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In this article, we construct exact black hole solutions with many horizons (more than two) in the Einstein-
nonlinear electrodynamic theories. In particular, we acquire the explicit expression of a nonlinear
electrodynamic Lagrangian for the 3-horizon black holes. Then we make the investigations of three-horizon
black holes on the horizons, the null and timelike geodesics, the Love numbers, and the thermodynamics.
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I. INTRODUCTION

In order to remove the inconsistencies of infinite self-
energy of the point charges in Maxwell’s electrodynamics,
Born firstly proposed the nonlinear electrodynamic (NLE)
theory [1]. The theory was subsequently extended in col-
laboration with Infield [2] to the so-called Born-Infield
theory. It is amazing that the Born-Infield theory was
rediscovered in the low energy limit of the string theory
[3] half a century later. It is found that the Born-Infield
parameter b is related to the string tension α0 via 2πα0 ¼ 1=b
[4]. On the other hand, not long after the proposal of Born
and Infield, Heisenberg and Euler [5] achieved the one-
loop correction of quantum electrodynamics to Maxwell’s
Lagrangian.
Taking into account gravity, one might suppose the NLE

theories may erase the black hole singularities. However, it
is not the case. It has been found that neither electrically
charged Einstein-Born-Infield black holes [6–9] nor electri-
cally charged Einstein-Euler-Heisenberg black holes
[10,11] are regular. The first and remarkable regular black
hole solution was written down by Bardeen [12] by hand.
It was interpreted much later by Ayon-Beat and Garcia
[13,14] as the solution of a particular Einstein-NLE theory.
Later on, a lot of regular black hole solutions were found
within Einstein-NLE theories based on various Lagrangian
functions, such as logarithmic [15], hyperbolic tangent
[16], power [17,18], exponential [19], de Sitter or anti–de
Sitter asymptotic [20], and so on. Finally, the black holes
with charged scalar hairs in Einstein-NLE are considered in
[21]. In the respect of regular black holes in NLE, an
important point is the existence of a no-go theorem [22,23].
It is shown that there is no such Lagrangian function which
has the Maxwell weak field limit that the resulting black

hole has the regular center. In order to circumvent the no-go
theorem, an interesting proposal is to consider a kind of
phase transition on a certain sphere, outside of which there
is a purely electric field but inside of which the field is
purely magnetic [24].
On the other hand, it is well known that the

Schwarzschild black hole has one event horizon. The
Reissner-Nordstrom (RN) black hole, the Kerr black hole,
and the Kerr-Newman black hole have two horizons among
which one is the event horizon and the other is the inner
Cauchy horizon. So one interesting question that one would
ask is “Can a black hole have more than two horizons?”
The answer is yes. In fact, regular and nonregular multi-
horizon (more than two horizons) black holes in Einstein-
NLE theories have been presented in Refs. [25,26].
It is found that themultihorizon black holes have very rich

physics. For instance, different from the standard one-
horizon black holes, the multihorizon black holes show
not only Hawking evaporation but also antievaporation (or
the related instability phenomenon). In detail, one can
consider the limit where the radius of one horizon coincides
with that of another horizon for multihorizon black holes.
This is called the Nariai limit. Usually, the radius of the
horizon decreases by Hawking radiation. However, in the
case of the Nariai limit, the radius can increase due to
the quantum effects. This is the well-known antievaporation
effect [27–29].
However, to the best of our knowledge, none of the

solutions in Refs. [25,26] brings us an analytic expression
for a NLE Lagrangian. In this article, starting from the most
general, analytic form of a Lagrangian (the sum of infinite
series of Maxwell invariant) for NLE, we shall seek for the
multihorizon black hole solutions. In particular, we find
and investigate the solution for a three-horizon black hole
with an explicit form of a NLE Lagrangian.
The paper is organized as follows. In Sec. II, we report

that we find the solutions for black holes with many*gaocj@nao.cas.cn
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horizons, in particular with three horizons, in NLE. In
Sec. III, we give a detailed analysis on the horizons for the
three-horizon black holes. In Sec. IV, we derive the geodesic
equation in the equatorial plane for both null and timelike
geodesics in the background of a three-horizon black hole.
Sections Vand VI are devoted to the investigations on radial
geodesics, general geodesics, stable circular orbits, and the
innermost stable circular orbit (ISCO). In Sec. VII, we
consider the motion of test charged particles in the back-
ground of a three-horizon black hole. In Sec. VIII, we show
the Love number of a three-horizon black hole is vanishing.
This reveals that the three-horizon black hole is totally rigid.
InSec. IX,wemake a study on the thermodynamics for three-
horizon black holes. Finally, we give the conclusion and
discussion in Sec. X. Throughout this paper, we adopt the
system of units in which G ¼ c ¼ ℏ ¼ 1 and the metric
signature ð−;þ;þ;þÞ.

II. SOLUTIONS FOR BLACK HOLES WITH MANY
HORIZONS

We consider the Einstein theory coupled with the non-
linear electromagnetic field which has the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðRþ LEMÞ; ð1Þ

with

LEM ≡X∞
i¼1

αiðF2Þi; F2 ≡ FμνFμν;

Fμν ≡∇μAν −∇νAμ: ð2Þ

Here R is the Ricci scalar and LEM is the extended Maxwell
Lagrangian. Aμ is the Maxwell field. αi are dimensional
constants and have the dimension of length2ði−1Þ. i is a
positive integer. The physical motivation for taking the
extended Maxwell Lagrangian Eq. (2) for the gauge field is
that it can cover nearly all the known proposals for NLE,
for example, the Born-Infield Lagrangian [1,2], the Euler-
Heisenberg Lagrangian [5], the power-law Maxwell
Lagrangian [17,18], and so on. When α1 ¼ 1 and αi ¼ 0
(for i > 1), it reduces to the Einstein-Maxwell theory. The
variation of the action with respect to the metric gives the
Einstein equations

Gμν ¼ −2LEM;F2FμλFλ
ν þ

1

2
gμνLEM;

LEM;F2 ≡ dLEM

dF2
: ð3Þ

On the other hand, the variation of the action with respect to
the field Aμ gives the generalized Maxwell equations

∇μðLEM;F2FμνÞ ¼ 0: ð4Þ

We shall look for the static, spherically symmetric black
hole solutions in the theory. To this end, we take the ansatz
of the metric

ds2 ¼ −UðrÞdt2 þ 1

UðrÞ dr
2 þ fðrÞ2dΩ2

2; ð5Þ

and the Maxwell field

Aμ ¼ ½ΦðrÞ; 0; 0; 0�: ð6Þ

Then the Einstein and Maxwell equations give

f00 ¼ 0; ð7Þ

U00f þ 2U0f0 þ 2Uf00 þ f
X∞
i¼1

ð−1Þi2iαiðΦ0Þ2i ¼ 0; ð8Þ

f2
X∞
i¼1

ið−1Þi2i−1αiðΦ0Þ2i−1 −Q ¼ 0; ð9Þ

1 − ff0U0 −Uf02

þ f2
X∞
i¼1

ð−1Þið2i − 1Þ2i−1αiðΦ0Þ2i ¼ 0: ð10Þ

Here Q, as an integration constant, is nothing but the
electric charge of the RN black hole. The prime denotes the
derivative with respect to r. Solving Eq. (7), we obtain

f ¼ r: ð11Þ

It seems rather difficult to solve the remaining equations.
But in fact, the solutions with electric charge have been
solved in a general form by Pellicer and Torrence in [30].
The magnetic counterpart was solved by Bronnikov [31].
Here we will look for the solutions in the form of series (the
most general form). So we expand U and Φ as follows:

Φ ¼
X∞
i¼1

bir−i; U ¼ 1þ
X∞
i¼1

cir−i; ð12Þ

such that Φ is asymptotically vanishing and the spacetime
is asymptotically Minkowski. Here bi and ci are constants.
Taking Eq. (11) into account and substituting Eqs. (12) into
Eqs. (8)–(10), we obtain the nonvanishing constants when
α1 ¼ 1

b1 ¼ Q; ð13Þ

b5 ¼
4

5
Q3α2; ð14Þ

b9 ¼
4

3
Q5ð4α22 − α3Þ; ð15Þ
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b13 ¼
32

13
Q7ð24α32 − 12α3α2 þ α4Þ; ð16Þ

b17 ¼
80

17
Q9ð176α42 − 132α22α3 þ 16α4α2þ9α23 − α5Þ; ð17Þ

b21 ¼
64

7
Q11ð1456α52 þ 234α23α2 þ 208α4α

2
2 − 24α4α3

−1456α32α3 − 20α5α2 þ α6Þ; ð18Þ

b25 ¼
448

25
Q13ð13056α62 þ 2560α32α4 − 720α3α2α4

þ16α24 − 300α22α5 þ 4320α23α
2
2 − 16320α42α3

þ24α6α2 − 135α33 þ 30α3α5 − α7Þ; ð19Þ

� � � ¼ � � � � � � ; ð20Þ

and

c1 ¼ c1; ci ¼
4Q
iþ 2

bi−1; for i > 1: ð21Þ

These form a solution of power series. For this solution,
there are only two integration constants, Q and c1. Q is the
electric charge and c1 ¼ −2M (M is the mass of the black
hole). Basing on this solution, we have the following
conclusions.

A. Two-horizon black hole

When

α1 ¼ 1; αi ¼ 0; ði > 1Þ; ð22Þ

we obtain

Φ ¼ Q
r
; U ¼ 1þ c1

r
þQ2

r2
: ð23Þ

Let c1 ¼ −2M, then it is the RN black hole. M and Q
represent the mass and electric charge of the black hole,
respectively. In general, RN spacetime has two horizons.
The corresponding Lagrangian LEM is given by

LEM ¼ F2: ð24Þ

B. Three-horizon black hole

When

α1 ¼ 1; α2 ≠ 0;

α3 ¼ 4α22 ⇔ b9 ¼ 0;

α4 ¼ 24α32 ⇔ b13 ¼ 0;

α5 ¼ 176α42 ⇔ b17 ¼ 0;

α6 ¼ 1456α52 ⇔ b21 ¼ 0; � � � : ð25Þ

we obtain the solution

Φ ¼ Q
r
þ 4α2Q3

5
·
1

r5
;

U ¼ 1 −
2M
r

þQ2

r2
þ 2α2Q4

5
·
1

r6
: ð26Þ

Given the expressions of Φ, U above and using the
Lagrangian generation method [32], we can construct the
corresponding Lagrangian LEM

LEM ¼ 1

12α2
½1 − ðζ1=3 þ ζ−1=3 − 1Þ2�; ð27Þ

with

ζ ≡ 1 − 27α2F2 þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6α2F2 þ 81α22ðF2Þ2

q
: ð28Þ

We note that the Lagrangian is dependent on not the mass
M and chargeQ, but only the coupling constant α2. Expand
Eq. (27) in series of F2, we obtain

LEM ¼ F2 þ α2ðF2Þ2 þ 4α22ðF2Þ3 þ 24α32ðF2Þ4
þ 176α42ðF2Þ5 þ 1456α52ðF2Þ6 þ � � � ; ð29Þ

which is consistent with the coefficients in Eq. (25). In
order that the root in Eq. (28) always makes sense, we
should require

α2 ≥ 0; or α2 ≤
2

27F2
; ð30Þ

because of F2 ¼ −2Φ02 < 0. We shall find shortly later this
spacetime can have three horizons when α2 is negative. As
an example, we plot the locations of three horizons for
M ¼ 1; Q ¼ 0.7; α2 ¼ −0.001 in Fig. 1. We point out that
there is no physical reason for the choice of the above
parameters. We simply choose the parameters by hand.

BLACK HOLES WITH MANY HORIZONS IN THE THEORIES OF … PHYS. REV. D 104, 064038 (2021)

064038-3



C. Four-horizon black hole

When

α1 ¼ 1; α2 ≠ 0; α3 ≠ 0;

α4 ¼ 12α2ð−2α22 þ α3Þ ⇔ b13 ¼ 0;

α5 ¼ −208α42 þ 60α22α3 þ 9α23 ⇔ b17 ¼ 0;

α6 ¼ 26α2ð9α23 − 24α42 − 16α22α3Þ ⇔ b21 ¼ 0;

� � � : ð31Þ

we obtain the solution

Φ ¼ Q
r
þ 4α2Q3

5
·
1

r5
þ 4ð4α22 − α3ÞQ5

3
·
1

r9
; ð32Þ

U ¼ 1 −
2M
r

þQ2

r2
þ 2α2Q4

5r6
þ ð16α22 − 4α3ÞQ6

9r10
: ð33Þ

Using the Lagrangian generation method [32], we find
the corresponding Lagrangian LEM is

LEM ¼ −2η2 − 12η4α2 − 40ð4α22 − α3Þη6; ð34Þ

where η is determined by

F2 ¼ −2½ηþ 4α2η
3 þ 12ð4α22 − α3Þη5�2: ð35Þ

Similarly, the Lagrangian is dependent on not the mass M
and charge Q, but only the coupling constants α2 and α3. If
the parameters, M;Q; α2, and α3 are properly chosen, the
spacetime can have four horizons. As an example, we plot
the locations of four horizons for M ¼ 1; Q ¼ 0.74; α2 ¼
−0.0009; α3 ¼ 3.14 · 0−6 in Fig. 2. Same as the scenario of
three-horizon black holes, there is no physical reason for
the choice of the above parameters. They are chosen simply
by hand.
Similarly, we can obtain black holes with five horizons,

six horizons, and so on. But in the next sections, we shall

focus on three-horizon black holes. Our Lagrangians have
intrinsic advantage over previous studies [25,26]. They are
not dependent on the mass M, charge Q, or the ratio
between charge to mass Q=M.

III. HORIZONS OF 3-HORIZON BLACK HOLE

The positions of horizons for three-horizon black holes
are determined by

U ¼ 0 ⇔ V þ 2

5
α2Q4 ¼ 0; ð36Þ

where V is defined by

V ≡ r6 − 2Mr5 þQ2r4: ð37Þ

In order to determine the number of horizons, we make an
analysis on V in the first place. In Fig. 3, we plot five
critical curves for V with Q2 > 25

24
M2, Q2 ¼ 25

24
M2,

M2 < Q2 < 25
24
M2, Q2 ¼ M2, and Q2 < M2, from top to

bottom, respectively. We note that r ¼ 0 is the curvature

–1

0

1

2

U

1 2 3 4 5 6 1/r

FIG. 1. The locations of three horizons for M ¼ 1, Q ¼ 0.7,
α2 ¼ −0.001.

–4

–2

0

2

4

2 4 6 8

U

1/r

FIG. 2. The locations of four horizons for M ¼ 1, Q ¼ 0.74,
α2 ¼ −0.0009, α3 ¼ 3.14 × 0−6.

–0.02

0

0.02

0.04

0.06

V

0.2 0.4 0.6 0.08 1 r

FIG. 3. Five critical curves for V withQ2 > 25
24
M2,Q2 ¼ 25

24
M2,

M2 < Q2 < 25
24
M2, Q2 ¼ M2, and Q2 < M2, from up to down,

respectively.
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singularity. When Q2 ≥ 25
24
M2, V is an increasing function.

WhenQ2 < 25
24
M2, there are in general two local extremals,

the local maximum Vmax ¼ Vjr¼r− and local minimum
Vmin ¼ Vjr¼rþ at

r− ¼ 5

6
M

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

24Q2

25M2

s !
; ð38Þ

and

rþ ¼ 5

6
M

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

24Q2

25M2

s !
; ð39Þ

respectively. In particular, when M2 < Q2 < 25
24
M2, the

local minimum is positive. On the other hand, when
Q2 < M2, the local minimum is negative. Finally, when
Q2 ¼ M2, the local minimum is zero. Therefore, we have
the following conclusions.

A. When Q2 ≥ 25
24M

2

In this case, V is an increasing function of r. Therefore, if
α2 < 0, there is only one black hole event horizon. But if
α2 > 0, there is no horizon and the singularity is naked.

B. When M2 < Q2 < 25
24M

2

In this case, we have Vmax > 0 and Vmin > 0. Thus we
have the following conclusions.
(1) If

Vmax þ
2

5
α2Q4 < 0; ð40Þ

there is only one black hole event horizon. We
conclude α2 < 0.

(2) If

Vmax þ
2

5
α2Q4 ¼ 0; ð41Þ

there are two horizons. We conclude α2 < 0.
(3) If

0 < Vmax þ
2

5
α2Q4 < Vmax − Vmin; ð42Þ

there are three horizons. We conclude α2 < 0.
(4) If

Vmin þ
2

5
α2Q4 ¼ 0; ð43Þ

there are two horizons. We conclude α2 < 0.

(5) If

Vmin > Vmin þ
2

5
α2Q4 > 0; ð44Þ

there is one horizon. We conclude α2 < 0.
(6) If

Vmin þ
2

5
α2Q4 ≥ Vmin; ð45Þ

there is no horizon. We conclude α2 ≥ 0.

C. When M2 =Q2

In this case, we have Vmax > 0 and Vmin ¼ 0.
(1) If

Vmax þ
2

5
α2Q4 < 0; ð46Þ

there is only one black hole event horizon. We
conclude α2 < 0.

(2) If

Vmax þ
2

5
α2Q4 ¼ 0; ð47Þ

there are two horizons. We conclude α2 < 0.
(3) If

0 < Vmax þ
2

5
α2Q4 < Vmax − Vmin; ð48Þ

there are three horizons. We conclude α2 < 0.
(4) If

Vmin þ
2

5
α2Q4 ¼ 0; ð49Þ

there is one horizon. Since Vmin ¼ 0, we conclude
α2 ¼ 0. It is nothing but the extreme Reissner-
Nordstrom black hole.

(5) If

Vmin þ
2

5
α2Q4 > 0; ð50Þ

there is no horizon. We conclude α2 > 0.

D. When Q2 < M2

In this case, we have Vmax > 0 and Vmin < 0. Thus we
have the following conclusions.
(1) If

Vmax þ
2

5
α2Q4 < 0; ð51Þ
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there is only one black hole event horizon. We
conclude α2 < 0.

(2) If

Vmax þ
2

5
α2Q4 ¼ 0; ð52Þ

there are two horizons. We conclude α2 < 0.
(3) If

0 < Vmax þ
2

5
α2Q4 < Vmax; ð53Þ

there are three horizons. We conclude α2 < 0.
(4) If

Vmin þ
2

5
α2Q4 ¼ 0; ð54Þ

there is one horizon. We conclude α2 > 0.
(5) If

Vmin < Vmin þ
2

5
α2Q4 < 0; ð55Þ

there are two horizons. We conclude α2 > 0.
(6) If

Vmin þ
2

5
α2Q4 > 0; ð56Þ

there is no horizon and the singularity is naked. We
conclude α2 > 0. In summary, when α2 < 0, the
spacetime can have three horizons. We shall mainly
focus on α2 < 0 in the next sections.

IV. EQUATION FOR GEODESICS IN THE
SPACETIME OF A THREE-HORIZON BLACK

HOLE

In this section, we give the equation of motion for null
and timelike geodesics. In this section and later sections,
we shall closely follow the way of Chandrasekhar [33]. The
equations governing the geodesics in a spacetime with the
line element

ds2 ¼ gμνdXμdXν ð57Þ

can be derived from the Lagrangian

L ¼ 1

2
gμν

dXμ

dτ
dXν

dτ
; ð58Þ

where τ is the some affine parameter along the geodesic.
For timelike geodesics, τ can be identified with the proper
time, s, of the comoving observer along the geodesic. For
the three-horizon black hole spacetime, the Lagrangian is

L ¼ 1

2

�
U_t2 −

1

U
_r2 − r2 _θ2 − r2 sin2 θ _ϕ2

�
; ð59Þ

where the dot denotes the derivative with respect to the τ.
Using the Euler-Lagrange equation, we obtain the equation
of motion for the geodesic in the equatorial plane, θ ¼ π=2,

_r2 þU

�
2Lþ L2

r2

�
¼ E2; ð60Þ

and

_t ¼ E
U
; _ϕ ¼ L

r2
; ð61Þ

where E is the energy (inclusive of the rest energy) and L is
the angular momentum about the axis to the equatorial
plane for the particle. By rescaling the affine parameter τ,
we can arrange that 2L has the value of þ1 for timelike
geodesics. For null geodesics, L has the value of zero. By
considering r as the function of ϕ and letting u ¼ 1=r, we
obtain the basic equation of the problem as in the analysis
of Keplerian orbit in the Newtonian theory,

�
du
dϕ

�
2

¼ E2 − 2L
L2

þ 4LMu
L2

−
�
1þ 2LQ2

L2

�
u2

þ 2Mu3 −Q2u4 −
4Lα2Q4u6

5L2
−
2

5
α2Q4u8: ð62Þ

This equation determines the geometry of the geodesics in
the equatorial plane.

V. THE NULL GEODESICS

A. Radial null geodesics

The equations governing the radial null geodesics can be
obtained by setting L ¼ 0 and L ¼ 0 in Eqs. (60) and (61),
thus

_r ¼ �E; _t ¼ E
U
; _θ ¼ _ϕ ¼ 0: ð63Þ

Therefore,

dr
dt

¼ �U: ð64Þ

In order to solve this equation, we define the tortoise
coordinate

r� ¼
Z

dr
U

; ð65Þ

and rewrite U as follows:
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U ¼
�
1 −

r1
r

��
1 −

r2
r

��
1 −

r3
r

��
1 −

r4
r

�

×

�
1 −

r5
r

��
1 −

r6
r

�
: ð66Þ

Here r3, r2, r1 denote the radii of three horizons. We
assume r3 > r2 > r1 > 0 and r4 < 0. r5 and r6 are two
conjugated complex numbers. By using this form of U, we
obtain

r� ¼
r61 ln jr − r1j

ðr1 − r2Þðr1 − r3Þðr1 − r4Þðr1 − r5Þðr1 − r6Þ

þ r62 ln jr − r2j
ðr2 − r1Þðr2 − r3Þðr2 − r4Þðr2 − r5Þðr2 − r6Þ

þ r63 ln jr − r3j
ðr3 − r1Þðr3 − r2Þðr3 − r4Þðr3 − r5Þðr3 − r6Þ

þ r64 ln jr − r4j
ðr4 − r1Þðr4 − r2Þðr4 − r3Þðr4 − r5Þðr4 − r6Þ

þ r65 ln jr − r5j
ðr5 − r1Þðr5 − r2Þðr5 − r3Þðr5 − r4Þðr5 − r6Þ

þ r66 ln jr − r6j
ðr6 − r1Þðr6 − r2Þðr6 − r3Þðr6 − r4Þðr6 − r5Þ

þ r: ð67Þ

As defined,

−∞ < r� < þ∞ for r3 < r < þ∞;

þ∞ > r� > −∞ for r2 < r < r3;

−∞ < r� < þ∞ for r1 < r < r2;

const > r� > −∞ for 0 < r < r1: ð68Þ

The solution to Eq. (64) is

t ¼ �r� þ cosnt: ð69Þ

Therefore, for the in-going null rays, the coordinate time t
increases from −∞ to þ∞ as r decreases from þ∞ to r3,
decreases fromþ∞ to −∞ as r further decreases from r3 to
r2, increases from −∞ to þ∞ as r continually decreases
from r2 to r1, and decreases finally from a finite value to
−∞ as r decreases from r1 to the black hole center. It
should be noted that dt=dτ tends to þ∞ for r → r3 þ 0, to
−∞ for r → r2 þ 0, and to þ∞ for r → r1 þ 0. Therefore,
the radiation observed from infinity would appear infinitely
red-shifted at the crossing of horizons r3 and r1, and
infinitely blue-shifted at the crossing of horizon r2.

B. General null geodesics

Turning to the consideration of Eq. (62) with L ¼ 0 for
the general null geodesics, we have

�
du
dϕ

�
2

¼ 1

D2
− u2 þ 2Mu3 −Q2u4

−
2

5
α2Q4u8 ≡ fðuÞ; ð70Þ

where

D≡ L
E

ð71Þ

denotes the impact parameter. The property of orbits is
determined by the number of roots of an eight-degree
equation, fðuÞ ¼ 0. In general, the equation has four
distinguished and positive roots, u1, u2, u3, u4. But for
some cases, double roots can arise. For example, u1 and u2
coincide. In this case, we denote u1 ¼ u2 with u12. Taking
into account α2 < 0, we find we must consider 14 cases as
distinguished below:

ð1Þ u1; u2; u3; u4;

ð2Þ u12; u3; u4;

ð3Þ u1; u23; u4;

ð4Þ u1; u2; u34;

ð5Þ u1; u2;

ð6Þ u3; u4;

ð7Þ u12; u34;

ð8Þ u1; u4;

ð9Þ u1; u234;

ð10Þ u4; u123;

ð11Þ u1234;

ð12Þ u12;

ð13Þ u34;

ð14Þ no real roots: ð72Þ

In Fig. (4), we present the plots of u vs fðuÞ for these cases.
These different cases lead to the following conclusions.

Case (1): The eight-degree equation, fðuÞ ¼ 0, allows
four positive real roots with 0 < u1 < u2 < u3 < u4.
We must distinguish between orbits of the two kinds:
the orbits of the first kind restricted to the interval,
0 < u ≤ u1 and u2 ≤ u ≤ u3, and the second kind
with u ≥ u4. The orbits in the interval, 0 < u ≤ u1, are
the analogs of the hyperbolic orbits for massive
particles in the Newtonian theory. The orbit in the
interval, u2 ≤ u ≤ u3, oscillates between two extreme
values of u ¼ u2 and u ¼ u3 and they behave as the
relativistic analogs of the Keplerian orbits for massive
particles. The orbit of the second kind, starting at a
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certain aphelion distance, u ¼ u4, plunges into the
singularity.

Case (2): In this case, we have 0 < u1 ¼ u2 ¼
u12 < u3 < u4. The hyperbolic orbits and the oscillat-
ing orbits coalesce as they approach, asymptotically, a
common circle from opposite sides by spiralling
around it an infinite number of times. The orbit in
the interval, u ≥ u4, starting at a certain aphelion
distance, u ¼ u4, plunges into the singularity.

Case (3): In this case, we have 0 < u1 < u2 ¼ u3 ¼
u23 < u4. The orbit at u ¼ u23 is a stable circular orbit

with zero eccentricity. The orbits at intervals, 0 < u ≤
u1 and u ≥ u4, are the same as the case (1).

Case (4): In this case, we have 0 < u1 < u2 < u3 ¼
u4 ¼ u34. The orbit of oscillation starts at a certain
aphelion distance, u2, and approaches the circle of
radius u−14 , asymptotically, by spiraling around it an
infinite number of times. The orbit of the second kind
spirals away from the same circle and eventually
plunges into the central singularity. The orbit at the
interval, 0 < u ≤ u1 is the same that in the case (1).

Case (5): In this case, we have 0 < u1 < u2 with u3, u4 a
pair of complex-conjugate roots. The orbits belong to
the hyperbolic and the plunging kind, respectively.

Case (6): In this case, we have 0 < u3 < u4 with u1, u2 a
pair of complex-conjugate roots. The orbits belong to
the hyperbolic and the plunging kind, respectively.

Case (7): In this case, we have 0 < u1 ¼ u2 ¼
u12 < u3 ¼ u4 ¼ u34. Then the hyperbolic orbits
and the oscillating orbits coalesce as they approach,
asymptotically, a common circle at radius u−11
(¼ u−12 ), from opposite sides by spiralling round it
an infinite number of times. On the other hand, the
oscillating orbits and the plunging orbits also coalesce
as they approach, asymptotically, a common circle at
radius u−13 (¼ u−14 ), from opposite sides by spiralling
round it an infinite number of times.

Case (8): In this case, we have 0 < u1 < u4 with u2, u3 a
pair of complex-conjugate roots. The orbits belong to
the hyperbolic and the plunging kind, respectively.

Case (9): In this case, we have 0 < u1 < u2 ¼
u3 ¼ u4 ¼ u234. The orbits include the hyperbolic
orbits and the plunging orbits. A remarkable fact of
the plunging orbits is that they have an unstable
circular orbit with radius 1=u234.

Case (10): In this case, we have 0 < u1 ¼ u2 ¼
u3 ¼ u123 < u4. The orbits include the hyperbolic
orbits and the plunging orbits. A remarkable fact of
the hyperbolic orbits is that they have an unstable
circular orbit with radius, 1=u123.

Case (11): In this case, we have 0 < u1 ¼ u2 ¼
u3 ¼ u4 ¼ u1234. Then the hyperbolic orbits and the
plunging orbits coalesce as they approach, asymptoti-
cally, a common circle at radius u−11234, from opposite
sides by spiralling round it an infinite number of
times.

Case (12): In this case, we have 0 < u1 ¼ u2 ¼ u12 with
u3, u4 a pair of complex-conjugate roots. The hyper-
bolic orbits and the plunging orbits coalesce as they
approach, asymptotically, a common circle at radius
u−112 , from opposite sides by spiralling round it an
infinite number of times.

Case (13): In this case, we have 0 < u3 ¼ u4 ¼ u34 with
u1, u2 a pair of complex-conjugate roots. The hyper-
bolic orbits and the plunging orbits coalesce as they

f(u)

u

(1) (2) (3) (4)

f(u)

(5) (6) (7) (8)

u

f(u)

(9,10) (11) (12) (13)

u

FIG. 4. The disposition of the roots of the eight-degree equation
fðuÞ ¼ 0 for α2 < 0.
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approach, asymptotically, a common circle at radius
u−134 , from opposite sides by spiralling round it an
infinite number of times.

Case (14): In this case, fðuÞ ¼ 0 has no real roots or u1,
u2 a pair of complex-conjugate roots and u3, u4 a pair
of complex-conjugate roots. The resulting orbits can
be considered as belonging to imaginary eccentricities
with the remarkable fact that they are unbound orbits.
Like the bound orbits, these unbound orbits similarly
fall into the central singularity, but are allowed to start
from infinity rather than from finite aphelion distance.

C. Stable circular orbits

Case (3) presents us a stable null circular orbit. We are
interested in this orbit. The conditions for the occurrence of
stable circular orbits are determined by

fðuÞ ¼ 0 and f;u ¼ 0; ð73Þ

where the comma denotes the derivative with respect to u.
We note that these conditions are necessary but not
sufficient. Observing the plot of case (3) in Fig. 4, we
assign the roots as u1 ¼ 1, u23 ¼ 2, u4 ¼ 3. Then we have

fðu1Þ ¼ 0; fðu23Þ ¼ 0;

fðu4Þ ¼ 0; f; uðu23Þ ¼ 0: ð74Þ

Solving these equations, we obtain

M ¼ 0.440; Q ¼ 0.466;

D ¼ 1.724; α2 ¼ −0.020: ð75Þ

With the above parameters, the equation of horizon,U ¼ 0,
tells us there is only one event horizon with radius
rEH ¼ 0.462. The radius of stable circular orbit is
1=u23 ¼ 0.5. It is outside of the event horizon. So we
have a stable photon sphere outside the black hole.

D. Null innermost stable circular orbit

Different from Newtonian mechanics, the presence of an
innermost stable circular orbit (ISCO) in general relativity
is a purely relativistic effect. The difference comes from the
fact that the velocity of massive test particles cannot be
equal or exceeding the speed of light. The ISCO represents
the boundary between test particles orbiting the black hole
and test particles falling into the black hole. As a result, it
marks the inner edge of the accretion disk in the accretion
disk model of Shakura and Sunjaev [34,35]. In accretion
disk physics which can be compared to Event Horizon
Telescopes observations, the model is frequently used as
the starting point [36]. Therefore, it is valuable to compute
the ISCO for three-horizon black holes.

The radius of null ISCO, rSI ¼ 1=uSI is determined by

f ¼ 0; f0 ¼ 0; f00 ¼ 0; f000 ¼ 0; ð76Þ

where prime denotes the derivative with respect to u. Now
we have four equations, but five unknown functions. So we
are left with one freedom, for example, uI . Thus we obtain

M ¼ 4

5uI
; ð77Þ

Q ¼
ffiffiffi
3

p

2uI
; ð78Þ

α2 ¼ −
1

9u2I
; ð79Þ

D ¼ 2
ffiffiffi
2

p

uI
: ð80Þ

Now we make a comparison of ISCO with a black hole
event horizon. To this end, we insert Eqs. (77)–(79) into the
horizon equation, and we obtain

1 −
2M
rEH

þ Q2

r2EH
þ 2

5
·
α22Q

4

r6EH
¼ 0: ð81Þ

Define the ratio for radii of null ISCO to event horizon,
ϵ≡ rI=rEH, and we find from the above equation

ϵ ≃ 1.5055; ð82Þ

which is larger than the Schwarzschild black hole (with
ϵ ¼ 3=2). The radius of null ISCO determines the boundary
of the black hole shadow. Thus we conclude that the
shadow of a three-horizon black hole is larger than that of a
Schwarzschild black hole although they have the same size
of event horizon.

VI. TIMELIKE GEODESICS

A. The radial geodesics

In this subsection, we shall consider the radial timelike
geodesics with zero angular momentum. The equations
governing these geodesics are�

dr
dτ

�
2

¼ E2 − U and
dt
dτ

¼ E
U
: ð83Þ

Since U > 0 in the interval r1 < r < r2, it is obvious that
E2 −U will vanish for some finite value of r1 < r < r2
provided that E2 is smaller than the maximum of U for the
interval r1 < r < r2. We conclude that the trajectory will
have a turning point in the interval r1 < r < r2 in this case.
On the other hand, if E2 is larger than the maximum of U
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for the interval r1 < r < r2, the radial timelike trajectory
would reach the singularity.

B. The general timelike geodesics

We now turn to the consideration of Eq. (62) with 2L ¼ 1
for the general timelike geodesics. We have

�
du
dϕ

�
2

¼ E2 − 1

L2
þ 2Mu

L2
−
�
1þQ2

L2

�
u2 þ 2Mu3

−Q2u4 −
2α2Q4u6

5L2
−
2

5
α2Q4u8 ≡ fðuÞ: ð84Þ

WhenE2 > 1 and α2 < 0, the eight-degree equation fðuÞ ¼
0 allows at most four positive real roots with
0 < u1 < u2 < u3 < u4. The cases we must consider are
exactly the eight cases distinguished in Fig. 4. Therefore, we
shall not consider them any more. However, when E2 < 1
and α2 < 0, fðuÞ ¼ 0 can have at most five positive roots
with 0 < u1 < u2 < u3 < u4 < u5 as shown in Fig. 5.
We find that we must consider 25 cases distinguished

below:

ð1Þ u1; u2; u3; u4; u5;

ð2Þ u12; u3; u4; u5;

ð3Þ u1; u23; u4; u5;

ð4Þ u1; u2; u34; u5;

ð5Þ u1; u2; u3; u45;

ð6Þ u123; u4; u5;

ð7Þ u12; u34; u5;

ð8Þ u12; u3; u45;

ð9Þ u1; u234; u5;

ð10Þ u1; u23; u45;

ð11Þ u1; u2; u345;

ð12Þ u1; u2; u5;

ð13Þ u3; u4; u5;

ð14Þ u1; u2; u3;

ð15Þ u1; u4; u5;

ð16Þ u1234; u5;

ð17Þ u123; u45;

ð18Þ u12; u345;

ð19Þ u1; u2345;

ð20Þ u12; u5;

ð21Þ u34; u5;

ð22Þ u23; u1;

ð23Þ u45; u1;

ð24Þ u123 or u345 or u12345;

ð25Þ u1 or u5: ð85Þ

Case (1): The eight-degree equation fðuÞ ¼ 0 allows five
positive real roots with 0 < u1 < u2 < u3 < u4 < u5.
We must distinguish between orbits of the two kinds:
the orbits of the first kind are restricted to the interval
u1 ≤ u ≤ u2 andu3 ≤ u ≤ u4, and the secondkindwith
u ≥ u5. The orbit in the interval u1 ≤ u ≤ u2 and u3 ≤
u ≤ u4 oscillates between two extreme values of
u ¼ u1, u ¼ u2 and u ¼ u3, u ¼ u4, respectively. They
are the relativistic analogs of the Keplerian orbits for
massive particles. The orbit of the second kind, starting
at a certain aphelion distance, u ¼ u5, plunges into the
singularity.

Case (2): In this case, u1 and u2 coincide and there exists
a stable circular orbit with radius 1=u12 except for the
oscillating and plunging orbits.

Case (3): In this case, u2 and u3 coincide and there exists
an unstable circular orbit with radius 1=u23. The two
oscillating orbits coalesce as they approach, asymp-
totically, the common circle with radius 1=u23, from
opposite sides by spiralling around it an infinite
number of times.

Case (4): In this case, u3 and u4 coincide and there exists
a stable circular orbit with radius 1=u34 except for the
oscillating and plunging orbits.

Case (5): In this case, u4, and u5 coincide and there exists
an unstable circular orbit with radius 1=u45. The
oscillating orbit and the plunging orbits coalesce as
they approach, asymptotically, the common circle
with radius 1=u45, from opposite sides by spiralling
around it an infinite number of times.

Case (6): In this case, u1, u2, and u3 coincide and there
exists an unstable circular orbit with radius 1=u123
except for the oscillating and plunging orbits.

u1

u2 u3 u4 u5

f(u)

u

FIG. 5. The disposition of the five roots of the eight-degree
equation fðuÞ ¼ 0 for general timelike geodesics when α2 < 0.
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Case (7): In this case, u1 and u2 coincide while u3 and u4
coincide. There exist two stable circular orbits with
radius 1=u12 and 1=u34, respectively, except for the
plunging orbits.

Case (8): In this case, u1 and u2 coincide while u4 and u5
coincide. There exists a stable circular orbit with
radius 1=u12 and an unstable circular orbit with radius
1=u45, respectively. The oscillating orbit in the interval
u3 ≤ u ≤ u45 and the plunging orbits in the interval
u ≥ u45 coalesce as they approach, asymptotically, the
common circle with radius 1=u45, from opposite sides
by spiralling around it an infinite number of times.

Case (9): In this case, u2, u3, and u4 coincide and there
exists an unstable circular orbit with radius 1=u234
except for the oscillating and plunging orbits.

Case (10): In this case, u2 and u3 coincide while u4 and
u5 coincide. There exist two unstable circular orbits
with radius 1=u23 and 1=u45, respectively, except for
the oscillating and the plunging orbits.

Case (11): In this case, u3, u4, and u5 coincide and there
exists an unstable circular orbit with radius 1=u345
except for the oscillating orbit in the interval u1 ≤ u ≤
u2 and the plunging orbits in the interval u ≥ u345.

Case (12): In this case, there are three real roots, u1, u2,
and u5. u3 and u4 are a pair of complex-conjugate
roots. So there exists the oscillating orbit in the
interval u1 ≤ u ≤ u2 and the plunging orbits in the
interval u ≥ u5.

Case (13): In this case, there are three real roots, u3, u4,
and u5. u1 and u2 are a pair of complex-conjugate
roots. Similar to case (12), there exists the oscillating
orbit in the interval u3 ≤ u ≤ u4 and the plunging
orbits in the interval u ≥ u5.

Case (14): In this case, there are three real roots, u1, u2,
and u3. u4 and u5 are a pair of complex-conjugate
roots. Similar to case (12), there exist the oscillating
orbit in the interval u1 ≤ u ≤ u2 and the plunging
orbits in the interval u ≥ u3.

Case (15): In this case, there are three real roots, u1, u4,
and u5. u2 and u3 are a pair of complex-conjugate
roots. Similar to case (12), there exist the oscillating
orbit in the interval u1 ≤ u ≤ u4 and the plunging
orbits in the interval u ≥ u5.

Case (16): In this case, u1, u2, u3, u4 coincide and there
exists a stable circular orbit with radius 1=u1234 except
for the plunging orbits in the interval u ≥ u5.

Case (17): In this case, u1, u2, and u3 coincide while u4
and u5 coincide. There exist two unstable circular
orbits with radius 1=u123 and 1=u45, respectively,
except for the oscillating and the plunging orbits.

Case (18): In this case, u1 and u2 coincide while u3, u4,
and u5 coincide. There exists a stable circular orbit
with radius 1=u12 and an unstable circular orbit with
radius 1=u345, respectively, except for the plunging
orbits.

Case (19): In this case, u2, u3, u4, u5 coincide. There
exists an unstable circular orbit with radius 1=u2345
except for the oscillating and the plunging orbits.

Case (20): In this case, there are two real roots with
double toots u12 and u5. u3 and u4 are a pair of
complex-conjugate roots. There is a stable circular
orbit with radius 1=u12 and the plunging orbits in the
interval u ≥ u5.

Case (21): In this case, there are two real roots with
double roots u34 and u5. u1 and u2 are a pair of
complex-conjugate roots. Similar to case (20), there is
a stable circular orbit with radius 1=u34 and the
plunging orbits in the interval u ≥ u5.

Case (22): In this case, there are two real roots with
double rootsu23 andu1.u4 andu5 are a pair of complex-
conjugate roots. The oscillating orbit starts at a certain
aphelion distance, 1=u1, and approaches the circle of
radius 1=u23,asymptotically, by spiralling around it an
infinite number of times. The orbit of the plunging is, in
some sense, a continuation of the oscillating orbits in
that it spirals away from the circle and then plunges
eventually into the central singularity.

Case (23): In this case, there are two real roots with
double roots u45 and u1. u2 and u3 are a pair of
complex-conjugate roots. The properties of orbits are
similar to the case (22).

Case (24): In this case, there is only one real root, u123 or
u345 or u12345. There exists an unstable circular orbit
with radius 1=u123, 1=u345, or 1=u12345 except for the
plunging orbits.

Case (25): In this case, there is only one real root, u1 or
u5 (the other four roots are complex-conjugate roots).
We have only one class of orbits. Namely, all the orbits
plunge into the singularity after starting from certain
aphelion distances.

C. Stable timelike circular orbits

Case (7) presents us with two stable timelike circular
orbits with radius 1=u12 and 1=u34, respectively. We
consider the orbits in this subsection. The conditions for
the occurrence of stable circular orbits are determined by

fðuÞ ¼ 0 and f;u ¼ 0; ð86Þ

where the comma denotes the derivative with respect to u.
We assign the roots as u12 ¼ 1, u34 ¼ 2, u5 ¼ 3. Then we
have

fðu12Þ ¼ 0; fðu34Þ ¼ 0;

fðu5Þ ¼ 0; f; uðu12Þ ¼ 0;

f; uðu34Þ ¼ 0: ð87Þ

Solving these equations, we obtain
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M ¼ 0.299; Q ¼ 0.335;

E ¼ 0.899; L ¼ 0.756;

α2 ¼ −0.023: ð88Þ

With the above parameters, the equation of horizon,U ¼ 0,
tells us there is only one event horizon with radius
rEH ¼ 0.264. The radius of two stable circular orbits are
1=u12 ¼ 1 and 1=u34 ¼ 0.5, respectively. They are all
larger than the event horizon. So we have two stable matter
spheres outside the black hole.

D. Timelike innermost stable circular orbit

The radius of timelike ISCO rSI ¼ 1=uSI is determined by

f ¼ 0; f0 ¼ 0; f00 ¼ 0;

f000 ¼ 0; fð4Þ ¼ 0; ð89Þ

whereprimedenotes thederivativewith respect tou.Wehave
five equations, but six unknown functions. We choose uI as
the remaining freedom. Thus we obtain

M ¼ 4

415
·
2357þ 367

ffiffiffiffiffi
41

p

ð47þ 7
ffiffiffiffiffi
41

p ÞuI
; ð90Þ

Q ¼ 1

166
·
7636þ 166

ffiffiffiffiffi
41

p

uI
; ð91Þ

α2 ¼ −
83

2
·

5þ ffiffiffiffiffi
41

p

ð46þ ffiffiffiffiffi
41

p Þð47þ 7
ffiffiffiffiffi
41

p Þu2I
; ð92Þ

L ¼ 1

4
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10þ 2

ffiffiffiffiffi
41

pp
uI

; ð93Þ

E ¼ 1

664
·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
389602 − 6808

ffiffiffiffiffi
41

pq
: ð94Þ

Notice that the energy of the particles is independent on the
inverse radiusuI of ISCO. In order to compare the ISCOwith
a black hole event horizon, we insert Eqs. (90)–(92) into the
horizon equation and eventually find

ϵ ≃ 2.0678; ð95Þ

which is smaller than the Schwarzschild black hole (with
ϵ ¼ 3). This means the inner edge of accretion disk for the
three-horizon black holes is pushed closer to the event
horizon compared with the Schwarzschild black hole.

VII. THE MOTION OF CHARGED PARTICLES

The motion of a test particle with net charge is deter-
mined by the Lagrangian

L ¼ 1

2

�
U_t2 −

1

U
_r2 − r2 _θ2 − r2 sin2 θ _ϕ2

�
þ qΦ_t; ð96Þ

where q denotes the charge per unit mass of the test
particle. The equations of motion in the equatorial plane
following from this Lagrangian are

U_tþ qΦ ¼ E; r2 _ϕ ¼ L; ð97Þ

and

_r2 þ U

�
1þ L2

r2

�
¼ ðE − qΦÞ2; ð98Þ

and in place of Eq. (62) we obtain

�
du
dϕ

�
2

¼ E2 − 1

L2
þ 2ðM − qEQÞu

L2

−
�
1þQ2ð1 − q2Þ

L2

�
u2 þ 2Mu3 −Q2u4

−
8qEα2Q3u5

5L2
−
2α2Q4ð1 − 4q2Þu6

5L2

−
2

5
α2Q4u8 þ 16q2α22Q

6u10

25L2
≡ fðuÞ: ð99Þ

We can do orbital analysis as in previous sections. But we
will not do it here. One novel feature of Eq. (98) is that
when the test particle has a turning point and it arrives at the
event horizon, its energy will be

E ¼ qΦjr¼rEH ¼ qQ
rEH

þ 4α2qQ3

5
·
1

r5EH
: ð100Þ

In the absence of α2, the energy is negative if and only if
the charges q and Q have different signs. However, in
the presence of α2, the energy can be negative even if the
charges q and Q have the same signs provided that α2 is
sufficiently negative. The negative of energy E leads to the
Penrose process that one can extract energy from the black
hole by using charged particles.

VIII. STATIC RESPONSE AND LOVE NUMBERS

In this section, we shall study the static response of
the three-horizon black holes to external scalar field. The
quantities of response are intrinsic and contribute to the
form of gravitational waves. Therefore, they can be in
principle discovered [37] in the observation of gravitational
waves. The response of an object to a long-wavelength tidal
field is encoded in the so-called Love numbers [38], which
describe the deformability or rigidity of the object. The
Love numbers of a Schwarzschild black hole are exactly
vanishing in four-dimensional spacetime [39–45]. This
reveals that the Schwarzschild black hole is totally rigid.
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However, it is not the case when one consider higher
dimensions [42,46], anti–de Sitter asymptotical black hole
[47], the presence of higher-curvature terms [37], or many
alternative theories of gravity [48]. It is found that the Love
numbers of those cases are nonvanishing. Here we compute
the Love numbers of a three-horizon black hole caused by a
scalar tidal field. The three-horizon black hole can be
thought of as the extension of a RN black hole and to our
knowledge, one did not compute the Love numbers for RN
black holes. So in the next section, we shall begin from the
study of RN black holes.

A. The Love numbers of extremal Reissner-Nordstrom
black holes

The extremal RN metric is

ds2 ¼ −
Δ
r2
dt2 þ r2

Δ
dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð101Þ

where Δ ¼ r2 − 2MrþM2 with M the mass of the black
hole. This spacetime has only one event horizon with the
radius rEH ¼ M. A static, massless scalar field in this
background satisfies the equation of motion [45,49]

∂rðΔ∂rϕlÞ − lðlþ 1Þϕl ¼ 0; ð102Þ

where ϕl is the radial component of the scalar fieldΦwhich
has been decomposed as Φ ¼ ϕlðrÞYlmðθ;ϕÞ. Ylmðθ;ϕÞ is
the spherical harmonic function. l is the angular quantum
number. Make the change of variables r → z as follows:

z ¼ −
Z

1

Δ
dr ¼ 1

r −M
; ð103Þ

namely,

r ¼ M þ 1

z
: ð104Þ

The region of r ∈ ½rEH;þ∞Þ is mapped into z ∈ ½þ∞; 0Þ.
Then the equation of motion becomes

d2ϕl

dz2
−
lðlþ 1Þ

z2
ϕl ¼ 0: ð105Þ

Solving this equation, we obtain

ϕl ¼ c1zlþ1 þ c2z−l; ð106Þ

or

ϕl ¼ c1ðr −MÞ−l−1 þ c2ðr −MÞl; ð107Þ

where c1 and c2 are integration constants. Now we require
two boundary conditions to specify completely the

solution. The first boundary condition is that the scalar
field is finite at the event horizon. The second boundary
condition is to fix the normalization of the growing mode
solution at spatial infinity. Then one can read off the
induced subleading falloff at spatial infinity, which plays
the role of the linear response to the external field. The
Love number, describing the response of the black hole to
external perturbations, is defined as the ratio between the
coefficients of the decaying and growing modes at infinity.
The first boundary condition reveals c1 ¼ 0. The second

boundary condition tells us we have ϕl ¼ c2rl in spatial
infinity. We can understand this point by imagining that we
are applying a scalar field, in which the black hole is
immersed, that scales like rl as r → þ∞ with angular
structure given by l ¼ 1; 2; 3; · · · harmonics.
Therefore, the long-wavelength external scalar field one

can apply is

ϕl ¼ c2ðr −MÞl: ð108Þ
This solution is a purely growing mode and the subleading
induced falloff mode does not exist. This means the Love
numbers of extreme RN black holes are vanishing.

B. The Love numbers of nonextremal Reissner-
Nordstrom black holes

In this case, we have Δ ¼ ðr − rþÞðr − r1Þ with

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
. Make the change of variables,

r → z as follows:

z ¼ −
Z

1

Δ
dr ¼ 1

rþ − r−
ln

���� r − r−
r − rþ

����; ð109Þ

namely,

r ¼ rþ − r−eðrþ−r−Þz

eðrþ−r−Þz − 1
: ð110Þ

The region of r ∈ ½rþ;þ∞Þ is mapped into z ∈ ½þ∞; 0Þ.
The equation of motion becomes

d2ϕL

dz2
−
LðLþ 1Þðrþ − r−Þ2

4 sinh2 ðrþ−r−Þz
2

ϕL ¼ 0: ð111Þ

Solving this equation, we obtain

ϕL ¼ c1Lþ c2L
Z

dz
L2

; ð112Þ

where L is defined by

L ¼ LegendreP

�
L; coth

ðrþ − r−Þz
2

�
: ð113Þ
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c1 and c2 are integration constants. We have z ¼ þ∞ on
the event horizon r ¼ rþ. When z → þ∞, we have

L ¼ 1: ð114Þ

The first boundary tells us the c2 term must be dropped.
Therefore, the long-wavelength external scalar field that
can be applied is

ϕL ¼ c1L: ð115Þ

It is a growing mode with respect to r and the decaying
mode does not exist. Thus the Love number of a non-
extremal RN black hole is vanishing.

C. Love number of a three-horizon black hole

In this case, we have Δ ¼ ðr − r1Þðr − r2Þðr − r3Þ×
ðr − r4Þðr − r5Þðr − r6Þ=r4. Here r3, r2, r1 denote the radii
of three horizons. We assume r3 > r2 > r1 > 0 and r4 < 0.
r5 and r6 are two conjugated complex numbers.
Make the change of variables r → z as follows:

z ¼ −
Z

1

Δ
dr

¼ −
r41 ln jr − r1j

ðr1 − r2Þðr1 − r3Þðr1 − r4Þðr1 − r5Þðr1 − r6Þ
−

r42 ln jr − r2j
ðr2 − r1Þðr2 − r3Þðr2 − r4Þðr2 − r5Þðr2 − r6Þ

−
r43 ln jr − r3j

ðr3 − r1Þðr3 − r2Þðr3 − r4Þðr3 − r5Þðr3 − r6Þ
−

r44 ln jr − r4j
ðr4 − r1Þðr4 − r2Þðr4 − r3Þðr4 − r5Þðr4 − r6Þ

−
r45 ln jr − r5j

ðr5 − r1Þðr5 − r2Þðr5 − r3Þðr5 − r4Þðr5 − r6Þ
−

r46 ln jr − r6j
ðr6 − r1Þðr6 − r2Þðr6 − r3Þðr6 − r4Þðr6 − r5Þ

: ð116Þ

Then the region of r ∈ ½r3;þ∞Þ is mapped into
z ∈ ½þ∞; 0Þ. The equation of motion becomes

d2ϕL

dz2
− LðLþ 1ÞΔðzÞϕL ¼ 0: ð117Þ

Here Δ is understood as the function of z. Now we look for
the falloff solution at r → þ∞ or z → 0. When r → þ∞,
we have Δ ¼ 1=z2 and r ¼ 1=z. The equation of motion,
Eq. (117), reduces to exactly that for the extremal RN black
hole. The corresponding Love number is zero. On the other
hand, when r → r3, or z → þ∞, we have Δ ¼ c3ðr − r5Þ
with c3 a positive constant and r ¼ r3 þ e−c3z. The result-
ing equation of motion is

d2ϕL

dz2
− LðLþ 1Þc3e−c3zϕL ¼ 0: ð118Þ

The solution is

ϕL ¼ c1BesselI

�
0;
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þp
ffiffiffiffiffiffiffiffiffiffiffiffi
c3ec3z

p
�

þ c2BesselK

�
0;−

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þp
ffiffiffiffiffiffiffiffiffiffiffiffi
c3ec3z

p
�
: ð119Þ

The c2 term is divergent on the horizon. Therefore it
should be dropped. We eventually find that

ϕL ¼ c1BesselI

�
0;
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þp
ffiffiffiffiffiffiffiffiffiffiffiffi
c3ec3z

p
�
: ð120Þ

It is a growing mode with ϕL ¼ c1 when r ¼ r3. There is
no decaying falloff mode. In other words, the Love number
of a three-horizon black hole is also vanishing.

IX. THERMODYNAMICS

Finally, we make an investigation of the thermodynamics
for the three-horizon black hole. Concretely, we shall derive
the Smarr formula and the first law of thermodynamics. It is
worth noting that many studies in NLE in this respect have
been carried out, for example in [50–55]. Hawking showed
that for the outermost event horizon in an asymptotically
flat spacetime, the temperature of black hole is

TEH ¼ κEH
2π

; ð121Þ

where the surface gravity κEH is defined by evaluating

lμ∇μlν ¼ κlν ð122Þ

on the event horizon. Here lμ is the future-directed null
generator of the event horizon, which coincides with a
Killing vector Kμ on the horizon. The metric for the three-
horizon black holes is static. So if the Killing vector is
adopted as Kμ ¼ ∂=∂t, then we have
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κEH ¼ 1

2
·
dU
dr

����
r¼rEH

: ð123Þ

As a result, the black hole temperature takes the form

TEH ¼ 1

2π

�
M
r2EH

−
Q2

r3EH
−
6

5

α2Q4

r7EH

�
: ð124Þ

The radius rEH of event horizon is determined by

Ujr¼rEH ¼ 0: ð125Þ

Thus the temperature is eventually determined by the mass
M, charge Q and coupling constant α2.
The entropy of black holes generally satisfies the area

law which states that the entropy is a quarter of the area of
black hole event horizon [56–58]. Therefore we have the
entropy of the black hole

SEH ¼ πr2EH: ð126Þ

The electrostatic potential on the event horizon is

ΦEH ¼ Φjr¼rEH : ð127Þ

We find if we define the pressure P and the thermody-
namic volume V as follows, respectively,

P≡ 1

α2
; ð128Þ

V≡
�∂M
∂P
�

S;Q
¼ −

α22Q
4

5r5EH
: ð129Þ

Then the Smarr formula

M ¼ 2TEHSEH − 2VPþQΦEH ð130Þ

is satisfied. We could make an examination on whether the
thermal quantities fulfill the requirement of the first law of
thermodynamics. To this end, we treat the mass M, the
entropy S, and the pressure P as the function of rEH; Q; P.
Then we have

dM ¼ M;rEHdrEH þM;QdQþM;PdP; ð131Þ

dS ¼ S;rEHdrEH: ð132Þ

After computation, we find the first law of thermodynamics

dM ¼ TEHdSEH þΦEHdQþVdP ð133Þ

is indeed satisfied.

X. CONCLUSION AND DISCUSSION

In summary, starting from the NLE Lagrangian with
infinite series of Maxwell invariants and using the method
of infinite series, we find the black hole solutions with
many horizons. To be specific, we present the solutions for
three-horizon and four-horizon black holes. In particular,
the explicit and analytic expression for NLE Lagrangian of
the three-horizon black hole is obtained. To our knowledge,
one did not yet get three-horizon black holes with an
analytic NLE Lagrangian. On the other hand, our
Lagrangians have intrinsics advantage over previous stud-
ies [25,26]. They are not dependent on the mass M, charge
Q, or the ratio between charge to mass Q=M. There are
only related to the coupling constants αi. We find that there
are three physical parameters: the mass M, charge Q, and
the coupling constant α2 for the three-horizon black hole.
For negative coupling constant α2, the spacetime can have
three horizons. When the coupling constant α2 vanishes, it
reduces to the RN spacetime. What is more, the charge Q
can be much larger than the mass M while the central
singularity remains dressed by an event horizon. For black
holes with N þ 1 horizons, there are N þ 1 physical
parameters, the mass M, charge Q, and the coupling
constants αi with i running over from 2 to N. In this
sense, the black holes have N þ 1 “hairs.”
We find that, for the multihorizon black holes, both the

null geodesics and the timelike geodesics are considerably
rich. For null geodesics, there are (1) the hyperbolic orbits,
(2) the oscillating orbits, (3) the plunging orbits, (4) the
stable circular orbit, (5) the unstable circular orbit, (6) the
hyperbolic and plunging coalescing orbits, (7) the hyper-
bolic and the oscillating coalescing orbits, (8) the plunging
and the oscillating coalescing orbits, and (9) the hyperbolic,
the oscillating, and the plunging coalescing orbits. It is
found there is one stable circular orbit for the null geo-
desics. The ratio of radii for null ISCO to event horizon is
ϵ ≃ 1.5055 which is larger than the Schwarzschild black
hole (with ϵ ≃ 1.5). The above conclusions are also
applicable to timelike geodesics when E2 > 1. When
E2 < 1 (the bound orbits), the structure of timelike geo-
desics is richer than that of null geodesics. For example,
one can have two oscillating orbits in case (1) and two
stable circular orbits in case (7). The ratio of radii for
timelike ISCO to event horizon is ϵ ≃ 2.0678 which is
smaller than the Schwarzschild black hole (with ϵ ≃ 3).
For the RN black hole, the Penrose process occurs if and

only if the charge of test particle q has different sign from
the black hole charge Q. However, it is not the case for
three-horizon black hole. It is found that the Penrose
process can also occur when the two charges q and Q
have the same signs provided that α2 is sufficiently
negative. This is an interesting property for multihorizon
black holes. We also calculate the Love numbers of RN
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black holes and three-horizon black holes. We find they are
all vanishing. This reveals both the RN black holes and the
three-horizon black holes are rigid. It is the same as the
Schwarzschild black holes. Finally, the thermodynamics
for three-horizon black holes is developed. It is found that
the inverse of coupling constant α2 plays the role of thermal
pressure.
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