied by the coefficients of the
corresponding metric tensor and Ricci tensor components
themselves, i.e.,

ðḡttÞ32 ¼ −ξ̄3ðḡrrÞ32 ¼ −c32ξ̄3=rg; ð94Þ

ðR̄ttÞ32 ¼ 2ξ̄3=2ðR̄t
rÞ0 − ξ̄3ðR̄rrÞ32 ¼ 0; ð95Þ

and

ðḡttÞ1̄ ¼ −ξ̄3ð2h12ðḡrrÞ32 þ ðḡrrÞ2Þ;
¼ −c32h12ξ̄3=rg; ð96Þ

ðR̄ttÞ1̄ ¼ 2ξ̄3=2ðh12ðR̄t
rÞ0 þ ðR̄t

rÞ12Þ
− ξ̄3ð2h12ðR̄rrÞ32 þ ðR̄rrÞ2Þ;

¼ −3c232ξ̄3=ð2r3gÞ; ð97Þ

where Eq. (82) was used to simplify the expressions,
ðR̄ttÞ32 ¼ ðR̄t

rÞ0 ¼ ðR̄rrÞ32 ¼ 0, ðR̄rrÞ2 ¼ −3c232=ð2r3gÞ,
and Eqs. (94) and (96) simplify due to the diagonal form
of the metric tensor ḡtr ¼ 0 [see Eq. (3)].

C. λ-expanded solutions

We now consider solutions where the leading reduced
components of the EMT are not dominated by terms of
order Oðλ0Þ. To obtain mathematically consistent expres-
sions we have to extend the expansion to terms of order
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Oðλ2Þ as higher-order terms, if needed, are obtained
analogously.
The k ¼ 0 solution without GR limit has the following

properties: the EMT expansion

τa ¼ λΞ̃þ λ2Ξ̃ð2Þ þ
X∞
j≥1

2

½ðτ̄aÞj þ λðτ̃aÞj þ λ2ðτ̃ð2Þa Þj�xj ð98Þ

corresponds to the case where as r → rg, lim τt ¼
lim τr ¼ lim τt

r. The equations below are trivially extend-
able to the case where the leading term in τt

r ¼ −λΞ̃.
In either case, the metric functions are given by

C ¼ rg − λσ12
ffiffiffi
x

p þ
X∞
j≥1

2

ðζj þ λσj þ λ2σð2Þj Þxj; ð99Þ

h ¼ −
1

2
ln
x
ξ
þ
X∞
j≥1

2

ðηj þ λωj þ λ2ωð2Þ
j Þxj; ð100Þ

similar to the k ¼ 0 perturbative solution. Here, the structure
of the metric function h was simplified by redefining the

time, and the coefficient c12 ¼ ζ12 þ λσ12 þ λ2σð2Þ12 was
simplified by taking into account the requirement that the
Ricci scalar must be finite at the apparent horizon, i.e.,

c12 → λσ12 ¼ −
r0grgffiffiffi
ξ

p : ð101Þ

Unlike in GR, the sign of Ξ̃ (and Ξ̃ð2Þ) cannot be determined
solely from the requirements of existence and consistency
of the modified Einstein equations. It is therefore unclear
whether or not violation of the null energy condition is a
prerequisite for the formation of a PBH. This is in contrast to
GR, where such a violation has been shown to be mandatory
in a variety of settings [9,21,26,27].
The expansion structure of the non-GR terms E μν

remains the same as in the perturbative k ¼ 0 scenario
discussed in Sec. IVA, that is

E tt ¼
æ1̄

x
þ æ12ffiffiffi

x
p þ æ0x0 þ

X∞
j≥1

2

æjxj; ð102Þ

E t
r ¼ œ12ffiffiffi

x
p þ œ0x0 þ

X∞
j≥1

2

œjxj; ð103Þ

E rr ¼ =o0 þ
X∞
j≥1

2

=ojxj; ð104Þ

where æl ≔ ǣl þ λæ̃l, and similarly for the coefficients
œl, =ol of the non-GR terms E t

r and E rr. Substitution into
the generic modified Einstein equations Eqs. (7)–(9) gives

Oðx0Þ terms of Eq: ð7Þ8<
:
�
ǣ1̄

ξ − 8πΞ̃
�
λ ¼ 0; ð105Þ�

æ̃1̄

ξ þ 8πΞ̃ð2Þ −
σ2
12

2r3g

�
λ2 ¼ 0 ; ð106Þ

Oðx−1=2Þ terms of Eq: ð8Þ8<
:

ðœ̄12 − 8π
ffiffiffi
ξ

p
Ξ̃Þ λ ¼ 0; ð107Þh

œ̃12 þ
ffiffi
ξ

p
2

�
16πΞ̃ð2Þ −

σ2
12

r3g

��
λ2 ¼ 0; ð108Þ

Oðx0Þ terms of Eq: ð9Þ8<
:

ð=̃o0 − 8πΞ̃Þ λ ¼ 0; ð109Þ�
=̃o0 þ 8πΞ̃ð2Þ −

σ2
12

2r3g

�
λ2 ¼ 0; ð110Þ

at the respective leading orders of x, and leads to the
following constraints: first, the expansion coefficients

ðτaÞ12¼0 ∀ a, where ðτaÞl ≔ ðτ̄aÞl þ λðτ̃aÞl þ λ2ðτ̃ð2Þa Þl,
see Eq. (98). At the leading expansion order [which isOðλÞ
since the non-GR terms appear as λE μν in Eqs. (7)–(9)] the
lowest-order x coefficients satisfy

ǣ1̄ ¼
ffiffiffi
ξ

p
œ̄12 ¼ ξ=̄o0 ¼ 8πΞ̃ξ; ð111Þ

which is analogous to Eq. (63), but in this case identifies the
leading reduced term in the EMT. Similarly, the next-order
Oðλ2Þ expansion coefficients satisfy

æ̃1̄ ¼
ffiffiffi
ξ

p
œ̃12 ¼ ξ=̃o0 ¼ −8πΞ̃ð2Þξþ

σ212ξ

2r3g
: ð112Þ

V. BLACKHOLES IN THE STAROBINSKYMODEL

Numerous modifications of GR have been proposed,
including theories that involve higher-order curvature
invariants. A popular class among these are so-called
fðRÞ theories [2], in which the gravitational Lagrangian
densityL g is an arbitrary function of the Ricci scalar R. In
this section, we consider the Starobinsky model [16] with
F ¼ ςR2, ς ¼ 16πa2=M2

P [see Eq. (1)]. It is a straightfor-
ward extension of GR with quadratic corrections in the
Ricci scalar that is of relevance in cosmological contexts. In
particular, it is the first self-consistent model of inflation.
New horizonless solutions in this model have been iden-
tified recently in an analysis [28] of static, spherically
symmetric, and asymptotically flat vacuum solutions.

A. Modified Einstein equations

In fðRÞ theories, the relevant equations have a relatively
simple form. For the action
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S ¼ 1

16π

Z
ðfðRÞ þLmÞ

ffiffiffiffiffiffi
−g

p
d4xþ Sb; ð113Þ

where the gravitational Lagrangian L g ¼ fðRÞ, the matter
Lagrangian is represented by Lm, and Sb denotes the
boundary term, the field equations for the metric gμν are
given by

f0Rμν −
1

2
fgμν þ ðgμν□ −∇μ∇νÞf0 ¼ 8πTμν; ð114Þ

where f0 ≔ ∂fðRÞ=∂R and □ ≔ gμν∇μ∇ν. It is convenient
to set fðRÞ≕Rþ λFðRÞ. The modified Einstein equations
are then

Gμν þ λ

�
F 0Rμν −

1

2
Fgμν þ ðgμν□−∇μ∇νÞF 0

�
¼ 8πTμν:

ð115Þ

Performing the expansion in λ and only keeping terms up
to the first order we obtain expressions for the modified
gravity terms Ē μν, i.e.,

Ē μν ¼ F 0R̄μν −
1

2
F ḡμν þ ðḡμν□̄ − ∇̄μ∇̄νÞF 0; ð116Þ

where all objects labeled by the bar are evaluated with
respect to the unperturbed metric ḡ, and F ≡FðR̄Þ.
In spherical symmetry the d’Alembertian is given by

□F 0 ¼ ½∂t∂t þ ∂r∂r þ ð∂thÞ∂t þ ð∂rhþ 2=rÞ∂r�F 0:

ð117Þ

Second-order covariant derivatives of a scalar function can
be expressed in terms of partial derivatives, i.e.,

∇μ∇νF
0 ¼ ∂μ∂νF

0 − Γζ
μν∂ζF

0: ð118Þ

In the Starobinsky model FðRÞ ¼ ςR̄2 þOðλÞ and
Eqs. (30)–(32) become

Ē tt=ðλςÞ ¼ 2R̄R̄tt −
1

2
R̄2ḡtt þ 2½ḡttð∂t∂t þ ∂r∂r

þ ð∂th̄Þ∂t þ ð∂rh̄þ 2r−1Þ∂rÞ
− ∂t∂t þ Γt

tt∂t þ Γr
tt∂r�R̄; ð119Þ

Ē t
r=ðλςÞ ¼ 2R̄R̄t

r − 2ð∂t∂r þ Γr
tt∂t þ Γr

tr∂rÞR̄; ð120Þ

Ē rr=ðλςÞ ¼ 2R̄R̄rr −
1

2
R̄2ḡrr þ 2ḡrr½∂t∂t

þ ð∂th̄ − Γr
rtÞ∂t þ ð∂rh̄þ 2r−1 − Γr

rrÞ∂r�R̄:
ð121Þ

B. Compatibility with the k= 0 class
of black hole solutions

With the k ¼ 0 metric functions Eqs. (46)–(47), the
constraint Eq. (52) that is obtained from the requirement
that the Ricci scalar be nondivergent leads to cancellations
in the Ricci tensor components R̄tt and R̄rr which ensures
that the MTG terms Eqs. (119)–(121) of the f̃ðR̄Þ ¼ ςR̄2

Starobinsky model conform to the structures of
Eqs. (57)–(59). We find that both of the two constraints
posed by Eq. (63) are satisfied, i.e.,

æ1̄ ¼
ffiffiffī
ξ

q
œ12 ¼ ξ̄=o0;

¼ c212ξ̄ð−2ðR0 þ rgR1Þ þ h12rgR12Þ − c12r2g
ffiffiffī
ξ

p
R0
0

2r3g
;

ð122Þ
where Rj is used to denote coefficients of the Ricci scalar
R̄ ¼Pj Rjxj ¼ R0 þ R12

ffiffiffi
x

p þ R1xþOðx3=2Þ. Similarly,
the next-highest order coefficients satisfy the constraint of
Eq. (65), see Appendix B, Eqs. (B4)–(B6).

C. Compatibility with the k = 1 solution

Similar to the k ¼ 0 case, the k ¼ 1 constraint on the
evolution of the horizon radius Eq. (44) that is required to
ensure consistency of the Einstein equations and finiteness
of the Ricci scalar leads to cancellations in R̄tt, and
the k ¼ 1 Starobinsky MTG terms of Eqs. (119)–(121)
follow the structures prescribed by Eqs. (88)–(90). Using
the k ¼ 1 metric functions Eqs. (76)–(77) we obtain the
lowest-order coefficients

æ32 ¼ 2c32ξ̄3=r5g; ð123Þ
æ1̄ ¼ −c32ξ̄3ð−2h12 þ 3c32ð4þ r3gR1ÞÞ=r5g; ð124Þ

of Ē tt from Eq. (119). Similarly, we obtain the coefficients

œ0 ¼ 0; œ12 ¼ −3c232ξ̄3=2ð4þ r3gR1Þ=r5g; ð125Þ
=o32 ¼ −2c32=r5g; ð126Þ

=o2 ¼ c32ð2h12 − 3c32ð4þ r3gR1Þ=r5gÞ; ð127Þ

of Ē t
r and Ē rr from Eqs. (120)–(121), where R1 denotes

the x coefficient of the Ricci scalar R̄ ¼Pj Rjxj ¼ 2=r2g þ
R1xþOðx3=2Þ and R12 ¼ 0, cf. Eq. (45). With the
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expressions given in Eqs. (123)–(127), it is easy to verify
that both k ¼ 1 constraints Eqs. (92) and (93) are satisfied
identically.

D. Compatibility with the λ-expanded k = 0 class
of black hole solutions

Equality of the coefficients in Eqs. (111) and (112)
follows in exactly the same fashion as in Sec. V B. Explicit
calculation confirms that the coefficients of the MTG terms
in the Starobinsky model Eqs. (119)–(121) obtained using
the EMT expansion of Eq. (98) and metric functions
Eqs. (99)–(100) coincide with those of Eq. (122) at the
leading expansion orderOðλÞ. Terms of orderOðλ0Þ vanish
in accordance with Eq. (122) [note that c12 ∝ OðλÞ]. This
confirms that the Starobinsky solution is consistent with
the generic form of PBH solutions. However, since Ξ̃ð2Þ is
undetermined in the self-consistent approach, Eq. (112)
does not impose any constraints on the function ξ.

VI. DISCUSSION

We have analyzed the properties of metric MTG and
derived several constraints that they must satisfy to be
compatible with the existence of an apparent horizon. Since
we have not specified the origin of the deviations from GR,
the results presented here are generic and apply to all
conceivable self-consistent metric MTG.
Constraints on a perturbative solution in a particular metric

MTG arise from two sources: first, the series expansions
of the modified gravity terms Ē μν in terms of the distance
x ≔ r − rg from the horizonmust followaparticular structure
that is prescribed by the modified Einstein equations with
terms that diverge in the limit r → rg. Second, a general
spherically symmetric metric allows for two independent
functions C and h that must satisfy three Einstein equations.
The resulting relations between coefficients σl, ωl of their
perturbative corrections translate into relationships between
the coefficients cl and hl, and eventually components of
the unperturbed EMT. These constraints must be satisfied
identically. Otherwise, a valid solution of GR cannot be
perturbatively extended to a solution of aMTG. Identities that
must be satisfied for the existence of the perturbative k ¼ 0
solutions are given by Eqs. (63) and (65), and for the k ¼ 1
solution by Eqs. (92)–(93).
On the other hand, there are nonperturbative solutions

that do not have a well-defined GR limit. In this case, the
constraints on a MTG that are imposed by the existence of a
regular apparent horizon formed in finite time of a distant
observer are given by Eqs. (111)–(112).
Using the Starobinsky R2 model, arguably the simplest

possible MTG, we identify both perturbative and non-
perturbative solutions. However, this is not the only
theory that should be investigated: in a future article
[29], we will consider generic fðRÞ theories of the form
fðRÞ ¼ Rþ λFðRÞ, where FðRÞ ¼ ςRq and q; ς ∈ R.

In particular, this includes the case q ¼ 1=2 [i.e., fðRÞ ¼
Rþ λς

ffiffiffiffi
R

p
] considered in Ref. [30], as well as the case

of negative exponents q < 0 considered in Ref. [31].
More general MTG (e.g., those involving higher-order
curvature invariants) will also be considered.
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APPENDIX A: COEFFICIENTS OF
PERTURBATIVE CORRECTIONS

1. k= 0 black hole solutions

With the metric functions Eqs. (46)–(47) of the k ¼ 0
solutions we obtain the following coefficients for the
perturbative correction Σ of Eq. (55) from Eqs. (30)–(32):

σ12jtt ¼ −
r3=2g æ1̄

4
ffiffiffi
π

p
ξ̄ ϒ̄

; ðA1Þ

σ12jtr ¼ −
r3=2g

�
4πξ̃ϒ̄2 þ

ffiffiffī
ξ

p
œ12

�
2
ffiffiffi
π

p
ξ̄ ϒ̄

; ðA2Þ

σ12jrr ¼ −
r3=2g =o0
4
ffiffiffi
π

p
ϒ̄
; ðA3Þ

σ1jtt ¼
4ϒ̄æ1̄ þ 6

ffiffiffi
π

p
r3=2g ϒ̄2

36πξ̄ϒ̄3
ð−æ12 þ 8πξ̄ðτ̃tÞ12

þ ffiffiffi
π

p
r3=2g æ1̄ð6ðτ̄rÞ12 − 5ðτ̄tÞ12ÞÞ; ðA4Þ

σ1jtr ¼ −
1

12
ffiffiffi
π

p
ξ̄ ϒ̄

h
ξ̃ð−4 ffiffiffi

π
p

ϒ̄þ 8πr3=2g ðτ̄tÞ12Þ þ 3r3=2g

×
ffiffiffī
ξ

q �
−œ0 þ 4π

ffiffiffī
ξ

q
ððτ̃tÞ12 þ ðτ̃rÞ12 − 2ϒ̄2ω12Þ

�i
;

ðA5Þ

σ1jrr ¼
1

12πϒ̄3
ð−2ϒ̄=o0 þ 6

ffiffiffi
π

p
r3=2g ϒ̄2ð−=o12 þ 8πðτ̃rÞ12Þ

þ ffiffiffi
π

p
r3=2g =o0ððτ̄tÞ12 − 6ðτ̄rÞ12Þ − 96π3=2r3=2g ϒ̄4ω12Þ:

ðA6Þ

Via comparison of Eqs. (A5) and (A6) we can identify
the coefficient
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ω12 ¼
1

72πξ̄ϒ̄2r3=2g

�
20

ffiffiffi
π

p
ξ̃ ϒ̄þ3r3=2g

ffiffiffī
ξ

q
œ0 − 6r3=2g ξ̄ð=o12

þ 2πðτ̃tÞ12 − 6πðτ̃rÞ12Þ þ 16r3=2g πξ̃ð3ðτ̄rÞ12 − ðτ̄tÞ12Þ
�

ðA7Þ

for the perturbative correction Ω of Eq. (56).
Substitution of Eq. (A7) into Eqs. (A5) and (A6) then

yields

σ1jtr ¼ σ1jrr

¼ 1

18
ffiffiffi
π

p
ξ̄ ϒ̄

h
3r3=2g

ffiffiffī
ξ

q �
−2œ0 þ

ffiffiffī
ξ

q
ð=o12 þ 8πðτ̃tÞ12Þ

�
− 4ξ̃ð4 ffiffiffi

π
p

ϒ̄þ πr3=2g ð6ðτ̄rÞ12 − 5ðτ̄tÞ12ÞÞ
i
: ðA8Þ

Subsequent comparison of Eq. (A8) and (A1) establishes
the relation Eq. (65) between the coefficients æ12, œ0,
and =o12.

2. k = 1 black hole solution

With the metric functions Eqs. (76)–(77) of the k ¼ 1
solution we obtain the following coefficients for the pertur-
bative correction Σ of Eq. (85) from Eqs. (30) and (32):

σ32jtt ¼ r2g

�
æ32rg
ξ̄3

− 8πc32Ẽ

�
; ðA9Þ

σ32jrr ¼ −=o32r3g þ 8πc32r2gP̃; ðA10Þ

σ2jtt ¼
r2g
ξ̄3

½æ32rgð3c32 − 2h12Þ þ æ1̄rg

− 8πξ̄3ðc32ð3c32 − h12ÞẼþ rgẽ2Þ�; ðA11Þ

σ2jrr ¼ −r2gð=o2rg − c32ð3=o32rg
− 8πð3c32 þ h12ÞP̃Þ − 8πrgp̃2Þ: ðA12Þ

From the x0 and
ffiffiffi
x

p
coefficients of Eq. (31) we obtain

Ẽjtr ¼
œ0rg

8πc32ξ̄3=2
; ðA13Þ

ξ̃jtr ¼ −
2ξ̄σ32
3c32

−
4r3g

9c232
ffiffiffī
ξ

p ðœ12 − 8πξ̄3=2p̃2Þ; ðA14Þ

where Φ̃ ¼ ðẼþ P̃Þ=2 and ϕ̃2 ¼ ðẽ2 þ p̃2Þ=2, see
Eqs. (73) and (75). By substitution of Eq. (A13) into
Eq. (A11) we obtain

ẽ2 þ p̃2 ¼
6c232Φ̃
rg

þ 1

8πξ̄3
½æ1̄ þ æ32ð3c32 − 2h12Þ

þ ξ̄3ð=o2 − 3c32=o32Þ þ 2ξ̄3=2œ0ðh12 − 3c32Þ�:
ðA15Þ

from the comparison σ2jtt − σ2jrr ¼ 0. Similarly, substitu-
tion of Eq. (A14) into Eq. (87) and subsequent comparison
of σ32jR − σ32jtt ¼ 0 yields

ẽ2þ p̃2¼
6c232Φ̃
rg

þ3æ32c32− ξ̄3=2ð6c32−œ0œ12Þ
4πξ̄3

: ðA16Þ

Subtracting Eq. (A15) from Eq. (A16) and subsequent
multiplication by 8πξ̄3rg yields

− rg½æ1̄ − æ32ð3c32 þ 2h12Þ þ ξ̄3=2ðξ̄3=2ð=o2 − 3c32=o32Þ
þ 6c32œ0 þ 2h12œ0 − 2œ12Þ� ¼ 0: ðA17Þ

Lastly, substituting æ32 from Eq. (92) into (A17) and
rearranging gives Eq. (93).

APPENDIX B: ADDITIONAL EXPLICIT EXPRESSIONS FOR k= 0 BLACK HOLE SOLUTIONS

Explicit expressions for the individual terms in Eq. (69):

ðR̄ttÞ12 ¼ 2

ffiffiffī
ξ

q
ðR̄t

rÞ0 − ξ̄ðR̄rrÞ12;

¼ −
1

24c12r3g

h
−2c312ξ̄ðh312rg þ 6h32rg þ h12ð9h1rg − 6ÞÞ6rg

ffiffiffī
ξ

q
ðc1 − 1Þ

� ffiffiffī
ξ

q
ðc1 − 1Þ2 − 2rgc012

�

×
h
4c32rgξ̄ðc1 − 1Þ þ rg

ffiffiffī
ξ

q �
2rgc01 − h12

� ffiffiffī
ξ

q
ðc1 − 1Þ2 − 2rgc012

��i
þ 6c212

�
ξ̄ð3 − 2h1rg þ c32h12rg − h212rg þ c1ð−3þ 2h1rg þ h212rgÞÞ þ r2g

ffiffiffī
ξ

q
h012
�i

: ðB1Þ

ðR̄t
rÞ0 ¼ c12

ffiffiffī
ξ

q
ðc1 − 1Þ=r3g: ðB2Þ
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ðR̄rrÞ12 ¼
1

24c12r3g
ffiffiffī
ξ

p h
−2c312

ffiffiffī
ξ

q
ðh312rg þ 6h32rg þ h12ð9h1rg − 6ÞÞ þ 6rgðc1 − 1Þ

� ffiffiffī
ξ

q
ðc1 − 1Þ2 − 2rgc012

�

þ 3c12rg
h
4c32

ffiffiffī
ξ

q
ðc1 − 1Þ þ 2rgc01 − h12

� ffiffiffī
ξ

q
ðc1 − 1Þ − 2rgc012

�i
þ 6c212

h ffiffiffī
ξ

q
ðh12c32rg − 2h1rg − h212rg þ c1ð5þ 2h1rg þ h212rgÞ − 5Þ þ r2gh012

ii
: ðB3Þ

Explicit expressions for the MTG coefficients æ12,œ0, =o12 in the Starobinsky model of the k ¼ 0 solution (see Sec. V B):

æ12 ¼
1

12c12r5g

h
−12rgξ̄R0ðc1 − 1Þ3 þ 2c312ξ̄ð2R0ð−6h12 þ rgð9h12h1 þ h312 þ 6h32ÞÞ − 6h12r3gR1

þ 3r2gR12ð−6þ rgðh212 þ h1ÞÞ þ 24r2gR0

ffiffiffī
ξ

q
c012ðc1 − 1Þ − 3c12rg

ffiffiffī
ξ

q h
8c32

ffiffiffī
ξ

q
R0ðc1 − 1Þ

þ 2h12R0

�
2rgc012

ffiffiffī
ξ

q
ðc1 − 1Þ2

�
þ rgð4R0c01 þ 2r2gR12c012 − 4R0

0ðc1 − 1Þ − rg

ffiffiffī
ξ

q
R12ðc1 − 1Þ2Þ

i
þ 6c212

h
−2ξ̄R0ð5þ rgð2h1ðc1 − 1Þ þ h12ðc32 þ h12ðc1 − 1ÞÞÞ − 5c1Þ þ 4ξ̄R2

0

þ r3g ξ̄ðR12ðh12 − h12c1 þ c32Þ þ 4R1ðc1 − 1ÞÞ − 2r2g

ffiffiffī
ξ

q
R0h012 − r4g

ffiffiffī
ξ

q
R0
12

ii
: ðB4Þ

œ0 ¼
1

2r5g

h
c212

ffiffiffī
ξ

q
ð2h12ð4R0 þ r3gR1Þ þ r2gð2h1rg − 3ÞÞ − r4gR12c012

þ c12
�
8

ffiffiffī
ξ

q
R0ðc1 − 1Þ þ r2g

�
rg

ffiffiffī
ξ

q
ðc1 − 1Þð2R1 − h12R12Þ þ 4h12R0

0 − 3r2gR2
12

��i
: ðB5Þ

=o12 ¼
1

12c12r5g
ffiffiffī
ξ

p h
−2c312

ffiffiffī
ξ

q
ð2R0ðrgð9h12h1 þ h312 þ 6h32Þ − 30h12Þ − 18h12r3gR1 þ 3ð−3h1 þ h212ÞÞ

þ 12rgR1ðc1 − 1Þ
� ffiffiffī

ξ
q

ðc1 − 1Þ2 − 2rgc012
�
− 3c12rg

h
−8c32

ffiffiffī
ξ

q
R0ðc1 − 1Þ

þ 2h12R0

� ffiffiffī
ξ

q
ðc1 − 1Þ2 − 2rgc012

�
rg
�
rg

ffiffiffī
ξ

q
R12ðc1 − 1Þ2 − 4R0c01 þ 2r2gR12c012 þ 4R0

0ðc1 − 1Þ
�i

− 6c212
h
−2

ffiffiffī
ξ

q
R0ð3ðc1 − 1ÞÞ þ rgð2h1ðc1 − 1Þ þ h12ðc32 þ h12ðc1 − 1ÞÞÞ

þ 4

ffiffiffī
ξ

q
R2
0 − 2r2gR0h012 þ r2g

�
c32rg

ffiffiffī
ξ

q
R12 þ h12

�
rg

ffiffiffī
ξ

q
R12ðc1 − 1Þ − 8R0

0

�
þ 5r2gR0

12

�ii
: ðB6Þ
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