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We consider the motion of a gyroscope on a closed timelike curve (CTC). A gyroscope is identified with
a unit-length spacelike vector—a spin-vector—orthogonal to the tangent to the CTC, and satisfying the
equations of Fermi-Walker transport along the curve. We investigate the consequences of the periodicity of
the coefficients of the transport equations, which arise from the periodicty of the CTC, which is assumed to
be piecewise C2. We show that every CTC with period T admits at least one T–periodic spin-vector.
Further, either every other spin-vector is T-periodic, or no others are. It follows that gyroscopes carried by
CTCs are either all T-periodic, or are generically not T-periodic. We consider examples of spacetimes
admitting CTCs, and address the question of whether T-periodicity of gyroscopic motion occurs
generically or only on a negligible set for these CTCs. We discuss these results from the perspective
of principles of consistency in spacetimes admitting CTCs.
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I. INTRODUCTION

In this paper, we address the question of consistency in
spacetimes admitting closed timelike curves (CTCs) [1–5].
We consider this question from the perspective of the
motion of a gyroscope carried by an observer moving on
a CTC.
In General Relativity (GR), time travel is associated with

the presence of CTCs. This involves a point-particle
approximation for the putative time machine. But there
is a well-advanced theory of extended bodies in GR that
builds on the concepts of the linear and angular momentum
of the body, its multipole moments, and its center of mass
[6–9]. This theory provides an account of the motion of
such bodies, including their self-interaction. Our ultimate
aim is to ask if such bodies can undergo time travel, in the
same way that point particles can (in the sense that CTCs
exist in certain spacetimes). In this paper, we consider a
simple example of extended structure that can be associated
with a point particle—a gyroscope, which is modeled by a
spin vector, Fermi-Walker transported along the worldline
of the particle (see e.g., Secs. 6.5 and 40.7 of [10]).
Of particular interest is the question of the consistency of

such motion for extended bodies in general, and for
gyroscopes in particular. The idea of self-consistency in
time travel has been discussed from the perspective of both
physics and philosophy—perhaps most prominently in
[1–4] and [5] respectively. Since a point particle has no
internal structure or other distinguishing features, self-

consistency is guaranteed for CTCs considered in isolation.
But the same need not be the case for extended bodies.
It has been argued that CTCs need not be ruled out

a priori; what is relevant is the issue of self-consistency in
spacetimes admitting CTCs [1–4]. The principle of self-
consistency (PSC) is elaborated in [1]; “the only solutions
to the laws of physics that can occur locally in the real
Universe are those which are globally self-consistent”
(p. 1915). (This is sometimes referred to as the Novikov
self-consistency principle; see endnote 10 of [1].) This
principle is studied in some detail in these works, with
perhaps surprising conclusions. In [1] it is shown that a
class of four-dimensional wormhole spacetimes admitting
CTCs are benign with respect to scalar field evolution.
Roughly speaking, this means that if initial data for the
scalar field, posed on a spacelike hypersurface Σ and freely
specified in a neighborhood of a point P ∈ Σ, do not
(already) lead to a self-consistent evolution, then an adjust-
ment of the data outside this neighborhood will lead to self-
consistent evolution. Other spacetimes admitting CTCs are
studied where scalar field evolution is not benign.
Self-interactions appear to cause problems for well-

posed evolution, but not self-consistency. In their study
of the classical motion of a billiard ball traveling backwards
in time through a wormhole, and thereby (potentially)
colliding with its earlier self, the authors of [2] find large
classes of initial trajectories that yield multiple (and in cases
infinite) possible self-consistent evolutions. No cases are
found where there are no self-consistent evolutions.
Novikov [3] also finds examples of self-consistent evolu-
tion of self-interacting mechanical systems in the presence
of CTCs.*brien.nolan@dcu.ie
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Levanony and Ori study the propagation of rigid rods in
Misner spacetime [4]. The original Misner spacetime [11]
is a region of two-dimensional Minkowski spacetime, with
identification of outgoing null hyperplanes generating
CTCs. Adding (flat) Euclidean dimensions allows one to
generate three- and four-dimensional Misner spacetimes.
Levanony and Ori found a wide range of conditions which
ensure consistency in the form of the absence of collisions
of the rod with its (earlier) self. These conditions are
phrased in terms of the length of the rod, and its velocity in
the direction perpendicular to the spacetime direction along
which the identification is made.
This perspective—that time travel is not to be ruled out,

but must not lead to inconsistencies—had previously been
voiced by philosopher David Lewis [5], who discusses self-
consistency in an essay on “The Paradoxes of Time Travel”.
In this essay, Lewis sets out his stall in the first sentence:
“Time travel, I maintain, is possible.” (p. 145). Lewis
describes a clear conceptual framework for time travel.
This is done in philosophical rather than mathematical
language, but his framework would be familiar to relativists,
and, moreover, this framework captures essential features of
how relativists describe time travel.1 He goes on to discuss
the grandfather paradox, whereby a time traveller—
Tim—travels back in time to decades before his birth to
kill his grandfather. Having considered the alternative,
Lewis’s conclusion is unequivocal; “So Tim cannot kill
Grandfather” (p. 150). His argument is essentially that
events must be compatible with all other relevant facts.
The key fact of relevance to this imagined scenario—where
Tim has traveled to 1920, bought a rifle, spent time training
himself in its use and tracked downGrandfather in 1921—is
Tim’s existence. His attempted killing of Grandfather is
impossible, not being compatible with this fact.
Lewis’s central point is that the possibility of time travel

should be admitted, provided it does not lead to incon-
sistencies in the shape of the occurrence of two events
which are not compatible.

In this paper, we study a simple noninteracting system; a
gyroscope carried by a closed timelike curve. In this
system, we see an opportunity to investigate what the laws
of physics say about CTCs, and in particular, about
consistency in the presence of CTCs. The relevant laws
of physics in this context are encapsulated in the following:
Gyroscopes exist. Given a timelike curve γ representing the
history of an observer in spacetime, a gyroscope carried by
this observer is identified with a spin vector. This is a unit
length spacelike vector sa that is orthogonal to ua, the
tangent to γ, and that satisfies the equations of Fermi-
Walker transport along γ.
Gyroscopes precess. This presents difficulties for con-

sistent evolution along CTCs. At proper time t0, the
gyroscope—or spin vector sa—has a certain orientation,
saðt0Þ ∈ Tγðt0ÞðMÞ. At a later time t1 > t0, it has another
orientation, saðt1Þ ∈ Tγðt1ÞðMÞ. If γ is closed, with
γðt0Þ ¼ γðt1Þ, we may well find that due to precession,
saðt0Þ ≠ saðt1Þ. This presents an inconsistency that is not
present at the level of the CTC itself, thought of as the
history of a structureless, featureless, point particle. For
consistent evolution, we would require that saðt0Þ ¼ saðt1Þ.
Note that this equation makes sense as both vectors lie in
the same tangent space Tγðt0ÞðMÞ ¼ Tγðt1ÞðMÞ.
Our aim in this paper is to determine the extent to which

the motion of a gyroscope on a CTC is consistent. Our
conclusion is that it almost never is. Classical physics
intervenes, and rules out consistent histories in spacetimes
with CTCs.
Our main results are contained in the following section,

where we consider the space of solutions of the equations of
Fermi-Walker (FW) transport along a closed timelike curve
γ. The angle and volume preserving nature of FW transport
implies that it induces a rotation on the space of spin vectors
as we complete one loop of the CTC. We can deduce from
this the possibilities for consistent evolution of the spin
vector; of the three independent spin vectors carried by an
observer on a CTC, one is always periodic (i.e., returns to
its original orientation on completion of one loop of the
CTC). Of the other two, they are either both also periodic
(consistent motion of the gyroscope), or neither is periodic
(inconsistent motion of the gyroscope). The closed nature
of γ implies that the FW transport equations—a system of
linear ODEs—have a coefficient matrix whose entries are
piecewise continuous periodic functions. This allows us to
draw some general conclusions about the structure of
solutions of the FW transport equations by applying the
Floquet-Lyapunov theorem [15,16]. In Section III, we
study some examples of gyroscopic motion in spacetimes
admitting CTCs. These serve to illustrate the results of
Section II, and hint at the general picture. We make some
conclusions in Section IV, where we argue that consistent
evolution is generically not possible. We follow the con-
ventions of Wald [12].

1One feature likely to make relativisits uncomfortable is
Lewis’s use of “external time” ([5], p. 146), which sounds
suspiciously like universal Newtonian time or indeed a global
time coordinate. The existence of a global time coordinate
implies that spacetime is stably causal (see e.g., Theorem 8.2.2
of [12]), and hence obeys chronology—i.e., is devoid of CTCs
[13]. However this can be remedied by associating external time
with time measured by a fixed reference observer on an open,
timelike curve. With this interpretation, external time need not be
identified with a Newtonian concept of universal time. If we
accept this view, then Lewis’s use of external time does not
seriously undermine the compatibility of his framework with the
relativistic perspective. Lewis’s work has strongly influenced
philosophical discussions of time travel and causality, including
in characterizing time travel in terms of a discrepancy between
external time and the “personal time” of the time traveler ([5],
p. 146). See [14].
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II. EQUATIONS OF MOTION AND THEIR
SOLUTIONS

In this section, we study the equations of motion of a
gyroscope along a closed timelike curve γ∶½a; b� →
M∶t ∈ R → γðtÞ ∈ M, with γðaÞ ¼ γðbÞ. We parametrize
by proper time t and we take γ to be piecewise C2 on ½a; b�.
To be precise, we assume that there is a finite set of values
ft0; t1;…; tng with

a ≤ t0 < t1 < � � � < tn ≤ b ð2:1Þ

such that
(i) γ is continuous on ½a; b�, with γðaÞ ¼ γðbÞ;
(ii) γ is C2 on each subinterval ðti; tiþ1Þ; i ¼ 0;…;

n − 1;
(iii) all left- and right-hand limits of the velocity vaðtÞ and

the acceleration aaðtÞ exist at each ti; i ¼ 0;…; n.
We immediately replace γ with its periodic extension (also
called γ), defined for all t ∈ R, so that in any local
coordinate system in which γ given is by t ↦ xaðtÞ, we
have

xaðtþ TÞ ¼ xaðtÞ for all t ∈ R: ð2:2Þ

We refer to any such quantity as being T-periodic, and we
note that T ¼ b − a (so t ¼ b is the first time t > a at
which the curve meets itself). It follows that γ∶ R → M is
piecewise C2 on R, and that the velocity and acceleration
are likewise T-periodic (and are piecewise C1 and piece-
wise C0 respectively), so that

uaðtþ TÞ ¼ uaðtÞ; aaðtþ TÞ ¼ aaðtÞ for all t ∈ R:

ð2:3Þ

As we have parametrized by proper time, we have the usual
relations

gabuaub ¼ −1; gabuaab ¼ 0: ð2:4Þ

It may be worth repeating that (2.3), and similar
equations below, have the apparently troubling feature
of comparing tensors at different spacetime events.
However periodicity of γ means that this is not the case;
uaðtÞ and uaðtþ TÞ both lie in the tangent space
TγðtÞðMÞ ¼ TγðtþTÞðMÞ.
We identify a gyroscope carried by an observer moving

on γ with a spin vector sa along γ. This satisfies the Fermi-
Walker transport equations along γ,

uc∇csa ¼ ðuaab − aaubÞsb: ð2:5Þ

Fermi-Walker (FW) transport along an arbitrary timelike
curve generalizes the concept of parallel transport along a
geodesic. A key property is that inner products are

preserved by FW transport; if sa and ta are both solutions
of (2.5), then gabsatb is constant along γ. It follows that
norms of FW-transported vectors are also constant along γ.
Note also that ua itself is FW-transported along γ; taking
sa ¼ ua in (2.5), we see that both sides evaluate to aa. We
define a spin vector along γ to be a FW-transported vector
that is orthogonal to ua along γ. As inner products are
conserved, we see that this condition needs to be applied
only at some initial time. Since norms are conserved, we
can also assume without loss of generality that spin vectors
have unit length.
Let us now fix an initial point za ¼ xað0Þ on γ; we use

z ¼ γð0Þ to label the corresponding spacetime event. Our
aim is to determine if a spin vector (gyroscope) moving on
the CTC maintains its orientation when it completes one
circuit of the CTC, starting at γð0Þ ¼ z and terminating at
γðTÞ ¼ z. In other words, we wish to determine if spin-
vectors along γ are T-periodic.2 We wish to consider all
possible spin vectors to determine if T-periodicity is a
generic feature of gyroscopic motion along a CTC. Thus
we wish to determine global properties of the general
solution of (2.5).
These properties are captured by the Fermi-

Walker propagator of (2.5). This is a two-point tensor
Γa
b0 ðxðtÞ; zÞ along γ. We use unprimed indices at xðtÞ ¼

xaðtÞ and primed indices at the initial point z ¼ xð0Þ. The
FW propagator satisfies the transport equation

uc∇cΓa
b0 ¼ ðuaab − aaubÞΓb

b0 ; t ≥ 0 ð2:6Þ

and the initial condition

½Γa
b0 � ≔ Γa

b0 ð0Þ ¼ δa
0

b0 : ð2:7Þ

The word ‘propagator’ is used because Γa
b0 propagates

initial data to generate solutions of (2.5); the unique
solution of the initial value problem comprising (2.5)
and the initial condition

sbð0Þ ¼ sb
0

0 ∈ TzðMÞ ð2:8Þ

can be written as

saðtÞ ¼ Γa
b0 ðxðtÞ; zÞsb

0
0 ; t ≥ 0: ð2:9Þ

Thus Γa
b0 is a fundamental (or transition) matrix of the

linear ordinary differential equation (ODE) (2.5) [17]. The
coefficient matrix

2A spin vector cannot have period less than T. With
reference to the CTC γ, we use the phrase T-periodic in the
usual sense whereby T is the minimal positive value of t for which
xaðtþ TÞ ¼ xaðtÞ for all t ∈ R. So for t < T, saðtÞ ∉ TzðMÞ,
and so we cannot possibly have saðtÞ ¼ sað0Þ.
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Ca
b ≔ uaab − aaub ð2:10Þ

is periodic and piecewise continuous, and so we can apply
results of Floquet theory [15,16]. We restate some key
results, which require minor modifications to take account
of the geometric setting.
The FW propagator defines a continuous family of

volume elements at z ¼ xð0Þ defined by

Δa0b0c0d0 ðxðtÞ; zÞ ¼ ϵabcdΓa
a0Γ

b
b0Γ

c
c0Γ

d
d0 : ð2:11Þ

This quantity is a scalar at xðtÞ, and a four-form (volume
element) at z ¼ xð0Þ. Taking the derivative and using (2.6)
yields the following:
Lemma 1: (Liouville’s formula.)

Δa0b0c0d0 ðxðtÞ; zÞ ¼ Δa0b0c0d0 ðxð0Þ; zÞ exp
�Z

t

0

Ca
aðt0Þdt0

�
;

ð2:12Þ

and since Ca
a ¼ 0 and ½Γa

b0 � ¼ δa
0

b0 ,

Δa0b0c0d0 ðxðtÞ; zÞ ¼ ϵa0b0c0d0 ðzÞ: ð2:13Þ

Thus the volume element (2.11) is constant. ▪
This expresses the norm-preserving character of FW

transport.
Let us write Γa

b0 ðxðtÞ; zÞ ¼ Γa
b0 ðtÞ. Then the monodromy

matrix [15]

Ma0
b0 ≔ Γa

b0 ðTÞ; ð2:14Þ

plays a particularly important role in our analysis. Since T
is the period of the CTC, so that γðTÞ ¼ γð0Þ ¼ z, the
monodromy matrix generates [via (2.9)] a linear trans-
formation

M∶TzðMÞ → TzðMÞ∶sa00 ↦ sa
0 ðTÞ ¼ Ma0

b0s
b0
0 : ð2:15Þ

By (2.13), the determinant of this mapping is 1. The
velocity vector ua is a T-periodic solution of the FW
transport equations (2.5), and so yields an eigenvector ofM
with eigenvalue 1,

ua
0 ð0Þ ¼ ua

0 ðTÞ ¼ Ma0
b0u

b0 ð0Þ: ð2:16Þ

The first equality here arises from T-periodicity of ua, and
the second is an application of (2.9). As noted previously, a
FW transported vector that is initially orthogonal to ua

remains orthogonal to ua along γ, and has constant norm.
Hence M also induces a linear transformation

M⊥∶T⊥
z ðMÞ → T⊥

z ðMÞ∶sa00 ↦ sa
0 ðTÞ ¼ Ma0

b0s
b0
0 ; ð2:17Þ

where for x ∈ M on γ,

T⊥
x ðMÞ ¼ fva ∈ TxðMÞ∶gabuavb ¼ 0g: ð2:18Þ

The transformation M⊥ preserves inner products (and
hence orientation) and norms, and so can be identified
with an element of SOð3Þ acting on

S2≃T⊥;1
x ðMÞ¼fva∈TxðMÞ∶gabuavb¼0;gabvavb¼1g:

ð2:19Þ

It follows that M⊥ has eigenvalues f1; eiθ; e−iθg for some
θ ∈ R. (In the case θ ¼ 0, M⊥ is the identity mapping and
we must have Ma0

b0 ¼ δa
0

b0 .)
Let sa

0
1 be a (unit) eigenvector of M⊥ with eigenvalue

equal to 1, and consider the solution of the FW transport
equations (2.5) with initial value

sa
0 ð0Þ ¼ sa

0
1 : ð2:20Þ

Propagating this initial value using (2.9)and (2.14), we find

sa
0 ðTÞ ¼ Ma0

b0s
b0
1 ¼ sa

0
1 ¼ sa

0 ð0Þ: ð2:21Þ

That is, the spin vector with initial value sa
0

1 is T-periodic.
This follows by uniqueness of solutions of (2.5); the
solution for sa

0 ðtÞ on ½0; T� is repeated on ½nT; ðnþ 1ÞT�,
n ∈ N, so that sa

0 ðtþ TÞ ¼ sa
0 ðtÞ for all t ∈ R.

Thus we can write down the following result:
Proposition 1: Every T-periodic closed timelike curve

admits a T-periodic spin vector. ▪
The remaining eigenvalues of M⊥ are, in general,

complex, and are associated with a pair of unit spacelike
vectors, orthogonal to both ua

0 ð0Þ and sa
0

1 . We can take
these to be va

0
1 , w

a0
1 ∈ T⊥;1

z ðMÞ with

Ma0
b0v

b0
1 ¼ cos θva

0
1 − sin θwa0

1 ; ð2:22Þ

Ma0
b0w

b0
1 ¼ sin θva

0
1 þ cos θwa0

1 ; ð2:23Þ

for some θ ∈ R. The associated eigenvectors are va
0

1 � iwa0
1

with eigenvalues e�iθ respectively. Then fsa01 ; va
0

1 ; w
a0
1 g

forms an orthonormal basis for T⊥;1
z ðMÞ, which we

recognize as being the set of initial data for spin
vectors along the T-periodic CTC γ. We can make the
identification of T⊥;1

z ðMÞ with S2 explicit by writing sa
0

0 ∈
T⊥;1
z ðMÞ as

sa
0

0 ¼ asa
0

1 þ bva
0

1 þ cwa0
1 ; ða; b; cÞ ∈ S2 ⊂ R3:

ð2:24Þ

At time t ¼ T, the solution of (2.6) with initial data
sa

0 ð0Þ ¼ sa
0

0 is given by Ma0
b0s

b0
0 so that
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sa
0 ðTÞ¼asa

0
1 þðbcosθþcsinθÞva01 þðccosθ−bsinθÞwa0

1 :

ð2:25Þ

This leads to the following result:
Proposition 2: Let γ be a T–periodic CTC. Then either
(i) every spin vector along γ is T-periodic, or
(ii) in the set of initial data for spin vectors along γ,

initial data which yield a T-periodic spin vector
along γ form a set of measure zero.

Proof: In (2.25), we can assume that θ ∈ ½0; 2πÞ. If
θ ¼ 0, then sa

0 ðTÞ ¼ sa
0 ð0Þ for all ða; b; cÞ ∈ S2 and

(i) holds. If θ ≠ 0, then sa
0 ðTÞ ¼ sa

0 ð0Þ if and only if
ða; b; cÞ ¼ ð�1; 0; 0Þ ∈ S2. Thus, there are just two points
of S2 corresponding to a T-periodic spin vector—a set of
measure zero—and (ii) holds. ▪

A. The Floquet-Lyapunov theorem

In the following section, we consider examples of CTCs
in different spacetimes and determine which of the two
outcomes of Proposition 2 hold. Ideally, we would be able
to make a statement about the generic behavior of spin
vectors along CTCs. Of course there may not be any such
statement; there might not be a generic outcome vis-à-vis
Proposition 2 in the sense of a conclusion that applies to all
but a set of measure zero in the set of CTCs. Drawing such
a conclusion would require determining the eigenvalues of
the monodromy matrix Ma0

b0 . The setting is a first-order
linear system with periodic coefficients [15,16]. Such
equations display a wide variety of behaviors, but the
Floquet-Lyapunov theorem provides a degree of order. We
state this in reference to a slight generalization of the FW
transport equation (2.5) and note that relative to the
classical form of this result, some geometric dressing is
required. See [15] or [17] for a proof of the corresponding
result for systems of the form x0ðtÞ ¼ AðtÞxðtÞ where
xðtÞ ∈ Cn and A is a T-periodic n × n matrix. These proofs
extend more or less directly to the geometric setting, but we
provide a proof in the Appendix to clarify its geometric
content.
Theorem 1: (Geometric Floquet-Lyapunov theorem

[15].) Let Γa
b0 ðtÞ be a propagator for the linear transport

equation along γ given by

vb∇bsa ¼ Ca
bðtÞsb; ð2:26Þ

where Ca
bðtÞ is T-periodic and piecewise C0 along γ, so that

Γa
b0 satisfies the equations

vb∇bΓa
b0 ¼ Ca

bðtÞΓb
b0 ; ½Γa

b0 � ¼ δa
0

b0 : ð2:27Þ

Then Γa
b0 may be written

Γa
b0 ðtÞ ¼ Pa

c0 ðtÞEc0
b0 ðtÞ; ð2:28Þ

where Pa
c0 ðtÞ≡ Pa

c0 ðxðtÞ; zÞ is a T-periodic two-point tensor
along γ with ½Pa

c0 � ¼ δa
0

c0 , and Ec0
b0 ðtÞ is an exponential along

γ—that is, Ec0
b0 ðtÞ is a two-point tensor [scalar at xðtÞ on γ,

type (1,1) at z ¼ xð0Þ] that solves an initial value problem
of the form

dEa0
b0

dt
¼ Aa0

c0E
c0
b0 ; Ea0

b0 ð0Þ ¼ δa
0

b0 ; ð2:29Þ

where Aa0
b0 is a nonsingular tensor of type (1,1) at z. ▪

III. EXAMPLES

The geometric Floquet-Lyapunov theorem applies to
(2.5), as Ca

b ¼ vaab − aavb satisfies the required periodic-
ity and continuity hypotheses. In terms of (2.28), it follows
that the monodromy matrix is given by Ma0

b0 ¼ Ea0
b0 ðTÞ.

While this object is in some sense relatively simple,
being an exponential tensor (and so essential being the
exponential of a constant matrix), the connection between
the coefficients Aa0

b0 of (2.29) and Ca
b of (2.26) is highly

nontrivial [16]. Nevertheless, we will attempt some general
conclusions in the following section. Here, to illustrate
possibilities, we consider gyroscopic motion along CTCs in
a number of different spacetimes. In every case, we will see
that both outcomes of Proposition 2 can arise; either case
(i) where every spin vector along a given T-periodic CTC γ
is T-periodic, or case (ii) where T-periodicity of the spin
vectors arises only on a set of measure zero. The theme of
these examples is that case (i) itself occurs only on sets of
measure zero.

A. Stationary cylindrically symmetric spacetimes

A number of examples of CTCs arise in stationary,
cylindrically symmetric spacetimes. Included here are the
historically important examples of Gödel’s spacetime [18]
and van Stockum’s spacetime [19], which forms the basis
of a Tipler machine [20]. For this reason, we will review the
relevant equations in this general setting, and specialize to
draw conclusions about specific examples. We note that the
motion of a gyroscope along geodesics (rather than CTCs)
of Gödel’s spacetime has been considered in [21].
We can write the line element of a stationary, cylin-

drically symmetric spacetime as

ds2 ¼ −Fdτ2 þ 2Mdτdϕþ Ldϕ2 þH1dr2 þH2dζ2;

ð3:1Þ

where the metric functions F, M, L, H1, and H2 depend
only on r, and F, H1, H2, are positive. We also have the
restriction FLþM2 > 0 to ensure that the signature is
Lorentzian. We use coordinates ðτ; r;ϕ; ζÞ that are closely
related but not identical to theWeyl-Papapetrou coordinates
(see e.g., [20] and section 13.1 of [22]). This line element
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admits (at least) three Killing vector fields; ∂
∂τ, which is

timelike and so yields stationarity, and the axial and
translational Killing vector fields ∂

∂ϕ and ∂
∂ζ, respectively,

generating the cylindrical group of motions. The axis
corresponds to the two-dimensional submanifold fr ¼ 0g,
and we can assume that ζ ranges over the whole real line.
The azimuthal coordinate ϕ ∈ ½0; 2πÞ is subject the usual
2π-periodic identification.
The metric admits a three-parameter family of CTCs

γ∶ t ∈ R ↦ ðτ0; r0;ϕðtÞ; ζ0Þ ∈ M; ð3:2Þ

where τ0, r0 and ζ0, are constants. For convenience, we will
refer to such a curve as a circular CTC with radius r0. More
accurately, these curves are always closed and periodic, and
are timelike provided

Lðr0Þ < 0: ð3:3Þ

As above, we take t to be proper time along each curve. The
tangent to γ is

ua ¼ dϕ
dt

� ∂
∂ϕ

�
a
; ð3:4Þ

and so

�
dϕ
dt

�
2

¼ −
1

Lðr0Þ
: ð3:5Þ

Then we can write down the (proper time) period of these
CTCs,

Tγ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Lðr0Þ

p
: ð3:6Þ

It is straightforward to write down the Fermi-Walker
transport equations describing the evolution of a spin vector
sa along γ. Recall that we also impose the orthogonality
condition

gabuasb ¼ 0: ð3:7Þ

We find that

sað1ÞðtÞ ¼ S1

� ∂
∂ζ

�
a
; S1 ¼ constant ð3:8Þ

is always a spin vector along γ. Furthermore, this spin
vector clearly satisfies

sað1Þðtþ TγÞ ¼ sað1ÞðtÞ for all t ∈ R; ð3:9Þ

yielding a Tγ-periodic spin vector along γ. Spin vectors
orthogonal to sað1Þ may be written as

sa ¼ S2ðtÞ
� ∂
∂τ
�

a
þ S3ðtÞ

� ∂
∂ϕ

�
a
þ S4ðtÞ

� ∂
∂r

�
a
: ð3:10Þ

We then impose (3.7), and evaluate (2.5) in the coor-
dinates ðτ; r;ϕ; ζÞ. This yields a first-order system of linear
ODEs for ðS2; S3; S4Þ ∈ R3, with a zero-order constraint
corresponding to (3.7). We find that if the non-negative
quantity Ωðr0Þ vanishes [see (3.12) below], then the Si are
constant along γ, and all corresponding spin vectors are
periodic. If Ωðr0Þ > 0, we can impose the zero-order
constraint (solve for S2 in terms of S3 and S4) and then
reduce the system to a single second-order equation for
S ¼ SðtÞ which may be any one of fS2; S3; S4g; all three
variables satisfy this equation. This master equation reads

d2S
dt2

þΩ2ðr0ÞS ¼ 0; ð3:11Þ

where

Ω2ðr0Þ ¼
ðML0 − LM0Þ2

4H1L2ðFLþM2Þ
����
r¼r0

; ð3:12Þ

where the prime represents a derivative with respect to r.
This quantity is non-negative—this follows from the
conditions above on the metric functions. We need only
consider the case where it is positive. Considering S as a
function S∶ t ∈ R ↦ SðtÞ ∈ R, we see that every (non-
trivial) solution S of (3.11) has period

Ts ¼
2π

Ωðr0Þ
: ð3:13Þ

Thus the corresponding spin vector is Tγ-periodic if and
only if Tγ is an integer multiple of Ts. We can summarize as
follows:
Proposition 3: Every spin vector carried by a circular

CTC γ with radius r is Tγ-periodic if and only if

λðrÞ≔ ðML0−LM0Þ2
4H1jLjðFLþM2Þ¼n2 for some n∈N: ð3:14Þ

If this condition is not met, then there is exactly one spin
vector along γ which is Tγ-periodic. ▪
We now apply this proposition to a selection of sta-

tionary, cylindrically symmetric spacetimes admitting cir-
cular CTCs.

1. Gödel’s universe

The discovery of Gödel’s solution of the Einstein
equations [18] occupies an important place in General
Relativity, both scientifically and historically [23–25]. In
particular, this was the first spacetime in which CTCs were
identified. There is a large body of literature on this
spacetime, which we will not review here (see [23] and
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the more recent [26] for references). The line element
of Gödel’s universe can be written in the form (3.1) with
F ¼ H1 ¼ H2 ¼ 1 and

LðrÞ¼α−2ðsinh2αr−sinh4αrÞ; MðrÞ¼−
ffiffiffi
2

p
α−1sinh2αr:

ð3:15Þ

The real, positive parameter α sets an overall scale in this
homogeneous spacetime; the Einstein-perfect fluid field
equations give the energy density ρ and pressure P as

8πρ ¼ 2α2 − Λ; ð3:16Þ

8πP ¼ 2α2 þ Λ; ð3:17Þ

where Λ is the cosmological constant.
From (3.15), we see that there are circular CTCs with

radius r whenever

sinh αr > 1: ð3:18Þ

A straightforward calculation yields

λðrÞ ¼ 2 sinh6 αr
sinh2 αr − 1

: ð3:19Þ

We note that the singular behavior at αr ¼ lnð1þ ffiffiffi
2

p Þ is
due to the fact that the curve (3.2) becomes null at this value
of r. For ρ ¼ sinh αr > 1, λðrÞ in (3.19) approaches þ∞
asymptotically as ρ → 1þ and as ρ → þ∞, and has a global
minimum of 27=2 ∈ ð32; 42Þ. So we can summarize as
follows (see Fig. 1):

Proposition 4: For each n ≥ 4, there are two circular
CTCs γ in Gödel’s universe along which all spin vectors are
Tγ-periodic, corresponding to case (i) of Proposition 2. For
each n ≥ 4, these correspond to the two values of r which
solve λðrÞ ¼ n2. Along all other circular CTCs, there is
exactly one Tγ-periodic spin vector, corresponding to case
(ii) of Proposition 2. ▪
A nearly identical conclusion will hold in some of the

other examples below, so for convenience we will refer to
the outcome described in this proposition by saying that
the Gödel profile with n ¼ n0 applies, where n0 ¼ 4 in
this case.

2. Som-Raychaudhuri spacetime

The Som-Raychaudhuri spacetime is a stationary, cylin-
drically symmetric spacetime filled with charged dust [27].
Its causal properties have been investigated in [28]; like
Gödel’s universe, this homogenous spacetime is totally
vicious (meaning that CTCs pass through every event), but
does not contain any closed causal geodesics. The line
element is given by (3.1) with FðrÞ ¼ 1,

LðrÞ ¼ r2ð1 − α2r2Þ; MðrÞ ¼ αr2 ð3:20Þ

and

H1ðrÞ ¼ H2ðrÞ ¼ eðβ2−α2Þr2 : ð3:21Þ

The positive constants α, β determine the energy and charge
densities of the fluid which are given by (respectively)

4πρ ¼ ð2α2 − β2Þeðα2−β2Þr2 ; 4πσ ¼ 2αβeðα2−β2Þr2 :

ð3:22Þ

We will assume the energy condition 2α2 − β2 > 0.
Circular CTCs occur in the region αr > 1. We calculate

λðrÞ ¼ α6r6eðα2−β2Þr2

α2r2 − 1
: ð3:23Þ

We can write this as

λðrÞ¼ lðρ;bÞ≔ρ3eð1−bÞρ2

ρ−1
; ρ¼α2r2; b¼β2=α2∈ ½0;2Þ:

ð3:24Þ

Then circular CTCs occur in the region ρ > 1. It is
straightforward to establish the following conclu-
sions (Fig. 2):
Proposition 5:
(i) For b ∈ ½0; 1�, limρ→1þlðρ; bÞ ¼ limρ→þ∞lðρ; bÞ ¼

þ∞ and lðρ; bÞ has a unique local minimum in
ð1;þ∞Þ at

FIG. 1. Plot of the function λðrÞ of Proposition 3 for Gödel’s
spacetime. The graph intersects each horizontal line y ¼ n2,
n ≥ 4 twice; the value of r at each intersection corresponds to a
circular CTC along which all spin vectors are periodic with the
same period as the CTC on which they travel. Gyroscopic motion
is consistent on these circular CTCs. As noted in the text, we say
that the circular CTCs of this spacetime demonstrate the Gödel
profile with (in this case) n ¼ 4.
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ρ ¼ ρþðbÞ ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−10bþ13

p
−ð1þbÞ

2ð1−bÞ ; b ∈ ½0; 1Þ;
3=2; b ¼ 1;

ð3:25Þ

whereat λmin ¼ lðρþ; bÞ ∈ ð6.75; 26.87Þ. Thus
the Gödel profile applies in this case, with n0 ∈
f3; 4; 5; 6g depending on the value of b.

(ii) For b ∈ ð1; 5 − ffiffiffiffiffi
12

p Þ, limρ→1þ lðρ; bÞ ¼ þ∞ and
limρ→þ∞ lðρ; bÞ ¼ 0. lðρ; bÞ has a unique local
minimum and a unique local maximum in
ð1;þ∞Þ. Thus for each n ≥ 1, there is at least
one value of r > α−1 for which λðrÞ ¼ n2 (and all
spin vectors on the corresponding circular CTC are
Tγ-periodic). For a finite subset of positive integers
(which may be empty), there are three solutions of
λðrÞ ¼ n2 with r > α−1 (and three corresponding
circular CTCs with all spin vectors periodic); for all
other values of n, there is exactly one solution and
one corresponding CTC.

(iii) For b ∈ ½5 − ffiffiffiffiffi
12

p
; 2Þ, lðρ; bÞ is a decreasing

function of ρ, with limρ→1þ lðρ; bÞ ¼ þ∞ and
limρ→þ∞ lðρ; bÞ ¼ 0. Hence for each positive
integer n ≥ 1, there is a unique solution of λðrÞ ¼
n2 with r > α−1, and correspondingly, a unique
circular CTC along which all spin vectors are Tγ-
periodic. ▪

3. Van Stockum’s solution and Tipler machines

Van Stockum’s solution [19], representing an infinitely
long rigidly rotating cylinder of dust, is the uncharged
(β ¼ 0) Som-Raychaudhuri solution. So (3.23) holds, and
Proposition 5 holds with b ¼ 0. Thus the Gödel profile
applies, and we find n0 ¼ 6.
Van Stockum showed how his line element can be

matched to that of a vacuum spacetime, and Tipler
subsequently demonstrated that this construction gives rise
to cylindrical structures of finite radius that operate as time
machines [20]. The exterior line element again has the form
(3.1), but with

FðrÞ ¼ r sinðβ − μÞ
R sin β

; ð3:26Þ

H1ðrÞ ¼ H2ðrÞ ¼ e−α
2R2

�
r
R

�
−2α2R2

; ð3:27Þ

LðrÞ ¼ rR sinð3β þ μÞ
2 sin 2β cos β

; ð3:28Þ

MðrÞ ¼ r sinðβ þ μÞ
sin 2β

; ð3:29Þ

where αR > 1=2 and

μðrÞ ¼ ð4α2R2 − 1Þ1=2 ln
�
r
R

�
; ð3:30Þ

β ¼ arctanð4α2R2 − 1Þ1=2: ð3:31Þ

Note that since α > 0 and β ∈ ð0; π=2Þ, we can write

sin β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2R2 − 1

p

2αR
; cos β ¼ 1

2αR
ð3:32Þ

and so

2 sin 2β cos β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2R2 − 1

p

2α3R3
: ð3:33Þ

Comparing to (3.28), we see that circular CTCs [which
occur if and only if LðrÞ < 0] occur if and only if
sinð3β þ μÞ < 0. This oscillatory behavior means that as
r increases, we move through regions that are alternately
filled with, and devoid of, circular CTCs.
The spacetime with line element implied by (3.26)–

(3.31) matches smoothly across the hypersurface fr ¼ Rg
with the van Stockum spacetime.
We calculate

λðrÞ ¼ −
1

2
eα

2r2
�
r
R

�
2α2R2−1

α3R3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2R2 − 1

p
cscð3β þ μÞ:

ð3:34Þ

FIG. 2. Plot of the function λðrÞ ¼ lðρ; bÞ of Proposition 3 for
Som-Raychaudhuri spacetime. The dark blue graph has b ¼ 0.75
and exemplifies part (i) of Proposition 5; circular CTCs follow the
Gödel profile with n ¼ 4. The orange graph has b ¼ 1.05 and so
exemplifies part (ii) of the proposition. There are three circular
CTCs corresponding to n ¼ 3, and just one corresponding to all
other values of n ≥ 1. The green graph has b ¼ 1.75, and
exemplifies part (iii) of the proposition. Here, there is a unique
circular CTC corresponding to each value of n. Recall that the
intersections of the graph of lðρ; bÞ and the horizontal lines y ¼
n2 correspond to CTCs for which all gyroscopes are Tγ-periodic
(and so consistent). All other circular CTCs have generically
inconsistent gyroscopes.
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It is convenient to introduce ρ ¼ αr, ρ0 ¼ αR, and
λ̄ðρÞ ¼ λðrÞ. Then ρ0 > 1=2, and we are concerned only
with ρ > ρ0, the vacuum region outside the van Stockum
cylindrical region. We can establish the following.
Proposition 6:
(i) For ρ0 ∈ ð1=2; 1�, λ̄ðρÞ is positive on the sequence of

intervals fImg∞m¼1, where

Im ¼
�
ρ0 exp

�ð2m − 1Þπ − 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρ20 − 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρ20 − 1

p
�
;

ρ0 exp

�
2mπ − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρ20 − 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρ20 − 1

p
��

: ð3:35Þ

On each interval Im, λ̄ðρÞ approaches þ∞ at each
endpoint, and has a unique minimum in Im. It
follows that the Gödel profile obtains on each
interval, with the value of n0 depending on both
ρ0 and m.

(ii) For ρ0 > 1, we have the same conclusion as in part
(i), but with I1 given by

I1 ¼
�
ρ0; ρ0 exp

�
2π − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρ20 − 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρ20 − 1

p
��

: ð3:36Þ

▪
The essential difference between these two cases is that

for ρ0 > 1, there are circular CTCs that are arbitrarily close
to the matter-filled region ρ ≤ ρ0. For the lower values of
ρ0, we must move farther into the vacuum region before
meeting these CTCs.
Recall that the parameter n0 of the Gödel profile counts

how many positive integers do not contribute a pair of
circular CTCs along which all spin vectors are periodic. In
the present example, the value of n0 grows rapidly with m;
for example, with ρ0 ¼ 1, we find

λminjI1 ≃ 13.70; ð3:37Þ

λminjI2 ≃ 8 × 10619; ð3:38Þ

λminjI3 ≃ 10870;109: ð3:39Þ

The corresponding parameter n0 is given by the integer
ceiling of the square root of these values.

B. Kerr spacetime

In Boyer-Lindquist coordinates xa ¼ ðτ; r; θ;ϕÞ, the line
element of Kerr spacetime reads

ds2¼ρ2
�
dr2

Δ
þdθ2

�

þðr2þa2Þsin2θdϕ2−dτ2þ2Mr
ρ2

ðasin2θdϕ−dτÞ2;

ð3:40Þ

where

ρ2 ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2: ð3:41Þ

As shown by Carter [29], the region r < r− ¼
M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
is totally vicious. We impose the black

hole condition M ≥ jaj and we focus on a simple class of
CTCs; those for which τ, r, and θ are constant along the
curve (we will maintain the name circular CTCs for these
curves, as well as the label γ). A necessary and sufficient
condition for these closed curves to be timelike is that

gϕϕ ¼ ðr2 þ a2Þ sin2 θ þ 2Ma2r
ρ2

sin4 θ < 0: ð3:42Þ

Notice that this requires r < 0. We write gϕϕ ¼ −β2, β > 0,
and so the tangent to the circular CTC is ua ¼ β−1ð ∂

∂ϕÞa,
which has proper-time period Tγ ¼ 2πβ.
We can summarize the properties of solutions of the

Fermi-Walker transport equations along γ as follows. Here,
si; i ¼ 0, 1, 2, 3 refers to the Boyer-Lindquist coordinate
components of the spin vector sa. In this description,
constants refer to quantities that depend on the fixed values
of r and θ along γ, and on the black hole parameters M, a.

(i) The orthogonality condition gabuasb ¼ 0 shows that
s0 is a constant multiple of s3.

(ii) There exists a solution of the FW transport equa-
tions (unique up to trivial scalings) along which
s0 ¼ s3 ¼ 0 and s1, s2 are constants. This yields a
periodic spin vector, as guaranteed by Proposition 1.

(iii) The remaining two linearly-independent solutions of
the FW transport equations are determined by
solutions of the equation

d2S
dt2

þ λ2S ¼ 0; ð3:43Þ

where

λ2 ¼ 4a2M2 sin2 θðAþ Bþ CÞ
ða2 cos 2θ þ a2 þ 2r2Þ3ða4 þ a2 cos 2θða2 þ rðr − 2MÞÞ þ a2rð2M þ 3rÞ þ 2r4Þ2 ; ð3:44Þ
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with

A ¼ ð3a8 − 10a6r2 − a4r3ð8M þ rÞ þ 72a2r6 þ 72r8;

ð3:45Þ

B ¼ a4 cos 4θða4 − 6a2r2 þ r3ð8M − 3rÞÞ; ð3:46Þ

C ¼ 4a2ða6 − 4a4r2 − 3a2r4 þ 6r6Þ cos 2θ: ð3:47Þ

As in the introductory paragraph of Sec. III A, we can
then phrase (spacetime) periodicity of the spin vector in
terms of an equation that requires an integer value for the
ratio of the period of the CTC and the period of the spin
vector. This equation takes the form −λ2gϕϕ ¼ n2, n ∈ N.
If we specialize to the equatorial plane, we obtain the
following:
Proposition 7: Let γ be a circular CTC of Kerr

spacetime lying in the equatorial plane, so that θ ¼ π
2
along

γ. Then r ∈ ðr�; 0Þ, where r� is the unique negative root
of r3 þ a2rþ 2Ma2. Every spin vector carried by γ is
Tγ-periodic if and only if

ΓðrÞ ¼ −
a2M2ða2 þ 3r2Þ2

r5ðr3 þ a2rþ 2Ma2Þ ¼ n2 for some n ∈ N:

ð3:48Þ
If this equation has no solutions, then there is a unique spin
vector that is Tγ-periodic along γ. Furthermore the Gödel
profile applies: ΓðrÞ → þ∞ as r → rþ� and as r → 0−, and
has a unique positive minimum on ðr�; 0Þ. ▪
Since we are in the equatorial plane, the timelike

condition simplifies considerably,

gϕϕjθ¼π
2
¼ r2 þ a2 þ 2Ma2

r
< 0: ð3:49Þ

Thus, as claimed above, circular CTCs arise on the
equatorial plane for r ∈ ðr�; 0Þ where r� is the unique
negative root of r3 þ a2rþ 2Ma2. Note that this last
expression is positive on ðr�; 0Þ, and so ΓðrÞ is positive
on this interval. Clearly, ΓðrÞ → þ∞ as r → rþ� and as
r → 0−. Less clear, but verifiable algebraically, is the fact
that Γ has a unique minimum in ðr�; 0Þ for allM > jaj > 0.
This implies that the Gödel profile also applies in this case.
Numerical experimentation across the ðM; aÞ parameter
space indicates a minimum value of n0 of five which
applies in the extremal limit jaj ¼ M, with n0 unbounded in
the limit jaj → 0. The results summarized here are estab-
lished by writing r ¼ uM, jaj ¼ vM, in which case

Γ¼−
v2ð3u2þv2Þ2

u5ðu3þv2uþ2v2Þ; v∈ ð0;1�; u∈ ðu�;0Þ;

ð3:50Þ

where u� is the unique negative root of u3 þ v2uþ 2v2.
Applying an asymptotic balance argument yields

Γmin ∼ 3

�
2

v

�
4=3

; v → 0: ð3:51Þ

This limit corresponds to a → 0 at fixed M. As above, the
integer ceiling of the square root of this term gives the value
of n0 for the Gödel profile.

C. Taub-NUT spacetime

Taub-NUT spacetime provides an interesting contrast to
the behavior seen in the examples reviewed so far.
Following [30], we consider the spacetime M ¼ R × S3

with line element

ds2 ¼ −U−1dτ2 þ 4l2Uðdψ þ cos θdϕÞ2
þ ðt2 þ l2Þðdθ2 þ sin2θdϕ2Þ; ð3:52Þ

where

UðτÞ ¼ −
�
τ2 − 2Mτ − l2

τ2 þ l2

�
; τ ∈ R ð3:53Þ

and ðθ;ϕ;ψÞ are Euler angles on S3. Note in particular
that ψ ∈ ½0; 4π� with 4π-periodic identification. See [22]
for a review of the global properties of this space-
time which discusses (among other things) the respec-
tive roles of the mass parameter M and the NUT
parameter l.
This spacetime provides a counterexample to almost

anything [11], and chronology violation is no exception.
Circular CTCs, along which τ, θ, and ϕ are constant, are
present in regions where U < 0. This corresponds to the
regions

τ<τ−¼M−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þl2

p
<0; τ>τþ¼Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þl2

p
>0:

ð3:54Þ

These CTCs have proper-time period Tγ ¼ 8πl
ffiffiffiffiffiffiffi
−U

p
.

In coordinates ðx0; x1; x2; x3Þ ¼ ðτ;ψ ; θ;ϕÞ, the solu-
tions of the FW transport equations have these properties:

(i) s1 is a constant multiple of s3.
(ii) s0 is constant along all solutions, and the unique

solution with s1 ¼ s2 ¼ s3 ¼ 0 provides a periodic
spin vector as guaranteed by Proposition 1.

(iii) The remaining two linearly-independent solutions of
the FW transport equations are determined by
solutions of the equation
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d2S
dt2

þ l2ðτ2 − 2Mτ − l2Þ
ðl2 þ τ2Þ3 S ¼ 0: ð3:55Þ

Differences relative to Kerr spacetime arise when we
look at the existence condition for spacetime periodic spin
vectors analogous to (3.48). In the Taub-NUT case, this
reads

4l2

�
τ2 − 2Mτ − l2

ðτ2 þ l2Þ2
�

¼ n ∈ N; ð3:56Þ

or equivalently (with τ ¼ uM, l ¼ vM)

n¼Gðu;vÞ¼4v2
�
u2−2u−v2

ðu2þv2Þ2
�
; n∈N; v∈R;

u∈ ð−∞;u−Þ∪ ðuþ;þ∞Þ; ð3:57Þ

where u� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
. Some elementary calculus

yields the following results.
Proposition 8:
(i) For u > uþ, Gðu; vÞ < 1

2
for all v ∈ R. Hence there

are no solutions of (3.56) for τ > τþ, and so there is

a single Tγ-periodic spin vector along any circular
CTC γ in this region.

(ii) For each v ∈ R, Gðu; vÞ has a unique positive
maximum on ð−∞; u−Þ and vanishes in the limit
at the endpoints of the interval. Hence, there is at
most a finite number of values of n which yield
solutions of (3.57) for u, and so only a finite number
of circular CTCs along which all spin vectors
are Tγ-periodic. ▪

In the limit of small v (small NUT parameter l for M
fixed), the maximum of G has the asymptotic behavior

Gmax ∼
3

ffiffiffi
3

p

2v
; v → 0 ð3:58Þ

and so the number of solutions that arises in part (ii) of
Proposition 8 is unbounded in this limit. On the other hand,
in the limit of large v, we find

Gmax ∼
1

2
þ

ffiffiffi
3

p

2v
; y → þ∞; ð3:59Þ

and so the number of solutions is zero when v is sufficiently
large (see Fig. 3). So in this example, there are only finitely
many circular CTCs along which gyroscopic motion is
generically consistent.

FIG. 3. Plots of the function Gðu; vÞ of Proposition 8 for Taub-NUT spacetime. Intersections of the graph with horizontal lines y ¼ n,
n ∈ N correspond to the circular CTCs along which all spin vectors are Tγ-periodic. In all cases, we have taken M ¼ 1. Panels (a) and
(b) showG for a small value of the NUT parameter, l ¼ 0.1. As stated in Proposition 8, there are no intersections for τ > τþ, and a finite
number (48 in this case) for τ < τ−. Panels (c) and (d) show the corresponding graphs for a large value, l ¼ 10, of the NUT parameter. In
this case, there are no intersections, and so for these parameter values ðM;lÞ ¼ ð1; 10Þ, there are no circular CTCs for which gyroscopic
motion is generically consistent.
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D. Ori’s asymptotically flat time machine

We’ll mention one last example: Ori’s asymptotically flat
time machine [31]. This spacetime avoids many features
that render the examples above unrealistic in various ways.
The spacetime evolves from regular initial data. It possesses
a vacuum core, a dust-filled intermediate region (obeying
both the weak and strong energy conditions) and an
asymptotically flat vacuum exterior. The CTCs evolve in
the spacetime; none are present at early stages of the
evolution from the initial data surface. They lie to the future
of a chronology horizon that appears not to be compactly
generated, and so avoids an associated instability [32]. The
CTCs reside in the inner vacuum region, whose line
element is given in coordinates xa ¼ ðv; r; θ;ϕÞ by

ds2 ¼
�
1 −

2μ

r

�
dv2 þ 2dvdrþ r2ðdθ2 þ sinh2θdϕ2Þ:

ð3:60Þ

The null coordinate v satisfies 0 ≤ v < l, with l-periodic
identification. The parameter l relates to the matter content
of the dust-filled region, and has a positive lower bound,
lmin; there is an interval’s worth of choices for the value of
l. The coordinate ϕ is the usual azimuthal coordinate, and
θ ≥ 0. The parameter μ is positive, and we note that r is a
time coordinate for r > 2μ.
There are CTCs γ in the region r < 2μ along which r, θ

and ϕ are constant. A straightforward calculation shows
that in the coordinates of (3.60), the components of a spin
vector along such a CTC are constant. Hence all spin
vectors are Tγ-periodic for this family of CTCs. However,
this feature disappears if we adjust the CTC in the

following way. The two-surfaces of constant r and θ are
topological torii. We can consider the CTCs above to
traverse toroidal circles (going the long way around the
doughnut). We can also construct CTCs by allowing these
curves to also traverse the poloidal circles of the torus
(spiralling in towards the doughnut hole and out again,
while simultaneously completing a circuit the long way
around). In the coordinates of (3.60), these curves have
tangent

ua ¼ ðα; 0; 0; βÞ; ð3:61Þ

with the constants α, β subject to the (unit) timelike
condition

�
1 −

2μ

r

�
α2 þ r2sinh2θβ2 ¼ −1 ð3:62Þ

and the condition

there exist n1; n2 ∈ N such that 2πn1α ¼ n2lβ;

ð3:63Þ

which expresses the need for the periods of the toroidal and
poloidal loops to be synchronized (the particle completes
n1 circuits of the toroidal circle and at the same time
completes n2 circuits of the poloidal circle).
Writing down the FW transport equations in coordinates

ðv; r; θ;ϕÞ reveals the following properties. The equations
admit a constant solution (providing a spacetime periodic
spin vector along the CTC), and two independent solutions
with period Ts ¼ 2π

λ , where

λ2 ¼ α2csch2θððα2 − 1Þr − 2α2μÞð9μ2 þ 2r2 þ μ cosh 2θð4r − 9μÞ − 8μrÞ
2r5

: ð3:64Þ

We can then write down the following result:
Proposition 9: Consider the three-parameter family of

CTCs γ ¼ γðβ; r; θÞ with tangent (3.61), where α and β
satisfy (3.62) and along members of which r and θ are
constant. Assume also that the synchronicity condition
(3.63) holds. Then every spin vector along γ is Tγ periodic
if and only if there exists n ∈ N such that

2πn
λ

¼ n1l
α

¼ 2πn2
β

; ð3:65Þ

where λ > 0 is defined by (3.64). If this condition does not
hold, then there is exactly one spin vector along γ which is
Tγ -periodic. ▪
This result incorporates the case of toroidal CTCs

which are characterized by β ¼ 0. We can check that this

yields λ ¼ 0, and so the condition of the proposition
above is satisfied with n ¼ 0. As with the previous
examples, the nature of this condition implies that it holds
only on subsets of measure zero of the parameter
space fðβ; r; θÞ ∈ R × ð0; 2μÞ × ½0; 2π�g.

IV. CONCLUSIONS

In relation to the examples studied above, it is clear that
periodicity (and hence consistency) of gyroscopic motion
is a very special property. Among the families of CTCs
considered, indexed by a set of continuous real param-
eters, there are only (at most) a countable number of CTCs
for which gyroscopic motion is consistent. Ori’s space-
time considered in Sec. III D is an exception. But a small
perturbation shows a return to the outcome just described.
So for these examples, we can say that in a mathematically
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precise sense, gyroscopic motion is generically incon-
sistent; on an open, dense subset of the three-parameter
families of CTCs, there is an open, dense subset of the
initial data set (which we recall is S2) for gyroscopic
motion for which the corresponding solutions of the
equations of motion do not return to their initial position
on completion of a circuit of the CTC. This is our
consistency requirement, and it is generically not met.
But we would like to be able to say more. After all, the

examples above are just that—examples—and may not
represent the generic behavior. We consider evidence for
the following conjecture; the motion of gyroscopes along
CTCs in a time-orientable spacetime is generically
inconsistent.
Validating this conjecture would require the statement

and proof of a result that demonstrates the exceptional
nature of a CTC along which gyroscopic motion is
consistent. It seems clear that an important necessary
aspect of such a statement is valid in the following sense.
Suppose that a region of spacetime is filled with a
congruence of CTCs, and let α⃗ ∈ O parametrize the
different members of the congruence (with O an open
subset of R3). (All the examples above have this feature.)
By standard ODE theory, solutions of the FW transport
equations depend continuously on the parameters α⃗ (see
e.g., Sec. 2.3 of [33]). It follows that the eigenvalues
f1; e�iθg of the monodromy matrix Ma0

b0 depend contin-
uously on the parameters α⃗ (cf. the discussion preceding
Proposition 1 above). So if a CTC with parameters α⃗0 has
generically inconsistent gyroscopes [θðα⃗0Þ ≠ 0], then
there is an open neighborhood O0 ⊂ O of α⃗0 for which
all CTCs with parameters α⃗ ∈ O0 also have generically
inconsistent gyroscopes. Thus, CTCs with generically
inconsistent gyroscopes occur in open sets. We would
also like to show that the set of CTCs with generically
inconsistent gyroscopes are dense in the set of all CTCs,
which would require a thorough understanding of the
structure of these sets. Away to approach this would be to
show that a generic perturbation of a CTC with generically
consistent gyroscopes leads to one with generically
inconsistent gyroscopes. This appears to be the case in
the example of Ori’s spacetime; purely toroidal CTCs
have consistent gyroscopes, but a perturbation that gen-
erates poloidal motion of the CTC yields generically
inconsistent gyroscopic motion. This example also
appears to show that there is some subtlety in the problem;
the ‘right’ perturbation must be identified—but presum-
ably generic perturbations would include these.
Combining the geometric approach to perturbations in
spacetime (that is, of spacetimes themselves and lower-
dimensional submanifolds of those spacetimes) with the
general theory of perturbations of linear operators [34]
may provide the means to analyze this situation more
thoroughly—recall that the FW transport equations are
linear.

Does it matter that a gyroscope carried by a CTC may
not be consistently defined? Such an inconsistency may
generate what we could call ‘practical’ difficulties for an
associated time traveler; their compass of inertia will rotate
around a fixed direction as they depart from and return to a
spacetime event P. So while their notion of ‘up-down’ may
remain the same, those of ‘left-right’ and ‘forwards-back-
wards’ will be altered, despite their being at the same
spacetime event. For external observers of the gyroscope,
there are what could be considered more fundamental
difficulties relating to paradoxes of identity induced by
time travel ([14], p. 21). Let us imagine an observer and a
gyroscope crossing a chronological horizon. Imagine
further that the observer continues on a causally well-
behaved path (an open timelike curve), but the gyroscope
moves onto a CTC. The observer will immediately see the
gyroscope pointing in numerous different directions, as
many as the number of loops of the CTC it traverses. While
this outcome is a more mundane consequence of time travel
than (say) the situation envisaged in the grandfather para-
dox, it appears to be harder to avoid; the motion of the
gyroscope is simply and directly governed by physical laws
in the form of the FW transport equation. It suggests that
when taking extended body effects into consideration,
consistency in the presence of CTCs might not be possible.
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APPENDIX: PROOF OF THE GEOMETRIC
FLOQUET-LYAPUNOV THEOREM

Let Γa
b0 be as in the statement of the proposition, and let

Fa0
b0 be the exponential matrix solving the initial value

problem

dFa0
b0

dt
¼ Ba0

c0F
c0
b0 ; Fa0

b0 ð0Þ ¼ δa
0

b0 ; ðA1Þ

where Ba0
b0 is a nonsingular type (1,1) tensor at z. We call a

type (1,1) tensor Ba0
b0 nonsingular if there exists another type

(1,1) tensor B̃a0
b0 such that

Ba0
c0 B̃

c0
b0 ¼ Bc0

b0B̃
a0
c0 ¼ δa

0
b0 : ðA2Þ

Appealing to uniqueness of solutions of linear ODEs, we
see that

Γa
b0 ðtþ TÞ ¼ Γa

c0 ðtÞΓc0
b0 ðTÞ ðA3Þ

for all t ∈ R and
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Fa0
b0 ðt1 þ t2Þ ¼ Fa0

c0 ðt1ÞFc0
b0 ðt2Þ

¼ Fa0
c0 ðt2ÞFc0

b0 ðt1Þ; ðA4Þ

for all t1, t2 ∈ R. Now define

Γ̃a
b0 ðtÞ ¼ Γa

c0 ðtÞFc0
b0 ðtÞ: ðA5Þ

Then using (A3) and (A4) we have

Γ̃a
b0 ðtþ TÞ ¼ Γa

d0 ðtÞΓd0
c0 ðTÞFc0

e0 ðTÞFe0
b0 ðtÞ ðA6Þ

which equates to Γ̃a
b0 ðtÞ—establishing T-periodicity of this

quantity—provided

Γd0
c0 ðTÞFc0

e0 ðTÞ ¼ δd
0

e0 : ðA7Þ

We show that there exists a nonsingular type (1,1) tensor
Ba0
b0 so that this is satisfied.
This can be done by introducing a pseudo-orthonormal

basis of TzðMÞ, fea0ðiÞ; i ¼ 1; 2; 3; 4g, so that

ga0b0 ðzÞea0i eb0j ¼ ηij; ðA8Þ

where η is the Minkowski unit tensor. We also introduce the
corresponding basis of one-forms

ωi
a0 ¼ ga0b0eb

0
i : ðA9Þ

Projecting onto this basis, we can write (2.29) as a matrix-
valued scalar equation

F0ðtÞ ¼ BFðtÞ; Fð0Þ ¼ I4; ðA10Þ

where F ¼ ðFi
jÞ is a 4 × 4 matrix with components

Fi
j ¼ Fa0

b0ω
i
a0e

b0
j ; ðA11Þ

and likewise for A, which is a constant matrix. I4 is the
4 × 4 identity matrix. Then we can write down the solution
of (A10) as

FðtÞ ¼ expðtBÞ: ðA12Þ

Let G ¼ ðGi
jÞ be the projection of Γa

b0 ðTÞ on the pseudo-
orthonormal basis. Then (A7) reads

GðTÞFðTÞ ¼ GðTÞ expðTBÞ ¼ I4: ðA13Þ

Since the matrix GðTÞ is nonsingular [by virtue of (2.12)],
it follows that there is a nonsingular matrix B satisfying this
equation (see e.g., Sec. 3.1 of [17]). With this choice of B,
we see that

Γ̃a
b0 ðtþ TÞ ¼ Γ̃a

b0 ðtÞ: ðA14Þ

Now define

Ea0
b0 ðtÞ ¼ Fa0

b0 ð−tÞ; t ∈ R: ðA15Þ

It is straightforward to show that this is an exponential
matrix, satisfying (2.29) with Aa0

b0 ¼ −Ba0
b0 . Using (A4), we

can write

Γa
b0 ðtÞ ¼ Γ̃a

c0 ðtÞEc0
b0 ðtÞ; ðA16Þ

which completes the proof. ▪
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