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A double new class of solutions to the general relativity field equations describing interior spacetimes
sourced by stationary cylindrical anisotropic fluids with principal stress directed along the symmetry axis is
displayed. These solutions are required to satisfy regularity and junction conditions so that they can be
possibly used to represent rotating astrophysical objects. Mathematical and physical properties are
analyzed. The spacetime two independent parameters are physically interpreted, and they are shown to
define two different solution classes together with stating the latters’ properties.
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I. INTRODUCTION

Cylindrical symmetry implying two Killing vectors has
attracted much attention since the pioneering 1919 work by
Levi-Civita identifying static vacuum cylindrical space-
times [1]. Their extension to the stationary case exhibiting
three Killing vectors was obtained in 1924 by Lanczos [2]
who considered a rigidly rotating infinite dust cylinder with
and without a cosmological constant, and by Lewis in 1932
for vacuum [3]. The Lanczos solution was independently
rediscovered by van Stockum in 1937 for the zero cosmo-
logical constant case [4], and this solution is often
improperly attributed to this single author. The Lewis
solution describes a vacuum exterior gravitationally
sourced by a matter cylinder rotating around its symmetry
axis. Depending on whether the constant parameters
appearing in the metric functions are real or complex,
the solutions are said to belong to the Weyl class or to the
Lewis class, respectively. The vacuum solution outside a
cylindrical source in translation along its symmetry axis is
mathematically akin to the Lewis solution with exchanged
z and ϕ coordinates. They are however physically different
[5]. Now, cylindrically symmetric spacetimes have been
extensively investigated for a number of different purposes
[6,7]. For a recent review on cylindrical systems in general
relativity (GR), see [8].
In [9], the rigid rotation of nonvacuum stationary space-

times sourced by a cylindrical anisotropic fluid has been
considered. In [10], this study has been extended to the
nonrigid rotation case, while the rigid case analysis
proposed in [9] has been supplemented with a focuss on
its Weyl tensor gravitoelectromagnetic properties. Now, as

an existence proof for solutions to constraint equations
appearing in this study, an example of a particular rigidly
rotating metric has been incidentally proposed there.
However, it is easy to check that this solution is trivial.
A further analysis yields a constraint on the hðrÞ basic
building function forcing it to be constant, and this solution
to be therefore both flat and static, i.e., Minkowski; see the
Appendix in [10]. Note, however, that the other results
displayed in [10] are not precluded by this observation. In
the present work, an improved solution to the field
equations for the same fluid equation of state is exhibited
and studied. This new solution is exact and is thoroughly
examined here while a number of its mathematical and
physical features are analyzed.
The equation of state studied here is a generalization of

that considered in [9] and the same as one of those analyzed
in [10]. To the author’s knowledge, these works together
with the one displayed in the present paper constitute the
first attempt to introduce anisotropy into rigidly rotating
stationary cylindrical spacetimes. Even though the equation
of state proposed here is rather simple, as it is generally the
case when one starts a new path exploration, it might
anyhow prove possibly useful as an approximation to
improve our cosmological and astrophysical bestiary
knowledge. A couple of such proposals are displayed in
this paper. In any case, this exact solution to a new physical
setup will certainly allow us to increase our understanding
of cylindrically symmetric fluids in GR.
The paper is organized as follows: In Sec. II, the

stationary cylindrically symmetric line element which will
be used for the present purpose is set up. In Sec. III, the new
exact solution is constructed from the field equations
pertaining to the problem, through its regularity and
junction conditions, up to its final form. Important*marie-noelle.celerier@obspm.fr
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mathematical and physical properties pertaining to this
solution are analyzed in Sec. IV where, in particular, two
different classes of solutions are disclosed. The conclusions
are displayed in Sec. V.

II. CYLINDRICAL SPACETIME INSIDE
THE SOURCE

Consider a rigidly rotating stationary cylindrically sym-
metric anisotropic nondissipative fluid bounded by a
cylindrical surface Σ whose principal stresses Pr, Pz,
and Pϕ obey the equation of state Pr ¼ Pϕ ¼ 0. Its
stress-energy tensor can thus be written as

Tαβ ¼ ρVαVβ þ PzSαSβ; ð1Þ

where ρ is the fluid energy density, Vα is the timelike fluid
4-velocity, and Sα is a spacelike 4-vector satisfying

VαVα ¼ −1; SαSα ¼ 1; VαSα ¼ 0: ð2Þ

We assume, for the inside Σ spacetime, the spacelike ∂z
Killing vector to be hypersurface orthogonal, such as to
ease its subsequent matching to the exterior Lewis Weyl
class metric. Hence, the stationary cylindrically symmetric
line element reads

ds2 ¼ −fdt2 þ 2kdtdϕþ eμðdr2 þ dz2Þ þ ldϕ2; ð3Þ

where f, k, μ, and l are real functions of the radial
coordinate r only. Owing to cylindrical symmetry, the
coordinates conform to the following ranges:

−∞ ≤ t ≤ þ∞; 0 ≤ r; −∞ ≤ z ≤ þ∞;

0 ≤ ϕ ≤ 2π; ð4Þ

where the two limits of the ϕ coordinate are topologically
identified. These coordinates are numbered x0 ¼ t, x1 ¼ r,
x2 ¼ z, and x3 ¼ ϕ.

III. THE RIGIDLY ROTATING NEW SOLUTION

For rigid rotation where a corotating frame is chosen for
the stationary fluid source [9,10], the fluid 4-velocity can
be written as

Vα ¼ vδα0; ð5Þ

where v is a function of r only. The timelike condition for
Vα provided in (2) thus reads

fv2 ¼ 1: ð6Þ

The spacelike 4-vector used to define the stress-energy
tensor and verifying conditions (2) can be chosen as

Sα ¼ e−μ=2δα2; ð7Þ

and a calculation intermediate function D is defined as

D2 ¼ flþ k2: ð8Þ

A. Field equations

With the above choice for the two 4-vectors defining the
stress-energy tensor, and using (5)–(8) into (1), one obtains
the stress-energy tensor components corresponding to the
five nonvanishing Einstein tensor components, and one can
thus write the following five field equations for the inside Σ
spacetime.
With hðrÞ defined as hðrÞ≡ PzðrÞ=ρðrÞ, they read

G00 ¼
e−μ

2

�
−fμ00 − 2f

D00

D
þ f00 − f0

D0

D
þ 3fðf0l0 þ k02Þ

2D2

�

¼ κρf; ð9Þ

G03 ¼
e−μ

2

�
kμ00 þ 2k

D00

D
− k00 þ k0

D0

D
−
3kðf0l0 þ k02Þ

2D2

�

¼ −κρk; ð10Þ

G11 ¼
μ0D0

2D
þ f0l0 þ k02

4D2
¼ 0; ð11Þ

G22 ¼
D00

D
−
μ0D0

2D
−
f0l0 þ k02

4D2
¼ κρheμ; ð12Þ

G33 ¼
e−μ

2

�
lμ00 þ 2l

D00

D
− l00 þ l0

D0

D
−
3lðf0l0 þ k02Þ

2D2

�

¼ κρ
k2

f
; ð13Þ

where the primes stand for differentiation with respect to r.

B. Stress-energy tensor conservation

Writing the stress-energy tensor conservation is analo-
gous to writing the Bianchi identity

Tβ
1;β ¼ 0: ð14Þ

From (1), we have

Tαβ ¼ ρVαVβ þ PzSαSβ; ð15Þ

with Vα given by (5), and the spacelike vector Sα given
by (7), which can be inserted into (15). Then, using (3)
and (6), the Bianchi identity (14) reduces to

Tβ
1;β ¼

1

2
ρ
f0

f
−
1

2
Pzμ

0 ¼ 0; ð16Þ
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or, inserting the hðrÞ function defined above,

f0

f
− hμ0 ¼ 0: ð17Þ

C. Solving the field equations

In [10], a partly integrated equation for a rigidly rotating
Pr ¼ Pϕ ¼ 0 fluid has been derived as Eq. (152) proceed-
ing solely from the field equations and the Bianchi identity.
Two solutions of this Eq. (152) have been identified there.
The second solution, Eq. (175) in [10], is considered here.
Since only five independent differential equations are

available for six unknowns, i.e., the four metric functions f,
k, eμ, and l, the energy density ρ, and the pressure defined
either by Pz or by h—this last option will be retained here
—the equation set needs to be closed by an additional one.
The particular assumption displayed in [10] as Eq. (111) is
chosen for this purpose:

μ0 ¼ 2h0

1 − h
þ 2h0

h
; ð18Þ

which can be integrated as

eμ ¼ cμ
h2

ð1 − hÞ2 ; ð19Þ

where cμ is an integration constant. Inserting (18) into the
Bianchi identity (17), one obtains

f0

f
¼ 2h0

1 − h
; ð20Þ

which can be integrated as

f ¼ cf
ð1 − hÞ2 ; ð21Þ

cf being another integration constant.
Now, (9) combined with (10) can be written as

�
kf0 − fk0

D

�0
¼ 0; ð22Þ

which can be integrated as [9]

kf0 − fk0 ¼ 2cD; ð23Þ

where 2c is an integration constant, the factor 2 being
chosen here for further convenience. Considered as a first-
order ordinary differential equation for kðrÞ, (23) possesses
as a general solution

k ¼ f

�
c0 − 2c

Z
r

r0

DðvÞ
fðvÞ2 dv

�
; ð24Þ

where c0 and r0 are new integration constants, and which,
with expression (21) for f inserted, can be written as

k ¼ cf
ð1 − hÞ2

�
c0 −

2c
c2f

Z
r

r0

ð1 − hðvÞÞ4DðvÞdv
�
: ð25Þ

The last metric function l thus follows from (8) as

l ¼ ð1 − hÞ2
cf

�
D2 −

c2f
ð1 − hÞ4

×

�
c0 −

2c
c2f

Z
r

r0

ð1 − hðvÞÞ4DðvÞdv
�
2
�
: ð26Þ

The field equations (9), (11), and (12), as well as,
equivalently, (10)–(12) give an expression for D0=D as a
function of h and of its first and second derivatives which
reads

D0

D
¼ 1

3þ h

�
−ð1 − hÞ h

00

h0
þ ð1 − 2hÞ h

0

h

þ ð1þ hÞh0
1 − h

− κcμρ
ð1þ hÞh3
ð1 − hÞh0

�
: ð27Þ

Now, inserting (19), (21), (25)–(27) into the field
equation (11) gives

ρ ¼ 1 − h
κcμh2ð1þ hÞ

�
−
ð1 − hÞ

h
h00 þ ð1 − 2h2Þ

h2ð1þ hÞ h
02

þ c2

c2f

ð1 − hÞ5ð3þ hÞ
1þ h

�
: ð28Þ

Then inserting the same expressions into (9), or equiv-
alently into (13), one obtains

ρ ¼ 2

3κcμ

�
2ð1 − hÞ
h2ð1þ hÞ h

00 þ ð1þ hþ 4h2Þ
h3ð1þ h2Þ h02

þ 2c2

c2f

ð1 − hÞ6ð3þ hÞ
h2ð1þ hÞ2

�
: ð29Þ

Equalizing both expressions for ρ given by (28) and (29)
yields a second-order ordinary differential equation for h
that reads

h00 ¼ ð1 − 2h − 2h2Þ
hð1 − hÞð1þ hÞ h

02 −
c2

c2f

hð1 − hÞ5
1þ h

; ð30Þ

whose general solution is
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crþr¼ cγ

c
1
2
α

Z
hðrÞ

h0

�
1þu

u2ð1−uÞ3ð−2 lnuþ4u−u2þcβÞ
�1

2

du;

ð31Þ

where cr, cα, cβ, and cγ are integration constants and where
a � sign appearing in the calculations has been absorbed
into the cγ definition. From (31), the hðrÞ first and second
derivatives can be calculated, and inserting them into either
(28) or (29), one obtains in both cases

ρ ¼ 2ð1 − hÞ4
κcμh2ð1þ hÞ2

�
cαhð−2 ln hþ 4h − h2 þ cβÞ

c2γð1þ hÞ

þ 2
c2

c2f
ð1 − hÞ2

�
: ð32Þ

Moreover, h00 given by (30) can be inserted into (27),
therefore giving

D0

D
¼ h0

2ð1 − hÞ −
h0

2ð1þ hÞ

þ c2c2γ
2cαc2f

ð−2 ln hþ 4h − h2Þ0
ð−2 ln hþ 4h − h2 þ cβÞ

; ð33Þ

which can be integrated as

D ¼ cd
ð−2 ln hþ 4h − h2 þ cβÞcδffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − hÞð1þ hÞp ; ð34Þ

where the integration constant combination c2c2γ=2cαc2f has
been renamed cδ, and cd is a new integration constant.
Now, (34) inserted into (25) allows one to integrate this

equation as

k ¼ cf
ð1 − hÞ2 ½c0 þ ckð−2 ln hþ 4h − h2 þ cβÞcδþ1

2�; ð35Þ

where ck is a new integration constant into which a � sign
has been absorbed and where another integration constant
has been added to c0 without this constant notation being
modified. Finally, the last metric function l emerges from
inserting f, k, and D into (8), which gives

l ¼ c2d
cf

ð1 − hÞ
ð1þ hÞ ð−2 ln hþ 4h − h2 þ cβÞ2cδ

−
cf

ð1 − hÞ2 ½c0 þ ckð−2 ln hþ 4h − h2 þ cβÞcδþ1
2�2:

ð36Þ
Now, inserting the above fully integrated metric function

expressions into the field equations leads to three con-
straints upon the integration constants. The field equa-
tion (12) gives

cδ ¼
1

2
: ð37Þ

Then, (9) implies

2
cαc2fcδ
c2c2γ

¼ 1: ð38Þ

And finally, (11), or equivalently (10), yields

�
cδ þ

1

2

�
2

c2fc
2
k ¼ 2cδc2d: ð39Þ

The last field equation (13) confirms these constraints but
does not impose new ones. Now, with (37) inserted, the two
last constraint equations (38) and (39) can be written as

cα ¼
c2c2γ
c2f

ð40Þ

and

c2d ¼ c2fc
2
k: ð41Þ

Inserting (37), (40), and (41) into (34)–(36), one obtains

D2 ¼ c2fc
2
k

ð−2 ln hþ 4h − h2 þ cβÞ
ð1 − hÞð1þ hÞ ; ð42Þ

k ¼ cf
ð1 − hÞ2 ½c0 þ ckð−2 ln hþ 4h − h2 þ cβÞ�; ð43Þ

l ¼ cfc2k
ð1 − hÞ
ð1þ hÞ ð−2 ln hþ 4h − h2 þ cβÞ

−
cf

ð1 − hÞ2 ½c0 þ ckð−2 ln hþ 4h − h2 þ cβÞ�2: ð44Þ

D. Regularity conditions

The regularity conditions on the symmetry axis for
metric (3) have already been displayed in [9,10].
However, since they will be needed in the following, they
are recalled briefly here.
To ensure elementary flatness in the rotation axis vicinity,

the norm X of the Killing vector ∂ϕ must satisfy [7]

lim
r→0

gαβX;αX;β

4X
¼ 1; ð45Þ

where X ¼ gϕϕ. Equations (3) and (45) yield

lim
r→0

e−μl02

4l
¼ 1: ð46Þ
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The requirement that gϕϕ vanishes on the axis implies

l ¼0 0; ð47Þ

where ¼0 means that the values are taken at r ¼ 0.
Since there cannot be singularities along the axis, it is

imposed that, at this limit, spacetime tends to flatness;
hence, the coordinates are scaled such that, for r → 0, the
metric becomes

ds2 ¼ −dt2 þ 2ωr2dtdϕþ dr2 þ dz2 þ r2dϕ2; ð48Þ

from which

f ¼0 eμ ¼0 1; k ¼0 0 ð49Þ

follow, implying

D¼0 0; ð50Þ

and, from (46) and (48),

l0¼0 0: ð51Þ

Then, from the above and the requirement that the Einstein
tensor components in (9)–(13) do not diverge, we have

f0 ¼0 k0 ¼0 k00 − k0
D0

D
¼0 0: ð52Þ

Inserting (19), (21), and (43) into (49), one obtains

cf ¼0 ð1 − hÞ2; ð53Þ

cμ ¼0
cf
h2

; ð54Þ

c0 ¼ 0; ð55Þ

cβ ¼0 2 ln h − 4hþ h2: ð56Þ

All the other regularity conditions are verified provided
(55) and (56) are satisfied.
Notice that (56) implies cβ ≠ −3, otherwise it would

impose h¼0 1 and cf given by (53) would be forced to
vanish, which would rule out the whole solution.

E. Junction conditions

These conditions have also been displayed in [9,10] for
metric (3). For completeness, and also since they will be
partially needed further on, they are recalled here briefly.
Outside the fluid cylinder, a vacuum solution to the field

equations is needed. Since the system is stationary, the

Lewis metric [3] will be used to represent such an exterior
spacetime, and the Weyl class [11] is chosen here for a real
junction condition purpose. Its metric can be written as

ds2 ¼ −Fdt2 þ 2Kdtdϕþ eMðdR2 þ dz2Þ þ Ldϕ2; ð57Þ

where

F ¼ aR1−n − aδ2R1þn; ð58Þ

K ¼ −ð1 − abδÞδR1þn − abR1−n; ð59Þ

eM ¼ Rðn2−1Þ=2; ð60Þ

L ¼ ð1 − abδÞ2
a

R1þn − ab2R1−n; ð61Þ

with

δ ¼ c
an

; ð62Þ

where a, b, c, and n are real constants. See [9] for
comments about the respective coordinate systems inside
and outside the fluid cylinder and [11] for more details
about the Lewis metric Weyl class.
In accordance with Darmois’s junction conditions [12],

metric (3) and metric (57) coefficients and their derivatives
must be continuous across the Σ surface,

f¼Σ a1F; k¼Σ a2K; eμ¼Σ a3eM; l¼Σ a4L; ð63Þ

f0

f
¼Σ 1

R
þ n

δ2Rn þ R−n

δ2R1þn − R1−n ; ð64Þ

k0

k
¼Σ 1

R
þ n

ð1 − abδÞδRn − abR−n

ð1 − abδÞδR1þn þ abR1−n ; ð65Þ

μ0¼Σ n2 − 1

2R
; ð66Þ

l0

l
¼Σ 1

R
þ n

ð1 − abδÞ2Rn þ a2b2R−n

ð1 − abδÞ2R1þn − a2b2R1−n : ð67Þ

The first fundamental form continuity imposes (63) where
the a1, a2, a3, and a4 constants can be transformed away by
rescaling the coordinates, while (64)–(67) are produced by
the second fundamental form continuity. Hence, the above

equations inserted into [9]’s Eq. (8) imply Pr¼Σ 0, which is
in perfect agreement with the present fluid equation of state
which imposes Pr ¼ 0 everywhere. Moreover, the integra-
tion constant c appearing in (23) can be identified with the
constant c displayed in (62), which arises from the source
stationarity producing the source vorticity [9,13,14]. This
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justifies the choice of the factor 2 for the definition of this
integration constant in (23).
Comments about other spacetime properties issuing from

the above relations are displayed in [9,10]. They are not
recalled here since they will not be needed for the present
purposes.

F. Final form of the solution

Constraints (53)–(56) on the integration constants issu-
ing from the regularity conditions and inserted into the
metric functions as given in (21), (19), (43), and (44) lead to
their final form, which can be written as

f ¼
�
1 − h0
1 − h

�
2

; ð68Þ

eμ ¼
�
1 − h0
h0

�
2
�

h
1 − h

�
2

; ð69Þ

k ¼ ð1 − h0Þ2ck
½2 ln h0

h þ 4ðh − h0Þ − ðh2 − h20Þ�
ð1 − hÞ2 ; ð70Þ

l ¼ ð1 − h0Þ2c2k
�
2 ln

h0
h
þ 4ðh − h0Þ − ðh2 − h20Þ

�

×

�
1 − h
1þ h

−
½2 ln h0

h þ 4ðh − h0Þ − ðh2 − h20Þ�
ð1 − hÞ2

�
: ð71Þ

Notice that since the constant ck appears as such in
expression (70) for k, and squared in expression (71) for l, it
can be absorbed into a rescaling of the ϕ coordinate
according to the coordinate transformation ckϕ → ϕ.
Now, as it has been mentioned in (4), cylindrical symmetry
imposes 0 ≤ ϕ ≤ 2π. Therefore, such a rescaling is equiv-
alent to setting ck ¼ 1 in (70) and (71), which will be
adopted henceforth.
Expression (42) for D thus becomes

D2 ¼ ð1 − h0Þ4
�
2 ln h0

h þ 4ðh − h0Þ − ðh2 − h20Þ
ð1 − hÞð1þ hÞ

�
: ð72Þ

The solution includes the equation for hðrÞ that reads

r¼ ð1−h0Þ2
c

×
Z

h

h0

�
1þu

u2ð1−uÞ3½2 ln h0
u þ 4ðu−h0Þ− ðu2−h20Þ�

�1
2

du;

ð73Þ

where the integration constant cr has been absorbed
into h0 denoting the h value on the symmetry axis,

i.e., h0 ≡ hðr ¼ 0Þ. Then, the expression for ρ can be
written as

ρ ¼ 2c2h20
κð1 − h0Þ4

ð1 − hÞ4
h2ð1þ hÞ2

×

�
h½2 ln h0

h þ 4ðh − h0Þ − ðh2 − h20Þ�
ð1þ hÞ þ 2ð1 − hÞ2

�
:

ð74Þ

IV. PHYSICAL PROPERTIES OF THE SOLUTION

A. Hydrodynamical scalars, vectors, and tensors

The timelike 4-vector Vα can be invariantly decomposed
into three independent parts through the genuine tensor
Vα;β as

Vα;β ¼ − _VαVβ þ ωαβ þ σαβ; ð75Þ

where

_Vα ¼ Vα;βVβ; ð76Þ

ωαβ ¼ V ½α;β� þ _V ½αVβ�; ð77Þ

σαβ ¼ Vðα;βÞ þ _VðαVβÞ: ð78Þ

The three above quantities are called, respectively, the
acceleration vector, the rotation or twist tensor, and the
shear tensor. For the timelike 4-vector given by (5), their
nonzero components [10] are

_V1 ¼
1

2

f0

f
; ð79Þ

which becomes, with (68) inserted,

_V1 ¼
c

ð1 − h0Þ2
h

�ð1 − hÞ
ð1þ hÞ

�
2 ln

h0
h

þ 4ðh − h0Þ − ðh2 − h20Þ
��1

2 ð80Þ

and

2ω13 ¼ −ð2kv0 þ k0vÞ: ð81Þ

From (79), the acceleration vector modulus is therefore

_Vα _Vα ¼
1

4

f02

f2
e−μ; ð82Þ

which becomes, with (68) and (69) inserted, and with (73)
differentiated with respect to r,
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_Vα _Vα ¼
c2h20

ð1 − h0Þ6
ð1 − hÞ3
ð1þ hÞ

×

�
2 ln

h0
h
þ 4ðh − h0Þ − ðh2 − h20Þ

�
: ð83Þ

The rotation scalar ω defined by

ω2 ¼ 1

2
ωαβωαβ ð84Þ

follows as

ω2 ¼ 1

4eμD2

�
k
f0

f
− k0

�
2

: ð85Þ

Inserting (23) into (85), one obtains

ω2 ¼ c2

f2eμ
; ð86Þ

which becomes, after inserting (68) and (69),

ω2 ¼ c2h20
ð1 − h0Þ6

ð1 − hÞ6
h2

: ð87Þ

As already stressed in [9,10], the shear tensor vanishes
for any rigidly rotating fluid.

B. Constant parameter interpretations

As usual in GR, the mathematical and therefore physical
properties of the new solution displayed here through (68)–
(74) with ck ¼ 1 depend strongly on the values exhibited
by the two independent integration constants h0 and c,
which can be considered as solution parameters.
The h0 interpretation is actually obvious from (73). It is

the hðrÞ value on the r ¼ 0 symmetry axis. It has already

been stressed in Sec. III D that the value h0 ¼ 1, i.e., Pz¼0 ρ,
is forbidden since, from regularity condition (53), it would
imply cf ¼ 0 and thus rule out the entire solution.
Now, making h ¼ h0 into (87) gives ω2 ¼ c2. Hence, jcj

is the rotation scalar amplitude on the symmetry axis. Since
this c parameter is the same as the one appearing in the
Lewis exterior spacetime metric, its absolute value can be
interpreted in the vacuum framework as the amplitude of
the interior gravitational source rotation scalar on the
symmetry axis [11].
Moreover, it is obvious from (74) that the larger jcj, the

bigger ρ, for a given fh0; r → hðrÞg couple. And therefore,
an increased (decreased) fluid vorticity on the axis induces,
inside the Σ boundary surface, an increased (decreased)
energy density, and thus, an increased (decreased) pressure.

C. Metric signature and sign constraints

To obtain the proper metric signature chosen here, i.e.,
ð−þþþÞ, every metric function as stated in (3) must be
positive definite. The metric functions f and eμ as given by
(68) and (69), respectively, are positive by construction.
Now, from (70) with ck ¼ 1, one can see that k is

positive, provided

pðhÞ≡ 2 ln
h0
h
þ 4ðh − h0Þ − ðh2 − h20Þ > 0: ð88Þ

As regards l given by (71) with ck ¼ 1, an analogous
constraint implies, once (88) is fulfilled,

qðhÞ≡ 1 − h
1þ h

−
2 ln h0

h þ 4ðh − h0Þ − ðh2 − h20Þ
ð1 − hÞ2 > 0: ð89Þ

The expression (72) for D2 imposes, once (88) is satisfied,

1

ð1 − hÞð1þ hÞ > 0: ð90Þ

The weak energy condition ρ > 0 implies from (74)
another constraint that reads

h½2 ln h0
h þ 4ðh − h0Þ − ðh2 − h20Þ�

1þ h
þ 2ð1 − hÞ2 > 0: ð91Þ

Finally, the logarithm function occurring in several
places under the form ln h0=h imposes

h0
h

> 0: ð92Þ

It is straightforward to see that (90) implies

−1 < h < 1: ð93Þ

Now, from (92), once the h0 sign has been fixed, e.g.,
measured on the axis, h must keep the same sign all along.
Two cases can thus be distinguished:

(i) h0 > 0, i.e., from (93), 0 < h0 < 1, which implies,
by continuity, 0 < h < 1.

(ii) h0 < 0, i.e., from (93), −1 < h0 < 0, which implies,
by continuity, −1 < h < 0.

1. Case (i)

A straightforward mathematical analysis shows that the
constraint pðhÞ positive for any h value such that
0 < h < 1, as stated by (88), imposes 0 < h < h2 < 1,
and, by continuity, 0 < h0 < h2 < 1, with h2 depending on
h0 according to
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2 ln
h0
h2

þ 4ðh2 − h0Þ − ðh22 − h20Þ ¼ 0: ð94Þ

Then, with h and pðhÞ positive, which is the case here,
inequality (91) is identically verified.
Another straightforwardmathematical analysis shows that

the constraint qðhÞ positive for any h value such that
0 < h < h2 < 1, as stated by (89), imposes 0 < h1 <
h < h2 < 1, and, by continuity, 0 < h1 < h0 < h2 < 1,
with h1 depending on h0 according to

ð1−h1Þ3−ð1þh1Þ
�
2ln

h0
h1

þ4ðh1−h0Þ−ðh21−h20Þ
�
¼0:

ð95Þ

To summarize: Case (i), which is valid for h0 > 0,
implies 0 < h1 < h0 < h2 < 1 and 0 < h1 < h < h2 < 1,
with h1 depending on h0 through (95), and h2 depending on
h0 through (94).

2. Case (ii)

An analogous method applies in this case. First, a
straightforward mathematical analysis shows that pðhÞ
positive for any h value such that −1 < h < 0 imposes
h0 < h.
With −1 < h0 < h < 0, as it is therefore the case,

inequality (91) is identically satisfied.
Finally, a last straightforward mathematical analysis

shows that qðhÞ positive for any h value such that −1 <
h0 < h < 0 imposes −1 < h < h3 < 0, and, by continuity,
−1 < h0 < h3 < 0, with h3 depending on h0 through

ð1−h3Þ3−ð1þh3Þ
�
2ln

h0
h3

þ4ðh3−h0Þ−ðh23−h20Þ
�
¼0:

ð96Þ

To summarize: Case (ii), valid for h0 < 0, implies
−1<h0<h<h3<0, with h3 depending on h0 through (96).
Now, the h < 0 range should be considered with caution

as regards its physical interpretation, since it implies a
negative pressure. However, such a feature, even though
regarded as unphysical when standard fluids are consid-
ered, can emerge in some circumstances such as cosmo-
logical issues when, e.g., “dark energy” comes into play.
Notice moreover that in both cases (i) and (ii), and in the

units adopted here, i.e., c ¼ 1 and 8πG ¼ κ, the pressure
amplitude is smaller than that of the energy density.

D. Singularities

The solution displayed here exhibits three possible
singularities.
A first one might occur for h ¼ þ1 where the whole

metric function set diverges. However, this is not the case
for the density ρ which, from its expression (74), is merely

seen to vanish. The twoWeyl scalar polynomial invariants I
and J both vanish also at this limit. It is easy to convince
oneself of this fact by inserting (68)–(72), together with the
present gauge choice C0101 ¼ C0202 ¼ 0 ⇒ C0303 ¼ 0,
into the expressions for I and J displayed in [10]’s
(94)–(96). Even though a more complete analysis should
be needed to conclude definitively, the question whether
this locus might happen to be a mere coordinate singularity
remains open.
For h ¼ −1, l is the only metric function which diverges,

and therefore, so does D. However, at this location, ρ also
happens to diverge and would change sign if h was allowed
to reach values below −1, which is not the case as it has
been shown in Sec. IV C. Anyhow, this energy density
behavior would imply a curvature singularity if such an h
value were reachable.
The third singularity might occur for h ¼ 0. Here, the

density diverges and is no more defined if the h sign
happens to become different from the h0 sign. We should be
therefore confronted to another curvature singularity.
Now, notice that the three singularities occur for the three

h values which limit the definition intervals of h distin-
guishing the positive and negative cases studied as (i) and
(ii) in Sec. IV C. They can therefore be excluded from the
solution definition domain, as it has been proposed in
Sec. IV C, and thus, the solution becomes singularity-free.
In this case, the Pz ¼ 0 spacetime is itself excluded from

this solution class which therefore does not possess any
dust limit.

E. Behavior of the hðrÞ function
Differentiating (73) with respect to the r coordinate, one

obtains

h0 ¼ c
ð1 − h0Þ2

×

�
h2ð1 − hÞ3½2 ln h0

h þ 4ðh − h0Þ − ðh2 − h20Þ�
1þ h

�1
2

:

ð97Þ

This hðrÞ function first derivative vanishes for h ¼ h0. For
any other allowed value of h, as defined in Sec. IV C, the
(97) right-hand side is nonzero and exhibits the same sign
as that of the c parameter. Once the c sign is fixed, h0 keeps
this sign all along from r ¼ 0 to r ¼ rΣ.
Now, the two solution classes have to be examined

separately since their properties differ.

1. Case (i)

In this case, where h and h0 are both positive, the hðrÞ
behavior depends on the c sign. Actually,
(a) For c < 0, which implies h0 negative, one has

h < h0 for every r value, and therefore, the function
h≡ Pz=ρ is monotonically decreasing from r ¼ 0 to
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r ¼ rΣ. This means that the Pz amplitude decreases
with respect to that of ρ while going outward.

(b) For c > 0, which implies h0 positive, h > h0 for every
r value, and hðrÞ is monotonically increasing from
r ¼ 0 to r ¼ rΣ. This means that the Pz amplitude
increases with respect to that of ρ while going
outward.

2. Case (ii)

In this case, it has been shown that −1 < h0 < h < 0,
which implies, since the sign of h0 is fixed once for all, that
the hðrÞ function must be monotonically increasing from
h0, i.e., from r ¼ 0, up to r ¼ rΣ. Therefore, h0 > 0
follows, and, as a consequence, c > 0. Here, of course,
the Pz amplitude increases with respect to that of ρ while
going outward.
It is therefore interesting to notice that, in the positive

pressure case, the sign of the c parameter, which can be
either positive or negative, influences the behavior of the
pressure/energy density ratio, while this is not the case
when the pressure is negative, since, then, c is forced to be
positive. Hence, for “ordinary” fluids, not only does c
measure the amplitude of the vorticity scalar on the
symmetry axis, but its sign prescribes an important feature
for the fluid, which might remind us of some kind of
centrifugal-centripetal behavior.

V. CONCLUSIONS

Following the stationary cylindrical anisotropic fluid
sourced interior spacetime investigations initiated in
[9,10], the rigidly rotating fluid case with particular
equation of state Pr ¼ Pϕ ¼ 0 has been examined deeper
here. A field equation exact solution has thus been
exhibited under the form of hðrÞ functions for the metric
and the density, with h defined as hðrÞ ¼ PzðrÞ=ρðrÞ, and
an integral expression for h as an r function has been
displayed. Of course, as usual, this solution is valid in a
given coordinate system, which, however, has been chosen
such as to allow a direct physical interpretation. To allow
potential further uses for astrophysical purposes, it has been
forced to satisfy the regularity conditions on the symmetry
axis and has been matched to the Weyl class of the Lewis
vacuum solution on a cylindrical Σ hypersurface.
A number of physical and mathematical properties

pertaining to this solution have been examined here such
as the hydrodynamical scalars, vectors, and tensors which
have been obtained as functions of hðrÞ. Singularities have
been identified and discussed. It has been shown that they
can, however, be excluded from the solution definition
intervals, yielding thus singularity-free spacetimes.
The two independent parameters exhibited by this

solution have been examined. The first one, h0, corre-
sponds to the value of the h function on the symmetry axis.
Its sign defines two different solution classes which have

been displayed and discussed in Sec. IV C. The second
parameter, c, has been shown to represent the fluid vorticity
amplitude on the axis. It corresponds to the c parameter of
the exterior Lewis-Weyl vacuum which thus inherits a
precise confirmation of its previous vorticity interpretation
[11]. Moreover, in the case when the fluid pressure is
positive, its sign determines the hðrÞ increasing or decreas-
ing property, while, in the negative pressure case, the c sign
is forced to be positive, while hðrÞ is increasing from the
axis up to the boundary surface.
As to allow a glimpse at such a simple fluid spacetime

possible physical interpretations, the following results
found in the literature can be considered.
In 1992, Apostolatos and Thorne [15] have shown, using

the simple analytic example of a thin cylindrical shell made
of counterrotating dust particles, that an infinitesimal amount
of rotation can halt the relativistic gravitational collapse of a
pressure-free cylindrical body. Even though the here-
displayed solution exhibits one nonzeropressure component,
it could be put forward that since this component is axially
directed, its influence on radial collapse might be negligible.
Hence, the conjecture that such spacetimes might represent
the final stage of some collapsing fluids might be contem-
plated, even though with some caution.
In 1996, Opher et al. [16] showed that, in rigidly rotating

stationary cylindrical dust, test particle confinement occurs
in the radial direction, while motion in the axial direction is
free. They thus proposed that such a behavior might be
relevant to extragalactic jet formation. Their arguments
went as follows. The gravitational field produced by jets is
usually negligible compared with the one produced by the
matter at the galaxy centers. Thus, to first-order approxi-
mation, it is sufficient to model those jets as made of test
particles. Also, since almost all the galaxies are rotating, as
a first step, one can model a galaxy center by a rotating
cylinder. This approximation seems reasonable to these
authors as long as the gravitational field in the middle of the
rotating galaxy is concerned, though they admit that it is
indeed highly simplified. Assuming that such a model can
capture some essence of physics, they claim that the
confinement can be related to the jets.
Bringing together such a confinement property and

Apostolatos and Thorne’s result might suggest some
practical uses of a solution of the kind presented here.
Actually, fully realistic models are very seldom encoun-
tered in GR, while exact solutions have often been used as
very fruitful approximate ones. Therefore, in any case, this
simple class of anisotropic fluid source for cylindrically
symmetric spacetimes, since it is a first attempt to deal with
anisotropic pressure in such a framework, must be con-
sidered as progress for the Einstein field equation under-
standing from both a mathematical and a physical point of
view. Actually, as stressed in [6], “much can be learned
about the character of gravitation and its effects by
investigating particular idealised examples.”
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Moreover, the solution displayed here might also be
viewed as a first step toward a future generalization to less
simple anisotropic cases, possibly obtained by relaxing one
or either simplifying assumptions made here, provided such
analytic solutions happen to exist, of course.
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