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We obtain a remarkable semianalytic expression concerning the role of purely tidal curvature on
accelerated probes, revealing some novel insights into the role of absolute vs tidal acceleration in the
response of such probes. The key quantity we evaluate is the relation between geodesic (τgeod) and proper
time (τacc) intervals between events on the probe trajectory. This is obtained as a covariant power series in
curvature using a combination of analytical and numerical tools. A serendipitous observation then reveals
that one can exactly sum all terms involving the purely tidal component E n ¼ Rabcdε

abεcd of curvature,

with εab the binormal to the plane of motion, τgeod ¼ 2ffiffiffiffiffiffiffi
−E n

p sinh−1
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q
sinh ð1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − E n

p
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i
. For

classical clocks, the above result represents an interesting closed form contribution of tidal curvature to the
differential ageing of twins in the classic twin paradox. For quantum probes, it gives a thermal contribution

to the detector response with a modified Unruh temperature, ½kBT�E n
¼ ℏ

ffiffiffiffiffiffiffiffiffiffi
a2−E n

p
2π . As an operational tool,

the computational framework we present and the corresponding results should find applications to a wide
range of physical problems that involve measurements and observations by use of accelerated probes in
curved spacetimes.
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I. INTRODUCTION

Physical effects in accelerated frames of reference have
historically been a bedrock for some of the most important
insights into classical as well as quantum physics. One
often uses the results arrived at in accelerated frames in
Minkowski spacetime to gain an understanding of physical
phenomena in a curved spacetime, gravitational time
dilation and Hawking radiation being a couple of textbook
examples, which one can intuitively understand by study-
ing accelerated clocks and quantum probes, respectively, in
Minkowski spacetime (the latter, of course, is the well-
known Unruh effect). However, by its very nature, the
principle of equivalence which one often uses to gain such
an understanding does not give any insight whatsoever into
the role of curvature in these phenomena. Curvature
manifests itself through tidal acceleration, and this accel-
eration is to be ignored if one is to use the principle of
equivalence. Moreover, for probes modelled as point
systems, tidal forces can not possibly have any influence,
and hence, one might think that one need only worry about
them when dealing with extended systems.
In the absence of any general, exact results concerning

the effects of curvature, the above issues can only be
justified through perturbative expansions in curvature,

except in some very rare cases [such as (anti–)de Sitter
spacetimes] where the full effect of the background con-
stant curvature on accelerated probes can be evaluated.
In this paper,we show that, remarkably, one can capture in

an analytic manner at least the effect of components of the
Riemann tensor in the plane of motion of a uniformly
accelerated trajectory. While there still remain terms which
can only be described perturbatively, the subset of terms that
can be summed to an analytic form yield some very
important insights into the dynamics and response of
accelerated probes in curved spacetimes. As a special case,
we recover the well-known results in (anti–)de Sitter space-
times for which the parts that can not be summed vanish, and
for a physically interesting class of motions in spherically
symmetric spacetimes provided the derivatives of curvature
are small, though the curvature itself might not be.
Our main result follows from the mathematical structure

of the (square of) geodesic interval σðx; x0Þ2 between points
on an accelerated trajectory. We show that one can exactly
sum all terms involving the purely tidal component E n ¼
Rabcdε

abεcd of curvature, with εab the binormal to the plane
of motion. This summation gives the following analytic
form for the contribution to −σðx; x0Þ2:
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where τacc is the proper time along the accelerated curve. In
Minkowski spacetime, the above expression reduces to its
well-known Rindler form,

σðx; x0Þ2 ¼ −
�
2

a
sinh

�
1

2
aτacc

��
2

:

We then show that the above expression has important
implications when one considers detectors coupled of
quantum fields in a curved spacetime. In Minkowski
spacetime, as Unruh [1] has shown, such a detector will
respond to the quantum fluctutations of the field. In
particular, if the field is in Minkowski vacuum state, the
quantum vacuum fluctuations as probed by an accelerated
detector manifest as thermal fluctuations at a temperature,

kBT ¼ ℏa
2π

;

where a is the acceleration. We will show that the
contribution of E n to the detector response is thermal part
with temperature,

½kBT�E n
¼ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − E n

p
2π

;

which again reduces to Unruh’s result for Minkowski
spacetime, but is now stated in a manner that is applicable
to a spacetime for which E n is not necessarily small.
The paper is structured as follows: in Sec II, we present a

solution to the following mathematical problem: given a
curve C on a curved manifold, and a pair of points on C,
what is the relation between the arclength distance between
these points and the geodesic (“chordal”) distance between
them, assuming a unique such geodesic exists? We present
the setup to find this relation to arbitrary orders of back-
ground curvature and acceleration of C, and explicitly quote
the result till 10th order in arclength. In Sec III, we apply
this result to hyperbolic motion in curved spacetime and
show that it admits a remarkable summation of certain
terms yielding a closed form expression for them. In Sec IV,
a semianalytic proof for the closed form expression in
maximally symmetric spacetime is sketched. In Sec V, we
use the above results in classical twin paradox, especially to
(anti–)de Sitter and Schwarzschild spacetimes and to
evaluate the clicking rate of the Unruh-deWitt detector,
commenting also on the role of the van Vleck determinant.
Finally, we conclude by putting our results and analysis in a
broader context and discussing possible generalizations.

II. ACCELERATED VS GEODESIC MOTION
IN CURVED SPACETIMES

Consider a curve C in an arbitrary spacetime, described by
functions ziðτÞ in some coordinate system. Here, τ is the
proper time parameter, uiðτÞ ¼ dzi=dτ the four velocity, and
ai ¼ ∇uui the acceleration. Consider two points p0, p
separated by an interval Δτ along the curve and assume p

to be in the geodesically convex normal neighborhood ofp0.
Therewill thenbe auniquegeodesicGΔτ connectingp0 andp
(with the proper time parameter λ); see Fig. 1.Wewish to find
the relation between the proper length τgeod ¼ Δλ of this
geodesic and τacc ¼ Δτ. To do so, we set upRiemann normal
coordinates (RNC) at p0, with x̂iðp0Þ ¼ 0. Then, by defi-
nition of RNC [2], x̂aðpÞ ¼ ðΔλÞt̂að0;ΔτÞ, where t̂að0;ΔτÞ
is the tangent vector at p0 with ηabt̂að0;ΔτÞt̂bð0;ΔτÞ ¼ −1.
To find the relation between Δλ and Δτ, we solve the

equation for the trajectory ẑiðτÞ of C in RNC,

d2ẑi

dτ2
þ Γ̂i

bc
dẑb

dτ
dẑc

dτ
¼ âi; ð1Þ

where âi the four acceleration, and Γ̂i
bcðp0Þ ¼ 0 (property

of RNC). Then, setting τ ¼ 0 at p0, we can equate

ẑað−ΔτÞ ¼ x̂aðpÞ ¼ ðΔλÞt̂að0;ΔτÞ ð2Þ

to obtain

ðΔλÞ2 ¼ ηabẑað−ΔτÞẑbð−ΔτÞ: ð3Þ

To evaluate the lhs, we write a series solution of Eq. (1) as

ẑkðτÞ ¼
X∞
n¼0

τn

n!

�
dnẑk

dτn

�
τ¼0

ð4Þ

¼ ûkð0Þτ þ âkð0Þ τ
2

2
ð5Þ

þ ð _̂akð0Þ − _̂Γ
a
bcð0Þûbð0Þûcð0ÞÞ

τ3

6
…; ð6Þ

FIG. 1. The geometric setup for the problem. Two events on the
hyperbolic trajectory CðτÞ≡ ziðτÞ are connected by a geodesic.
The relation between the corresponding proper times holds the
key information relevant for classical and quantum probes.
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where the derivatives on the rhs are computed by successive
differentiations of Eq. (1). The argument “0” above means
everything is evaluated at p0, and the overdot indicates
differentiation along the trajectory. To clean up the above
expression, we express the proper time derivatives of _̂ak in
terms of covariant derivatives along ûk; for example,
_̂ak ¼ ∇̂ûâk − Γ̂k

ijûiûj. with ∇̂û ≡ ûi∇̂i. This introduces
more Christoffel symbol terms, making the computation
a laborious task that is best done using a symbolic
package. To simplify analysis, we will make the following
assumptions:

(i) The motion is hyperbolic, and
(ii) Derivatives of curvature, ∇iRabcd, are “small.” Note

that we are not assuming the curvature itself to be
small, only that it changes slowly in the domain of
interest.

The above assumptions are reasonable given that we are
interested in obtaining leading curvature corrections to
uniformly accelerated systems; we will discuss the relaxa-
tions of these in the final section. Even with these assump-
tions, the calculation is computationally expensive,
particularly since, as we will show, the leading curvature
corrections themselves appear only at Oðτ6Þ! All our
numerical computations have been done using CADABRA [3].
We now give the mathematical simplifications that arise

under the above assumptions:
(i) Hyperbolic motion: The mathematical description of

uniformly accelerated hyperbolic motion in curved
spacetime was first given by Rindler [4], essentially
by imposing the Serret-Frenet formulas [5] to
spacetime curves. The hyperbolic motion is de-
scribed by the equations,

∇uuk ¼ ank; ∇ua ¼ 0 ð7Þ

∇unk ¼ auk; ð8Þ

where a2 ¼ aiai and ni ¼ ai=a. These conditions
are stated more elegantly in terms of the Fermi
derivative,

DF

dτ
u ¼ DF

dτ
n ¼ 0;

where, by definition, DF
dτ v¼∇uvþðv ·uÞa−ðv ·aÞu.

This has an important implication that n can be used
as one of the basis vectors while describing C in
Fermi normal coordinates based on it. This, in turn,
means that one can use a as one of the spatial
coordinates, a fact familiar from its many appear-
ances in the study of thermal properties of static
horizons.
The Rindler conditions immediately help us take

care of all covariant derivatives of ai along ui in
Eq. (6), since they imply

ð∇uÞpak ¼ a2puk ðp ¼ 1; 3; 5;…Þ ð9Þ

ð∇uÞpak ¼ a2p−1nk ðp ¼ 2; 4; 6;…Þ: ð10Þ

(ii) Ignoring derivatives of Riemann: If one ignores all
the derivatives of Riemann, the metric in RNC can
be expressed as [6]

ĝab¼ ηabþ
1

2

X∞
k¼1

ð−1Þk 22kþ2

ð2kþ2Þ!M
m1
a Mm2

m1
…:M

mðk−1Þ
b ;

ð11Þ

where the matrix M is defined by

Mi
j ¼ Ri

ajbx̂ax̂b: ð12Þ

It is easy to identify the series above as related to the
series expansion of sin x=x, yielding

ĝab ¼ ½sinM=M�iðaηbÞi: ð13Þ

This also gives a closed form expression for the van
Vleck determinant Δð0; x̂Þ in RNC, which we will
need later,

Δð0; x̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½M= sinM�

p
: ð14Þ

This follows from the fact that, in RNC,
Δð0; x̂Þ ¼ 1=

ffiffiffiffiffiffi
−ĝ

p
. Using the assumptions (i) and

(ii) above, we obtain

_̂zið0Þ ¼ uijp0
¼ uið0Þ

̈̂zið0Þ ¼ ½ani − Γi
mku

muk�p0
¼ ½ani�p0

ẑi
���
ð0Þ ¼ ½a uk∂kni − Γi

mj;ku
kumuj − 2Γi

mjðuk∂kujÞ�p0

¼ ½a∇uni − 3Γi
kmu

kam − Γi
mj;ku

kumuj

þ Γi
mjΓ

j
klu

mukul�
p0

¼ ½a∇uni − Γi
mj;ku

kumuj�
p0
: ð15Þ

Higher derivatives can be similarly obtained. We
now have all the tools to explicitly evaluate Eq. (3).
Before giving the results for arbitrary curved space-
time, we give the exact results for maximally
symmetric spacetimes.

We must mention that there exists an alternate
route to the above derivation using the properties of
Synge’s world function (one-half of the squared
geodesic distance) as given in Ref. [7]. However,
this method becomes increasingly difficult at higher
order. Our method based on RNC, in conjunction
with CADABRA, is easier to implement.
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A. Maximally symmetric spacetimes

For maximally symmetric spacetimes, the Riemann
tensor is Rabcd ¼ Λðgacgbd − gadgbcÞ, with Λ constant.
It is more convenient to work with the so-called embedding
coordinates Xi, with ZiðτÞ representing C in these coor-
dinates (for convenience, we denote all quantities in
embedding coordinates by capitalized versions of their
corresponding symbols in RNC). The metric is given by [8]

gab ¼ ηab þ
Λ

1 − ΛηijXiXj ηacηbdX
cXd; ð16Þ

and the Christoffel connections are Γa
bc ¼ ΛXagbc.

Therefore, Γa
bcUbUc ¼ −ΛXa and Γa

bcUbAc ¼ 0,
which enormously simplifies the conditions Eq. (8). They
become

_Uk ¼ Ak þ ΛXk ð17Þ
_Ak ¼ A2Uk ð18Þ

Ük ¼ ðA2 þ ΛÞUk; ð19Þ

from which one can easily show that
�
d
dτ

�
2pþ1

Ak ¼ a2q2pUk ðp¼ 0;1;2;…Þ
�
d
dτ

�
2p
Ak ¼ a2q2ðp−1ÞðAk þΛXkÞ ðp¼ 1;2;3;…Þ;

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ Λ

p
. Plugging this into Eq. (6), the

trajectory is easily obtained as

ZkðτÞ ¼ sinh qτ
q

Ukð0Þ þ cosh qτ − 1

q2
Akð0Þ: ð20Þ

The corresponding trajectory in RNC is then obtained by
the mapping between RNC and embedding coordinates
(see Ref. [9] for a proof),

Xi ¼ Δ−1=ðD−1Þx̂i; ð21Þ
whereΔ ¼ Δð0; x̂Þ is the van Vleck determinant, andD the
dimension of spacetime. This, when plugged into Eq. (3),
finally gives (after some simplifications) the relation
between τgeod ¼ Δλ and τacc ¼ Δτ,

τ2geod ¼
1

Λ

�
sin−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λτ2geod;η

�
1þ 1

4
Λτ2geod;η

�s ��
2

ð22Þ

¼ 4

Λ

�
sinh−1

� ffiffiffiffiffi
Λ
q2

s
sinh

�
qτacc
2

���
2

ð23Þ

τ2geod;η ¼
4

q2
sinh2

�
qτacc
2

�
: ð24Þ

(The second equality above follows from standard iden-
tities associated with hyperbolic functions.) Note that

lim
Λ→0

τ2geod ¼
4

a2
sinh2

�
aτacc
2

�
;

which is the familiar expression for Rindler trajectories in
Minkowski spacetime. In fact, τ2geod;η has precisely the form
corresponding to Rindler motion in Minkowski spacetime,
but with acceleration q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ Λ

p
.

With future anticipation, we highlight the periodicity,

τ2geod½τacc� ¼ τ2geod½τacc þ ð2πiÞq−1�: ð25Þ

This periodicity is key to thermal properties that a probe,
put on an accelerated trajectory, will assign to the quantum
field which is in inertial vacuum state.

III. GENERAL CURVED SPACETIMES

For general spacetimes, even with assumptions (i) and
(ii), the computation becomes unwieldy pretty fast, and we
therefore employ CADABRA for the same. ToOððΔτÞ10Þ, the
relation between Δλ ¼ τgeod and Δτ ¼ τacc is finally
obtained (after a laborious computation) as

τ2geod ¼ τ2acc þ
1

12
a2τ4acc þ

1

360
ða4 þ 3a2E nÞτ6acc

þ 1

20160
ða6 þ 17a2R•0n0R•

0n0 þ 18a4E nÞτ8acc

þ 1

1814400
ða8 þ 81a6E n þ 675a4R•0n0R•

0n0

þ 336a4R•nn0R•
nn0 þ 155a2R•

0n0R•0⋆0R⋆
0n0Þτ10acc

þOðτ12accÞ ð26Þ

¼ τ2accþ
1

12
a2τ4accþ

1

360
ða4þ3a2E nÞτ6acc

þ 1

20160
ða6þ17a2E 2

nþ18a4E nÞτ8acc

þ 1

1814400
ða8þ81a6E nþ339a4E 2

nþ155a2E 3
nÞτ10acc

þOðτ12accÞþRA; ð27Þ

where, for better readability, we have used following
convenient notations: the symbols “0,” “n” on Riemann
indicates contraction of the corresponding indiceswithui,ni,
withE n ¼ R0n0n ¼ Rabcduanbucnd and soon. Indiceswhich
are summed over are indicated by •;⋆, etc. The first equality
is our first main result, whose extensions and generalizations
we will discuss in the last section. The second equality
represents a remarkable structure following from the first
one. To arrive at it, we extract all the terms in the first equality
which depend purely on E n by expanding the summations;
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for instance, R•nn0R•
nn0¼−E 2

nþRAnn0RA
nn0, with A repre-

senting an index in the space orthogonal to ui and ni. Hence,
RA collectively represents all terms that have at least one
Riemann tensor with at least one index which is neither 0 nor
n. Our main observation then follows from the power series
representation of the following analytic function:

�
2ffiffiffiffiffi
r0

p sinh−1
� ffiffiffiffiffiffiffiffiffiffiffiffi

r0
1þ r0

r
sinh

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0

p
w

���
2

¼ w2 þw4

12
þ 1

360
ð1− 3r0Þw6 þ ð17r20 − 18r0 þ 1Þw8

20160

þ ð−155r30 þ 339r20 − 81r0 þ 1Þw10

1814400
þOðw12Þ; ð28Þ

which, on comparison with Eq. (27), yields

τgeod ¼
2ffiffiffiffiffiffiffiffiffi
−E n

p sinh−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−E n

a2 − E n

s
sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − E n

p
τacc

2

��

þRA: ð29Þ

Wemust highlight that the above expression is exact, and
it is very much possible that the terms represented by RA
also admit some sort of summation to a closed form; we
have, however, not been able to do so as yet and will
comment on it in the final section.

A. Spherically symmetric spacetimes

Remarkably, our results also cover the important class of
spherical symmetric spacetimes, with the metric,

ds2 ¼ −fðrÞdt2 þ hðrÞdr2 þ r2dΩ2; ð30Þ

where fðrÞ and hðrÞ are arbitrary functions, and dΩ2 is the
line element of the 2–sphere. Due to spherical symmetry,
and the maximally symmetric 2–sphere part, the Riemann
tensor of this class of spacetimes has a unique decom-
position, as can be easily shown by a direct generalization
of the form given for Schwarzschild metric in Ref. [10]. For
arbitrary choice of fðrÞ and hðrÞ, the Riemann tensor is
decomposed as

Rabcd ¼
ff0h0 þ h½f02 − 2ff00�

4f2h2
ðgacgbd − gadgbcÞ

RABCD ¼ h − 1

r2h
ðgACgBD − gADgBCÞ

RaAbB ¼ 1

2rh
g0abgAB;

where, indices a; b ∈ ft; rg, indices A;B ∈ fθ;ϕg and
prime is the derivative with respect to the radial
coordinate r.
In these spacetimes, consider hyperbolic motion in the

t–r plane; then the unit vectors ui and ai are in t–r plane.

In order to have a nonzero value for RA, there must be at
least one Riemann tensor component in t, r, A direction,
which does not exists. A more formal proof of this is
given in the next section, for a maximally symmetric
spacetimes. The same argument, however, works in spheri-
cal symmetry as well. This will eventually imply RA ¼ 0
and hence, give

τgeod ¼
2ffiffiffiffiffiffiffiffiffi
−E n

p sinh−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−E n

a2 − E n

s
sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − E n

p
τacc

2

��

þ terms involving∇Rabcd: ð31Þ

For the special case of static observers at r ¼ R, θ,
ϕ ¼ constant [and gðrÞ ¼ 1=fðrÞ], E n ¼ f00ðRÞ=2j. For
(anti-)de Sitter spacetime spacetimes, with fðrÞ¼1−Λr2,
this reproduces the exact result derived earlier, while for
Schwarzschild/Reissner-Nordstrom, the above gives a dis-
tinct contribution which, to the best of our knowledge, has
not appeared in the literature. If there exists a radius at which
a diverges, this will lead approximately to the Rindler result
in Minkowski spacetime, but at an arbitrary radius, the
additional curvature term might become significant.

IV. A SEMIANALYTIC PROOF

The result above was obtained from numerical compu-
tations in CADABRA, combined with the observation that the
coefficients match exactly with the power series expansion
of certain combination of hyperbolic functions. This
combination is by no means trivial, and it is only through
a fortuitous circumstance that we were able to arrive at it.
However, one notes that the final expression, Eq. (29), is
similar to the expressions Eq. (23) obtained in the case of
maximal symmetry, apart from theRA term. This allows us
to give the following semianalytic proof for our expression.
From Eq. (13) and the conditions Eq. (8), it is easy to see

that the terms in τgeod, which are higher order in Riemann,
appear in the form Rabc•R•

ghk…R⋆
def with the free indices

dotted with na’s and ua’s. Consider such a term with kþ 1
factors on Riemann tensors. We write this expression in a
general form as

Q̄abcdef ¼ Rabcm1
Qm1

mk ½k − 1�Rmk
def

where Qm1
mk ½k − 1� ¼

Yk−1
i¼1

Rmi
pð2i−1Þp2imðiþ1Þ :

(All the pi’s are dotted with ua or na, and hence, we do
not display them on Qa

b½k − 1�.) This tensor has the
property Qm1

mk ½k − 1� ¼ Rm1
p1p2m2

Qm2
mk ½k − 2�, which is

obvious from above. Now, in maximal symmetry, due to
the structure of Riemann, one has the following fact:
since ða; b; c; d; e; f; piÞ ∈ f0; ng, we must also have
m1; mk ∈ f0; ng; otherwise, Q̄abcdef ¼ 0. Therefore, for
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Rm1
p1p2m2

, the indices, m1; p1; p2 ∈ f0; ng, which in turn
implies thatm2 ∈ f0; ng in maximally symmetry. Since the
tensor Qm1

mk ½k − 1� obeys the above recursion relation, all
other product inside this tensor will be the same form.
Therefore, we have shown that in maximal symmetry,

the degeneracy arising because of the fact that RA
nnA ¼

RA
00A ¼ Rn

00n ¼ Λ is broken in presence of acceleration,
and terms other than R0n0n do not contribute to the series.
We have therefore proved that in a generic curved space-
time, all the terms in τgeod which have all the Riemann
tensor indices belonging to 0 or n, must sum to the
expression in maximal symmetry with Λ → ð−R0n0nÞ.

V. APPLICATIONS

A. The classical twin paradox

The mapping of our problem to the classical version of
the twin paradox is immediate from Fig. 1, read as follows:
The twins separate at p1, with one of them moving on the
hyperbolic trajectory C by using some external force and
the other following a geodesic. Provided the twins meet, the
expression we have derived directly gives the relation
between their ages. This, of course, is a somewhat
unrealistic setup since the relative Lorentz boost
γrel ¼ −u · t ≠ 1, implying a nonzero relative velocity when
they meet. One can presumably remedy this by smoothing
the accelerated trajectory near the meeting points, which
would involve introducing a mild time dependence in a,
with only a tiny modification to the above expression.
The twin paradox problem for (anti–)de Sitter spacetime

is addressed in Refs. [11,12], and the case of Schwarzschild
spacetime is taken up in Ref. [13]. However, these
references work with specific accelerated trajectories, while
our result is more general and applicable to any hyperbolic
trajectory, with a arbitrary.
de Sitter spacetime: Consider the twins, one accelerating

with constant acceleration and other one stationary in de
Sitter spacetime. The hyperbolic trajectory of the accel-
erated twin has been discussed by Rindler [4] and has been
used in Ref. [11] to discuss the twin paradox in de Sitter.
The trajectory, in standard Friedmann-Lemaître-Robertson-
Walker (FLRW) coordinates, is given by

tðτaccÞ¼
1

H
ln

�
Ψ

2q2eqτacc

�
; rðτaccÞ¼

aðeqτacc −1Þ2
Ψ

; ð32Þ

where, H is the Hubble constant, Ψ is defined as
Ψ ¼ HðqþHÞe2qτacc þ 2a2eqτacc −Hðq −HÞ, and q is
same as defined before, with H2 ¼ Λ. The geodesic
distance in de Sitter can be found using τ2geo ¼
H−2cos−1½ðη2 þ η02 − l2Þ=2ηη0�2, where η is the conformal
time and l2 is the squared spatial distance. It is not difficult
to verify, by writing the trajectory in terms of conformal
time and substituting in the equation for geodesic distance,
that we recover Eq. (23) as expected. The simplicity of the

expressions presented we have derived, vis-à-vis the more
cluttered ones when restricting to special coordinate sys-
tems, is worth highlighting. The geometric insights it
provides is an added bonus.
anti–de Sitter spacetime: For anti–de Sitter spacetime,

Λ < 0 and some interesting features emerge. The negative
curvature constant will impose a bound to the value of τacc.
This can be demonstrated using Eq. (23). Assume
a >

ffiffiffiffiffiffijΛjp
, then, for Λ < 0, the rhs of Eq. (23) will have

sinh−1 → sin−1, and τacc will be bounded due to the bound
on the range of function. Thus, for a >

ffiffiffiffiffiffijΛjp
, the proper

time of acceleration will have a bound as

τacc ≤
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − jΛj
p sinh−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − jΛj

jΛj

s �
≤

2ffiffiffiffiffiffijΛjp :

It is easy to verify that the upper bound here is consistent
with the fact that the maximum geodesic length in anti–
de Sitter spacetime is π=

ffiffiffiffiffiffijΛjp
[12].

Schwarzschild: In the case of Schwarzschild geometry,
the simplest scenario would be to consider motion in t–r
plane and take for the accelerated twin the one at rest at
r ¼ r0, θ, ϕ ¼ constant. The second twin can then be set on
the radial geodesic that goes out from r ¼ r0, turns around
and reaches back to r ¼ r0 to meet the static twin. Fixing
the values for r0 and the turning point, one can relate the
τgeod and τacc [13]. The Fig. 2 shows the comparison of this,
as given, for example, in [13], with the result we have
obtained. The deviations of our result from the exact one is
due to derivatives of the Riemann tensor, which our
formula does not capture. This is evident when the
accelerated observer is very near to the event horizon, rs ¼
2GM=c2 of the black hole, and the turning point of the
geodesic is very large. The derivatives of the Riemann
tensor will matter for such instances. For a stationary
observer at r ≫ r0, our result is closer to the exact relation.

B. Quantum probes—the Unruh-de Witt detector

In the case of Minkowski spacetime, the Unruh-Dewitt
detector is coupled to a real scalar field in the Minkowski
vacuum. The detector is accelerated and the transition
probability of the detector to detect particles in the
accelerated frame of the Minkowski vacuum is obtained.
This will give a Planckian spectrum. A broad discussion of
this can be found in Ref. [14]. For generalizing this a
curved spacetime, we consider the detector coupled to a
real scalar field ϕ in an arbitrary Hadamard state. The
Hadamard state in arbitrary curved spacetime is equivalent
to the Minkowski vacuum in the Minkowski spacetime.
Instead of considering the interaction from past infinity to
future infinity, the switching function [15] is used to limit
the interaction to take place for some finite time. The
interaction Hamiltonian for the detector is given by
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HintðτÞ ¼ cmðτÞχðτÞϕðxðτÞÞ, where τ is the proper time
along the accelerated trajectory, c is the coupling constant,
m is the detector’s monopole moment, and χðτÞ is the
switching function. Due to the presence of the switching
function, the interaction only takes place when χ is
positive definite. The joint system of detector being in
the ground state and particle in arbitrary Hadamard state is
given by, jHi ⊗ j0i. Then using the perturbation theory,
the probability of the detector in j1i is given by,
P ¼ c2jh0jmð0Þj1ij2F ðωÞ, where, ω is the difference in
energy between the states and F ðωÞ is the response
function given by

F ðωÞ¼
Z

∞

−∞
dτ

Z
∞

−∞
dτ00χðτÞχðτ00Þe−iωðτ−τ00ÞGþðτ00;τÞ; ð33Þ

whereGþ is the Wightmann two-point function of the field.
The straightforward way to account for the switching is to
use a window function and a simplest way of doing this is
choosing χðτÞ as

χðτÞ ¼ Θðτ − τ0ÞΘðτ0 − τÞ; ð34Þ

where τ0 is the proper time when the detector is switched on
and τ0 is the proper time when detector is read (at the base
point). Using this window function, the response function
becomes

F ðωÞ ¼
Z

τ0

τ0

dτ
Z

τ0

τ0

dτ00e−iωðτ−τ00ÞGþðτ00; τÞ: ð35Þ

Using the coordinate transformation u ¼ τ, s ¼ τ − τ00 for
τ00 < τ, u ¼ τ − τ00, s ¼ τ for τ < τ00 and the property of

Wightmann function Gþðτ; τ00Þ ¼ Gþ�ðτ00; τÞ, one can
obtain the response function as in Ref. [16],

F ðωÞ ¼ 2

Z
τ0

τ0

du
Z

u−τ0

0

dsRe½e−iωsGþðu; u − sÞ�: ð36Þ

The more physically significant quantity is the transition
rate, which defined as the time derivative of F ðωÞ given by

_F ðωÞ ¼ 2

Z
τ0−τ0

0

dsRe½e−iωsGþðτ0; τ0 − sÞ�: ð37Þ

The Wightmann two-point function for the Hadamard state
will be given by Gþðx; x0Þ ≔ hHjϕ̂ðxÞϕ̂ðx0ÞjHi, where x is
the coordinate position. The projection of this Wightmann
function along the accelerated trajectory Gþðτ; τ0Þ ¼
Gþðx; x0Þ, is taken to find the transition rate. The
Wightmann two-point function in a Hadamard state is
given by [17]

Gþðx; x0Þ ¼ 1

4π2

�
Δ1

2ðx; x0Þ
σ2ϵðx; x0Þ

þ vðx; x0Þ ln½σ2ϵðx; x0Þ�
�
; ð38Þ

where Δðx; x0Þ is the van Vleck determinant, ϵ is a small
positive parameter, σ2ϵðx; x0Þ is the Synge world function [7]
with iϵ prescription given as, σ2ϵðx; x0Þ ≔ σ2ðx; x0Þ þ
2iϵ½TðxÞ − Tðx0Þ�, where TðxÞ is increasing global time
function and vðx; x0Þ is the polynomial function of σ2ðx; x0Þ.
Thus, the pull back of the Wightmann function onto the

accelerated trajectory, which is the detector worldline,
requires the relation between the proper time τ on the
worldline and the squared geodesic distance σ2ðx; x0Þ

FIG. 2. Comparing the relation between the τacc and τgeod for static observer and radial geodesic observers in Schwarzschild
(rs ¼ 2GM=c2). The parameters involved are the radius of the static observer, r0, and the radius of the turning point for the geodesic
observer, rtp. Left plot is for r0 ¼ 1.2rs, rtp ¼ 0.5r0, and the right one for r0 ¼ 5rs, rtp ¼ 2r0.
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between the considered time interval. The effect due to the
form of window function and the regularization are dis-
cussed more in Refs. [15,16]. We will be focusing on the
effects due to curvature in σ2ðx; x0Þ. Using Eq. (14) and our
result,

Δ1
2ðx; x0Þ

σ2ðx; x0Þ ¼
−E nð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½M= sinM�p Þ1=2

4
	
sinh−1

h ffiffiffiffiffiffiffiffiffiffi
−E n
a2−E n

q
sinh

	 ffiffiffiffiffiffiffiffiffiffi
a2−E n

p
τacc

2


i

2

þRA þ terms depending on∇Rabcd: ð39Þ

The pole structure of the response function will not be
affected by Δð0; x̂Þ, since Δð0; x̂Þ ¼ 1þOðτ2accÞ. A com-
putation similar to the one for Rindler motion in
Minkowski spacetime then yields

_F ðω; τÞ ¼ ω

2π

�
exp

�
ℏω

½kBT�E n

�
− 1

�
−1

þ ðterms depending onRA;∇RabcdÞ; ð40Þ

with

½kBT�E n
¼ ℏ

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − E n

q
: ð41Þ

The above result is exact for (anti–)de-Sitter spacetimes,
with E n ¼ −Λ since σ2ðx; x0Þ is exact. In the last section,

we will elucidate the geometrical connection between our
result and the well-known derivations based on global
embeddings (GEMS). Note that the above thermal con-
tribution can also be understood directly in terms of the
identity τ2geod½τacc� ¼ τ2geod½τacc þ ð2πiÞq−1� satisfied by our
result to the leading order, ignoring RA. This immediately
implies the periodicity in Euclidean time of the two-point
function Gþðx; x0Þ (to this order), implying a temperature
kBT ¼ ℏq=2π [18–20].
Apart from (anti-)de Sitter spacetime, RA vanishes for

several other spacetimes of physical significance for
specific hyperbolic motion. Two relevant examples are
(1) Spherically symmetric spacetimes: For static ob-

serves in spherically symmetric spacetimes with
grr ¼ −g00 ¼ fðrÞ in standard coordinates
ðt; r; θ;ϕÞ, we have RA ¼ 0 and E n ¼ f00ðrÞ=2jp0

,
and the above result becomes

½kBT�E n
¼ ℏ

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −

f00ðrÞ
2

����
p0

s
þOð∇RabcdÞ: ð42Þ

(2) FLRW spacetimes: For hyperbolic motion in FLRW
universes (k ¼ 0) with a scale factor a1ðtÞ, once
again we have RA ¼ 0 and E n ¼ −ä1ðtÞ=a1ðtÞjp0

,

½kBT�E n
¼ ℏ

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ä1ðtÞ

a1ðtÞ
����
p0

s
þOð∇RabcdÞ: ð43Þ

There might be many more examples of hyperbolic
trajectories in well-known spacetimes for which RA ¼ 0
due to symmetry, in which case our result captures the full
Riemann tensor modification modulo any effects due to
derivatives of Riemann.
Let us also comment on the a → 0 limit of the final

result. For −E n > 0, this leaves a finite temperature
proportional to a0 ¼

ffiffiffiffiffiffiffiffiffi
−E n

p
, whose interpretation remains

unclear, since there is no natural choice for n when a ¼ 0.
Note, however, that the difference

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a20

p
− a0 has the

right limits; it goes as a2=2a0 for a ≪ a0, and as a for
a ≫ ja0j. It is not clear to us if this difference has any
physical relevance.
We end this section with a comment on a couple of

papers (Refs. [21]), which give a “prescription” to attribute
temperature to quantum field theories in curved spacetime
based on the structure of the two-point function.
Essentially, the curvature correction in this prescription
arises by Taylor expanding the van Vleck determinant in
the numerator of the two-point function to Oðτ2accÞ and
combining it with the pure acceleration term of the same
order in the denominator. The prescription then “reads off”
an effective temperature

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − Rabuaub þ w

p
, where w is

the contribution from the state dependent term in the two

FIG. 3. Comparing the relation between the τacc and τgeod for
different spacetimes. The values chosen are, r0 ¼ 2rs, rtp ¼ 2r0
for Schwarzschild and jΛj ¼ a2=2 for de Sitter and anti–de Sitter
where a is the magnitude of acceleration for Schwarzschild
observer.
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point function. This is clearly different from the temper-
ature that can be identified from the thermal part of the
detector response, although both yield the same result for
maximally symmetric spacetimes. In computing the detec-
tor response, it is clear that the van Vleck determinant does
not contribute at all to the coincidence limit poles of the
two-point function, neither does it contribute to the residues
(see also [15]). The only divergence(s) in Δðx; yÞ arise(s) at
the caustics, and these are infrared divergences.

VI. IMPLICATIONS AND DISCUSSION

Measurements and observations in the accelerated
frames are tools to understand some of the most subtle
aspects of classical and quantum physics such as the notion
of inertia, the Mach principle, and the equivalence prin-
ciple, the Unruh effect. The general rule of thumb, when
using the results derived in accelerated frames in
Minkowski spacetime to deduce aspects of gravitational
field, is the following: as long as a ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijRabcdj
p

, where
jRabcdj is typical magnitude of the curvature tensor, one
expects an accelerated frame of reference to mimic the
effects of a gravitational field to the lowest order. Even
though such a condition seems to make sense, it is too
stringent since one is ignoring the fact that acceleration ai

defines a spacelike direction, and hence, components of
Riemann tensor in the u ∧ n plane might lead to interesting
effects, and even nontrivial, effects. Very often, when one
talks about effects such as, say, the Unruh effect, in curved
spacetime, one often imagines the additional curvature
contribution coming because of modification to dynamical
equations, such as the d’Alembartian and hence,Gþðx; x0Þ.
To the best of our knowledge, the dependence on curvature
arising due to kinematical aspects of the trajectory is hardly
ever considered. In more precise terms, the curvature
dependence inherent in the relation,

σ2ðziðτÞ; ziðτ0ÞÞ → σ2ðτ0 − τ; RabcdÞ;

is hardly ever discussed. This dependence is independent of
the dynamical equations in the problem one is studying
and, as we have shown here, is crucial as it contributes in an
important, nontrivial manner to standard results. Another
way of proceeding with the computation would have been
to use identities associated with Synge’s world function
biscalar [7]; however, this method becomes cumbersome
beyond fourth order, and, at this order, one does not
encounter any curvature terms at all.
A hint towards the importance of such a kinematical term

comes from (anti–) de Sitter spacetime, wherein a temper-
ature of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ Λ

p
can be associated with hyperbolic motion

in a precise sense—an exact result with no restriction on
relation a and jΛj. In this paper, we have shown that an
analog of such a result holds in an arbitrary curved
spacetime. As illustrated in the paper, the geodesic inter-
val between two points on a hyperbolic curve can be

expressed as a series in which all the terms involving
components of Riemann tensor in the plane of motion,
E n ¼ Rabcduanbucnd, sum up exactly to an analytic func-
tion. Remarkably, this function depends on acceleration
only through the parameter q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − E n

p
. Being exact,

such a dependence eliminates any need for a restriction on
relative magnitudes of a and E n, thereby allowing one to
read off the interesting nonpertubative effects arising from
the combination.While one still does not have any handle on
off-the-plane components of Riemann and must therefore
assume them to be small compared to fa2;E ng, the analytic
dependence on E n already leads to insights which the Taylor
series itself would never have lead to.
Connection with GEMS: For (anti-)de Sitter spacetime,

our result is exact and reproduces the famous result by
Deser and Levin [20] for (anti–)de-Sitter spacetimes
considered as embedded submanifolds of a five-dimen-
sional flat spacetime (the so-called GEMS approach). We
here briefly highlight the mathematical connection between
these results. We start with the Gauss-Codazzi equation,

RABCDhAahBbh
C
c hDd ¼ Rabcd þ εðKadKbc − KacKbdÞ; ð44Þ

where, hAa is the projector, Kab is the extrinsic curvature,
ε ¼ �1, which depends on the magnitude of the unit
normal on the hypersurface, and the indices A;B;C;D
indicate the higher dimensional space. Since the embedding
is into a higher dimensional flat space(time), we have
RABCD ¼ 0, and hence,

Rabcd ¼ εðKacKbd − KadKbcÞ: ð45Þ

Moreover, for the standard embedding of (anti–)de Sitter
spacetimes inD ¼ 5, we have Kab ¼ −Kuugab with Kuu ≔
Kabuaub. This immediately implies Rabcduanbucnd ¼
−εK2

uu. Now, we use the following result from differential
geometry (see Ref. [22] for a pedagogical proof):

a25 ¼ a2 þ εK2
uu; ð46Þ

where, a5 is the acceleration of ua in 5 − d flat spacetime
and a is its acceleration in the 4 − d spacetime. The above
identities immediately yield

a25 ¼ a2 − Rabcduanbucnd ¼ q2; ð47Þ

thereby providing a connection with our result. A similar
analysis can be done for spherically symmetric spacetimes,
but then the embedding spacetime has dimension greater
than 5. For a six-dimensional embedding of Schwarzschild,
for instance, one would have to compute both the extrinsic
curvatures (corresponding to the two normals) to establish a
similar connection.
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We conclude with a few comments that we hope will be
relevant for future work:

1. In deriving our results, we have ignored the deriv-
atives of Riemann, but the method we have described
can be readily extended to incorporate these deriv-
atives. However, we do not expect any exact results to
arise out of such a study, norwill the result established
here be affected by these additional terms. Our
expressions are exact for (anti-)de Sitter spacetime
and provide a remarkably good fit to the known cases
of hyperbolic motion in Schwarzschild; Fig. 3 shows
the comparison for trajectories with same magnitude
of acceleration in different spacetimes.

2. It would be nice to apply our result to spherically
symmetric black hole solutions in particular and
check how the resultant temperature there is related
to the Hawking temperature. In this context, a couple
of remarks can be made. First, if we consider static
observers near a Killing horizon, then a diverges and
hence, dominates over E n. The temperature we have
obtained will then give the redshifted Hawking
temperature to leading order. Second, we know that
the Unruh effect relies crucially on Lorentz invari-
ance (LI). Reference [23] explicitly discusses this
issue by pointing out the nontrivial consequences
that may arise from violations of LI, by analyzing
atoms modeled as UD detectors. In this context, it is
worth noticing that the analytic function appearing
on the rhs of Eq. (29) represents the full contribution
of the boost invariant part of Riemann with respect to
boosts in the u ∧ n plane. To see this, note that the
boost weight zero components of Riemann are
R0n0n; R0nAB; RA½0n�B and RABCD. The last three do
not appear in the expression for τgeod for hyperbolic
motion. Hence, the contribution we have extracted is
also the purely boost invariant part of Riemann
tensor. It would nice to see if any further insights can
be gained from our result concerning detectors in the

background of a black hole emitting Hawking
radiation [24].

3. Our analysis brings into sharp focus the role of
absolute vs tidal acceleration in the response of
accelerated probes, and it therefore will hopefully
provide a first step towards quantifying the
qualitative picture often associated with vacuum
phenomenon such as Schwinger, Unruh, or Hawking
effects—that of peeling of trajectories caused by a
classical background field (electric or gravitational).

4. The analysis/results presented here can be generalized
in several directions. The most important generaliza-
tion would be to obtain a summed version for the
contributionofRA. Beyond this, onemight generalize
further by including derivatives of curvature aswell as
deviations from hyperbolic motion. However, we do
not expect any analytic results in such cases for
arbitrary trajectories and/or curvature. The case of
time dependent acceleration is nontrivial even in
Minkowski spacetime, with no closed form expres-
sions available. In our view, a much more insightful
procedure would be to use the method described in
this paper to generalize to curved spacetime, the
known cases of other stationary trajectories in Min-
kowski spacetime, in particular, the case of uniform
rotation. The conditions for hyperbolic motion will
now need to be modified to incorporate rotation.
Although this will complicate the computations, such
an extension might yield useful insights into behavior
of rotating detectors [25]. Any closed form expression
for this casewill surely also bring in information about
additional components of Riemann.
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