
Conformal transformation with multiple scalar fields and geometric
property of field space with Einstein-like solutions

Yong Tang 1,2,3,4 and Yue-Liang Wu2,3,5
1School of Astronomy and Space Sciences, University of Chinese Academy of Sciences (UCAS),

Beijing 100049, China
2School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study,

UCAS, Hangzhou 310024, China
3International Center for Theoretical Physics Asia-Pacific, Beijing/Hangzhou 100049, China
4National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

5Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 18 May 2021; accepted 15 August 2021; published 15 September 2021)

Multiple scalar fields appear in vast modern particle physics and gravity models. When they couple to
gravity nonminimally, conformal transformation is utilized to bring the theory into the Einstein frame.
However, the kinetic terms of scalar fields are usually not canonical, which makes analytic treatment
difficult. Here, we investigate under what conditions the theories can be transformed to the quasicanonical
form, in which case the effective metric tensor in field space is conformally flat. We solve the relevant
nonlinear partial differential equations for an arbitrary number of scalar fields and present several solutions
that may be useful for future phenomenological model building, including the σ model with a particular
nonminimal coupling. We also find conformal flatness can always be achieved in some modified gravity
theories, for example, the Starobinsky model.
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I. INTRODUCTION

Scalar fields are ubiquitous in modern particle physics
and gravity models, including inflation theories and dark
energy scenarios [1–8]. In many cases [9–27], the scalar
fields are nonminimally coupled to gravity through a term
fðϕiÞR, where f is some function of scalar fields ϕi and R
is the Ricci scalar curvature. For example, the function
fðϕÞ is proportional to ϕ2 in the Jordan-Brans-Dicke
theory [28,29] and Higgs inflation model [30]. In modi-
fied gravity theories where only functions of R are
introduced [31], it is equivalent to treat as introducing
a scalar field, for instance, fðϕÞ ∼ ϕ2 in the Starobinsky
model [32].
The Lagrangian with the fðϕiÞR term is usually referred

to as the one in the Jordan frame, in which the kinetic terms
of scalar fields are canonical. To compare with experi-
mental observations, it is standard to perform a conformal
transformation [33–35] on the metric tensor to Einstein
frame such that fðϕiÞR is transformed into R̃. However,
conformal transformation would induce a noncanonical
kinetic term of scalars in the Einstein frame, which makes
analytic treatment rather complicated, and various approxi-
mate methods have to be utilized. If there is only one scalar
field in the theory, it is always possible to redefine the field
variable and make the kinetic term canonical. However, it is
not clear whether such redefinition always exists in theories
with multiple scalar fields.

The systematic investigation on conformal transforma-
tion with multiple scalar fields was conducted in Ref. [36],
in which the analysis was done with the effective metric
tensor Gij in the field space defined by the kinetic term
Gijdϕidϕj. It is found that generally the field metric is not
flat; therefore, the kinetic terms are not canonical. Only one
solution was found for fðϕiÞ with two scalar fields such
that the associated Gij is conformally flat. This finding is
closely related to analytic analysis in phenomenological
model building involving multiple scalar fields. For exam-
ple, a standard model Higgs doublet composes four real
scalar fields, and the σ model has N fields with SO(N)
symmetry. It is then unclear whether physical models with a
Higgs doublet, σ model, and other multiple scalar fields
might induce noncanonical kinetic terms that result in
unstable systems. Is it possible to find fðϕiÞ with a
conformally flat field metric in the Einstein frame such
that the equations of motion and energy-momentum tensor
of scalar fields are simpler?
In this paper, we intend to answer the above question and

present several new solutions for fðϕiÞ with the corre-
sponding Gij conformally flat. We solve the relevant
nonlinear partial differential equations for the requirements
on fðϕiÞ for any number of scalar fields and tabulate the
solutions in Table I, which might be useful for future model
building. Our results suggest that for the σ model with N
scalar fields the field space can be conformally flat if the
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coupling has a particular form, in which local scaling
symmetry is evident. We also find in some modified gravity
theories that involve a function of R and scalar fields that
the associated field spaces are always conformally flat.
This paper is organized as follows. In Sec. II, we

establish our theoretical formalism along with the nota-
tions. Then, in Sec. III, we analyze the structure of field
space and solve the differential equations for a conformally
flat metric tensor. Later, in Sec. IV, we discuss a particular
case in which a local scaling symmetry is present for the σ
model that couples to gravity nonminimally. After that, in
Sec. V, we show in modified gravity theories, such as the
Starobinsky model, that the field space is always con-
formally flat. Finally, we give our conclusion.
Throughout the paper, we use the four-dimensional space-

time metric gμν with a sign convention ð−1; 1; 1; 1Þ and the
natural unit Mp ≡ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 1. Greek letters ðμ; ν; ρ;…Þ
denotes the space-time indices, while Latin letters
ði; j; I; J;…Þ refer to field variables in the field space.
Riemann tensor is defined by Rρ

σμν ¼ ∂μΓ
ρ
σν − ∂νΓ

ρ
σμ þ

Γρ
μτΓτ

σν − Γρ
ντΓτ

σμ, where the connection is given by
Γρ
μν ¼ 1

2
gρτ½∂μgντ þ ∂νgμτ − ∂τgμν�, and Ricci scalar R is

defined throughRσν ≡ Rρ
σρν andR≡ gσνRσν.Wemay easily

check Rρ
σμν ¼ Rνμσ

ρ, where the latter is also widely used in
the literature.

II. FORMALISM AND NOTATIONS

We shall first consider the following general Lagrangian
L in four-dimensional space-time for N nonminimally
coupled scalar fields, ϕi, i ¼ 1;…; N:

Lffiffiffiffiffiffi−gp ¼ fðϕiÞR −
1

2
gμνδij∇μϕ

i∇νϕ
j − VðϕiÞ; ð1Þ

where g are the determinant of gμν and the covariant
derivative is denoted by ∇. V is the scalar potential that
can be neglected in our main theoretical discussions but
would be relevant for phenomenological studies. This
Lagrangian is referred to as the one in the Jordan frame
where nonminimal coupling fðϕiÞR is present. In the cases

of phenomenological interest, fðϕiÞ should satisfy
fðϕiÞ > 0 in the relevant parameter regions.
We make the standard conformal transformation on the

metric tensor:

g̃μν ¼ Ω2ðxÞgμν; Ω2ðxÞ ¼ 2fðϕiÞ: ð2Þ

After using the transformation relations in the Appendix A
and denoting ω≡ ln Ω, we can get the Lagrangian in the
Einstein frame:

Lffiffiffiffiffiffi
−g̃

p ⊇
1

2
R̃ − 3g̃μν∇̃μω∇̃νω −

1

2Ω2
g̃μνδij∇̃μϕ

i∇̃νϕ
j

¼ 1

2
R̃ −

1

2
g̃μνGij∇̃μϕ

i∇̃νϕ
j; ð3Þ

where an effective metric tensor in field space Gij appears
and is given by

Gij ¼
1

2f

�
δij þ

3

f
fifj

�
: ð4Þ

Here and after, we use the short notation for derivatives of

f, fi ¼ ∂f
∂ϕi, fij ¼ ∂2f

∂ϕi∂ϕj, etc.

Because of the curved metric Gij in field space, the
scalar fields generally have noncanonical kinetic terms
[unless we begin with noncanonical ones in Eq. (1),
δij → 2fδij − 3

f fifj]. If there is only one scalar field ϕ

in the theory, G11 is positive definite for fðϕiÞ > 0. Then,
we can always redefine a new field variable Φ by the
differential equation dΦðxÞ=dϕðxÞ ¼ � ffiffiffiffiffiffiffi

G11

p
and, there-

fore, make Φ’s kinetic term canonical. For the cases with
multiple scalars, it would be much more complicated, as we
shall present below.

III. STRUCTURE OF THE FIELD SPACE

With the metric tensor GijðϕkÞ in field space, we would
like to know whether there exists a set of field coordinates
φI ¼ φIðϕkÞ such that the associated metric tensor is flat,
GJKðφIÞ ¼ δJK . One necessary condition for the existence

TABLE I. The analytic solutions fðϕiÞ in the first row that give conformally flat metrics, with the corresponding Ĝij, Γ̂i
jk, R̂ijkl, and

Ĉijkl. The metrics in the third column are solutions to the Einstein-like equation in vacuum of field space. In some cases, the constants
a, bi, and c should satisfy some conditions that allow fðϕiÞ > 0 (see the text for details).

fðϕiÞ ¼ Constant
�
aðcþ biϕiÞ 1

1−p; p ≠ 1

a exp ðbiϕiÞ; p ¼ 1

aþ biϕi − 1
12
δijϕ

iϕj

Ĝij ¼ δij
�
δij þ 3abibj

ð1−pÞ2 ðcþ bkϕkÞ2p−11−p ; p ≠ 1

δij þ 3abibj exp ðbkϕkÞ; p ¼ 1

δij þ 3ðbi−ϕi

6
Þðbj−ϕj

6
Þ

aþbkϕk− 1
12
δklϕ

kϕl

Γ̂i
jk ¼ 0 ∝ ðp − 1

2
Þbibjbk ∝ ð− 1

6
fiδjk − 1

2f fifjfkÞ
R̂ijkl ¼ 0 0 ∝ ðδi½kδl�j − 6

f f½iδj�½kfl�Þ
Ĉijkl ¼ 0 0 0
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is that the Ricci scalar curvature RðGijÞ ¼ 0, because R is
an invariant quantity under coordinate transformation. We
can easily check that R≡ 0 for N ¼ 1 due to the
antisymmetric properties of Rijkl, which confirms our
analysis above that a canonical kinetic term can always
be achieved after the redefinition of the field for N ¼ 1.
However, in general, R ≠ 0 for N > 1; therefore, field
coordinates φi may not exist such that their kinetic terms
are canonical.
It is modest to ask whether the geometry of field space is

conformally flat, GJKðφIÞ ∝ δJK. In such cases, the kinetic
terms may be referred as quasicanonical. In such forms, the
energy-momentum tensor and equation of motion would be
simpler (neglecting the potential term):

T̃μν ¼ −
1

2
GIJg̃μνg̃αβ∇̃αφ

I∇̃βφ
J þ GIJ∇̃μφ

I∇̃νφ
J;

□̃φI þ ΓI
JKg̃

μν∇̃μφ
J∇̃νφ

K ¼ 0:

As we have learned from Riemannian geometry, mani-
folds with N ≤ 3 are always conformally flat. But for
N > 3 it is no longer true, and conformal flatness is
determined by the Weyl tensor, which is defined as

Cijkl ≡Rijkl −
2

N − 2
ðGi½kRl�j − Gj½kRl�iÞ

þ 2R
ðN − 1ÞðN − 2ÞGi½kGl�j: ð5Þ

If Cijkl ¼ 0, the field space is conformally flat. To compute
Cijkl in the cases of our interest, we conformally transform
Gij into

Ĝij ¼ 2f × Gij ¼ δij þ
3

f
fifj ð6Þ

and calculate the corresponding R̂ijkl; R̂ij; R̂, and Ĉijkl.
The relation Ĉijkl ¼ Cijkl enables us to reach the condition
that the field space with metric Gij is conformally flat

if Ĉijkl ¼ 0.
First, we compute the determinant of Ĝij, Ĝ, and the

inverse metric Ĝij:

Ĝ ¼ 1þ 3

f

XN
i¼1

f2i ; Ĝij ¼ δij −
3

fĜ
fifj; ð7Þ

which are surprisingly simple. The calculation details can
be found in the Appendix B. Note that the indices of inverse
metric are in the subscript, which allows us to do tensor
analysis just as the usual matrix manipulation. We can
easily check that ĜijĜjk ¼ δik ≡ δik. Based on the symmet-

ric property, we can evaluate that the metric field Ĝij is
positive definite for fðϕiÞ > 0. Therefore, there is no ghost

in such physical systems. This conclusion is independent of
which parameterization of fðϕiÞ is used, since the deter-
minant Ĝij does not change sign under the field
transformations.
We can also obtain the following geometric quantities

after tedious calculations:

Γ̂i
jk ¼

1

2
Gilð∂jGkl þ ∂kGjl − ∂lGjkÞ

¼ 3

fĜ
fi

�
fjk −

1

2f
fjfk

�
; ð8Þ

R̂ijkl ¼
3

fĜ

�
ðfikfjl − filfjkÞ

þ 1

2f
ðfiflfjk þ fjfkfil − fifkfjl − fjflfikÞ

�

¼ 6

fĜ

�
fi½kfl�j þ

1

f
f½ifj�½kfl�

�
; ð9Þ

R̂ij ¼
3

fĜ

�
ðfijfkk−fikfjkÞ

þ 1

2f
ðfifkfjkþfjfkfik −fifjfkk−fijf2kÞ

þ 3

fĜ
fkflðfikfjl−fijflkÞ

−
3

2f2Ĝ
fkflðfjflfikþfifkflj−fifjflk −fkflfijÞ

�
;

ð10Þ

R̂ ¼ 3

f2Ĝ2
½fĜðfiifjj − f2ijÞ þ ðfifjfij − f2kfjjÞ

þ 6ðfijfjk − fikfjjÞfifk�; ð11Þ

where f2k ¼
P

k fkfk; f
2
ij ¼

P
ij fijfij, and all the repeated

indices are summed. Ĉijkl can be obtained straightforwardly
with Eq. (5).
Now we are in a position to discuss the conditions for

conformal flatness of the field space. One solution with
R̂ijkl ¼ 0was found in the literature [36], with fðϕ1;ϕ2Þ ¼
ξ1ðϕ1Þ2 þ ξ2ðϕ2Þ2 for N ¼ 2, where ξi are arbitrary pos-
itive constants. This can easily be checked by calculating
the R̂1212 ¼ 0, which is the only independent component
for N ¼ 2. One is tempted to extend the case to N > 2,
since the σ model would fall in this category. Unfortunately,
extension of such a form for N > 2 gives R̂1212 ≠ 0, in
general, except all ξi are equal to some particular value, as
we shall show below.
Here we present new solutions with R̂ijkl¼0, or R̂ijkl≠0

but Ĉijkl ¼ 0. Completely solving f from the nonlinear

partial differential equation R̂ijkl ¼ 0 is notoriously
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difficult and unpractical. Besides, there is no unique
solution for such nonlinear equations. We have known a
similar case from solving the Einstein field equation, which
is also nonlinear and has multiple solutions. In this paper,
we shall present several solutions based on the symmetric
properties of R̂ijkl. We enumerate several cases below.
(1) Γ̂i

jk ¼ 0 and R̂ijkl ¼ 0.—This is the simplest case
and can be easily verified from the definition of
R̂ijkl. We may further divide this category into two
cases, after observing the feature in Eq. (8).
(a) fi ¼ 0.—This is the trivial solution with f ¼

positive constant, in which case the scalar fields
are minimally coupled with gravity.

(b) fjk ¼ 1
2f fjfk.—We can solve the equation by

taking a further derivative, using the above
relation recursively and getting an additional
condition fijk ¼ 0, which indicates f is a quad-
ratic function of ϕi:

fðϕiÞ ¼ aðcþ biϕiÞ2; ð12Þ

where a > 0, bi, and c are arbitrary nonzero
constants.

(2) Γ̂i
jk ≠ 0 but R̂ijkl ¼ 0.—Inspired by the second case

above, we notice that taking a form fij ¼ p
f fifj

would give a vanishing Riemann tensor. Solving the
differential equation gives the solutions

fðϕiÞ ¼ aðcþ biϕiÞ 1
1−p;

fi ¼
abi
1 − p

ðcþ bjϕjÞ p
1−p; for p ≠ 1; ð13Þ

and

fðϕiÞ ¼ a exp ðbiϕiÞ;
fi ¼ abi exp ðbjϕjÞ; for p ¼ 1: ð14Þ

The solution for p ¼ 0 is included above, in which
case f is a linear function of ϕi. The metrics in this
category solve Einstein-like equations in vacuum at
any dimension N:

Ĝij ¼
�
δij þ 3abibj

ð1−pÞ2 ðcþ bkϕkÞ2p−11−p ; p ≠ 1;

δij þ 3abibj exp ðbkϕkÞ; p ¼ 1:
ð15Þ

For phenomenological studies, the existence of
fðϕiÞ > 0 should be imposed to constrain the
parameters a, bi, and c. In the case of p ¼ 1,
a > 0 and bi is arbitrary constant. In the case of
general p except for some fractions (for instances,
p ¼ 1=2; 3=4; 5=6;…), there are no general con-
ditions for a, bi, and c. The reason is that linear
function cþ bjϕj can go from −∞ to∞. As long as

for our physical interests there exists fðϕiÞ > 0 at
some domains of ϕi, which are determined by the
explicit shape and minimum of potential VðϕiÞ, the
theories can recover Einstein’s gravity.

(3) R̂ijkl ≠ 0 but Ĉijkl ¼ 0.—Even if the Riemann
tensor does not vanish but has the following
structure:

R̂ijkl ∝ Ĝi½kĜl�j; ð16Þ

we would obtain Ĉijkl ¼ 0 as well. Contracting with
GikGjl gives the proportional factor R̂=½NðN − 1Þ�.
Observing that

Ĝi½kĜl�j ¼ δi½kδl�j −
6

f
f½iδj�½kfl� ð17Þ

and comparing with R̂ijkl, we would have the
following relation:

fij ¼ −
1

6
δij: ð18Þ

The general solution of the above equation would be

fðϕiÞ¼aþbiϕi−
1

12
δijϕ

iϕj; fi¼bi−
1

6
ϕi: ð19Þ

Similarly, the existence of fðϕiÞ > 0 over some
parameter ranges of ϕi would constrain a and bi. Put
it another way, fðϕiÞ cannot be negative definite. We
can write fðϕiÞ¼− 1

12

P
iðϕi−6biÞ2þaþ3

P
i b

2
i .

Therefore, as long as aþ 3
P

i b
2
i > 0, fðϕiÞ > 0

can be satisfied at some parameter ranges of ϕi. In
the case of nonpositive f, we cannot make the
conformal transformation in Eq. (2) and a physical
theory as Einstein gravity would be missing. Again,
we note that f > 0 in the whole parameter spaces
might be too restrictive. As long as there exist
parameter spaces with f > 0 around the field do-
main we are interested in, for instance, the inflation
regime and the potential minimum, conformal trans-
formation is still valid in the finite domain that
Einstein gravity can be recovered.

We point out that, by redefining a, bi, and c, the forms of
fðϕiÞ in all the above solutions do not change under the
field shift ϕi → ϕi þ di, where di are arbitrary constant.
The solutions are summarized in Table I, where fðϕiÞ and
its corresponding Ĝij, Γ̂i

jk, R̂ijkl, and Ĉijkl are listed. These
fðϕiÞmight be useful for future model building due to their
simple forms.
So far, we have focused on the Riemannian metric. If one

of the scalar fields has opposite sign for the kinetic term, we
would get the Lorentzian metric Ĝij ¼ ηij þ 3fifj=f,
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where η11 ¼ −1; ηii ¼ 1 for i ≠ 1, and ηij ¼ 0 if i ≠ j.
Note that the opposite sign in the Jordan frame does not
necessarily lead to a ghost in the presence of nonminimal
coupling. The reason is that conformal transformation
induces an additional kinetic term in the Einstein frame
with the total coefficient proportional to ηij þ 3

f fifj. As

long as the field metric tensor ηij þ 3
f fifj is positive

definite, we have normal scalars. In fact, viable theories
with opposite sign were discussed in α-attractor inflation
models; see Refs. [37–39].
Similarly, for the Lorentzian field metric, we calculate

G¼ det Ĝij ¼−
�
1þ 3

f
ηijfifj

�
¼−

�
1þ 3

f
fifi

�
; ð20Þ

Gij ¼ ηij þ
3

fG
ð−1Þδ1iþδ1j fifj ¼ ηij þ 3

fG
fifj; ð21Þ

Γ̂i
jk ¼ −

1

G
ηilfl

�
fjk −

1

2f
fjfk

�
¼ −

1

G
fi
�
fjk −

1

2f
fjfk

�
:

ð22Þ

Here, the subscripts of f denote the usual derivatives,
upgraded by ηij. Note that the similar tensor structures of
Ĝij and Γ̂i

jk to previous cases lead to the same tensor

structure of R̂ijkl. Therefore, the solutions to R̂ijkl ¼ 0

barely change, except the replacement δij → ηij.
The absence of a ghost requires Ĝij to be positive

definite, which imposes some conditions on fðϕiÞ in
addition to fðϕiÞ > 0. Namely, we shall have the following
constraints:

−
�
1 −

3f21
f

�
> 0;

−
�
1 −

3f21
f

þ 3

f

Xk
i¼2

f2i

�
> 0; k ¼ 2;…; N:

These constraints restrict a, bi, and c further, which can be
obtained straightforwardly. Since there are no transparent
solutions, we do not list them here.
We note that the function f is not invariant under

nonlinear field redefinition, and Ĝij, Γ̂i
jk, and R̂ijkl are

also not invariant. Still, our results are useful for theoretical
consistency check and phenomenological studies, in a
sense that we may make field redefinition to transform
the theory into the form we present, namely, in the Jordan
frame where the kinetic terms are canonical. Then, we can
calculate whether f satisfies the differential equations and
the corresponding Ĝij is positive definite. In the Einstein
frame, reparametrization of the field ϕi does not alter the
results due to the change rules of Ĝij and R̂ijkl.

IV. LOCAL SCALING SYMMETRY

In previous sections, we have presented several fðϕiÞ
with conformally flat field space by showing the associated
Cijkl ¼ 0. However, we have not demonstrated explicitly
the new field coordinate φIðϕiÞ of the field space whose
metric GIJðφKÞ is proportional to δIJ. In most cases, such
coordinate transformations ϕi → φI have no compact
analytic solutions. Here, we have found an interesting case:

fðϕiÞ ¼ a −
1

12
δijϕ

iϕj; ð23Þ

where the system has a global SOðNÞ symmetry for ϕi and
is also called as σ model in field theory. We can introduce
an auxiliary field χ and rewrite the relevant Lagrangian as

Lffiffiffiffiffiffi−gp ⊇ a

�
gμν∇μχ∇νχ þ

1

6
Rχ2

�

−
1

2

�
gμνδij∇μϕ

i∇νϕ
j þ 1

6
Rδijϕiϕj

�
: ð24Þ

Because there is a local scaling symmetry in the above
Lagrangian,

gμνðxÞ → ḡμνðxÞ ¼ λ2ðxÞgμνðxÞ;
ϕiðxÞ → ϕ̄iðxÞ ¼ λ−1ðxÞϕðxÞ;
χðxÞ → χ̄ðxÞ ¼ λ−1ðxÞχðxÞ; ð25Þ

where λðxÞ is an arbitrary positive function, the original
theory can be recovered by setting λðxÞ ¼ χðxÞ= ffiffiffi

6
p

. This
symmetry is also called Weyl or conformal symmetry in the
literature and has wide applications in model building; see
Refs. [40,41] for recent examples.
When a ¼ 1=2, this theory has an extended global

symmetry SOð1; NÞ, χ2 − δijϕ
iϕj ¼ 6. The geometry of

the field space or kinetic term is related to the distance
element in the field space, ds2 ¼ dχ2 − δijdϕidϕj.
Introducing field coordinates ðT;φiÞ, we can parameterize

χ ¼
ffiffiffi
6

p �
1

2
δijϕ

iϕjeT þ cosh T

�
;

φN ¼
ffiffiffi
6

p �
1

2
δijϕ

iϕjeT − sinh T

�
;

φi ¼
ffiffiffi
6

p
ϕieT; i; j ¼ 1; 2;…; N − 1: ð26Þ

We can easily show
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dχ ¼
ffiffiffi
6

p ��
1

2
δijϕ

iϕjeT þ sinh T

�
dT þ δijϕ

ieT dϕj

�
;

dφN ¼
ffiffiffi
6

p ��
1

2
δijϕ

iϕjeT − cosh T

�
dT þ δijϕ

ieT dϕj

�
;

dφi ¼
ffiffiffi
6

p
ðeT dϕi þ ϕieTdTÞ: ð27Þ

In the new field coordinates ðT;φiÞ, the element is given by
ds2 ¼ −dT2 − e2Tδijdφidφj. Refining dT ¼ −eTdτ or
τ¼e−T , we obtain ds2¼− 1

τ2
ðdτ2þδijdφidφjÞ. Therefore,

the geometry of field space is shown explicitly to be
conformally flat in the coordinate of ðτ;φiÞ.
Note that, although the geometric structure is determined

by the hypersurface in field space, χ2 − δijϕ
iϕj ¼ 6, in

phenomenological studies one usually adopts a particular
parametrization in which only one field variable is respon-
sible for the physical effects of interest. For example, if we
are interested in only the radial part as the inflaton, we can
use the following parametrization of the field coordinates
ðφ; θiÞ:

χ ¼
ffiffiffi
6

p
cosh φ;

ϕ1 ¼
ffiffiffi
6

p
sinh φ cos θ1;

ϕ2 ¼
ffiffiffi
6

p
sinh φ sin θ1 cos θ2;

..

.

ϕN−1 ¼
ffiffiffi
6

p
sinh φ sin θ1 … sin θN−2 cos θN−1;

ϕN ¼
ffiffiffi
6

p
sinh φ sin θ1… sin θN−2 sin θN−1: ð28Þ

In this case, radial field φ would have a canonical kinetic
term from the very beginning, while the angular field
variables θi would not. Analysis of the dynamics of θi

might involve approximations such as expanding by the
θi=Mp as small parameters, etc. We have actually encoun-
tered the special case for N ¼ 1 in the α-attractor inflation
model [37,38] and its extensions with Weyl gauge field
[39,42,43]. The confirmation from the N ¼ 1 case also
partially suggests the correctness of our calculation for
general N.

V. FðRÞ GRAVITY

In this section, we extend our discussions by considering
the following Lagrangian of modified gravity in four-
dimensional space-time for N nonminimally coupled scalar
fields, ϕi, i ¼ 1; 2;…; N:

Lffiffiffiffiffiffi−gp ⊇ FðR;ϕiÞ − 1

2
gμνδij∇μϕ

i∇νϕ
j; ð29Þ

where FðR;ϕiÞ is a function of R and ϕi without deriv-
atives. Such terms are motivated from quantum corrections

and cosmological models. For example, in the Starobinsky-
like model, we have FðR;ϕiÞ ¼ fðϕiÞRþ αR2=2, which
can give viable inflation scenarios.
We can similarly use the auxiliary field χ and rewrite the

Lagrangian

Lffiffiffiffiffiffi−gp ¼ Fðχ2;ϕiÞ þ FRðχ2;ϕiÞ ðR − χ2Þ

−
1

2
gμνδij∇μϕ

i∇νϕ
j; ð30Þ

where FR denotes the derivative of FðR;ϕÞ over R and
Fðχ2;ϕÞ≡ FðR → χ2;ϕÞ. One may check that the equa-
tion of motion for χ still gives χ2 ¼ R. Then denoting the
0-component ϕ0 ≡ χ and new f function

fðϕIÞ ¼ FRðχ2;ϕiÞ; I ¼ 0; 1; 2;…; N; ð31Þ

we have reduced the system into the case we discussed in
previous sections. However, there is a crucial difference
that ϕ0 has no kinetic term. It turns out that this difference
leads to significantly different results.
Following the similar procedures and omitting the

potential term, we can obtain

Lffiffiffiffiffiffi
−g̃

p ⊇
1

2
R̃ − 3g̃μν∇̃μω∇̃νω −

1

2Ω2
g̃μνδij∇̃μϕ

i∇̃νϕ
j

¼ 1

2
R̃ −

1

2
g̃μνGIJ∇̃μϕ

I∇̃νϕ
J; ð32Þ

where ω ¼ ln Ω, Ω2 ¼ 2fðϕIÞ, and GIJ ¼ 1
2f ḠIJ,

ḠIJ ¼ δIJ þ
3

f
fIfJ − δ0Iδ0J: ð33Þ

Here we have used ḠIJ to distinguish from Ĝij in the
R-gravity case. We calculate

Ḡ ¼ 3

f
f20;

ḠIJ ¼ δIJ −
3

fḠ
f0ðfIδ0J þ fJδ0IÞ þ

Ĝ

Ḡ
δ0Iδ0J; ð34Þ

Γ̄I
JK ¼ 1

f0

�
fJK −

1

2f
fJfK

�
δ0I; ð35Þ

R̄IJKL ¼ R̄IJ ¼ R̄ ¼ 0; C̄IJKL ¼ 0: ð36Þ

All the curvature components vanish identically, which
means the ḠIJ in Eq. (33) with any nonzero fðϕIÞ solves the
Einstein-like equations in vacuum. This conclusion does
not depend on the form of FðR;ϕiÞ as long as FðR;ϕiÞ
depends on R nonlinearly, a surprising result at first glance.
Actually, there is a transparent way to understand this result
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by observing the first line of Eq. (32). Because FðR;ϕiÞ
gravity is associated with an additional scalar degree of
freedom, it is justified to introduce a new field variable φ

with dφ=dω ¼ ffiffiffi
6

p
ΩðϕIÞ. The kinetic terms can be organ-

ized as

1

2Ω2
g̃μνδIJ∇̃μϕ

I∇̃νϕ
J; I; J ¼ 1; 2;…N þ 1; ð37Þ

where ϕNþ1 ¼ φ. It is obvious that the metric tensor in field
space δIJ=Ω2 is conformally flat.

VI. CONCLUSION

We have investigated the conformal transformation with
multiple scalar fields that nonminimally couple with
gravity. These theories are ubiquitous in modern particle
physics and cosmological models. Conformal transforma-
tion is employed to transform the Lagrangian from the
Jordan frame to the Einstein frame, which also makes the
kinetic terms of scalar fields noncanonical. We have found
that if the number of scalar fields is larger than one, in
general, it is not possible to redefine the field variables to
make all the kinetic terms canonical.
We have discussed under what conditions the kinetic

terms are positive definite (therefore, without a ghost) and
whether they could be brought into quasicanonical, namely,
different from canonical by a common factor. The latter is
equivalent to the problem of finding a conformally flat
metric tensor in the field space of scalars. We have solved
the nonlinear partial differential equations in arbitrary
dimensions and presented several solutions in Table I that
give conformally flat metric tensors. The σ model with a
particular nonminimal coupling is one of the solutions.
These solutions may be useful for future phenomenological
model building for inflation and dark energy. We have also
shown that in some modified gravity theories, including the
Starobinsky model, the metric tensor in field space is
always conformally flat.
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APPENDIX A: CONFORMAL
TRANSFORMATION

The conformal transformation of metric tensor g̃μν ¼
Ω2ðxÞgμν leads to various relations between various geo-
metric quantities:

Γ̃ρ
μν ¼ Γρ

μν þ ðδρμ∇νωþ δρν∇μω − gμν∇ρωÞ; ðA1Þ

R̃ρ
σμν ¼ Rρ

σμν þ 2δρ½ν∇μ�∇σω − 2gραgσ½ν∇μ�∇αω

þ 2∇½νωδ
ρ
μ�∇σω − 2∇½νωgμ�σgρβ∇βω

− 2gσ½νδ
ρ
μ�g

αβ∇αω∇βω; ðA2Þ

R̃μν ¼ Rμν − 2∇μ∇νω − gμνgαβ∇α∇βωþ 2∇μω∇νω

− 2gμνgαβ∇αω∇βω; ðA3Þ

R̃ ¼ g̃μν R̃μν ¼ Ω−2½R − 6□ω − 6gμν∇μω∇νω�; ðA4Þ

where ω≡ ln Ω, □≡ gμν∇μ∇ν, and ½� � �� in the subscripts
indicate antisymmetrization of the included indices. Note
that conformal transformation does not have effects on the
coordinates xμ and the usual partial derivative ∂μ ≡ ∂

∂xμ.
Then using the relation between R̃ and R, we can rewrite
the Lagrangian L as

Lffiffiffiffiffiffi
−g̃

p ¼ 1

2
R̃þ 3

Ω2
□ωþ 3g̃μν∇̃μω∇̃νω

−
1

2Ω2
g̃μνδij∇̃μϕ

i∇̃νϕ
j −

VðϕiÞ
Ω4

: ðA5Þ

The second term in the right-hand side of the equation can
be written as

Ω−2
□ω ¼ □̃ω − 2g̃μν∇̃μω∇̃νω: ðA6Þ

In the action which is the space-time integral of L, □̃ω’s
contribution is a surface term due to the following identity:

□̃ω ¼ 1ffiffiffiffiffiffi
−g̃

p ∂μð
ffiffiffiffiffiffi
−g̃

p
g̃μν∂νωÞ ðA7Þ

and, therefore, can be neglected in the cases we are
considering in this paper.

APPENDIX B: DETERMINANT
AND INVERSE METRIC

Here, we present the details of calculating the determi-
nant G and the inverse metric tensor Ĝij. The computation of
G is done as follows. Writing Ĝij ¼ δij þ Afifj, A≡ 3=f,
we have
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Ĝ≡ det Ĝij ¼
1

Πifi
det

0
BBB@

1
f1
þ Af1 Af2 � � �
Af1 1

f2
þ Af2 � � �

..

. ..
. . .

.

1
CCCA ¼ 1

Πifi
det

0
BBB@

1
f1
þ Af1 Af2 � � �
−1=f1 1

f2
� � �

..

. ..
. . .

.

1
CCCA

¼ 1

Πifi
det

0
BBB@

1
f1
þ Af1 þ A

f1
ðf22 þ � � � þ f2NÞ 0 � � �

−1=f1 1
f2

� � �
..
. ..

. . .
.

1
CCCA ¼ 1þ A

XN
i¼1

f2i : ðB1Þ

For the inverse metric, we first compute the diagonal elements Ĝii. It is straightforward to obtain by using the analog to
the determinant of Ĝij:

Ĝii ¼ 1

Ĝ

�
1þ A

X
j≠i

f2j

�
: ðB2Þ

For the off-diagonal elements Ĝijði ≠ jÞ, without showing all the elements in the matrix, we have

Ĝji ¼ ð−1Þiþj

Ĝ
det

0
BBBBBBBBBBBB@

� � � 1þ Af2i−1 Afi−1fi Afi−1fiþ1 � � �
� � � Afiþ1fi−1 Afiþ1fi 1þ Af2iþ1 � � � ⋰

..

. ..
. ..

. . .
. ..

. ..
.

..

. ..
. ..

. � � � 1þ Af2j−1 Afj−1fjþ1 � � �
� � � Afjfi−1 Afjfi Afjfiþ1 � � � Afjfj−1 Afjfjþ1 � � �

..

. ..
. ..

. � � � Afjþ1fj−1 1þ Af2jþ1 � � �

1
CCCCCCCCCCCCA

¼
Q

k≠ifk
ð−1ÞiþjĜ

det

0
BBBBBBBBBBBB@

� � � 1
fi−1

þ Afi−1 Afi Afiþ1 � � �
� � � Afi−1 Afi 1

fiþ1
þ Afiþ1 � � � ⋰

..

. ..
. ..

. . .
. ..

. ..
.

..

. ..
. ..

. � � � 1
fj−1

þ Afj−1 Afjþ1 � � �
� � � Afi−1 Afi Afiþ1 � � � Afj−1 Afjþ1 � � �

..

. ..
. ..

. � � � Afj−1
1

fjþ1
þ Afjþ1 � � �

1
CCCCCCCCCCCCA

¼
Q

k≠ifk
ð−1ÞiþjĜ

det

0
BBBBBBBBBBBB@

0 1
fi−1

0 0 � � �
0 0 0 1

fiþ1
� � � ⋰

..

. ..
. ..

. . .
. ..

. ..
.

..

. ..
. ..

. � � � 1
fj−1

0 � � �
� � � Afi−1 Afi Afiþ1 � � � Afj−1 Afjþ1 � � �

..

. ..
. ..

. � � � 0 1
fjþ1

� � �

1
CCCCCCCCCCCCA

¼ −
Afifj
Ĝ

: ðB3Þ

The above two results can be written in a unified form:

Ĝij ¼ δij −
A

Ĝ
fifj: ðB4Þ
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