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Multiple scalar fields appear in vast modern particle physics and gravity models. When they couple to

gravity nonminimally, conformal transformation is utilized to bring the theory into the Einstein frame.

However, the kinetic terms of scalar fields are usually not canonical, which makes analytic treatment

difficult. Here, we investigate under what conditions the theories can be transformed to the quasicanonical

form, in which case the effective metric tensor in field space is conformally flat. We solve the relevant

nonlinear partial differential equations for an arbitrary number of scalar fields and present several solutions

that may be useful for future phenomenological model building, including the ¢ model with a particular

nonminimal coupling. We also find conformal flatness can always be achieved in some modified gravity

theories, for example, the Starobinsky model.

DOI: 10.1103/PhysRevD.104.064042

I. INTRODUCTION

Scalar fields are ubiquitous in modern particle physics
and gravity models, including inflation theories and dark
energy scenarios [1-8]. In many cases [9-27], the scalar
fields are nonminimally coupled to gravity through a term
f(¢")R, where f is some function of scalar fields ¢’ and R
is the Ricci scalar curvature. For example, the function
f(¢) is proportional to ¢? in the Jordan-Brans-Dicke
theory [28,29] and Higgs inflation model [30]. In modi-
fied gravity theories where only functions of R are
introduced [31], it is equivalent to treat as introducing
a scalar field, for instance, f(¢) ~ ¢ in the Starobinsky
model [32].

The Lagrangian with the f(¢')R term is usually referred
to as the one in the Jordan frame, in which the kinetic terms
of scalar fields are canonical. To compare with experi-
mental observations, it is standard to perform a conformal
transformation [33-35] on the metric tensor to Einstein
frame such that f(¢)R is transformed into R. However,
conformal transformation would induce a noncanonical
kinetic term of scalars in the Einstein frame, which makes
analytic treatment rather complicated, and various approxi-
mate methods have to be utilized. If there is only one scalar
field in the theory, it is always possible to redefine the field
variable and make the kinetic term canonical. However, it is
not clear whether such redefinition always exists in theories
with multiple scalar fields.
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The systematic investigation on conformal transforma-
tion with multiple scalar fields was conducted in Ref. [36],
in which the analysis was done with the effective metric
tensor G;; in the field space defined by the kinetic term
Gijdg'dg’. 1t is found that generally the field metric is not
flat; therefore, the kinetic terms are not canonical. Only one
solution was found for f(¢') with two scalar fields such
that the associated G;; is conformally flat. This finding is
closely related to analytic analysis in phenomenological
model building involving multiple scalar fields. For exam-
ple, a standard model Higgs doublet composes four real
scalar fields, and the ¢ model has N fields with SO(N)
symmetry. It is then unclear whether physical models with a
Higgs doublet, ¢ model, and other multiple scalar fields
might induce noncanonical kinetic terms that result in
unstable systems. Is it possible to find f(¢?) with a
conformally flat field metric in the Einstein frame such
that the equations of motion and energy-momentum tensor
of scalar fields are simpler?

In this paper, we intend to answer the above question and
present several new solutions for f(¢') with the corre-
sponding G;; conformally flat. We solve the relevant
nonlinear partial differential equations for the requirements
on f(¢") for any number of scalar fields and tabulate the
solutions in Table I, which might be useful for future model
building. Our results suggest that for the 6 model with N
scalar fields the field space can be conformally flat if the
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TABLE L.

The analytic solutions f(¢) in the first row that give conformally flat metrics, with the corresponding G

ijs Jk’ 7zijkl’ and

é’i jki- The metrics in the third column are solutions to the Einstein-like equation in vacuum of field space. In some cases, the constants
a, b;, and ¢ should satisfy some conditions that allow f(¢') > 0 (see the text for details).

(@) = Constant { a(c+ bi¢i)1+n, p#1 a+bip - ﬁfsij‘ﬁifﬁj
aexp (bg'). p=1

G.. — ;i 3ab;b; k ,l, ) (b; -2

gl} J {511 +< ( +bk¢ ) p 7é 1 (SU +7a+(bk¢" )(5“;,‘;,
+ 3ab bjexp (bet®), p=1

Aj‘k = 0 & ( )bzb iDi (_%fz ik — lff fjfk)

Riju = 0 0 o (0 ff 1f1)

Cit = 0 0 0

coupling has a particular form, in which local scaling  of phenomenological interest, f(¢’) should satisfy

symmetry is evident. We also find in some modified gravity
theories that involve a function of R and scalar fields that
the associated field spaces are always conformally flat.

This paper is organized as follows. In Sec. II, we
establish our theoretical formalism along with the nota-
tions. Then, in Sec. III, we analyze the structure of field
space and solve the differential equations for a conformally
flat metric tensor. Later, in Sec. IV, we discuss a particular
case in which a local scaling symmetry is present for the
model that couples to gravity nonminimally. After that, in
Sec. V, we show in modified gravity theories, such as the
Starobinsky model, that the field space is always con-
formally flat. Finally, we give our conclusion.

Throughout the paper, we use the four-dimensional space-
time metric g, with a sign convention (=1, 1,1,1) and the
natural unit M, = 1/+/8zG = 1. Greek letters (u,v,p. ...)
denotes the space-time indices, while Latin letters
(i,j,1,J,...) refer to field variables in the field space.
Riemann tensor is defined by R, = 0,0, — 9,10, +
g, —T0.I%,, where the connection is given by
I =2 6"10,90c + 0,9, — 0.9,,), and Ricci scalar R is
defined through R,, = R, and R = ¢°*R,,,. We may easily
check R”,,, = R,,,”, where the latter is also widely used in
the literature.

II. FORMALISM AND NOTATIONS

We shall first consider the following general Lagrangian
L in four-dimensional space-time for N nonminimally
coupled scalar fields, ¢', i =1, ..., N:

L

V=9

where ¢ are the determinant of g, and the covariant
derivative is denoted by V. V is the scalar potential that
can be neglected in our main theoretical discussions but
would be relevant for phenomenological studies. This
Lagrangian is referred to as the one in the Jordan frame
where nonminimal coupling f(¢)R is present. In the cases

= f(d) ) gyl/(sl] ;¢¢l u(bj (¢) (1)

f(¢") > 0 in the relevant parameter regions.
We make the standard conformal transformation on the
metric tensor:
Tw = LX) g,  Q(x) =2f(¢). (2)
After using the transformation relations in the Appendix A
and denoting @ = In Q, we can get the Lagrangian in the
Einstein frame:

R -3 ”vﬂwva} g””é,, ”qﬁ’ ,,(ﬁf

-1
R -

bk
Qt
[\)|_ t\)l'—‘

gﬂ gijvu(ﬁivvqﬁjv (3)

[\) |

where an effective metric tensor in field space G;; appears
and is given by

1 3
Gij = 2 <5ij + ?fifj>' (4)

Here and after we use the short notation for derivatives of

f fl a¢n fl] 845 34,/7 etc.

Because of the curved metric G;; in field space, the
scalar fields generally have noncanonical kinetic terms
[unless we begin with noncanonical ones in Eq. (1),
0ij = 2f06;; —%fifj]. If there is only one scalar field ¢
in the theory, G, is positive definite for f(¢’) > 0. Then,
we can always redefine a new field variable @ by the
differential equation d®(x)/d¢p(x) = ++/G;; and, there-
fore, make ®’s kinetic term canonical. For the cases with
multiple scalars, it would be much more complicated, as we
shall present below.

III. STRUCTURE OF THE FIELD SPACE

With the metric tensor G;;(¢*) in field space, we would
like to know whether there exists a set of field coordinates
@' = ¢! (¢*) such that the associated metric tensor is flat,
G k(") = 8,k. One necessary condition for the existence
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is that the Ricci scalar curvature R(G;;) = 0, because R is
an invariant quantity under coordinate transformation. We
can easily check that R=0 for N =1 due to the
antisymmetric properties of R;j;, which confirms our
analysis above that a canonical kinetic term can always
be achieved after the redefinition of the field for N = 1.
However, in general, R # 0 for N > 1; therefore, field
coordinates ¢ may not exist such that their kinetic terms
are canonical.

It is modest to ask whether the geometry of field space is
conformally flat, G,k (¢') & 8,k. In such cases, the kinetic
terms may be referred as quasicanonical. In such forms, the
energy-momentum tensor and equation of motion would be
simpler (neglecting the potential term):

1 e - -
T/w = _Egl./gﬂugaﬁva(plvﬁ(pl + gllvy¢1vu¢l’
D' + Tk 7V,0'V,0" =
As we have learned from Riemannian geometry, mani-
folds with N <3 are always conformally flat. But for

N >3 it is no longer true, and conformal flatness is
determined by the Weyl tensor, which is defined as

2
Cij = Riju — N— 2<g [le]J gj[le]i)
2R
+mgi[kgl]j. (5)

If C;jx; = 0, the field space is conformally flat. To compute
Cijx in the cases of our interest, we conformally transform
G, into

s (6)

@ijzzfxgij=5ij+f

and calculate the corresponding ﬁijkl,R,],R and Cl ikl
The relation ¢ k= C jki enables us to reach the condition
that the field space with metric G;; is conformally flat
if C; ijkt = 0.

First, we compute the determinant of g

inverse metric GV/:

. 3
G=1+2> 12
/=

which are surprisingly simple. The calculation details can
be found in the Appendix B. Note that the indices of inverse
metric are in the subscript, which allows us to do tensor
analysis just as the usual matrix manipulation. We can

ij» U, and the

i 3
gl] = 61] _f—@fifj’ (7)

easily check that GG k= O = &,. Based on the symmet-
ric property, we can evaluate that the metric field Q,»j is
positive definite for f(¢') > 0. Therefore, there is no ghost

in such physical systems. This conclusion is independent of
which parameterization of f(¢') is used, since the deter-
minant GV does not change sign under the field
transformations.

We can also obtain the following geometric quantities
after tedious calculations:

Jk = —g’l(a G+ 0kGj1 — 01G i)
f@fl (fjk fo/fk> (8)
@W—f[maﬂfdm
+ f(ffzf,k +fifefii— fifkfjl_fjflfik)]
6
—f—g<lkf1 +fflf]kfz]> )
f@ |:(fz]fkk fikfjk)
+_f(fifkfjk +fififi—fif ifw—Fiif?)
+fgfkf1(fikfj1—fijflk)
2f2 fkfl(fjflfzk+ffkfl/ fififu=Fefifi) ]
(10)
7’\?’ f2 Lfg(fllfj] U) (ffjfl] f%f}])
+6(fijfjk_fikfjj)fifk]v (11)
where f7 = Zkfkfk = > _i; fijfij> and all the repeated

indices are summed. C, ki can be obtained straightforwardly
with Eq. (5).

Now we are in a position to discuss the conditions for
conformal flatness of the field space. One solution with
7A€i ix = 0 was found in the literature [36], with f (¢, ¢,) =
E(PY)? + & (@?)? for N = 2, where & are arbitrary pos-
itive constants. This can easily be checked by calculating
the 7%1212 = 0, which is the only independent component
for N = 2. One is tempted to extend the case to N > 2,
since the 6 model would fall in this category. Unfortunately,
extension of such a form for N > 2 gives 7%1212 #0, in
general, except all &; are equal to some particular value, as
we shall show below.

Here we present new solutions with 7%,-]-,{, =0, or fzijkl #0
but @ijk, = 0. Completely solving f from the nonlinear

partial differential equation ﬁij,d =0 is notoriously
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difficult and unpractical. Besides, there is no unique
solution for such nonlinear equations. We have known a
similar case from solving the Einstein field equation, which
is also nonlinear and has multiple solutions. In this paper,
we shall present several solutions based on the symmetric
properties of 7AQ,< k- We enumerate several cases below.
(1) lA“;k =0 and 7A?,l-jk, = 0.—This is the simplest case
and can be easily verified from the definition of
7A?,,- k- We may further divide this category into two

cases, after observing the feature in Eq. (8).

(a) f; = 0.—This is the trivial solution with f =
positive constant, in which case the scalar fields
are minimally coupled with gravity.

®) fi= % fifr—We can solve the equation by
taking a further derivative, using the above
relation recursively and getting an additional
condition f;; = 0, which indicates f is a quad-
ratic function of ¢;:

f(@) = alc+bip'). (12)

where a > 0, b;, and ¢ are arbitrary nonzero
constants.

@ T j-k # 0 but R;j;; = 0.—Inspired by the second case
above, we notice that taking a form f;; = % fif;
would give a vanishing Riemann tensor. Solving the
differential equation gives the solutions

F(@') = alc + big)7,

ab;
fi=1
-p

(c+bjply7, forp#1, (13)
and

f(@) = a exp (bip").

fi = abl- exp (b]¢]>, for p = 1. (14)
The solution for p = 0 is included above, in which
case f is a linear function of ¢'. The metrics in this
category solve Einstein-like equations in vacuum at
any dimension N:

, 3abib; e
Aij _ {6l~/+(l—p)2 (C+bk¢ ) s p;é 1, (15)
8;j + 3ab;b; exp (byg*). p=1.

For phenomenological studies, the existence of
f(¢") > 0 should be imposed to constrain the
parameters a, b;, and c. In the case of p =1,
a > 0 and b; is arbitrary constant. In the case of
general p except for some fractions (for instances,
p=1/2,3/4,5/6,...), there are no general con-
ditions for a, b;, and c¢. The reason is that linear
function ¢ 4+ b jgbj can go from —oo to co. As long as

for our physical interests there exists f(¢’) > 0 at
some domains of ¢', which are determined by the
explicit shape and minimum of potential V(¢?), the
theories can recover Einstein’s gravity.

(3) Riu #0 but Cijy =0.—~Even if the Riemann
tensor does not vanish but has the following
structure:

A

Riju o @i[k@qj, (16)

we would obtain C ijr = 0 as well. Contracting with
G*Gi! gives the proportional factor R /[N(N — 1)].
Observing that

6
—J1i%7S 1 (17)

GinGnj = iudy; - 7

A

and comparing with R;;;, we would have the
following relation:

5 (18)

The general solution of the above equation would be
;o1 i 1,
fldi)=a+bip —551';'45 ¢, fi:bi_6¢- (19)

Similarly, the existence of f(¢') >0 over some
parameter ranges of ¢’ would constrain a and b,. Put
it another way, f(¢') cannot be negative definite. We
can write f(¢')=—35>;(¢"—6b;)* +a+33 b
Therefore, as long as a + 3>, b? > 0, f(¢') >0
can be satisfied at some parameter ranges of ¢'. In
the case of nonpositive f, we cannot make the
conformal transformation in Eq. (2) and a physical
theory as Einstein gravity would be missing. Again,
we note that f > 0 in the whole parameter spaces
might be too restrictive. As long as there exist
parameter spaces with f > 0 around the field do-
main we are interested in, for instance, the inflation
regime and the potential minimum, conformal trans-
formation is still valid in the finite domain that
Einstein gravity can be recovered.

We point out that, by redefining a, b;, and ¢, the forms of
f(¢") in all the above solutions do not change under the
field shift ¢' — ¢’ + d', where d' are arbitrary constant.
The solutions are summarized in Table I, where f(¢') and
its corresponding @,»j, f;k ﬁijk,, and ffijkl are listed. These
f(¢") might be useful for future model building due to their
simple forms.

So far, we have focused on the Riemannian metric. If one
of the scalar fields has opposite sign for the kinetic term, we
would get the Lorentzian metric G;; =n;; +3f:f;/f,
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where 5, = —1,n; =1 for i # 1, and 5;; =0 if i # j.
Note that the opposite sign in the Jordan frame does not
necessarily lead to a ghost in the presence of nonminimal
coupling. The reason is that conformal transformation
induces an additional kinetic term in the Einstein frame
with the total coefficient proportional to 7;; + J37 Sifj- As
+%fl-fj is positive
definite, we have normal scalars. In fact, viable theories
with opposite sign were discussed in a-attractor inflation
models; see Refs. [37-39].

Similarly, for the Lorentzian field metric, we calculate

long as the field metric tensor 7;;

A 3 3.
G =det gij__<1+?77ijfifj> __<1+}fifl)’ (20)

Gl _'h/ ( 1>6”+51jfifj:7/lu+f_gflfj’ (21)

£

éf" (f,k ff,fk)
(22)

s 1
}k:_énilfl<fjk ffjfk>

Here, the subscripts of f denote the usual derivatives,
upgraded by #"/. Note that the similar tensor structures of
Q,»] and T ik to previous cases lead to the same tensor

structure of Rl]k,. Therefore, the solutions to R,]k, =0
barely change, except the replacement ?i i = Mij

The absence of a ghost requires G;; to be positive
definite, which imposes some conditions on f(¢') in
addition to f(¢') > 0. Namely, we shall have the following
constraints:

These constraints restrict a, b;, and ¢ further, which can be
obtained straightforwardly. Since there are no transparent
solutions, we do not list them here.

We note that the function f is not invariant under
nonlinear field redefinition, and Q,J, "x» and 7A€,»jkl are
also not invariant. Still, our results are useful for theoretical
consistency check and phenomenological studies, in a
sense that we may make field redefinition to transform
the theory into the form we present, namely, in the Jordan
frame where the kinetic terms are canonical. Then, we can
calculate whether f satisfies the differential equations and
the corresponding G ; 18 positive definite. In the Einstein
frame, reparametrization of the field ¢’ does not alter the
results due to the change rules of @,»j and 7A2,-J-k,.

IV. LOCAL SCALING SYMMETRY

In previous sections, we have presented several f(¢')
with conformally flat field space by showing the associated
Cijxt = 0. However, we have not demonstrated explicitly
the new field coordinate ¢(¢") of the field space whose
metric G;;(¢X) is proportional to &;;. In most cases, such
coordinate transformations ¢’ — ¢’ have no compact
analytic solutions. Here, we have found an interesting case:

f(¢i) =da %5,-,-47"4)’} (23)

where the system has a global SO(N) symmetry for ¢/ and
is also called as o model in field theory. We can introduce
an auxiliary field y and rewrite the relevant Lagrangian as

L

——2a|¢"*VuV.u+
\/— WX

1R
6)(

__|:g” 51] ;4¢l 1/¢j R6l]¢ ¢ji| (24)

Because there is a local scaling symmetry in the above
Lagrangian,

g;w(x) - g;w(x) - ﬂz(x)g;w(x)7
¢'(x) = ¢ (x) = 27 () ().
x(x) = g (x) = 27 (x)x(x). (25)

where A(x) is an arbitrary positive function, the original
theory can be recovered by setting A(x) = y(x)/+/6. This
symmetry is also called Weyl or conformal symmetry in the
literature and has wide applications in model building; see
Refs. [40,41] for recent examples.

When a = 1/2, this theory has an extended global
symmetry SO(1,N), y* —6,;¢'¢Y = 6. The geometry of
the field space or kinetic term is related to the distance
element in the field space, ds* = dy* —65;dp'de’.
Introducing field coordinates (7, ¢'), we can parameterize

y= \/_< 5; ¢¢/e + cosh T>
o = \/EG 5, die” — sinh T),
(ﬂi _ \/E¢ieT’

ij=12..N-1  (26)

We can easily show
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1. .. . .
dy = \/EKE S;;'¢’e” + sinh T> dT + 8;;¢'e” dqﬁJ} ,

doVN = %[G Sij'dp/e” — cosh T> dT + 8;p'e” dqbf] ,
dg' = V6(e" dp' + p'e’dT). (27)

In the new field coordinates (7', ¢'), the element is given by
ds* = —dT* — e*'5,;dp'dg’. Refining dT = —e'dr or
t=e"T, we obtain ds*=—%(dz>+6;;d¢p'dy’). Therefore,
the geometry of field space is shown explicitly to be
conformally flat in the coordinate of (z, ¢').

Note that, although the geometric structure is determined
by the hypersurface in field space, y* — §;;¢'¢¥’ = 6, in
phenomenological studies one usually adopts a particular
parametrization in which only one field variable is respon-
sible for the physical effects of interest. For example, if we
are interested in only the radial part as the inflaton, we can
use the following parametrization of the field coordinates

(¢, 0"):

X = V6 cosh ®,
¢' = V6 sinh ¢ cos 6",
¢* = V6 sinh ¢ sin ' cos 62,

#" ! = /6 sinh ¢ sin 0! ... sinOV2 cos OV!,
" = /6 sinh ¢ sin 0'...sin O¥=2 sin OV-!. (28)

In this case, radial field ¢ would have a canonical kinetic
term from the very beginning, while the angular field
variables @ would not. Analysis of the dynamics of &'
might involve approximations such as expanding by the
0'/M » as small parameters, etc. We have actually encoun-
tered the special case for N = 1 in the a-attractor inflation
model [37,38] and its extensions with Weyl gauge field
[39,42,43]. The confirmation from the N = 1 case also
partially suggests the correctness of our calculation for
general N.

V. F(R) GRAVITY

In this section, we extend our discussions by considering
the following Lagrangian of modified gravity in four-
dimensional space-time for N nonminimally coupled scalar
fields, ¢', i = 1,2, ..., N:

L
—2F
Ve,

where F(R,¢') is a function of R and ¢’ without deriv-
atives. Such terms are motivated from quantum corrections

. 1 . .
(R’ ¢1) - Egm/éijvqulvud)]’ (29)

and cosmological models. For example, in the Starobinsky-
like model, we have F(R,¢') = f(¢')R + aR?/2, which
can give viable inflation scenarios.

We can similarly use the auxiliary field y and rewrite the
Lagrangian

%g = PR ) + Pl ¢) (R =)

1 . )
- Eg’wéijvﬂd)lvl/quv (30)

where Fp denotes the derivative of F(R,¢) over R and
F(y*,¢) = F(R = y*,¢). One may check that the equa-
tion of motion for y still gives y> = R. Then denoting the
0-component ¢° = y and new f function

f(@) = Fr(.¢").

we have reduced the system into the case we discussed in
previous sections. However, there is a crucial difference
that ¢° has no kinetic term. It turns out that this difference
leads to significantly different results.

Following the similar procedures and omitting the
potential term, we can obtain

1=0,1,2,...N, (31)

L

L 1w e
R =37V, 0V, o — ﬁgﬂ 0V, 'V,

Q

N — N =

. -
R - zgﬂbgljvu¢lvv¢j7 (32)
where @ = In Q, Q> = 2f(¢'), and G,; = #G,,,

_ 3
Gy =0+ ?flf] — 80100 - (33)

Here we have used G,; to distinguish from @ij in the
R-gravity case. We calculate

-3
g:?f%,

_ 3
GY =6, - f—gfo(fﬂsw + fad01) + g501501’ (34)

_ 1 1
F§K = JTo < JK — ﬁfij> o7 (35)

Ry =Ry =R =0, Crkr = 0. (36)
All the curvature components vanish identically, which
means the G, in Eq. (33) with any nonzero f(¢') solves the
Einstein-like equations in vacuum. This conclusion does
not depend on the form of F(R,¢') as long as F(R, ¢)
depends on R nonlinearly, a surprising result at first glance.
Actually, there is a transparent way to understand this result
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by observing the first line of Eq. (32). Because F(R, ¢')
gravity is associated with an additional scalar degree of
freedom, it is justified to introduce a new field variable ¢

with dop/dw = v/6Q(¢'). The kinetic terms can be organ-
ized as

1 ~ -
S PNV LI =1.2,.N 41, (37)

where ¢! = ¢. It is obvious that the metric tensor in field
space 8;,/Q? is conformally flat.

VI. CONCLUSION

We have investigated the conformal transformation with
multiple scalar fields that nonminimally couple with
gravity. These theories are ubiquitous in modern particle
physics and cosmological models. Conformal transforma-
tion is employed to transform the Lagrangian from the
Jordan frame to the Einstein frame, which also makes the
kinetic terms of scalar fields noncanonical. We have found
that if the number of scalar fields is larger than one, in
general, it is not possible to redefine the field variables to
make all the kinetic terms canonical.

We have discussed under what conditions the kinetic
terms are positive definite (therefore, without a ghost) and
whether they could be brought into quasicanonical, namely,
different from canonical by a common factor. The latter is
equivalent to the problem of finding a conformally flat
metric tensor in the field space of scalars. We have solved
the nonlinear partial differential equations in arbitrary
dimensions and presented several solutions in Table I that
give conformally flat metric tensors. The ¢ model with a
particular nonminimal coupling is one of the solutions.
These solutions may be useful for future phenomenological
model building for inflation and dark energy. We have also
shown that in some modified gravity theories, including the
Starobinsky model, the metric tensor in field space is
always conformally flat.
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APPENDIX A: CONFORMAL
TRANSFORMATION

The conformal transformation of metric tensor g,, =
Q*(x)g,, leads to various relations between various geo-
metric quantities:

0y =T + (8V,0 + 8V,0 — g, V'w), (A1)
Rﬂgﬂb = Rpg,w -+ 25’[’DVF]VG(0 - Zgl’“ga[yvﬂ]vaa)
+2V Uw&” Vo0 =2V ,09,0,9""V s
=29, 5’ PV oV s, (A2)
Rﬂy =R, -2V, V,0 — 9,4V, V0 + 2V, 0V, 0
- 29,9V 0V 30, (A3)
R=9"R, = Q2[R -60w-6¢"V,0V,0], (Ad)

where w =In Q, 0= ¢*V,V,, and |- - -] in the subscripts
indicate antisymmetrization of the included indices. Note
that conformal transformation does not have effects on the
coordinates x* and the usual partial derivative 0, = ax,.
Then using the relation between R and R, we can rewrite
the Lagrangian £ as

L1

.3 e e

= —§R+@Dw+3g" V,oV,0
V(¢')
Qt

1 s~
- ﬁgﬂyéljvy¢lvu¢j -

(AS)

The second term in the right-hand side of the equation can
be written as

Q20w = Ow - 27*V,0V,. (A6)
In the action which is the space-time integral of £, Clw’s
contribution is a surface term due to the following identity:

. 1 _
DCU = \/—__gaﬂ(\/jgg””ayw)

(A7)

and, therefore, can be neglected in the cases we are
considering in this paper.

APPENDIX B: DETERMINANT
AND INVERSE METRIC

Here, we present the details of calculating the determi-
nant G and the inverse metric tensor g /. The computation of
G is done as follows. Writing gij =6, +Afifj, A=3/f,
we have
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f—11-|—Af, Afr
- . i
G =detG; :Hifidet Afv 7 AN
AN SR 0
1

f%"‘Afl Afs
— -1/fi  +
7, :
N
=1+A> f2 (B1)
i=1

For the inverse metric, we first compute the diagonal elements G Ttis straightforward to obtain by using the analog to

the determinant of Qi i

1
Gg' == (1 +AY f2 (B2)
g i
For the off-diagonal elements @""' (i # j), without showing all the elements in the matrix, we have
V+AfL, Afioifi Aficifi
Afinficr Afinfi 1+Af7,
o —1)itJ
g' = —( A) det ,
g : : : L+Af, Afjoifin
Afifiei  Afifi  Afifin Afifi-i Afifjn
: : Afjifjor 1 +Af?+1
s+ Afi Af Afin
Afiz Afi f% +Afit
= l_[%_’fﬁdet .
(-G : ﬁ +Afi- Afj
Afio Afi Afin Afia Afin
Afi f}.%""Afj#l
1
0 7 0 0
|
0 0 0 7o
. AFf.f.
e, _ A, (B3)
(177G o 0 G
Afici Afi Afin Aficr Afjn
1
S )
The above two results can be written in a unified form:
pii A
g :6ij_§fifj' (B4)
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