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A powerful technique to calculate gravitational radiation from binary systems involves a perturbative
expansion: if the masses of the two bodies are very different, the “small” body is treated as a point
particle of mass mp moving in the gravitational field generated by the large mass M, and one keeps only
linear terms in the small mass ratio mp=M. This technique usually yields finite answers, which are often
in good agreement with fully nonlinear numerical relativity results, even when extrapolated to nearly
comparable mass ratios. Here we study two situations in which the point-particle approximation yields a
divergent result: the instantaneous flux emitted by a small body as it orbits the light ring of a black hole,
and the total energy absorbed by the horizon when a small body plunges into a black hole. By integrating
the Teukolsky (or Zerilli/Regge-Wheeler) equations in the frequency and time domains we show that
both of these quantities diverge. We find that these divergences are an artifact of the point-particle
idealization, and are able to interpret and regularize this behavior by introducing a finite size for the point
particle. These divergences do not play a role in black-hole imaging, e.g., by the Event Horizon
Telescope.

DOI: 10.1103/PhysRevD.104.064031

I. INTRODUCTION

The problem of motion and radiation emission in general
relativity is notoriously difficult, and different perturbative
frameworks have been developed over the years to handle
it. In particular, when dealing with very asymmetric
compact binaries, a perturbative expansion around the
spacetime of the most massive body is generally applicable.
In this approach, the lighter object—typically, a neutron
star or a stellar-mass black hole (BH) moving around or
plunging into a supermassive BH—is modeled as a point-
like particle. This procedure was used extensively to study
the gravitational-wave (GW) emission from compact
objects around Schwarzschild and Kerr BHs (see e.g.,
[1–9]). This problem is interesting for a number of
applications, including the modeling of waveforms from
the inspiral or plunge of stellar-mass compact objects into
massive BHs. The latter are expected to have masses
ranging at least between 105 M⊙ and 109 M⊙ and be
present at the centers of most galaxies in the local

low-redshift Universe [10–14], including our own
Milky Way [15–18] and M87 [19]. These extreme mass
ratio binaries are expected to be a major class of GW
sources for the Laser Interferometer Space Antenna (LISA)
[20], a joint ESA-NASA spaceborne GW detector to be
launched in the next decade: see e.g., Ref. [21].
Technically, and at leading order in the mass ratio, the

plunging/inspiraling particle is assumed to be pointlike and
to follow a geodesic (see e.g., [8] and references therein for
a discussion). The radiated GW energy or fluxes at infinity
are normally found to be finite: to leading order they
depend only on the binary masses, and not on their internal
composition.
In this paper we wish to revisit and better understand two

noteworthy exceptions to this general property. They
concern the total GW energy radiated into the horizon
by a plunging particle [2], and the instantaneous GW
energy radiated into the horizon and at infinity by a
relativistic particle orbiting the light ring (i.e., the circular
photon orbit) [22–24]. These two exceptions have received
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little attention, partly because of the hope that higher orders
in perturbation theory might perhaps regularize the diver-
gences, but most of all for their perceived lack of obser-
vational significance. Indeed, the energy absorbed by
the horizon is expected to only have a subtle influence
on the inspiral of an orbiting body, thanks to its duality with
the notion of “tidal heating” of a BH [25]. Furthermore,
astrophysically relevant orbits for which these effects may
be observable become unstable at the spacetime’s inner-
most stable circular orbit (ISCO), long before reaching
the light ring. For these reasons, light-ring orbits are
usually considered of mostly academic interest (but see
Refs. [19,26–35] for the connection between these orbits,
BH dynamical relaxation, and BH shadows).
However, early papers on this topic did consider these

cases and noted their anomalous behavior. For example,
studies of GW emission from unstable timelike circular
orbits—including orbits approaching asymptotically the
circular photon orbit—produced striking results. In the
early 1970s, analytic work in the Wentzel-Kramers-
Brillouin (WKB) approximation suggested that (instanta-
neous) gravitational fluxes could become very large close
to the circular photon orbit, and that they should formally
diverge as that orbit is approached [22–24,36]. The
predicted divergence is logarithmic in the multipole num-
ber l of the perturbations (i.e., in the limit of large l, these
WKB results suggest that the contribution to the flux from
multipole number l scales with 1=l). The divergence may
be regularized by taking into account the finite size of the
photon wave packet, but it is nevertheless quite surprising.
Numerical results, again in the 1970s, confirmed the overall
conclusion that the fluxes become very large when the
photon orbit is approached, but seem to suggest a slightly
faster falloff with l (see Fig. 2 in Ref. [36]), which would
seem to make the fluxes at the photon orbit formally finite.
More recently, similar seemingly logarithmic divergences
have been found in the conservative gravitational self-
force [37].
Early work also found that the total energy crossing the

horizon when a small particle plunges into a Schwarzschild
BH diverges [2]. This is again a high-frequency, large-l
divergence, which could presumably be cured by truncating
the l sum to take into account the finite size of the
infalling body.
Here we revisit the problem of calculating the gravita-

tional fluxes from relativistic particles on circular orbits in a
BH spacetime, as well as the total energy radiated by a
particle plunging into the horizon of a BH. These are
theoretically interesting situations: the corresponding diver-
gences require some regularization mechanism that does
not seem to be needed in other similar processes. We will
indeed show that finite-size effects suffice to regularize
these quantities. Throughout this paper we use geometrical
units (G ¼ c ¼ 1).

II. THE NUMERICAL SETUP

A. The Teukolsky equation for relativistic sources

The Teukolsky master equation [38], describing the
perturbations induced by a particle of massmp ≪ M, reads

−
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where M is the mass of the BH, a ¼ J=M is its angular
momentum per unit mass, Δ ¼ r2 − 2Mrþ a2, and s is the
“spin weight” of the field. The s ¼ −2 version of this
equation describes the radiative degrees of freedom of the
gravitational field in the radiation zone, and is directly related
to the Weyl curvature scalar ψ4 by Ψ ¼ ðr − ia cos θÞ4ψ4.
The source term T of the Teukolsky equation (1) is

constructed by projecting the point-particle energy-
momentum tensor onto the Kinnersley tetrad. The
energy-momentum tensor of a point particle exhibits a
divergence at the light ring, but this divergence can be
factored out, as shown in Appendix A of Ref. [39]. This is
accomplished by simply rewriting the point-particle
energy-momentum tensor and the geodesic equation in
terms of the four-momentum per unit orbital energy, i.e.,
p̂μ ¼ pμ=E, which is always finite. In this way the
divergence is isolated in the energy term E alone (for
circular orbits), enabling a numerical study of the behavior
of the fluxes at the light ring in the zero-mass (i.e.,
photon) limit.

B. Time and frequency domain integrators

With the modifications of the source term described
above, Eq. (1) can be solved in either the frequency domain
or the time domain. The former is particularly convenient
for pointlike particles and bound orbits, while the latter is
better suited for extended objects and/or unbound orbits.
In the frequency domain, we follow the approach of

Refs. [40–42] and solve the Teukolsky equation by
separation of variables, i.e., by converting it into a pair
of ordinary differential equations for the radial and angular
eigenfunctions. The angular equation yields the s ¼ −2
spin-weighted spheroidal harmonics, which are used to
decompose the source term. The radial equation is then
solved by finding homogeneous solutions numerically, and
constructing the Green’s function out of their Wronskian.
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To solve the radial Teukolsky equation, we use two codes
that are based on the method developed byMano et al. [43].
One is GREMLIN, a C++ language code primarily developed
by Hughes and recently described in Ref. [44]. An open-
source version of this code, specialized to circular and
equatorial orbits (adequate for the purposes of this study) is
available through the Black Hole Perturbation Toolkit [45]
(hereafter “the Toolkit”). The other is a Teukolsky solver
written in Mathematica [46], also available through the
Toolkit [45].

GREMLIN is fast, but is mostly limited to double-precision
accuracy analyses. As such, we primarily use it in this study
to focus on multipoles with spheroidal harmonic index
l≲ 75. The Toolkit’sMathematica-based solver allows for
the use of arbitrary-precision arithmetic, extending the
range of multipoles we can to study to essentially arbitrary
order, though requiring far more computing time. Using
GREMLIN, computing all the multipolar contributions over
the range 2 ≤ l≲ 75, −l ≤ m ≤ l for several dozen orbits
from the light ring to the ISCO requires several hours on a
single CPU. By contrast, a single multipole for l∼ several
hundred may require several hours of computing time using
the Mathematica-based Teukolsky solver. As such, our
high-l data are much more sparsely sampled than our
low-l data.
In the time domain, we use an approach similar to that of

Refs. [7,47–49]. First, the Teukolsky equation is rewritten
using compactified hyperboloidal coordinates that allow for
GW extraction directly at null infinity, while also solving
the issue of unphysical reflections from the artificial
boundary of the finite computational grid. Next, we can
leverage the axisymmetry of the background Kerr space-
time to separate out the dependence on the ϕ coordinate,
thus obtaining a system of (2þ 1)-dimensional partial
differential equations (PDEs). This system is then recast
into first-order, hyperbolic PDE form to make it well suited
for stable numerical computations. A high-order, time-
explicit, weighted essentially nonoscillatory (WENO)
finite-difference numerical evolution scheme is imple-
mented in a high-performing, OpenCL/CUDA-based general
purpose computing on graphics processing units code
(GPGPU). Additional details may be found in
Refs. [7,47–49], although those refer to an obsolete
second-order, Lax-Wendroff numerical scheme. Details
on the high-order WENO implementation may be found
in Ref. [50]. Numerical errors from such computations are
typically well below 1% [49].

III. POINT-PARTICLE FLUXES

In this section, we compute the energy flux by a particle
in circular orbit at and near the light ring (Sec. III A), as
well as the energy absorbed at the horizon by a particle
plunging radially (Sec. III B). In both cases the particle is
modeled as a pointlike object of rest mass mp ≪ M.

A. Energy fluxes at the light ring

With the formalism outlined above, and in particular
with our frequency domain Teukolsky code, we can
compute GW emission from circular orbits (both timelike
and null) in the Kerr spacetime. To investigate whether the
fluxes from null circular orbits are large but formally finite
(as suggested by the numerical results in Fig. 2 of Ref. [36];
see however Ref. [3]) or diverge logarithmically (as
suggested by WKB calculations [22–24]), and to explore
how these fluxes compare to those from neighboring but
timelike orbits, we consider sequences of timelike circular
orbits approaching the light ring. As described in Sec. II B,
by combining output from GREMLIN with the Toolkit’s [45]
Mathematica-based solver, we densely sample data for
multipoles with l≲ 75, but can examine the contributions
at multipole orders up to l ∼ several hundred.
As an example, in Fig. 1 we show the fluxes emitted by a

particle on a circular orbit with r ¼ 3.001M in a
Schwarzschild spacetime. The energy flux (both ingoing
and outgoing) in modes of multipole number l, _El, is
normalized by the square of the particle’s Killing energy E
(i.e., the energy measured by an observer at spatial infinity)
and multiplied by l itself. Note that the rescaling of _Etot by
E2 is inspired by the known scaling _Etot ∝ m2

p that holds for
orbits with E ∼mp, and by the physical expectation that in
the ultrarelativistic limit E ≫ mp the rest mass of the
particle should be unimportant (in general relativity what
gravitates should be the energy and not the rest mass: see
e.g., Refs. [51–54]). The fluxes, after an initial “transient”
at very low l, are consistent with an initial falloff ∝ 1=l,
followed by an exponential cutoff.

FIG. 1. Instantaneous gravitational-energy fluxes _El in the
modes with multipole number l, for a point particle around a
Schwarzschild BH on a circular orbit of radius r ¼ 3.001M. We
show the gravitational energy flux both at infinity and at the
horizon. We normalize the results by the square of the Killing
energy E2.
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By analyzing the fluxes from a sequence of circular
timelike orbits approaching the light ring, at large l and
large γ2 ≪ l we find the following universal behavior:

_El ¼ c0
l
e−c1l=γ

2 E2

M2
; l=γ2 → ∞; ð2Þ

where γ ≡ E=mp is the particle’s relativistic boost factor.
For particles on circular orbits close to the light ring, with
r ¼ 3Mð1þ δÞ, we have δ−1 ∼ 9γ2. The scaling above,
with c0 ∼ 0.07� 0.01, applies both to fluxes into the
horizon and to fluxes at infinity, as long as δ ≪ 1. The
constant c1 ∼ 0.42� 0.02 in this limit. These constants
were obtained by fitting the numerical data with l ≲ 400 to
Eq. (2), and using only Lorentz factors γ ≲ 18. Note that a
WKB analysis predicts c1 ¼ π=6 ∼ 0.52 [22,55].
We can then use this asymptotic behavior to estimate the

total flux: we calculate numerically the fluxes up to the
maximum multipole treatable with our numerical setup,
and then use the expression above to estimate the remain-
der. Our results are summarized in Fig. 2, which shows the
instantaneous energy fluxes _Etot (summed over all multi-
pole numbers l and normalized by the square of the
particle’s Killing energy E) as functions of ln γ. Note the
apparent logarithmic divergence of both (rescaled) fluxes as
we approach the null circular orbit, which corresponds to
γ → ∞. Our results suggest that

_EtotM2

E2
∼ k0 þ k1 ln γ: ð3Þ

Here, k1 ¼ 0.12� 0.01 for both ingoing and outgoing
fluxes (again when δ ≪ 1, i.e., γ ≫ 1). A similar loga-
rithmic divergence in the fluxes was observed for plunging
orbits with arbitrary energy and angular momentum in a
Schwarzschild background when the critical angular
momentum corresponding to the light ring is approached
“from below” [56].
Let us now turn to null circular geodesics in a

Schwarzschild spacetime. For these orbits, unlike those
considered in Fig. 2, the sum over all multipole numbers l
does not appear to converge, and therefore we cannot
compute the total gravitational-energy flux (either at
infinity or at the horizon). The contribution _El of each
multipole number l seems to scale as _El ∝ 1=l for l ≫ 1.
This yields a logarithmically divergent _Etot, as suggested by
the analytic results of Refs. [22,23] (see also [3]).
To verify the existence of such a logarithmic divergence,

in the left panel of Fig. 3 we show the difference between
the ratio _El= _El−1 and the value [ðl − 1Þ=l] that would be
expected from a 1=l scaling. In the right panel of Fig. 3 we
show the difference between the ratio Δ ln _El=Δ lnl, with
Δ ln _El ≡ ln _Elþ1 − ln _El and Δ lnl≡ lnðlþ 1Þ − lnl,
and the value Δ ln _E=Δ lnl ¼ −1 that would be expected
from the same1=l scaling. Theseplots indicate that at largel
the fluxes do indeed approach the scaling _El ∝ 1=l pre-
dicted byWKB calculations [22–24], but this behavior is not
yet apparent at the multipole numbers l ∼ 50 considered in
Fig. 2 of Ref. [36], which are therefore not in disagreement
with our results and those in Refs. [22,23]. Our numerical
results at large l are well fitted by

_El ≈ κ
E2

M2l
; ð4Þ

with κ ≈ 0.064� 0.001. The scaling and proportionality
constant κ are the same for fluxes at infinity and at the
horizon. This aspect is consistent with the properties of
synchrotron radiation from relativistic particles. Radiation is
strongly forward beamed at large Lorentz factors. At the light
ring the absorption angle is precisely 50% [32,57], thus
giving rise to equal outgoing and ingoing fluxes.
Note also that the null geodesic result is consistent with

its timelike counterpart. In the large-γ limit, Eq. (2) implies
that the flux from relativistic timelike particles scales as
1=l. Reassuringly our numerical fits yield c0 ∼ κ, as they
should if there is a smooth limit between timelike and null
geodesics. We have extended this study to Kerr black holes
and we find the same qualitative features.

B. Energy absorbed by the horizon in head-on
encounters

We have seen above that both outgoing and ingoing
instantaneous fluxes at the light ring diverge for particles on

FIG. 2. Total instantaneous gravitational-energy fluxes _Etot of a
point particle around a Schwarzschild BH as a function of the
relativistic boost factor γ ≡ E=mp. We show the gravitational-
energy flux normalized by the square of the Killing energy E2,
both at infinity and at the horizon.
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circular orbits. Another interesting divergence reported in
the literature concerns radially infalling particles. Consider
a particle of energy E ¼ γmp plunging into a BH, which for
definiteness we take to be nonspinning (the overall quali-
tative conclusions are general). The energy spectra in
various multipoles per unit frequency bin and the total
integrated energy in each multipole l are shown for
different infalling energies γ in Figs. 4 and 5, respectively.
These spectra were computed with minor modifications of
the codes described in Refs. [58,59], and they refer
exclusively to the energy fluxes going into the horizon.
The radiation spectra peak at Mω ∼ l, and then they

decay as a power law. The energy spectra at large
frequencies are well fitted by

dEabs
l

dω
∼ a1γ2m2

pðMωÞ−a2 ; ð5Þ

with a1, a2 constants which are only weakly dependent on
the boost γ. We used the last 40 data points with higher
frequency to fit the data. For l ¼ 2, we find ða1; a2Þ ¼
ð0.166; 1.944Þ for an energy E ¼ 1.005 and ða1; a2Þ ¼
ð0.197; 2.008Þ for an energy E ¼ 100. In the Appendix we
develop a simple toy model which predicts a2 ¼ 2, in very
good agreement with our data.
We get the total integrated energy in each multipole

using the numerically computed values, complemented by
this extrapolation when necessary. The multipolar contri-
butions Eabs

l to the energy absorbed at the horizon obtained
in this way are shown in Fig. 5 (see [58,59] for the spectra
radiated at infinity, and Ref. [56] for a simple analytical
model and a comparison with ultrarelativistic simulations
of head-on collisions in the comparable-mass limit

[54,60,61], where accretion also plays an important role
[62]). The total integrated energy going into the horizon is
well described by expressions of the form

MEabs
l

E2
¼ κ0 þ κ1l−κ2 : ð6Þ

At low energies, κ2 ∼ 2. For example, for γ ∼ 1 we use the
last five points of our data to find κ0 ¼ 0.23, κ1 ¼ 0.99,
κ2 ¼ 1.97. These results are consistent with Ref. [2], where
the total energy per multipole for infalls from rest is found
to be roughly constant and well approximated by
∼0.25m2

p=M. For relativistic collisions, we find that
κ0 ∼ 0, κ1 ∼ 1.7, κ2 ∼ 1 at large l.
These results are very clear: κ0 ≠ 0 and the total energy

(summed over all multipoles with different values of l)
diverges. We have studied also infalls in higher-dimen-
sional spacetimes [58,63,64] (in particular spacetime
dimensions D ¼ 4;…; 11), in spacetimes with different
asymptotics (in particular three-dimensional asymptotically
anti–de Sitter BH spacetimes), and emission in different
channels (most notably scalar radiation). While the quali-
tative behavior of the frequency spectrum and the multi-
polar content of the radiation vary, we consistently find that
the total energy going into the BH horizon diverges in all of
these cases. For the particular scenario of head-on infalls of
point particles with higher-dimensional nonspinning BHs
[58,63,64], for example, the divergence is even more
pronounced for larger dimensionality. We find a behavior
similar to Eq. (6), but with κ2 < 0. For spacetime
dimension D ¼ 6, 7, for example, our results indicate
κ2 ∼ −1.4;−2.2, thus decreasing very fast with D.

FIG. 3. Scaling of the GW fluxes emitted by a (massless) particle at the circular null orbit of a Schwarzschild BH, as a function of the
multipole number l. The contribution of a given multipole number is denoted by _El, while Δ ln _El ≡ ln _Elþ1 − ln _El and
Δ ln l≡ lnðlþ 1Þ − lnl. Both panels show that in the limit l → ∞, _El approaches a 1=l scaling, and therefore that the total
instantaneous fluxes are logarithmically divergent.
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IV. THE ROLE OF REGULARIZATION

The divergence of the total radiation going into the
horizon was already observed in Ref. [2]. Davis et al.
intepreted the divergence as a consequence of the pointlike
nature of the infalling object, which introduces high
frequencies in the problem, and proposed to cure it by
introducing a cutoff in the angular momentum expansion
lcrit ∼ πM=L, where L is the size of the particle: for
example, L ∼ 2mp if the infalling particle is a BH.
The above procedure is somewhat ad hoc, and the

cutoff needs to be properly justified. Below, we regularize
the total fluxes by assuming that the orbiting object
is a collection of “dustlike” particles, each of them
pointlike. Such a procedure introduces explicitly a finite
size for the orbiting objects, while keeping the calcula-
tion free of assumptions and mathematically correct
at all stages. This regularization procedure leads to finite
fluxes, providing further support to the argument that

FIG. 4. Energy spectrum of gravitational radiation absorbed by a BH, in a given multipole l, as a function of lwhen a particle plunges
with Lorentz factor γ ¼ 1.005, 1.5, 3, 100.

FIG. 5. Energy El absorbed by the BH in a given multipole l,
as a function of l for particle energies E ¼ 1.005 (red), E ¼ 1.5
(green), E ¼ 3 (blue), E ¼ 100 (magenta).
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the pointlike nature of the objects is indeed the cause of
the divergence.

A. Circular motion

For a single point particle in circular motion, the gauge-
invariant metric fluctuations depend on the point-particle
mass as follows (see e.g., [3]):

hþ þ ih× ¼ mpe−iωðt−r�ÞþimϕSlmðθÞZlmðωÞ: ð7Þ

Consider now N pointlike particles, each of energy E=N,
distributed in the azimuthal direction over an arc of length
L at radius r0. In other words, the particles are located at
r ¼ r0, ϕ ¼ ϕj, where

ϕj ¼ Ωtþ δj; ð8Þ

δj ¼
L
r0

j − 1

N
: ð9Þ

We assume in addition that these are noninteracting “dust”
particles, and since they are all located along the equator,
they follow similar geodesics. In our perturbative frame-
work the equations are linear, so the single-particle wave
functions add linearly. Given that the response due to each
particle is dephased in the angle ϕ by δj, we find that the
total flux

_Etot ¼
X
lm

_E1jfðm;NÞj2; ð10Þ

where _E1 is the ðl; mÞ component of the energy flux from a
single pointlike particle of the same total mass energy E,
and

fðm;NÞ ¼
XN
j¼1

eimδj

N
: ð11Þ

In the large-N limit we have

jfðm;∞Þj2 ¼ 2ð1 − cos ηÞ=η2; η≡ 2πmL=r0: ð12Þ

These results are consistent with previous findings
[4,65,66]. At small η, jfj2 ¼ 1, the energy in the lowest
multipoles is thus the same as that for a point particle.
However, at large values of m we have f ∼ 1=m2. This is
enough to cure all divergences. The transition occurs at
η ∼ 1, in rough agreement with our initial remarks.
The flux for a single point particle at the light ring

behaves as dElm=dt ∼ 1=m at large l ¼ m. This analysis
(which is exact, within a frequency domain approach) also
predicts that, for an extended particle along the azimuth, the
flux scales like ∼1=m3, yielding a finite total energy flux.
These predictions are in very good agreement with

numerical integrations of the Teukolsky equation with an
extended source term in the time domain. In Fig. 6 we show
the total flux for each l ¼ m mode for a particle of finite
size along the azimuthal direction. The particle was made
finite by allowing for the source term to be nonzero over a
range of ϕ values. We show results for extended sources of
two different angular sizes, of 20° and 40°, respectively.
The exact analysis based on a collection of pointlike dust
particles predicts an oscillatory flux with period∝ 1=L, and
an envelope decaying as 1=m3. Both features are clear in
our numerical results. The divergence is indeed caused by
high-frequency contributions which cancel out when super-
posing the signal from several point-particle sources with
ω≳ 1=L through interference effects, leading to a regu-
larized total flux.
This frequency cutoff can be converted into a cutoff for

the multipole number l: lmax ≈ π=Δθ, where Δθ ∼
L=ð2πrÞ and r is the orbital radius. To understand the
orders of magnitude involved, let us consider the radiation
from M87* observed by the Event Horizon Telescope [19].
These waves have wavelength L ∼mm, they are strongly
lensed by the BH geometry, and at least some of them have
orbited the light ring multiple times. Since the light-ring
radius r ¼ 3M (we assume a nonspinning BH for simplic-
ity), this yields an enormous cutoff multipole number for
M87*, lmax ∼ 1018. Nevertheless, summing up the GW
fluxes plotted in Fig. 2 up to lmax, we still find that the
fractional change of energy of a microwave photon at the
light ring only amounts to ∼10−78 per cycle.

FIG. 6. Dependence of l ¼ m fluxes at null infinity as a
function of the azimuthal mode number m from photons of
varying sizes at the light ring of a Schwarzschild BH. For
reference, we also overplot a straight line ∝ 1=m3. The oscillatory
lines shows the fluxes in the dominant l ¼ m mode, when the
particle is given a finite size in the azimuthal direction ϕ. As
expected from the superposition analysis leading to Eq. (10), the
flux has an oscillatory pattern of period inversely proportional to
the size of the particle, and it decreases in amplitude as ∼1=m3.
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B. Head-on encounters

We can follow a similar strategy to regularize the total
radiated energy going down the horizon for radial infalls.
Analytical tools developed to understand radiation sup-
pression at infinity for extended bodies [4,65–67] can be
used here as well. Consider first, for simplicity, a body
extended along the radial direction [67]. The normalized
(Zerilli or Teukolsky) wave function of a pointlike particle
falling radially into a BH is Ψ1ðt; rÞ, or Ψ̃1ðω; rÞ in the
frequency domain, where by “normalized” we mean that
the total field Ψðt; rÞ ¼ mpΨ1ðt; rÞ. Let us suppose that we
now drop two such particles, each of massmp=2, which are
separated by L at large distances. Then we have

Ψðt; rÞ ¼ mp

2
½Ψ1ðt; rÞ þ Ψ1ðt − L; rÞ�; ð13Þ

with Fourier transform

Ψ̃ðω; rÞ ¼ mp

2
½Ψ̃1ðω; rÞ þ eiωLΨ̃1ðw; rÞ�: ð14Þ

The generalization to N such bodies, each separated by
L=N and with a total spatial extent of L, is trivial:

Ψðt; rÞ ¼
XN−1

j¼0

mp

N
Ψ1

�
t −

jL
N − 1

; r

�
; ð15Þ

Ψ̃ðω; rÞ ¼
XN−1

j¼0

mp

N
ei

ωL
N−1jΨ̃1ðω; rÞ: ð16Þ

WhenN → ∞ the summation can be done analytically with
the result

Ψ̃ðω; rÞ ¼ −1þ eiωL

iωL
Ψ̃1ðω; rÞ; ð17Þ

and the energy spectrum reads

dE
dω

¼ gðωÞ dE1

dω
; ð18Þ

gðωÞ ¼ 2 − 2 cosωL
ω2L2

: ð19Þ

As before, at small frequencies (ω ∼ 0) we have gðωÞ ∼ 1.
However, at large frequencies (which is also equivalent to
large l, see the discussion around Fig. 4) one gets
g ∼ 1=ω2. Thus the divergence is regularized, and the
procedure is equivalent to introducing a cutoff frequency
ω ∼ 1=L, which is equivalent to a cutoff multipolar index
lcrit ∼M=L, as argued on heuristic grounds in Ref. [2].
Using this regularization scheme for small particles, with

lcrit ∼M=ð2mpÞ ≫ 1, we find that an infall from rest
absorbs

Eabs

mp
∼
mp

M
ð2.8þ 0.23lcutÞ ∼ 0.1mp: ð20Þ

Thus the absorbed energy is of the order of 10% of the rest
mass of the infalling particle.
For relativistic collisions of point particles we find

Eabs ∼
E2

M
ð2.7þ loglcutÞ; ð21Þ

hence the absorbed energy is now a small fraction of the
energy of the incident point particle.
For nearly equal-mass collisions—which require

extrapolation of our results—we can use only the l ¼ 2
mode. This cutoff is consistent with both the above
suggestion and numerical simulations for the total radiated
energy at infinity. For low-energy infalls, the energy of the
small particle, E, can be promoted to the reduced mass of
the system, while the BHmass is promoted to the total mass
[68–70]. We then find a total absorbed energy of the order
of 2% the total mass of the system.

V. CONCLUSIONS

For most applications in GW physics, point-particle
approximations have served us well. The results are
convergent, and radiation at infinity is dominated by
wavelengths comparable to the size of the system. When
extrapolated to equal-mass processes the results are, in
addition, surprisingly accurate [56,71–73].
However, this approach fails in two circumstances at

least. One is in the calculation of radiation from a null
particle on the (unstable) null geodesic. The radiation has a
contribution from arbitrarily large frequencies and it
formally diverges. The divergence is “mild” when
expressed in multipolar components. We have shown that
this divergence can be cured by assigning a finite size to the
null particle, leading to finite radiation fluxes, and to equal
fluxes at the horizon and infinity. As a side result, we have
also shown that the backreaction on null geodesics is never
significant enough to affect any of the physics related to the
light ring (for example in the context of the Event Horizon
Telescope).
The second circumstance where the point-particle

approach fails is in the calculation of radiation going down
the hole, say, during the collision of two BHs. A multipolar
decomposition of the radiation implies that the gravitational
waves going down the BH carry an important (in fact
divergent) component of the energy in high-frequency
waves. This is surprising in light of the fact that the burst
at infinity is dominated by waves of frequency ω ∼M and
by the lowest multipoles. We do not have an elegant
interpretation for such a divergence/convergence duality,
but we note that the divergent energy at the horizon is
naturally cured by introducing finite-size effects for the
infalling particle. In other words, our calculations show that
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the point-particle divergences are always “soft” enough that
they are easily cured with finite-size effects.
The problem of motion in general relativity seems to

satisfy an “effacement principle” (see e.g., [74]), in the
sense that the physics is never too sensitive to small scales.
It seems after all that this property fails to apply in the two
examples we discussed: small scale structure and the
composition of the two bodies is important to determine
the leading-order radiation effects. A broader understand-
ing of this aspect would certainly merit consideration.
These examples all involve particles traveling at or
approaching the speed of light. Relativistic beaming thus
seems to be responsible for the ensuing divergences,
although we do not have a formal generic proof.
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APPENDIX: A MODEL PROBLEM: SCALAR
EMISSION FROM A PLUNGING PARTICLE

We are interested in understanding the features of
gravitational radiation going into the BH horizon as a
point particle plunges in. Let us consider for simplicity
scalar particles. At first order in perturbation theory, the
field equations for the scalar field reduce to

½□ − μ2s �φ ¼ αT ; ðA1Þ

where μs is the scalar field mass, which we will take to be
zero, and α the (scalar) charge of the infalling particle.
Since we are describing a point particle, we focus on source
terms of the form

T ¼
Z

dτ̄ffiffiffiffiffiffiffiffiffiffi
−ḡð0Þ

p mpδ
ð4Þðx − Xðτ̄ÞÞ; ðA2Þ

corresponding to the trace of the stress-energy tensor of a
point particle with mass mp, where ḡð0Þ is the determinant
of the background metric. In scalar-tensor theories, for
example, α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π=ð2þ ωBDÞ
p ðs − 1=2Þ, where ωBD is the

Brans-Dicke (BD) parameter and s is an object-dependent
“sensitivity” factor.
Because of the coupling to matter, the object emits both

gravitational and scalar radiation. Here we focus on scalar
wave emission. We will also focus on Schwarzschild
backgrounds, although our results are easily generalized.
Consider a particle falling along the axis of a
Schwarzschild BH, and decompose the scalar field as

φðt; r; θÞ ¼
X
l

Z
dωe−iωt

Xlðω; rÞ
r

ffiffiffiffiffiffi
2π

p Yl0ðθÞ; ðA3Þ

where Yl0 are scalar spherical harmonics. We get the
inhomogeneous equation for the scalar field

�
d2

dr2�
þ ω2 − V

�
XlωðrÞ ¼ fTlω; ðA4Þ

where dr=dr� ¼ f ≡ 1–2M=r,

Tlω ¼ −
αmpffiffiffiffiffiffi
2π

p
r
Y�
00ð0ÞeiωTðrÞðdr=dτÞ−1; ðA5Þ

V ¼ f

�
lðlþ 1Þ

r2
þ 2M

r3

�
: ðA6Þ

For a particle falling straight in, geodesic motion requires
that

dT
dr

¼ −
E

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − f

p ;
dT
dτ

¼ E
f
; ðA7Þ

where E is a conserved energy parameter. Let us consider
two independent solutions Xrþ

lω and X∞
lω to the homo-

geneous equation satisfying the following boundary
conditions:

X∞;rþ
lω ∼ e�iωr� as r� → �∞; ðA8Þ
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and let W be their Wronskian. The spectrum of scalar
energy at the horizon and at infinity reads

dEs
rþ;∞

dω
¼ ω2jZrþ;∞j2; ðA9Þ

Zrþ;∞
lω ≡

Z
∞

rþ

TlωX
rþ;∞
lω

W
: ðA10Þ

To summarize, the energy spectrum is determined in two
steps: one first finds a solution of the homogeneous
ordinary differential equation (ODE) and then integrates
it over the source term. In the high-frequency regime, the
first step becomes trivial. The ODE is just a harmonic
oscillator and X∞;rþ

lω ¼ e�iωr� . The Wronskian is then
W ¼ 2iω. Thus, the only thing now left to do is to perform
the integral

Z
∞

rþ

ðdr=dτÞ−1
r

eiωðTðrÞ�r�Þ

2iω
dr: ðA11Þ

The integral, and therefore the spectrum, is highly depen-
dent on the asymptotic properties of the phase of the
exponential: TðrÞ − r� goes to a constant at the horizon,
whereas TðrÞ þ r� diverges there. As such one expects that
the integral averages out more rapidly at higher frequencies
when computing fluxes at infinity. In other words, one
expects that the high frequency falloff of fluxes at infinity is
faster than for fluxes at the horizon.
To see this, let us approximate the integrand. The

coordinate r� ¼ rþ 2M logðr − 2MÞ, and we approximate

TðrÞ ≃ r − 2M logðr − 2MÞ while keeping dr=dτ ¼ const.
Notice that asymptotically T → ∞ at both the horizon and
infinity, but this is not a problem, as one can always
redefine a new time coordinate and split the integration
interval into two. In any case one gets the exact expressions

Z
∞

rþ

eiωðTðrÞ−r�Þ

r
dr ¼ Γð0;−4iMωÞ ∼ ð−4iMωÞ−1e4iMω;

Z
∞

rþ

eiωðTðrÞþr�Þ

r
dr ¼ −ið2MÞ−4IMωπcosechð4πMωÞ

∼ e−4πMω:

This simple exercise predicts that the spectrum of energy
going into the hole decays as 1=ω2, a result which can also
be obtained rigorously with an integration by parts [75]. As
we mentioned in the main text, our numerical results are in
very good agreement with this expected behavior.
This analysis also predicts that the flux at infinity scales

like e−8πMω, a prediction which has been obtained by Zerilli
with a steepest-descent analysis [76]. If we fit our data for the
spectrum at infinity to an exponential decay ∼e−a3ω, we find
for l ¼ 2 that a3 ¼ ð26.51; 28.42Þ for E ¼ 1.005, 100,
respectively, still in good agreement with the 8π prediction.
Our results for higher-dimensional spacetimes can be inter-
preted with the same toy model with f ¼ 1 − rD−3

H =rD−3,
where rH is the horizon radius in Schwarzschild-like
coordinates and D the spacetime dimension. The absorbed
radiation spectrum still scales likeω−2 at large frequencies in
both this toy model and our numerical results.
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