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The existence of quasinormal modes (QNMs) for waves propagating on pure de Sitter space has been
called into question in several works. We definitively prove the existence of quasinormal modes for
massless and massive scalar fields in all dimensions and for all scalar field masses, and present a simple
method for the explicit calculation of QNMs and the corresponding mode solutions. By passing to
coordinates that are regular at the cosmological horizon, we demonstrate that certain QNMs only appear in
the QNM expansion of the field when the initial data do not vanish near the cosmological horizon. The key
objects in the argument are dual resonant states. These are distributional mode solutions of the adjoint field
equation satisfying a generalized incoming condition at the horizon, and they characterize the amplitudes
with which QNMs contribute to the QNM expansion of the field.
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I. INTRODUCTION AND SUMMARY

The de Sitter (dS) universe is the simplest solution of the
Einstein vacuum equations with cosmological constant
Λ > 0. This makes it an ideal starting point for the
investigation of a large variety of physical phenomena in
universes, such as our own [1,2], which undergo an
accelerated expansion. The decay of classical fields propa-
gating on dS spacetimes and its generalizations containing
black holes—such as Schwarzschild–de Sitter (SdS), Kerr–
de Sitter, Reissner-Nordström–de Sitter (RNdS), and Kerr-
Newman–de Sitter spacetimes—has been studied in detail
via numerical evolutions [3–5], the computation of quasi-
normal modes (QNMs) [6–23], and mathematical inves-
tigations [24–36].
On dS, which has a single temporal scale given by the

cosmological horizon, QNMs capture the temporal depend-
ence at late times of linear and weakly nonlinear fields Φ
[37,38], in that

Φðt; xÞ ∼
X

e−iωjtcjujðxÞ; t → ∞; ð1Þ

where the uj are normalized mode solutions, and the
expansion coefficients cj are determined by the initial
conditions of Φ. On black hole spacetimes such as SdS,
QNMs capture also the ringdown phase [17] on the much
smaller temporal scale given by the mass of the black hole,

as recently demonstrated also experimentally via gravita-
tional wave measurements [39,40]. There has also been
interest in QNMs of asymptotically dS and anti–de Sitter
(AdS) black holes owing to the dS=CFT [8,41] and
AdS=CFT correspondences [42,43].
Our objective is to clarify the existence and relevance of

QNMs for massive scalar fields, i.e., solutions of the Klein-
Gordon equation, on (the static model of) dS and con-
clusively explain the discrepancies between contradictory
results reported in the literature. Early calculations [4,13]
find the correct QNMs but discard some of them due to
observed pole cancellations in explicit expressions for the
frequency space Green’s function and by comparison with
numerical wave evolutions. The pole cancellations are
ignored (hence, all QNMs are kept) in [8], while [10]
finds no QNMs at all, and [11] finds QNMs only under a
condition on the scalar field mass. The article [12] asserts
the existence of QNMs only for dS with odd spacetime
dimension D. The series of papers [14–16,18] computes
QNMs for a variety of classical hyperbolic equations on dS.
We will demonstrate that QNMs in fact exist for massive

scalar fields on dS in all spacetime dimensions D ≥ 2 and
for all scalar field masses (real or complex). The pole
cancellations and matching wave evolutions are shown to
be due to the explicit or implicit assumption that the initial
data of the field are equal to 0 near the dS horizon. Without
this restrictive assumption, no QNMs may be discarded;
every frequency for which there exists a purely outgoing
mode solution of the field equation is a QNM and
contributes to the QNM expansion (1).
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The key is to understand the dependence of the coef-
ficients cj in (1) on the initial conditions of the field: cj can
typically be computed as the inner product of an expression
formed from the initial data with a purely incoming mode
solution vjðxÞ with frequency ω̄. In certain exceptional
situations however, for example for massless scalar fields
on dS in D ¼ 4 dimensions and for all nonzero QNMs, no
purely incoming mode solution exists. Instead, the role of
vj is now played by a distribution that is supported on the
dS horizon; i.e., vj is a sum of differentiated δ distributions.
In these exceptional situations, it is the behavior of the
initial data in an arbitrarily small neighborhood of the
horizon that determines cj. We give a characterization of vj
that is valid in all cases and call such generalized purely
incoming solutions “dual resonant states.”1 This charac-
terization requires working in a hyperboloidal slicing of dS
[19,20,23]; the failure of time evolution to be unitary in this
slicing is the reason for the asymmetry between the
definitions of mode solutions uj and dual resonant states
vj. The notion of dual resonant states thus allows one to
discern what triggers the appearance of any particular
QNM frequency in the expansion (1).
On dS specifically, we compute a few dual resonant

states for a variety of dS dimensions and scalar field
masses. We also present a simple method to determine
QNMs and mode solutions for wave type equations on pure
dS, based on an efficient description of the asymptotic
behavior of waves on the conformal compactification of dS
in terms of data on the conformal boundary [29,35,46] and
the solution of a certain characteristic polynomial. To the
authors’ knowledge, this method appears here for the first
time. We illustrate our results with the numerical evolution
of massive scalar waves in hyperboloidal slicing [47].

II. LATE-TIME BEHAVIOR OF
MASSIVE SCALAR FIELDS

The line element of the static model ofD-dimensional dS
is given by

ds2 ¼ −FðrÞdt2 þ dr2

FðrÞ þ r2dΩ2; FðrÞ ¼ 1−
r2

L2
; ð2Þ

where dΩ2 is the line element of the (D − 2)-dimensional
unit sphere, and the dS radius L is related to Λ and the
surface gravity κ of the dS horizon via

Λ ¼ ðD − 1ÞðD − 2Þ
2L2

; κ ¼ L−1: ð3Þ

The level sets of the time function

t� ¼ tþ 1

2κ
logF ð4Þ

are hyperboloidal, i.e., transversal to the future cosmologi-
cal horizon, and the dS line element

ds2 ¼ −FðrÞdt2� −
2r
L
dt�drþ dr2 þ r2dΩ2 ð5Þ

is regular across the horizon r ¼ L. Finally, regarding r, Ω
as the polar coordinates of x ¼ rΩ and setting

τ ¼ e−κt� ; X ¼ xτ
L
; ð6Þ

we obtain the expression

ds2 ¼ L2
−dτ2 þ dX2

τ2
; ð7Þ

or equivalently the more familiar Friedmann-Lemaître-
Robertson-Walker (FLRW) form of the dS met-
ric, ds2 ¼ −dt2� þ e−2κt�dðLXÞ2.

A. Data on the conformal boundary

In terms of (7), the equation of motion ð□ −m2ÞΦ ¼ 0
for the scalar field Φ ¼ Φðτ; XÞ of mass m reads

L−2ð−ðτ∂τÞ2 þ ðD − 1Þτ∂τ þ τ2ΔXÞΦ −m2Φ ¼ 0; ð8Þ

where ΔX ¼ P ∂2
Xi is the spatial Laplace operator. We are

interested in the behavior ofΦ as τ → 0 (i.e., t� → ∞), with
initial data

ðΦ; ∂t�ΦÞjt�¼0 ¼ ðΦ;−τ∂τΦÞjτ¼1 ¼ ðΦ0;Φ1Þ; ð9Þ

which we assume to be smooth functions of X. Dropping
the term τ2ΔX in (8), the characteristic exponents of the
resulting ordinary differential equation (ODE) in τ at τ ¼ 0
are the roots

λ�ðmÞ ¼ D − 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 1Þ2

4
− L2m2

r
ð10Þ

of the quadratic polynomial

pðλÞ ¼ λ2 − ðD − 1Þλþ L2m2: ð11Þ

Let Δλ ¼ λþðmÞ − λ−ðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 1Þ2 − 4L2m2

p
.

1. The generic case Δλ ∉ 2N0.

It can be shown [29,46] that in this case

Φðτ; XÞ ¼
X
�
τλ�ðmÞu�ðτ; XÞ; ð12Þ1This term has previously been used in the mathematics

literature [35,44]; another common term is “coresonant state” [45].
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where u�ðτ; XÞ are smooth functions of ðτ;XÞ∈ ½0;1�×RD

whose Taylor expansion at τ¼0 only contains even powers
of τ. Moreover, there is a one-to-one correspondence

ðΦ0;Φ1Þ ↔ ðuð0Þþ ; uð0Þ− Þ ≔ ðuþ; u−Þjτ¼0 ð13Þ

between the initial data ðΦ0;Φ1Þ of Φ and the asymptotic

data ðuð0Þþ ; uð0Þ− Þ.
We sketch the construction of a solution Φ of (8) given

asymptotic data ðuð0Þþ ; uð0Þ− Þ: we make the ansatz

u�ðτ; XÞ ¼
X∞
j¼0

τ2juðjÞ� ðXÞ ð14Þ

in (12) and plug this into (8). This gives a recursion relation

for the functions uðjÞ� , j ≥ 1, with the unique solution

uðjÞ� ¼ qðjÞ� Δj
Xu

ð0Þ
� ; qðjÞ� ¼

Yj
k¼1

pðλ�ðmÞ þ 2kÞ−1: ð15Þ

When uð0Þ� are analytic functions of X, then (14) converges

near τ ¼ 0; see the Appendix. When uð0Þ� are merely
smooth, then, as shown in [46], one can still find u� with

Taylor coefficients at τ ¼ 0 given by the uðjÞ� in (14) so that
Φ solves (8) exactly.

2. The exceptional case Δλ ∈ 2N0.

This occurs when m2 ¼ ðD−1Þ2−4n2
4L2 for some n ∈ N0,

thus in any fixed dimension D only for a finite number
of real scalar field masses m. The asymptotics of the field
are now

Φðτ; XÞ ¼ τλ−ðmÞu−ðτ; XÞ þ τλþðmÞðlog τÞuþðτ; XÞ; ð16Þ

and the one-to-one correspondence (13) still holds: the full

Taylor series of u� at τ ¼ 0 are determined by uð0Þ� . We omit
the explicit formulas.

B. QNMs and mode solutions

Quasinormal modes ω are typically defined in terms of
static coordinates (2) as those complex numbers ω ∈ C for
which there exists a purely outgoing solution

e−iωtuðr;ΩÞ; uðr → LÞ ∼ eiωr� ; ð17Þ
of the Klein-Gordon equation ð□ −m2Þðe−iωtuÞ ¼ 0; here
we introduced the tortoise coordinate dr� ¼ dr=F. Near
r ¼ 0, u is required to be bounded, which automatically
implies the smoothness of u as a function of x ¼ rΩ ∈ RD

near x ¼ 0 [46]. Now t� − ðt − r�Þ ¼ L logð1þ r
LÞ is ana-

lytic in r > 0 across r ¼ L, hence outgoing solutions are of
the form

e−iωt�u; usmooth nearx¼ rΩ¼ 0 and jxj ¼L: ð18Þ

Solutions2 of the field equation of the form (18) are smooth
across the future cosmological horizon of dS, hence QNMs
are indeed those ω for which a nontrivial solution of
this form exists [23,37,46,50,51]. We remark that
smoothness prohibits incoming asymptotics e−iωte−iωr� ∼
e−iωt�e−2iωr� ∼ e−iωt� jL − rjiω=2κ as r → L for all but an
exceptional set of values of ω.
For future use, we record that the partial differential

equation (PDE) solved by u in (18) is

ðr−Dþ2∂rrD−2F∂r þ iκωð2r∂r þD − 1Þ
þ r−2ΔΩ þ ω2 −m2Þu ¼ 0; ð19Þ

where ΔΩ is the Laplacian on the (D − 2) sphere.
Denoting by ωj the QNMs and by uj ¼ ujðxÞ the

corresponding mode solutions (normalized arbitrarily),
the quasinormal mode expansion of the massive scalar
field is

Φðt�; xÞ ∼
X

cje−iωjt�ujðxÞ; t� → ∞; ð20Þ

for certain complex coefficients cj depending on the initial
conditions of the field.3,4 On the other hand, note that
t� → ∞ while keeping x bounded implies τ; X → 0. If we
Taylor expand (12) at ðτ; XÞ ¼ ð0; 0Þ and undo the coor-
dinate change (6), then we get the expansion

Φðt�; xÞ ∼
X
�

X∞
n¼0

e−κðλ�ðmÞþnÞt�
X

2jþjαj¼n

cðj;αÞ�

�
x
L

�
α

; ð21Þ

where cðj;αÞ� ¼ 1
α! q

ðjÞ
� ∂α

XΔ
j
Xu

ð0Þ
� ð0Þ. By comparing this with

(20), we can read off the QNMs of the massive scalar field
to be those ω ∈ C for which e−iωt� ¼ e−κðλ�ðmÞþnÞt� for
some n ¼ 0; 1; 2;…; thus, the QNMs are

−iκðλ−ðmÞþnÞ;−iκðλþðmÞþnÞ; n¼0;1;2;…: ð22Þ
Moreover, we can directly read off all mode solutions

corresponding to any one of these QNMs; i.e., all functions
u ¼ uðxÞ so that e−κðλ�ðmÞþnÞt�uðxÞ (with the choice of sign
and n ¼ 0; 1; 2;… fixed) solve Eq. (8) for the scalar field.

Indeed, the freedom in the coefficients cðj;αÞ� , with n ¼ 2jþ
jαj fixed [thus considering the QNM − iκðλ�ðmÞ þ nÞ], is
fully accounted for by the freedom of specifying all deriv-

atives ∂β
Xu

ð0Þ
� ð0Þ of order jβj ¼ n [there are ðnþD−2

D−2 Þ of them].

2For analytic spacetimes and time functions t�, u is automati-
cally analytic [48,49].

3The notation “∼” means that, for any C, the difference
between Φ and the sum over all ωj with ℑωj ≥ −C is bounded
by C0e−Ct�.

4For QNMs with higher multiplicity—ignored here—there are
additional terms with time dependence e−iωjt� tk�.
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As one varies the complex numbers cðj;αÞ� freely, the inner-
most sum in (21) computes all elements of the corresponding
ðnþD−2

D−2 Þ-dimensional space of mode solutions.5 We stress

that one can choose the asymptotic data uð0Þ� so that the
innermost sum in (21) is a nonzero function for any desired
value of n; i.e., for all of the QNMs in (22) a nontrivial mode
solution indeed exists, and thus all QNMs contribute to the
long-time dynamics (20) of the field.
In the literature, QNMs on spacetimes with spherical

symmetry, such as dS, are typically computed by separating
angular and radial parts of putative mode solutions uðxÞ via
expansion into spherical harmonics, and by studying a
radial ODE for each angular momentum l. In this manner,
one obtains a set of QNMs for each l ¼ 0; 1; 2;…,
consisting of thoseω ∈ C for which there exists a separated
mode solution with angular momentum l. In order to relate
this to our result (21), observe that in the decomposition of
a summand xα [appearing in (21)] into a sum of products of
spherical harmonics and functions of r ¼ jxj, degree l
spherical harmonics appear if and only if jαj − l ∈ 2N0.

6

That is, for a QNM ω ¼ −iκðλ�ðmÞ þ nÞ, the mode

solution
P

2jþjαj¼n c
ðj;αÞ
� ðx=LÞα, expanded into spherical

harmonics, has a nontrivial piece with angular momentum l
only if there is a nonzero summand with jαj − l ¼ 2ñ for
some ñ ∈ N0, so

n ¼ 2jþ jαj ¼ 2n0 þ l; ð23Þ

where n0 ¼ jþ ñ ∈ N0. Thus, restricting to mode solutions
of the separated form uðr;ΩÞ ¼ YðΩÞu0ðrÞ where Y is a
degree l spherical harmonic, the QNM spectrum is equal to

−iκðλ−ðmÞ þ lþ 2n0Þ;−iκðλþðmÞ þ lþ 2n0Þ; ð24Þ

with n0 ¼ 0; 1; 2;…. (The fact that every QNM is neces-
sarily of this form is well known [4,15].)

III. DUAL RESONANT STATES

So far, we have given a new perspective on the well-
known result (see, e.g., [4, Sec. IV C]) that for each
frequency (22) there exists an outgoing mode solution of
the Klein-Gordon equation on pure dS. On the other
hand, the authors in [4, Sec. IV D] observe a pole
cancellation in the Wronskian of outgoing and incoming
solutions at frequencies ω for which

ω ¼ −inκ; n ¼ 1; 2; 3;… ð25Þ

and consequently discard such ω from the set of QNMs.
(Similar arguments are presented for other classes of
perturbations and in general dimension in [12, Sec. 4.3]:
again, certain QNMs are discarded despite the existence of
outgoing mode solutions.) Moreover, wave evolutions
performed in [4, Sec. IV D], with initial data supported
inside the dS horizon, show that the late time asymptotics of
mass m scalar fields change qualitatively—seemingly con-
sistent with discarding the values (25) in the QNM expan-
sion (20)—when m approaches a value m0 for which all
nonzero QNMs listed in (22) satisfy (25). [This happens for
m0 ¼ 0 and for the conformal mass m0 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðD − 2Þp

.]
We shall reconcile our late time asymptotics (21)

[leading to the full set of QNMs (22)] with the wave
evolution in [4] by analyzing the dependence of the
coefficients cj in (20) on the initial data (9) ofΦ, ultimately
showing in Sec. III C that the qualitative change observed
in [4, Sec. IV D] is not present when the initial data are
allowed to be nonzero near the dS horizon. In Sec. III D, we
shall also connect our analysis to the Green’s function
computations presented in [4,12,13].
The following arguments are very general and apply not

only to the Klein-Gordon equation on dS, but generalize in
a straightforward manner to any (not necessarily scalar)
wave equation on any stationary spacetime foliated by level
sets (of a time function t�) which are transversal to all future
horizons; this in particular includes Kerr-Newman–de Sitter
spacetimes (and its special cases SdS, Kerr–de Sitter,
RNdS), and with some modifications also asymptotically
flat (Λ ¼ 0) and anti–de Sitter (Λ < 0) black hole space-
times. We study the forced equation

ð□ −m2ÞΦ ¼ f; Φjt�<0 ¼ 0; ð26Þ

where the forcing f ¼ fðt�; xÞ satisfies f ¼ 0 for t� < 0
and t� ≫ 1. We remark that this covers also initial value
problems, in the following manner: denoting, for clarity,
by ΦIVP ¼ ΦIVPðt�; XÞ the solution of (8)–(9), let
Φðt�; XÞ ¼ Θðt�ÞΦIVPðt�; XÞ, where Θ is the Heaviside
function. Then ð□ −m2ÞΦIVP ¼ 0 allows us to write

ð□ −m2ÞΦ ¼ ð□ −m2ÞðΘðt�ÞΦIVPÞ;
¼ ½□ −m2;Θðt�Þ�ΦIVP≕ f; ð27Þ

where ½A;B� ¼ AB − BA is the commutator. But since
□ −m2 is a second order differential operator, we have
½□ −m2;Θðt�Þ� ¼ δðt�ÞA1ðX;DXÞ þ δ0ðt�ÞA0ðXÞ, where
A0 is a smooth function and A1 is a first order differential
operator. In particular, for the calculation of f in (27) one
may replace ΦIVP by its linearization at t� ¼ 0 which in
terms of (9) is Φ0 þ t�Φ1. Thus, the solution of the initial
value problem (8)–(9) in t� > 0 is equal to the solution of the
forced equation (26) for f ¼ ½□ −m2;Θðt�Þ�ðΦ0 þ t�Φ1Þ.

5In the exceptional case (16), the QNMs are still given by (22),
and the values which are accounted for twice have a multiplicity
of two.

6As an example, in R3 with coordinates x ¼ ðx1; x2; x3Þ, one
has x33 ¼ r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12π=25

p
Y10ðθ;ϕÞ þ r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π=175

p
Y30ðθ;ϕÞ; note

that only Ylm with l ¼ 1, 3 appear.
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We now return to Eq. (26) for general f. Assuming that
the jth QNM ωj is simple, the map assigning to f the
coefficient cj in the QNM expansion (20) is linear, hence
given by the formula

cj½f� ¼
ZZ

fðt�; xÞΨjðt�; xÞdt�dD−1x ð28Þ

for some (necessarily nonzero) distribution Ψj. We shall
deduce the key properties ofΨj by plugging special choices
of f into (26)–(28).
First, for any f so that f ≡ 0 inside the horizon (i.e., for

r ¼ jxj ≤ L in the dS case), we have Φ≡ 0 inside the
horizon by finite speed of propagation for (26); therefore,

Ψjðt�;xÞ¼0outside the horizonði:e:;forr>Lon dSÞ: ð29Þ

Next, if f ¼ ð□ −m2Þg for a function g with g ¼ 0
for t� < 0 and t� ≫ 1, then the solution of (26) is
given by Φ ¼ g and thus vanishes for large t�, hence
cj½ð□ −m2Þg� ¼ 0. Plugging this into (28) and integrating
by parts, we find that Ψj must solve the adjoint equation7

ð□ −m2Þ�Ψj ¼ ð□ − m̄2ÞΨj ¼ 0: ð30Þ

Finally, if Φ solves (26), then Ψ ¼ ð∂t� þ iωjÞΦ solves
ð□−m2ÞΨ¼ð∂t� þiωjÞf; but since ð∂t� þ iωjÞe−iωjt� ¼ 0,
the jth coefficient in the expansion of Ψ is zero, so
cj½ð∂t� þ iωjÞf� ¼ 0. Integrating by parts in (28) implies
that

ð−∂t� − iω̄jÞΨj ¼ 0 ⇒ Ψjðt�; xÞ ¼ e−iω̄jt�vjðxÞ: ð31Þ

A crucial point is that vj may vanish also inside the horizon,
i.e., in r < L on dS, in which case it must be a sum of
differentiated δ distributions supported at the horizon. This
happens, e.g., for D ¼ 4, m ¼ 0 or m ¼ ffiffiffi

2
p

, with impor-
tant consequences for wave evolution and the pole structure
of the Green’s function, as discussed later.
Summarizing (29)–(31), we arrive at the following

definition: a dual resonant state at frequency ω is a
distribution8 v ¼ vðxÞ such that

ð□ − m̄2Þðe−iω̄t�vÞ ¼ 0;

v ¼ 0 outside the horizon ði:e:; forr > L on dSÞ: ð32Þ

We have moreover proved the existence of a dual resonant
state for every QNM frequency.

One can show [37] that the space of solutions of (32) for
fixed ω has the same dimension as the space of mode
solutions (18). On spherically symmetric spacetimes such
as dS or RNdS, these spaces are typically one dimensional
upon restricting to modes or dual resonant states that are of
the separated form wðrÞYðΩÞ, where YðΩÞ is a fixed
spherical harmonic.
Assume that for the QNM ωj there indeed exist a unique

mode solution uj and dual resonant state vj (up to scalar
multiples, and restricting to fixed angular dependence if
necessary). We shall determine the normalization constant
aj so that

Ψj ¼ aje−iω̄jt�vj ð33Þ

computes cj½f� in (28). To this end, note that the function
Φ ¼ Θðt�Þe−iωjt�uj solves (26) with forcing f ¼
½□ −m2;Θðt�Þ�ðe−iωjt�ujÞ, as follows by the same calcu-
lation as (27). Since the QNM expansion of Φ has
cj ¼ cj½f� ¼ 1, the constant aj in (33) satisfies

aj

ZZ
½□ −m2;Θðt�Þ�ðe−iωjt�ujÞe−iω̄jt�vjdt�dD−1x ¼ 1:

ð34Þ

Defining the spectral family

PðωÞ ≔ eiωt� ð□ −m2Þe−iωt� ð35Þ

[which on dS is equal to the operator in parentheses in
(19)], we thus obtain from (28), (33), and (34) after a brief
calculation the formula

cj½f� ¼ i

R
f̂ðωj; xÞvjðxÞdD−1xR ð∂ωPðωjÞujÞvjdD−1x

; ð36Þ

where f̂ðω; xÞ ¼ R
eiωt�fðt�; xÞdt� is the Fourier transform

in time. This is directly related to the pole structure of the
Green’s function Gðω; x; x0Þ of PðωÞ, which near ωj takes
the form

Gðω;x;x0Þ ¼ ujðxÞvjðx0Þ
ðω−ωjÞ

R ð∂ωPðωjÞujÞvjdD−1x
þhol: ð37Þ

It is important here that x, x0 are not restricted to lie inside
the horizon.

A. Connection with purely incoming modes

Taking the adjoint of (19) [or directly from (32)], a dual
resonant state v on dS at frequency ω and with angular
dependence given by a fixed degree l spherical harmonic
solves the equation

7ThusΨj can be interpreted as a massive scalar field with mass
m̄ (¼ m for real masses) which propagates backwards in time.

8One can show that v is necessarily smooth where ∂t� is
timelike, hence on dS v can be singular only at r ¼ L.
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PðωÞ�v ¼ ðr−Dþ2∂rrD−2F∂r þ iκω̄ð2r∂r þD − 1Þ
− r−2lðlþD − 3Þ þ ω̄2 − m̄2Þv ¼ 0: ð38Þ

Multiplying this equation by F and using that ∂r ∼ −2κ∂F

near r ¼ L ¼ κ−1 (where F ≈ 0), it reads

ð4κ2ðF∂FÞ2 − 4iω̄κF∂FÞv ≈ 0 for F ≈ 0: ð39Þ

This has solutions Fz with homogeneity z ¼ 0 and
z ¼ iω̄=κ. One can show [37] that the dual resonant state
must have the latter homogeneity (i.e., precisely the
behavior disallowed for outgoing modes), so

e−iω̄t�v ¼ e−iω̄tvs; vsðr → LÞ ∼ e−iω̄r� ð40Þ

upon restricting to the static patch of dS. Thus, vs is a
purely incoming mode with frequency ω̄, or vs ≡ 0 if v is
supported on r ¼ L. The latter situation can only happen
in special circumstances: a distribution supported on
F ¼ 0 has as its leading order term δðn−1ÞðFÞ for some
n ¼ 1; 2; 3;…, which is homogeneous of degree −n.
Therefore, v can be supported on the dS horizon if and
only if iω̄=κ ¼ −n, which is equivalent to condition (25). If
ω is not of this form, then a dual resonant state at frequency
ω is the same (upon extension by 0 beyond the horizon) as a
purely incoming mode as in (40).
We can gain further insight by rewriting the equation

PðωÞu ¼ 0 satisfied by a mode solution u ¼ uðr;ΩÞ in
static coordinates (2), so Ps

mðωÞus ¼ 0 where us ¼
F−iω=2κu and

Ps
mðωÞ¼ r−Dþ2∂rrD−2F∂rþ r−2ΔΩþF−1ω2−m2: ð41Þ

Since only the square of ω appears in the coefficients of
Ps
mðωÞ, taking complex conjugates gives

0 ¼ Ps
mðωÞus ¼ Ps

m̄ðω̄Þus ¼ Ps
m̄ð−ω̄Þus: ð42Þ

Therefore, ð□ − m̄2Þðeiω̄tusÞ ¼ 0, and hence

ð□ − m̄2Þðeiω̄t�Fiω̄=κūÞ ¼ 0: ð43Þ

But Fiω̄=κū is purely incoming at the horizon, so taking into
account the vanishing requirement for dual states one is
tempted to conclude that9

v ¼ Fiω̄=κ
þ ū ¼ ð1 − r2=L2Þiω̄=κþ ū ð44Þ

is a dual state. And indeed, as long as z ≔ iω̄=κ is not a
negative integer [i.e., ω is not of the form (25)], this is

correct.10 The delicate point is that the distribution Fz
þ

depends only meromorphically on z and has simple poles at
z ∈ −N. Its regularization χzþðFÞ ¼ Γðzþ 1Þ−1Fz

þ on the
other hand is well defined (see [52, Sec. III.3.2] and
satisfies χ−nþ ðFÞ ¼ δðn−1ÞðFÞ. Thus, in the exceptional case
(25), one needs to replace (44) by

v ¼ δðn−1ÞðFÞū; n ¼ −iω̄=κ ∈ N: ð45Þ

B. Explicit examples

For concreteness, we fix the scale of the cosmological
horizon to be

L ¼ 1: ð46Þ

As an independent verification of formula (45), we may
find those dual states [corresponding to QNMs satisfying
(25)] which are sums of differentiated δ distributions as
follows. We make the ansatz

vðrÞ¼ a0δðr−1Þþa1δ0ðr−1Þþ �� �þanδðnÞðr−1Þ: ð47Þ

Differentiation in r maps δðkÞ to δðkþ1Þ, and
ðr − 1ÞδðkÞðr − 1Þ ¼ −kδðk−1Þðr − 1Þ. Thus, combining the
coefficients ak into a vector, we have

∂r →

0
BBBBBB@

0 0 0 0 …

1 0 0 0 …

0 1 0 0 …

0 0 1 0 …

..

. ..
. ..

. ..
. . .

.

1
CCCCCCA
;

r − 1 →

0
BBBBBB@

0 −1 0 0 …

0 0 −2 0 …

0 0 0 −3 …

0 0 0 0 …

..

. ..
. ..

. ..
. . .

.

1
CCCCCCA
: ð48Þ

We then express the second order operator PðωÞ� acting on
(47) as an N × N matrix, N ¼ nþ 2. Its nullspace consists
of the sought-after dual states. As a consistency check, one
can either verify the dual states by hand, or one can increase
N further and check that the subspace of the nullspace
consisting of vectors with many trailing 0s is independent
of N.

9We use the notation xþ ¼ maxð0; xÞ.

10Indeed, by construction, v solves (38) in r < L and r > L,
hence PðωÞ�v must be supported at r ¼ L, so it is a sum of
differentiated δ distributions. But δðn−1ÞðFÞ is homogeneous of
degree −n ∈ −N at F ¼ 0, whereas v is homogeneous of degree
iω̄=κ ∉ −N to leading order at F ¼ 0. Therefore, necessarily
PðωÞ�v ¼ 0.
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In Tables I–IV, we list a few examples of dual states
supported at the dS horizon found in this manner. For
brevity, we write

δ≡ δðr − 1Þ; δ0 ≡ δ0ðr − 1Þ;…: ð49Þ

The dual state Θð1 − rÞ for l ¼ 0, ω ¼ 0 in D ¼ 4 and
D ¼ 6 is not covered by the previous considerations, but
can easily be verified by hand.
For D ¼ 4, we also list the corresponding mode sol-

utions which can be found via expansion of (21) into
spherical harmonics, or directly by solving (19). The
relationship between mode solutions uj and vj is consistent
with equation (45), except that we normalized the dual
states vj so that formulas (28) and (33) with aj ¼ 1

compute the expansion coefficient of uj in the QNM
expansion (20). [The spherical harmonics Ylm are normal-
ized so that ∬

S2 jYlmðθ;ϕÞj2 sin θdθdϕ ¼ 1.]

C. Connection with wave evolution

Consider a QNM ωj so that the associated dual resonant
state vj is supported on the dS horizon r ¼ L. When the
forcing f or the initial data ðΦ0;Φ1Þ vanish near r ¼ L,
then the corresponding mode solution uj never contributes
to the late-time asymptotics of the field Φ. This is the setup
of the wave evolution in [4, Sec. IV D].
This is further connected to the sharp Huygens principle

[53–55]: in the cases where all dual resonant states are
supported on the horizon, Φ in (20) decays faster than any
exponential in t�, (and in fact can be shown to vanish inside
the horizon for late times). The converse is true as well: if
the sharp Huygens principle holds, then all dual resonant
states are supported on r ¼ L. The validity of the sharp
Huygens principle for even spacetime dimensions D ≥ 4

and for the conformal mass m ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðD − 2Þp

follows
directly from the fact that, by (8),

τ−1−D=2L2ð□ −m2ÞΦ ¼ ð−∂2
τ þ ΔXÞðτ1−D=2ΦÞ ¼ 0 ð50Þ

is the wave equation on D-dimensional Minkowski space,
which satisfies the sharp Huygens principle.
Figure 1, which concerns the conformally coupled scalar

field on D ¼ 4 dS, demonstrates this phenomenon. (The
solutions shown in Fig. 1 were obtained by solving the

TABLE I. The first few normalized mode solutions (uj) and
dual states (vj) for a massless scalar field in D ¼ 4.

l ω Mode solution (uj) Dual state (vj)

0 0 Y00 Y00Θð1 − rÞ
1 −i Y1mr 1

3
Y1mδ

0 −2i Y2mðr2 − 3Þ 1
6
Y0mð2δþ δ0Þ

2 −2i Y2mr2 1
15
Y2mðδ − δ0Þ

0 −3i Y00
1
3
Y00ð3δþ 3δ0 þ δ00Þ

1 −3i Y1mðr3 − 5rÞ 1
30
Y1mð2δ0 þ δ00Þ

3 −3i Y3mr3 1
105

Y3mð−3δ0 þ δ00Þ

FIG. 1. Logarithm of the value of solutions of the conformal
wave equation in D ¼ 4 at a point x0 with jx0j < L ¼ 1. The
initial data are ð0; ðr2 − jxj2ÞΘðr2 − jxj2ÞÞ for various values of r.

TABLE II. Normalized mode solutions and dual states for a
scalar field with conformal mass m ¼ ffiffiffi

2
p

in D ¼ 4.

l ω Mode solution (uj) Dual state (vj)

0 −i Y00 Y00δ
0 −2i Y00 Y00ðδþ δ0Þ
1 −2i Y1mr − 1

3
Y1mδ

0

0 −3i Y00ðr2 þ 3Þ 1
6
Y00ð2δþ 2δ0 þ δ00Þ

1 −3i Y1mr − 1
3
Y1mðδ0 þ δ00Þ

2 −3i Y2mr2 1
15
Y2mð−δ − δ0 þ δ00Þ

TABLE III. Dual states for a massless scalar field in D ¼ 6.

l ω Dual state

0 0 Θð1 − rÞ
1 −i δ
0 −2i 4δþ δ0
2 −2i −δþ δ0
1 −3i 4δ0 þ δ00
3 −3i −3δ0 þ δ00

TABLE IV. Dual states for a scalar field with conformal mass
m ¼ ffiffiffi

6
p

in D ¼ 6.

l ω Dual state

0 −2i δþ δ0
0 −3i 3δþ 3δ0 þ δ00
1 −3i δ0 þ δ00
0 −4i 12δþ 12δ0 þ 5δ00 þ δ000
1 −4i 3δ0 þ 3δ00 þ δ000
2 −4i −3δ − 3δ0 þ δ000
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initial value problem for τ1−D=2Φ on D ¼ 4 Minkowski
space—see (50)—using the well-known explicit solution
formula, with numerical evaluation of the relevant integral
over the base of the past light cone.) For initial data which
are supported in r < L ¼ 1, the conformally coupled scalar
field on D ¼ 4 dS decays to 0 superexponentially fast in
r < 1 as t� → ∞, and in fact vanishes for sufficiently late
times. By contrast, when the initial data are nonzero near
r ¼ 1, the rate of decay of the amplitude of the field is
exponential, and indeed ∼e−t� ; this is consistent with the
fact that the dominant QNM is ω ¼ −i, see Table II.
Therefore, Fig. 1 demonstrates that the exceptional
QNMs—which in this case constitute the full set of
QNMs—that were discarded in [4] must be kept and do
contribute to the late time asymptotics when the initial data
of the field are nonzero near the dS horizon. In particular, if
one allows for such general initial data, a qualitative change
in the late time asymptotics when the scalar field mass
approaches special values (such as the conformal mass)
observed in [4, Sec. IV D] does not take place.
In some cases such as D ¼ 2, m ¼ 0 or D ¼ 4, m ¼ 0,

only a single dual resonant state (at frequency ω ¼ 0) is
nonzero in r < L, thus Φjr<L is equal to a constant11 (and
the energy density is zero) for late times when the initial
data vanish near the horizon. This is closely related to the
incomplete Huygens principle [54]. Figure 2 provides a
perspective on this phenomenon from the perspective of the
global dS spacetime (7) for D ¼ 4, m ¼ 0, and L ¼ 1: the
scalar field Φ, given by (12), (14), (15) with λ−ð0Þ ¼ 0 and
λþð0Þ ¼ 3, is plotted at a time t� ≫ 1 (i.e., 0 < τ ≪ 1);
thus, the plot shows a very precise approximation of the
asymptotic datum uð0Þ− . The flat middle segment is inde-
pendent of t� in this regime. Hence, in coordinates ðt�; xÞ
adapted to the static patch as in (6) (which enlarge
exponentially fast in time around X ¼ 0), the scalar field
is constant for large t�.
By contrast, Fig. 3 shows Φðt�; XÞ for t� ≫ 1 for initial

data which are nontrivial near the dS horizon. Again
Φðt�; XÞ is independent of t� up to error terms of size
e−2t� , hence the figure approximately shows uð0Þ− . Since
therefore uð0Þ− is not constant near X ¼ 0, switching back to
ðt�; xÞ coordinates reveals that Φðt�; xÞ approaches a
constant value exponentially fast in time, with the expo-
nential rate of convergence an integer multiple of κ.
Figures 2–3 were obtained via numerical evaluation of an

analytic representation formula: by finite speed of propaga-
tion, one may replace the spatial manifold RD by a large
torus. Upon expanding the fieldΦðt�; XÞ into Fourier modes
eiX·k in X (where k lies on an appropriate D-dimensional
lattice), one obtains from (8) (with D ¼ 4 and m ¼ 0) an
infinite family of ODEs ð−ðτ∂τÞ2þ3τ∂τ−τ2jkj2ÞΦkðτÞ¼0.
Each ODE has an explicit solution that is a

linear combination of cosðjkjτÞ þ jkjτ sinðjkjτÞ and
−jkjτcosðjkjτÞþsinðjkjτÞ; the coefficients are determined
from the initial conditions. Fourier inversion and evaluation
at τ ≪ 1 produces the figures.
For other values of the scalar field mass or spacetime

dimension, and especially if one is interested in the precise
behavior of the field in or near the static patch as t� → ∞,
a full numerical evolution scheme (e.g., as in [4]) may be
needed. The above special choices of D and m allow us to
avoid this; and in any case they demonstrate most clearly
our main arguments.

D. Connection with the Green’s function
in static coordinates

The Green’s function on dS in frequency space was
explicitly computed in static coordinates (2) in [4,12,13].
This amounts to constructing an inverse Gsðω; x; x0Þ of the
spectral family in static coordinates, Ps

mðωÞ ¼ eiωtð□ −
m2Þe−iωt [see (41) for the explicit expression], with the

FIG. 2. Amplitude of a real massless scalar field Φðt�; XÞ at
points X ¼ ðX1; 0; 0Þ, with initial data ð0;−ð0.49 − jxj2Þ×
Θð0.49 − jxj2ÞÞ, after evolving for a long time in the coordinates
ðt�; XÞ from (6)–(7).

FIG. 3. Amplitude of a real massless scalar field Φðt�; XÞ with
initial data ð0;−ð1.44 − jxj2ÞΘð1.44 − jxj2ÞÞ, after evolving for a
long time in the coordinates ðt�; XÞ.

11Constant functions are the mode solutions at frequency
ω ¼ 0.
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requirement that Gsðω; x; x0Þ (defined for jxj; jx0j < L) be
outgoing as jxj → L and regular at x ¼ 0. QNMs were then
defined as the poles ω of Gsðω; x; x0Þ. Since

GsðωÞ ¼ e−iωðt�−tÞGðωÞeiωðt�−tÞ ∼ eiωr�GðωÞe−iωr� ; ð51Þ

the pole of G in (37) does not survive upon restricting x, x0
to the static patch jxj; jx0j < L precisely when the dual
resonant state vjðx0Þ vanishes in jx0j < L; i.e., when it is
supported on the dS horizon.
Thus, the set of poles of Gs can be strictly smaller than

that of G, with explicit instances where this happens given
in Sec. III B. This is the reason for the contradictory
statements regarding the existence of QNMs in the liter-
ature when they are defined in terms of the poles of the
meromorphically continued Green’s function in static
coordinates. It would be interesting to derive an explicit
formula for the Green’s function Gðω; x; x0Þ in coordinates
that are regular across the dS horizon, though such a
construction is necessarily quite subtle sinceGðω; x; x0Þ is a
very singular distribution at jx0j ¼ L.

IV. CONCLUSIONS AND OUTLOOK

We have conclusively shown the existence of QNMs for
massive scalar fields on dS, and produced an explicit
formula for the amplitude with which any QNM and mode
solution appears in the QNM expansion of the field.
We have moreover produced explicit formulas which

demonstrate that the QNMs as well as the mode solutions
depend continuously on the mass m of the scalar field. One
can moreover show that also the dual resonant states
depend continuously (as distributions, i.e., when paired
against any fixed test function) on m. In particular, the
qualitative changes suggested in [4] when m tends to
special values (such as 0 or the conformal mass) do, in
fact, not take place for general initial data which are
allowed to be nonzero near the dS horizon. Our analysis
gives the correct late time behavior for all initial conditions
of the scalar field: while prior results, such as those in [4],
suggested a very rapidly decaying late time tail of the field
for special values of m, we have demonstrated that the
decay rate is, in fact, given in terms of an explicit QNM,
though the amplitude of the corresponding mode solution
in the QNM expansion of the field vanishes for initial data
that vanish near the dS horizon. Note however that there is
no a priori reason why the scalar field (or other fields of
interest, see below) should initially vanish near the horizon.
In other words, we are able to explain the correct (numeri-
cally observed) late time tails, and can moreover do so
entirely within the framework of QNM expansions.
As another setting in which the QNMs of dS play an

important role, we mention the QNM spectrum of SdS
black holes as the black hole massM• tends to 0. This is the
subject of [46], where it is shown that the QNM spectrum

tends to that of dS in any bounded subset of the complex
plane. Again, it is crucial to keep also those dS QNMs
whose dual resonant states are supported on the dS horizon,
as otherwise some SdS QNMs would disappear in the
limit M• → 0.
On pure dS, our method for calculating QNMs and mode

solutions can be generalized to many other equations, such
as the Maxwell and linearized Einstein equations; related
results appear in [44, Sec. 4.1], [[35], Appendix C]. On the
other hand, we do not have an equally efficient method for
the calculation of dual resonant states in such general
settings at this time; we only obtained explicit formulas
(44)–(45) in the scalar case.
We end by suggesting an intriguing potential applica-

tion of dual resonant states on black hole spacetimes,
namely that via their connection to the coefficients in
QNM expansions—which can be experimentally measured
[40]—they may give useful information about the con-
ditions close to the black hole from far field gravitational
wave measurements. The key observation here is that, just
like the mode solutions themselves, the dual states corre-
sponding to QNMs with a large real part (and a small
imaginary part) are localized near the photon sphere, hence
the coefficients of the QNM expansion give averaged
information on initial conditions there.
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APPENDIX: CONVERGENCE OF (14) FOR
ANALYTIC DATA

We shall need a general estimate, adapted from [56,
Sec. 2], for bounding powers of the Laplacian applied to
real-analytic functions. For R0 > 0, denote BðR0Þ ¼ fX ∈
RD∶jXj < R0g and B̃ðR0Þ¼fλX∶X∈BðR0Þ;λ∈C;jλj¼1g.
If u ¼ uðXÞ is real analytic in X ∈ RD, and extends to a
holomorphic function of X ∈ CD in a neighborhood of
B̃ðR0Þ for some R0 > 0,12 then for all j ¼ 0; 1; 2;…, we
have

jΔj
Xuð0Þj ≤ CðDÞR−2j

0 22jj!2ðjþ 1ÞD2−1 sup
B̃ðR0Þ

juj: ðA1Þ

12This is always true for some sufficiently small R0 > 0 by
definition of real analyticity.
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The proof will be given below. In the context of (14)–(15),
we apply (A1) to u ¼ uð0Þ� . Further note that since pðλÞ ∼ λ2

for large λ, there exists, for any θ ∈ ð0; 1Þ (and with the
scalar field mass m fixed), an integer k0 ≥ 1 so that for all
k ≥ k0 one has jpðλ�ðmÞ þ 2kÞj ≥ θð2kÞ2, and therefore

jqðjÞ� j ≤ CðθÞθ−jð2jj!Þ−2: ðA2Þ

This implies

juðjÞ� ð0Þj ≤ CðD; θÞðR0θ
1=2Þ−2jðjþ 1ÞD2−1 sup

B̃ðR0Þ
juj; ðA3Þ

and therefore the series

u�ðτ; 0Þ ¼
X∞
j¼0

τ2juðjÞ� ð0Þ ðA4Þ

converges absolutely for jτj < R0 since θ < 1was arbitrary.
Working at general points X ∈ RD, we have shown that the
series (14) converges absolutely and defines a real-analytic
function of ðτ; XÞ in a neighborhood of τ ¼ 0, as claimed.
We now turn to the proof of (A1). By passing to

X̃ ¼ X=R0 and thus ΔX ¼ R−2
0 ΔX̃, we may assume that

R0 ¼ 1. Moreover, dividing u by supB̃ð1Þjuj [unless u is
identically 0, in which case (A1) is trivial], we may assume
supB̃ð1Þjuj ¼ 1. Note moreover that (A1) is trivial for j ¼ 0,
hence we only consider j ≥ 1.
To proceed, we note that when p ¼ pðXÞ is a homo-

geneous polynomial of degree 2j, then X · ∂Xp ¼ 2jp and
thus

Z
RD

e−X
2=2pðXÞdX ¼ 1

2j

Z
RD

−∂X · ðXe−X2=2ÞpðXÞdX;

¼ 1

2j

Z
RD

ΔXðe−X2=2ÞpðXÞdX;

¼ 1

2j

Z
RD

e−X
2=2ΔXpðXÞdX: ðA5Þ

Since ΔXpðXÞ is homogeneous of degree 2ðj − 1Þ, we can
proceed inductively and obtain

Z
RD

e−X
2=2pðXÞdX ¼ ð2πÞD=2Δ

j
Xp

j!2j
; ðA6Þ

withΔj
Xp being a constant. Applying this to the polynomial

pðXÞ ¼ P
jαj¼2j

∂αXuð0Þ
α! Xα [with Δj

Xp ¼ Δj
Xuð0Þ] gives

jΔj
Xuð0Þj ≤ ð2πÞ−D=2j!2j

Z
RD

e−X
2=2jpðXÞjdX: ðA7Þ

Fixing any unit vector X̂ ∈ RD, consider uX̂ðzÞ ¼ uðzX̂Þ as
a function of the single complex number z ∈ C, defined in a
neighborhood of jzj ≤ 1. Then the Cauchy integral formula
gives j∂2j

z uX̂ð0Þj ≤ ð2jÞ!supjzj≤1juX̂ðzÞj and therefore

jpðX̂Þj ¼ ∂2j
z uX̂ð0Þ
ð2jÞ! ≤ sup

B̃ð1Þ
juj ¼ 1: ðA8Þ

Since p is homogeneous of degree 2j, we conclude from
this and (A7), and using the identity (A6) to the polynomial
jXj2j, that

jΔj
Xuð0Þj ≤ ð2πÞ−D=2j!2j

Z
e−X

2=2jXj2jdX;

¼ Δj
XjXj2j: ðA9Þ

This can be computed in the radial coordinate R ¼ jXj and
equals ðR−Dþ1∂RRD−1∂RÞjR2j, which evaluates to

ð2jÞð2jþD − 2Þ · ð2j − 2Þð2jþD − 4Þ � � � 2 ·D

¼ 22jj!ðj − 1Þ! ðj − 1þ D
2
Þ � � � ð1þ D

2
Þ

ðj − 1Þ � � � 1 ·
D
2

≤ CðDÞ22jj!ðj − 1Þ!jD=2D
2
: ðA10Þ

(The final inequality follows from Stirling’s formula, since

the fraction is equal to ΓðjþD=2Þ
ΓðjÞΓðD=2Þ.) Plugging this into (A9)

and simplifying finishes the proof of (A1).
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