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We analyze the field equations for the perfect fluid solutions admitting a group G3 of isometries acting
on orbits S2 whose curvature has a gradient that is tangent to the fluid flow (T-models). We propose several
methods to integrate the field equations and we present the general solution without the need to calculate
any integral.
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I. INTRODUCTION

A perfect fluid solution admitting a three-dimensional
group G3 of isometries acting on spacelike two-
dimensional orbits S2 has a metric line element that, in
comoving-synchronous coordinates, takes the form [1]:

ds2 ¼ −e2νdt2 þ e2λdr2 þ Y2C2ðdx2 þ dy2Þ; ð1aÞ

ν ¼ νðr; tÞ; λ ¼ λðr; tÞ; Y ¼ Yðr; tÞ; ð1bÞ

C ¼ Cðx; yÞ≡
�
1þ k

4
ðx2 þ y2Þ

�
−1
; k ¼ 0;�1; ð1cÞ

where the value of k distinguishes the plane, spherical and
hyperbolic symmetries. Moreover, the metric functions
(1b) are submitted to two second order differential equa-
tions as a consequence of the perfect fluid conditions,
namely, Gr

r ¼ Gx
x and Gt

r ¼ 0.
When the curvature of the orbits S2 has a gradient that is

tangent to the fluid flow, that is, when Y ¼ YðtÞ, one says
that the solution is a T-model. The notions of T-region and
R-region were introduced for the spherically symmetric
case by Novikov [2] who also discussed the solutions that
are T-regions globally [3] (see also [4]).
Ruban [5] showed that the spherically symmetric perfect

fluid T-models have geodesic motion (see also [6]), a result
that can be extended to the plane and hyperbolic sym-
metries (see, for example, [7]). Thus, the T-models are the
perfect fluid solutions whose metric has the form (I), with
ν ¼ νðtÞ and Y ¼ YðtÞ.
The spherical dust T-model was first considered by Datt

[8], and the dust solution with cosmological constant was
widely analyzed later by Ruban, who showed that this
solution has no Newtonian analog [5,9]. The perfect fluid

T-models with a nonconstant pressure were examined by
Korkina and Martinenko [10] and Ruban [11], while Herlt
[12] proposed an algorithm to obtain new solutions in this
family (see also [1]). The spatially homogenous limit of the
T-models (λ ¼ λðtÞ) were considered by Kompanneets and
Chernov [13] and were later studied by Kantowski and
Sachs [14] for a dust source (see [6] for more references).
Understanding the physical meaning of the T-models is

still an open problem. To take a small step toward this goal
we have recently proposed a thermodynamic interpretation
of these solutions [15]. In this reference we have obtained
the thermodynamic schemes associated with a specific
T-model, and we have determined the solutions that can
model a generic ideal gas. On the other hand, we have
generalized and analyzed from a thermodynamic point of
view the McVittie-Wiltshire-Herlt solution. This T-model
can be obtained by applying the Herlt algorithm to
the homogeneous T-model presented by McVittie and
Wiltshire [16].
In any case, there are very few T-models for which we

know the explicit analytic expression of the metric func-
tions, and it would be suitable to know more solutions for a
better understanding of the physical and geometric proper-
ties of the T-models.
In this paper we analyze the field equations for the

T-models, we revisit the Herlt integration algorithm, and
we propose new ones that provide the general solution
without making any indefinite integral.
In Sec. II, we revisit the perfect fluid field equations for

the T-models and we point out that the space of solutions is
controlled by two arbitrary real functions, one depending on
the time-coordinate t and another depending on the spatial
coordinate r. We also give the expression of the energy
density ρ, the pressure p and the expansion θ in terms of the
metric functions. In Sec. II Awe comment about our results
on the thermodynamics of a T-model solution [15], and we
give the function of state cs ¼ χðρ; pÞ that provides the
square of the speed of sound in terms of the energy density
and the pressure. In Sec. II B we summarize briefly the ideal
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T-models analyzed in [15], which are compatible with the
ideal gas equation of state. Some new solutions are presented
in Sec. II C.
In Sec. III we analyze the Herlt algorithm and we show

that implementing the algorithm to calculate the solution
requires the realization of two indefinite integrals. We also
propose another integration algorithm to obtain the solution
by quadratures. As in the Herlt algorithm, obtaining an
indefinite integral detects a homogeneous solution, and
obtaining another integral determines a nonhomogeneous
T-model.
In Sec. IV we obtain the general solution in the case of

plane symmetry (k ¼ 0). We determine the metric line
element, and the hydrodynamic quantities ρ, p and χðρ; pÞ,
in terms of two arbitrary real functions fφðtÞ; QðrÞg.
Moreover, we recover previously known solutions, and
we obtain new ones.
In Sec. V we redefine the metric functions in such a way

that the field equations become algebraic in one of the
unknown functions. This fact allows us to obtain the general
solution for spherical and hyperbolic symmetries (k ≠ 0).
We provide two different algorithms to determine the
solution in terms of an arbitrary function QðrÞ of the spatial
coordinate r and an arbitrary function of t.
Finally, in Sec. VI we comment on the results obtained

here and we explain how our results also apply for the
homogeneous T-models and for their generalization with-
out symmetries.

II. FIELD EQUATIONS FOR THE T-MODELS

In [15] we have shown that the field equations for the
T-models can be written as a second order differential
equation which is linear for a specific choice of the metric
functions. Indeed, if we make eλ ¼ ωðt; rÞ > 0, e−2ν ¼
vðtÞ > 0 and Y2 ¼ φðtÞ > 0, then the metric line element
(I) becomes

ds2 ¼ −
1

vðtÞ dt
2 þ ω2ðt; rÞdr2 þ φðtÞC2ðdx2 þ dy2Þ; ð2Þ

where C is given in (1c). Now, the perfect fluid field
equation Gt

r ¼ 0 identically holds, and Gr
r ¼ Gx

x holds if,
and only if, the metric functions vðtÞ, ωðt; rÞ, and φðtÞ
meet the differential equation

2vφω̈þ ð_vφþ v _φÞ _ω −
�
vφ̈þ 1

2
_v _φþ2k

�
ω ¼ 0; ð3Þ

where a dot denotes derivative with respect to the time
coordinate t.
The unit velocity of the fluid u ¼ ffiffiffi

v
p ∂t is geodesic and

its expansion is

θ ¼ ffiffiffi
v

p �
_φ

φ
þ _ω

ω

�
¼ ffiffiffi

v
p ∂t½lnðφωÞ�: ð4Þ

And the pressure p and the energy density ρ are then
given by

p ¼ v

�
1

4

_φ2

φ2
−
φ̈

φ
−
1

2

_φ

φ

_v
v

�
−
k
φ
; ð5Þ

ρ ¼ v

�
1

4

_φ2

φ2
þ _φ

φ

_ω

ω

�
þ k
φ
: ð6Þ

The known T-models have usually been obtained by
considering the functions vðtÞ, ωðt; rÞ, and YðtÞ as
unknown metric functions. The field equations are linear
in the functions vðtÞ and ωðt; rÞ, and this fact plays an
important role in the integration process. Note that our
choice of the metric function φ ¼ Y2 as an unknown of the
field equations, leads us to Eq. (3), which is also a linear
equation for φ. Thus, this equation is linear for the three
involved metric functions, a significant quality that will
help us in our approach.
The spatially homogeneous limit of the T-models are the

Kompanneets-Chernov-Kantowski-Sachs (KCKS) metrics
[13,14]. In fact, from the expressions of the expansion (4)
and the energy density (6), we obtain the following four
equivalent conditions that characterize these solutions:

(i) The metric function ωðt; rÞ factorizes. And then, one
can take the coordinate r so that ω0 ¼ ∂rω ¼ 0, that
is, ω ¼ ωðtÞ.

(ii) The spacetime is spatially homogeneous. And
then, it admits a group G4 of isometries acting on
orbits S3.

(iii) The energy density is homogeneous, ρ ¼ ρðtÞ. And
then, the fluid has a barotropic evolution.

(iv) The fluid expansion is homogeneous, θ ¼ θðtÞ.
Note that (3) is a homogeneous linear second order

differential equation for the function ωðt; rÞwhen vðtÞ and
φðtÞ are given. Then, we can choose the coordinate r so
that [15]

ωðt; rÞ ¼ ω1ðtÞ þ ω2ðtÞQðrÞ; ð7Þ

where QðrÞ is an arbitrary real function, and ωiðtÞ being
two particular solutions to the Eq. (3).
The spacetime metric does not change with a redefinition

of the time coordinate, t ¼ tðTÞ. Every choice of t can be
realized by imposing a constraint on the time-dependent
functions vðtÞ, φðtÞ and ωiðtÞ. This coordinate condition,
and Eq. (3) imposed on each of the functions ωi, constitute
a set of three constraints for the four metric functions
fφðtÞ;ωiðtÞ; vðtÞg. Consequently, the space of solutions
depends on an arbitrary real function depending on time,
and another real function, QðrÞ, depending on r.
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It is quite usual in literature (see, for example, [1,6]) to
choose the time coordinate such that t ¼ Y ¼ ffiffiffi

φ
p

. Then,
the functions ωiðtÞ are determined by Eq. (3) if we give the
function vðtÞ. In this case, the space of solutions is
controlled by the functions fvðtÞ; QðrÞg.
Alternatively, we can give as input one of the functions

ωi, say ω2, and then Eq. (3) becomes a first order linear
differential equation for the function vðtÞ; once this
equation is solved, we can proceed to determine ω1 by
once again using (3) with the vðtÞ previously obtained. This
procedure by Herlt [12] shows that the field equation can be
solved by quadratures, and the space of solutions is
controlled by the functions fω2ðtÞ; QðrÞg.
In our recent thermodynamic approach to the T-models

[15] we have taken as time coordinate the proper time τ of
the Lagrangian observer associated with the fluid. This
means that vðτÞ ¼ 1, and then, for every choice of the
function φðτÞ, Eq. (3) determines two particular solutions
ωiðτÞ. Thus, with this choice, the space of solutions is
controlled by the functions fφðτÞ; QðrÞg.

A. Thermodynamics of the T-models

When does a perfect fluid solution represent the evolu-
tion in local thermal equilibrium of a realistic perfect fluid?
What are its thermodynamic properties? A precise theo-
retical framework in which to answer these questions has
been developed in [17–19], and it has been applied to
analyze some families of perfect fluid solutions [20–23].
The indicatrix function of the local thermal equilibrium,
χ ¼ uðpÞ=uðρÞ, plays a central role in our procedure (for a
function fðxαÞ, uðfÞ ¼ uα∂αf). When χ is a function of
state, χ ¼ χðρ; pÞ, it physically represents the square of the
speed of sound in the fluid, χðρ; pÞ≡ c2s [22].
Recently we have carried out this thermodynamic

approach to the T-models [15], and we have obtained
the general expression of the indicatrix function when
vðτÞ ¼ 1. Without this choice of the time coordinate, a
similar calculation leads to

c2s ¼
uðpÞ
uðρÞ ¼ χðρ; pÞ≡ 1

AðpÞρ2 þ BðpÞρþ CðpÞ ; ð8Þ

where A, B, and C are the functions of t [and then of p
through (5)] given by

AðpÞ≡−
1

vb _p
; BðpÞ≡AðpþqÞ; CðpÞ≡Apq; ð9aÞ

bðtÞ≡ _φ

φ
; q≡ 3

4
vb2 −

k
φ
: ð9bÞ

The indicatrix function collects all the thermodynamic
properties that can be established using only hydrodynamic
variables fu; ρ; pg, that is, those that are determined by
and, in turn, constraint the gravitational field [18,19,22]. A

specific thermodynamic perfect fluid solution can be
furnished with a family (depending on two real functions)
of thermodynamic schemes that complete the thermody-
namic properties and afford different interpretations of the
solution [18]. Each thermodynamic scheme provides a set
of thermodynamic quantities, fn; s;Θ; ϵg (mass density,
specific entropy, temperature, specific internal energy),
constrained by the common thermodynamic laws. In
[15] we have also obtained all the thermodynamic schemes
that can be associated with a given T-model.

B. The ideal T-models

The determination and subsequent study of the solutions
with a specific thermodynamic behavior is a subject to be
considered in the thermodynamic analyses of a family of
perfect fluid solutions.
In [15] we have obtained the T-models that are com-

patible with the equation of state of a generic ideal gas,
p ¼ k̃nΘ, that is, those compatible with the ideal sonic
condition χ ¼ χðπÞ ≠ 1, π ≡ p=ρ [18]. These solutions
have, necessarily, plane symmetry k ¼ 0 and, with the
choice vðτÞ ¼ 1, the metric functions φðτÞ and ωðτÞ take
the expressions

φðτÞ ¼ jτj 43γ; ωðτÞ ¼
ffiffiffiffiffiffiffiffiffi
φðτÞ

p
½αðτÞ þQðrÞ�; ð10aÞ

αðτÞ ¼
� jτj1−2

γ ; if γ ≠ 2

ln jτj; if γ ¼ 2:
ð10bÞ

It is worth remarking that the above ideal T-models
fulfill the macroscopic necessary constraints for physical
reality (energy conditions, compressibility conditions, pos-
itivity of some thermodynamic quantities) in wide space-
time domains [15].

C. Some new solutions with k ≠ 0

When vðτÞ ¼ 1, the field equation (3) becomes

2φω̈þ _φ _ω−ðφ̈þ 2kÞω ¼ 0: ð11Þ

If we consider the case γ ¼ 4=3 in the family of the
ideal T-models quoted in the above subsection, we have
φ̈ ¼ 0 and 2φω̈þ _φ _ω ¼ 0. We can extend this solution
to nonplane symmetry, k ¼ �1, by imposing on ωðτÞ
this last equation and by considering φðτÞ such that
φ̈þ 2k ¼ 0. Then, we can introduce the change of time
τ ¼ κt, so that the solution to this equation can be
expressed as

φðtÞ ¼ κ2ðε − kt2Þ; κ > 0; ð12Þ

where ε ¼ �1 if k ¼ −1, and ε ¼ þ1 if k ¼ 1. Moreover,
ω1ðtÞ ¼ 1 is a particular solution to the Eq. (11), and
another one is
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If k ¼ þ1; ε ¼ þ1∶ ω2ðtÞ ¼ arsint; ð13Þ

If k ¼ −1; ε ¼ þ1∶ ω2ðtÞ ¼ arsinht; ð14Þ

If k ¼ −1; ε ¼ −1∶ ω2ðtÞ ¼ arcosht: ð15Þ

Then, the pressure and the energy density take the
expressions

p ¼ kε
κ2ðε − kt2Þ2 ; ð16Þ

ρ ¼ p

�
1 −

2t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε − kt2

p
Q

ε½1þ ω2ðtÞQ�
�
: ð17Þ

And, from the expression (8), (9) of the indicatrix function
of a T-model, we obtain that the square of the speed of
sound is given by

χðρ; pÞ ¼
8p2ð1 − ε

κ

ffiffiffiffi
kε
p

q
Þ

ρ2 þ 4ρpð1 − ε
κ

ffiffiffiffi
kε
p

q
Þ þ p2ð3 − 4 ε

κ

ffiffiffiffi
kε
p

q
Þ
; ð18Þ

The analysis of these solutions, which we do not describe
in detail here, shows that their good physical behavior is
constrained to limited spacetime domains:

(i) The spherically symmetric case, ω2ðtÞ ¼ arcsin t,
t ∈ ½−1; 1�, leads to a positive pressure everywhere.
The metric has a curvature singularity at t ¼ tr ≡
− sin½1=QðrÞ� that disconnects two spacetime regions
R− (t < tr) andRþ (t > tr). In the spacetime domain
where QðrÞ > 0 (respectively, QðrÞ < 0) the energy
density is positive in the region Rþ, (respectively,

R−), as the left diagram in Fig. 1 shows. Moreover,
there is always a spacetime domain in which the
macroscopic conditions for physical reality hold (see
right diagram in Fig. 1).

(ii) The case ω2ðtÞ ¼ arsinht leads to a negative pres-
sure everywhere. Moreover, whatever the values of
QðrÞ the energy conditions and the compressibility
conditions do not hold simultaneously for any
value of t.

(iii) The case ω2ðtÞ ¼ arcosht leads to a positive pres-
sure everywhere. Moreover, in the domain where
QðrÞ < 0 the energy conditions and the compress-
ibility conditions hold simultaneously in an interval
of time t ∈ ½1; t1½, t1 < tr ≡ cosh½1=QðrÞ�. The
metric has a curvature singularity at t ¼ tr.

III. INTEGRATION ALGORITHMS

A. The Herlt algorithm

The field equation (3) is a first order linear differential
equation for the metric function vðtÞ that can be written as

A _vþ 2 _Av − 2kω ¼ 0; A≡ φ _ω −
1

2
_φω: ð19Þ

Herlt [12] proposed an integration algorithm based on
this fact. He considers the spherically symmetric case,
chooses the time coordinate as t ¼ Y ¼ ffiffiffi

φ
p

and he
establishes the following steps (that we report with our
notation):

h1 Choose an arbitrary function ω2ðtÞ.
h2 Set Eq. (19) for vðtÞ by taking ω ¼ ω2ðtÞ and φ ¼ t2,
and obtain the general solution vðtÞ.

FIG. 1. This figure shows the behavior of the hydrodynamic variables of the spherically symmetric T-model defined by the functions
(12), (13). We have considered the case Qr > 0. The case Qr < 0 follows by changing t by −t. On the left, we have plotted the
dependence on time of the energy density ρ and the pressure p forQr ¼ 1.5. Note that ρ is positive in the whole regionRþ. On the right,
we have plotted the quotient π ¼ p=ρ, and the square of the speed of sound χ ¼ uðpÞ=uðρÞ. Notice that the energy conditions
(0 < π < 1), and the causal sonic condition (0 < χ < 1) only hold in the subregion �tr; 0½ of the region Rþ (unshaded interval).
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h3 Set Eq. (3) for the function ωðtÞ, by taking φ ¼ t2 and
vðtÞ the function obtained in step 2, and obtain a
particular solution ω1ðtÞ.

Herlt [12] remarked that steps 1 and 2 of his algorithm
determine a homogeneous KCKS T-model, and step 3
completes a nonhomogeneous solution. He applies this
algorithm to obtain a nonhomogeneous T-model from the
homogeneous one presented by McVittie and Wiltshire
[16] in which ω2 ¼ tn.
It is worth remarking that the Herlt algorithm provides

the solution by quadratures. Indeed, two integrals deter-
mine the solution vðtÞ of the nonhomogeneous linear
first order differential equation (19). And, if we know a
particular solution ω2ðtÞ of the homogeneous linear second
order differential equation (3), then we can obtain another
solution ω1ðtÞ with two indefinite integrals.
Now we revisit the Herlt algorithm and we show that:

(i) it can be generalized to the plane and hyperbolic
symmetries, (ii) it can be implemented without any specific
choice of the time coordinate t, and (iii) it is only necessary
to obtain two indefinite integrals to get the solution.
Let us take two arbitrary functions fφðtÞ;ω2ðtÞg, which

fix the time coordinate t and a solution of the field
equations [for every QðrÞ]. Note that the general solution
of the homogeneous equation associated with Eq. (19) can
be obtained without any integral, and it is v0ðtÞ ¼ CA−2.
Then, the function CðtÞ≡ vðtÞA2ðtÞ fulfills the equation
_C ¼ 2kω2A, and therefore:

CðtÞ ¼ K0 þ 2k
Z

ω2ðtÞAðtÞdt; K0 ¼ constant: ð20Þ

Consequently, we have obtained vðtÞ by performing a
single quadrature. Furthermore, ω1 ¼ ω2ζ is an indepen-
dent solution to the homogenous linear equation (3) if, and
only if, function ζðtÞ is nonconstant and fulfills the second
order differential equation

2
ζ̈
_ζ
þ 4

_ω2

ω2

þ ðφvÞ·
φv

¼ 0: ð21Þ

This equation is equivalent to _ζ2ω4
2φv ¼ K2

1, where K1 is a
nonvanishing constant. Consequently, we obtain ζðtÞ (and
then ω1ðtÞ) by taking a single quadrature:

ζðtÞ ¼ �K1

Z
dt

ω2
2ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φðtÞvðtÞp : ð22Þ

Note that, being QðrÞ an arbitrary function, ζðtÞ can be
redefined by an arbitrary constant. Following this line of
reasoning we arrive to the following performance of the
Herlt algorithm:

H1 Choose two arbitrary functions fφðtÞ;ω2ðtÞg, and
obtain the function AðtÞ≡ φðtÞ _ω2ðtÞ − 1

2
_φðtÞω2ðtÞ.

H2 Determine the indefinite integral

HðtÞ ¼
Z

ω2ðtÞAðtÞdt; ð23Þ

and obtain the metric function

vðtÞ ¼ 1

A2ðtÞ ½K0 þ 2kHðtÞ�: ð24Þ

H3 Determine the indefinite integral

ζðtÞ ¼
Z

AðtÞdt
ω2
2ðtÞ

ffiffiffiffiffiffiffiffiffi
φðtÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K0 þ 2kHðtÞp ; ð25Þ

and obtain the metric function

ωðt; rÞ ¼ ω2ðtÞ½ζðtÞ þQðrÞ�; ð26Þ

where QðrÞ is an arbitrary real function. Then, the metric
functions fφðtÞ;ωðt; rÞ; vðtÞg define a T-model (2) that is a
solution of the field equation (3).
Note that this algorithm allows us to solve the field

equation by quadratures. Nevertheless, only in few cases the
indefinite integrals can be calculated to obtain an explicit
expression of the solution. For example, Herlt [12] consid-
ered φ ¼ t2 and ω2 ¼ tn in the spherically symmetric case
k ¼ 1. The second step in the above algorithm gives

vðtÞ ¼ 1

n2 − 1
þ C0t−2ðnþ1Þ; ð27Þ

which corresponds to the homogeneous solution byMcVittie
and Wiltshire [16]. The third step, which determines the
function ζðtÞ, cannot be explicitly achieved for an arbitrary
value of the constant C0. When C0 ¼ 0 we obtain an
inhomogeneous solution with ζðtÞ ¼ t−2n. It is worth
remarking that this McVittie-Wiltshire-Herlt T-model, and
its generalizations to k ¼ 0 and k ¼ −1, do not fulfill the
macroscopic necessary constraints for physical reality [15].
From now on, we look in this paper for other algorithms,

which are alternative to the Herlt one, that will allow us to
obtain new T-model solutions.

B. Field equations for the variables ðφ;α;vÞ
Let us consider the function αðt; rÞ defined by the

condition ω ¼ α
ffiffiffi
φ

p
. Then, in terms of the metric functions

fφ; α; vg, the metric tensor (2) becomes

ds2¼−
1

vðtÞdt
2þφðtÞ½α2ðt;rÞdr2þC2ðdx2þdy2Þ�; ð28Þ

where C is given in (1c). Moreover, the field equation (3)
takes the expression
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2vφα̈þ ð _vφþ 3v _φÞ _α − 2kα ¼ 0: ð29Þ

On the other hand, the pressure keeps the expression (5),
and the expansion (4) and the energy density (6) become

θ ¼ ffiffiffi
v

p �
3

2

_φ

φ
þ _α

α

�
¼ ffiffiffi

v
p ∂t½lnðφ3=2αÞ�; ð30Þ

ρ ¼ v

�
3

4

_φ2

φ2
þ _φ

φ

_α

α

�
þ k
φ
: ð31Þ

Note that (29) is a nonhomogeneous linear first order
differential equation for both vðtÞ and φðtÞ, and a homo-
geneous linear second order differential equation for the
function αðt; rÞ. We have then:

αðt; rÞ ¼ α1ðtÞ þ α2ðtÞQðrÞ; ð32Þ

where QðrÞ is an arbitrary real function, and αiðtÞ being
two particular solutions to the Eq. (29). Thus, the four
metric functions fφðtÞ; αiðtÞ; vðtÞg are submitted to two
differential equations and a constraint that fixes the time
coordinate. Consequently, the space of solutions depends
on an arbitrary real function depending on time, and
another real function, QðrÞ, depending on r.

C. The modified Herlt algorithm

Given two arbitrary functions fφðtÞ; α2ðtÞg, the general
solution of the homogeneous equation associated with
Eq. (29) for vðtÞ is v0ðtÞ ¼ Dφ−3 _α−22 , D being a constant.
Then, the function DðtÞ≡ vðtÞφ3ðtÞ _α22ðtÞ fulfills equation
_D ¼ 2kα2 _α2φ2, and, consequently, we can obtain vðtÞ by
performing a single quadrature.
Furthermore, α1 ¼ α2ζ is an independent solution to

the homogenous linear equation (29) if, and only if, the
function ζðtÞ is nonconstant and fulfills the same second
order differential equation than in the Herlt algorithm,
which now leads to _ζ2α42φ

3v ¼ K2
1. Consequently, we

obtain ζðtÞ [and then α1ðtÞ] by taking a single quadrature.
The factor _α2 appears in the two functions that we must

integrate to obtain the solution. Thus, it is now suitable to
choose the time coordinate t such that α2ðtÞ ¼ t. Then,
following a similar line of reasoning to that in Sec. III Awe
arrive to the following integration algorithm:

A1 Choose two arbitrary real functions fφðtÞ; QðrÞg.
A2 Determine the indefinite integral

DðtÞ ¼
Z

tφ2ðtÞdt; ð33Þ

and obtain the metric function

vðtÞ ¼ 1

φ3ðtÞ ½K0 þ 2kDðtÞ�: ð34Þ

A3 Determine the indefinite integral

ζðtÞ ¼
Z

dt

t2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0 þ 2kDðtÞp ; ð35Þ

and obtain the metric function

αðt; rÞ ¼ t½ζðtÞ þQðrÞ�: ð36Þ

Then, the metric functions fφðtÞ; αðt; rÞ; vðtÞg define a
T-model (28) that is a solution of the field equation (29).
Note that the steps 1 and 2 provide a particular homo-

geneous KCKS T-model, and step 3 completes the non-
homogeneous solution, for which two indefinite integrals
are necessary.
In next section we will determine the general solution

for k ¼ 0 making use of this algorithm. The case k ≠ 0
requires further analysis in order to obtain the general
solution without needing any integral (see Sec. V below).

IV. THE GENERAL SOLUTION FOR k= 0

A. Metric and hydrodynamic quantities

The explicit general solution for the plane symmetry
can be obtained by using both the Herlt algorithm and the
modified Herlt algorithm. The latter provides a more direct
reasoning. Indeed, note that when k ¼ 0 (34) and (35)
imply, respectively, v ¼ K0φ

−3 and ζ ¼ −ð ffiffiffiffiffiffi
K0

p
tÞ−1. Then

the arbitrary functions φðtÞ and QðrÞ, and the spatial
coordinates fr; x; yg, can be redefined by a factor in such
a way that the metric line element (28) becomes

ds2¼−φ3ðtÞdt2þφðtÞð½tQðrÞþ1�2dr2þdx2þdy2Þ:
ð37Þ

The unit velocity of the fluid u ¼ φ−3=2∂t has an expansion
given by

θ¼ 1

φ3=2

�
3

2

_φ

φ
þ Q
tQþ1

�
¼ 1

φ3=2∂t½lnðφ3=2ðtQþ1Þ�: ð38Þ

And the pressure p and the energy density ρ are then
given by

p ¼ 1

φ3

�
7

4

_φ2

φ2
−
φ̈

φ

�
; ð39Þ

ρ ¼ 1

φ3

�
3

4

_φ2

φ2
þ _φQ
φðtQþ 1Þ

�
: ð40Þ

On the other hand, we can specify the indicatrix function
(8) in this case by calculating the implicit functions of p
given in (9) in terms of φðtÞ and its derivatives:
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AðpÞ≡ 4φ10

_φð35 _φ3 þ 4φ2φ
… − 30φ _φ φ̈Þ ; ð41aÞ

BðpÞ≡AðpÞ
�
pþ 3 _φ2

4φ5

�
; CðpÞ≡AðpÞp 3 _φ2

4φ5
: ð41bÞ

It is worth remarking that we can recover previously
known T-models with plane symmetry by giving specific
expressions of the function φðtÞ:

(i) If we take φðtÞ ¼ t−4=3 we obtain the dust solution.
This T-model was considered by Vajk and Eltgroth
[24] for the homogeneous case (Q ¼ constant). The
proper time of the fluid is τ ¼ −1=t.

(ii) If we take φðtÞ ¼ tm, m > −4=3, m ≠ 0, we obtain
the ideal T-models for γ ¼ 4

3m þ 2 ≠ 2 studied in
[15] and quoted in Sec. II B. The proper time of the
fluid is τ ¼ 1

m̄ t
m̄, m̄≡ 1þ 3m

2
.

(iii) If we take φðtÞ ¼ e2t=3 we obtain the ideal T-models
with γ ¼ 2 studied in [15] and quoted in Sec. II B.
The proper time of the fluid is τ ¼ et.

B. A new solution with k= 0

As an example to see how the above method to obtain the
general solution for k ¼ 0 works, we now obtain a new
solution. We take

φðTÞ ¼ cos3=2ðκTÞ: ð42Þ

Then, we obtain a T-model with k ¼ 0 if we replace this
expression of φðTÞ in the metric line element (37).

Moreover, we can analyze the physical behavior of the
solution taking into account the expressions (39) and (58)
of the pressure and energy density, and the expression (8),
(41) of the indicatrix function χðρ; pÞ. Nevertheless, in this
case we can easily obtain the proper time τ of the fluid.
Indeed, we have dτ ¼ φ3=2dT ¼ cosðκTÞdT and, conse-
quently, τ ¼ 1

κ sinðκTÞ. Then, if we introduce the time

t ¼ κτ ¼ sinðκTÞ ∈� − 1; 1½; ð43Þ

and we make use of the general expressions (5), (6) for the
hydrodynamic variables, we obtain

p ¼ κ2ð2þ t2Þ
3ð1 − t2Þ ; ð44Þ

ρ ¼ κ2t2

3ð1 − t2Þ2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p
Q

tðQ arcsin tþ κÞ
�
: ð45Þ

Note that this solution has a positive pressure everywhere,
and the metric has a curvature singularity at t ¼ tr≡
sin½−κ=QðrÞ�, which disconnects two spacetime regions
R− (t < tr) and Rþ (t > tr). In the spacetime domain
QðrÞ < 0 (respectively, QðrÞ > 0) the energy density is
positive in the subregion t ∈�0; tr½ of R− (respectively, t ∈
�tr; 0½ ofRþ), as the left diagram in Fig. 2 shows. Moreover,
there is always a spacetime domain in which the macro-
scopic conditions for physical reality hols if, and only if,
j Qκ j > 2

π (see right diagram in Fig. 2).

FIG. 2. This figure shows the behavior of the hydrodynamic variables of the T-model with plane symmetry defined by the function
(42). We have considered the caseQr < 0. The caseQr > 0 follows by changing t by −t. On the left, we have plotted the dependence on
time of the energy density ρ and the pressure p for Qr ¼ −1.6. Note that ρ is positive in subregion �0; tr½ of the regionR−. On the right,
we have plotted the quotient π ¼ p=ρ, and the square of the speed of sound χ ¼ uðpÞ=uðρÞ. Notice that the energy conditions
(0 < π < 1), and the causal sonic condition (0 < χ < 1) only hold in the subregion �t̃r; tr½ of the region R−, where t̃r is defined by the
condition πðt̃rÞ ¼ 1 (unshaded interval).
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V. THE GENERAL SOLUTION FOR k ≠ 0

A. The field equation in the variables ðφ;α;βÞ
Now we introduce a new function βðtÞ as unknown

metric function. Let us define

βðtÞ ¼ vðtÞφ3ðtÞ > 0: ð46Þ

Then, the field equation (29) becomes

2βα̈þ _β _α−2kαφ2 ¼ 0: ð47Þ

The solution αðtÞ to this equation is of the form (32), where
QðrÞ is an arbitrary real function, and αiðtÞ being two
particular solutions to the Eq. (47). A straightforward
calculation shows that, if α1ðtÞ fulfills (47), then another
independent solution can be written as α2ðtÞ ¼ γðtÞα1ðtÞ
where γðtÞ meets the equation

_γ2α41β ¼ 1: ð48Þ

It is worth remarking that (47) is an algebraic equation
for the function φðtÞ. Consequently, φðtÞ can be obtained
without quadratures in terms of βðtÞ and α1ðtÞ. This fact
and the Eq. (48) allow us to obtain the general solution for
k ≠ 0 without needing to calculate any integral. Hereunder
we develop two algorithms that determine this solution in
terms of an arbitrary function of time.

B. The γ-algorithm

Note that any solution αðtÞ to Eq. (47) is a nonconstant
function when k ≠ 0. Thus, we can take the time coordinate
t such that

α1ðtÞ ¼ t: ð49Þ

Then, Eqs. (47) and (48) become, respectively,

_β ¼ 2ktφ2; _γ2t4β ¼ 1: ð50Þ

From these expressions we can perform the following
algorithm to obtain the general solution of the field
equations:

G1 Choose two arbitrary real functions fγðtÞ; QðrÞg.
G2 Determine the function

βðtÞ ¼ 1

t4 _γ2ðtÞ : ð51Þ

G3 Determine the metric functions

vðtÞ ¼ βðtÞ
φ3ðtÞ ; φðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
j _βðtÞj
2t

s
; ð52aÞ

αðtÞ ¼ t½1þ γðtÞQðrÞ�: ð52bÞ

Then, the triad fφðtÞ; αðt; rÞ; vðtÞg defines a T-model (28)
which is a solution of the field equation (29) for

- spherical symmetry, k ¼ þ1, in the spacetime domain
where _βðtÞ > 0,

- hyperbolic symmetry, k ¼ −1, in the spacetime domain
where _βðtÞ < 0.

Moreover, if _βðt1Þ ¼ 0 the metric is singular at t1.
We can recover previously known T-models with non-

plane symmetry by giving specific expressions of the
function γðtÞ:

(i) If we take γðtÞ ¼ t−
2n
n−1 we obtain the McVittie-

Wilshire-Herlt solution quoted in Sec. III A. The

proper time of the fluid is τ ¼ ½kðn−1Þ�3=4ffiffiffiffi
2n

p t
1

n−1.

(ii) If we take γðtÞ ¼ arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

κ2t2

q
we obtain the

spherically symmetric model (12), (13) obtained in
Sec. II C. The proper time of the fluid

is τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 1

t2

q
.

(iii) If we take γðtÞ ¼ arsinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

κ2t2 − 1
q

we obtain the
hyperbolically symmetric model (12), (14) obtai-
ned in Sec. II C. The proper time of the fluid

is τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
t2 − κ2

q
.

(iv) If we take γðtÞ ¼ arcosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

κ2t2 þ 1
q

we obtain the
hyperbolically symmetric model (12), (15) obtai-
ned in Sec. II C. The proper time of the fluid

is τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
t2 þ κ2

q
.

C. The ξ-algorithm

If αiðtÞ are two independent solutions to the Eq. (47),
then α2ðtÞ ¼ α1ðtÞγðtÞ, with _γ ≠ 0. Thus, we can take the
time coordinate t such that

γðtÞ ¼ t: ð53Þ

Then, if ξðtÞ ¼ 1=α1ðtÞ, Eqs. (47) and (48) become,
respectively,

β ¼ ξ4; ξ3 ̈ξþ kφ2 ¼ 0: ð54Þ

From these expressions we can perform the following
algorithm to obtain the general solution of the field
equations:

X1 Choose two arbitrary real functions fξðtÞ; QðrÞg.
X2 Determine the metric functions

vðtÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξðtÞjξ̈ðtÞj3

q ; φðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ3ðtÞjξ̈ðtÞj

q
; ð55aÞ
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αðtÞ ¼ 1þ tQðrÞ
ξðtÞ : ð55bÞ

Then, the triad fφðtÞ; αðt; rÞ; vðtÞg defines a T-model (28)
which is a solution of the field equation (29) for

- spherical symmetry, k ¼ þ1, in the spacetime domain
where ̈ξðtÞ < 0,

- hyperbolic symmetry, k ¼ −1, in the spacetime domain
where ̈ξðtÞ > 0.

Moreover, if ̈ξðt1Þ ¼ 0 the metric is singular at t1.
We can recover previously known T-models with non-

plane symmetry by giving specific expressions of the
function ξðtÞ:

(i) If we take ξðtÞ ¼ t
n−1
2n we obtain the McVittie-

Wilshire-Herlt solution quoted in Sec. III A, The

proper time of the fluid is τ ¼ − ½kðn−1Þ�3=4ffiffiffiffi
2n

p t−
1
2n.

(ii) If we take ξðtÞ ¼ κ cos t we obtain the spherically
symmetric model (12), (13) obtained in Sec. II C.
The proper time of the fluid is τ ¼ κ sin t.

(iii) If we take ξðtÞ ¼ κ cosh t we obtain the hyperboli-
cally symmetric model (12), (14) obtained in Sec. II
C. The proper time of the fluid is τ ¼ κ sinh t.

(iv) If we take ξðtÞ ¼ κ sinh twe obtain the hyperbolically
symmetric model (12), (15) obtained in Sec. II C.
The proper time of the fluid is τ ¼ κ cosh t.

D. A new spherically symmetric solution

Now we consider an example to see how the above
algorithms to obtain the general solution for k ≠ 0 work.
We take

ξðtÞ ¼ 1 − tn: ð56Þ

Then, we get a T-model with k ≠ 0 if we apply the ξ-
algorithm. We have that for any n out of the range [0, 1] the
solution is spherically symmetric ( ̈ξðtÞ < 0) in a spacetime
domain. Moreover, we can analyze the physical behavior of
the solutions taking into account the general expressions (5)
for the pressure and (31) for the energy density, and the
expression (8), (9) of the indicatrix function χðρ; pÞ. The
metric has a curvature singularity at t ¼ tr ≡ −1=QðrÞ,
which disconnects two spacetime regions R− (t < tr) and
Rþ (t > tr).
For sake of simplicity, we now focus on the case n ¼ 2.

Then, the solution is spherically symmetric in the interval
t ∈� − 1; 1½, and the pressure and the energy density take
the expressions

p ¼ 20 − 17t2

8
ffiffiffi
2

p ð1 − t2Þ5=2 ; ð57Þ

ρ ¼ 1

8
ffiffiffi
2

p ð1 − t2Þ5=2
�
51t2 −

4ð1 − t2ÞðQt − 2Þ
1þQt

�
: ð58Þ

Note that this solution has a positive pressure everywhere,
and when QðrÞ < 0 (respectively, QðrÞ > 0) the energy
density is positive in the region R− (respectively, in Rþ)
and in a part of the region Rþ (respectively, in R−), as the
left diagram in Fig. 3 shows. Moreover, there is always a
spacetime domain in which the macroscopic conditions for
physical reality hold (see right diagram in Fig. 3).

FIG. 3. This figure shows the behavior of the hydrodynamic variables of the T-model with spherical symmetry determined by the ξ-
algorithmwith ξ ¼ 1 − t2. We have considered the caseQr < 0. The caseQr < 0 follows by changing t by−t. On the left, we have plotted
the dependence on time of the energy density ρ and the pressure p forQr ¼ −2. Note that ρ is positive in the whole regionR− and in a part
of the regionRþ. On the right, we have plotted the quotient π ¼ p=ρ, and the square of the speed of sound χ ¼ uðpÞ=uðρÞ. Notice that the
energy conditions (0 < π < 1), and the causal sonic condition (0 < χ < 1) only hold in the subregions � − 1; t̃r½ and �0; tr½ of R−, and
�t̄r; 1½ of Rþ (unshaded intervals), where t̃r and t̄r are defined by the conditions χðt̃rÞ ¼ 1 and πðt̄rÞ ¼ 1, respectively.
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VI. DISCUSSION

The metric functions defining the metric line element (2)
of a T-model are submitted to a differential equation (3).
Herlt [12] proposed an integration algorithm that showed
that this field equation can be solved by quadratures. Here,
in Sec. III, we have revisited the Herlt approach and we
have proposed a modified procedure. In both algorithms the
solution is obtained by calculating two indefinite integrals.
By undertaking an in-depth study of the field equation

and redefining the unknown metric functions, we have
established some algorithms that solve the equation without
calculating any integral. Thus, we give the explicit expres-
sion of the general solution (in Sec. IV for plane symmetry,
k ¼ 0, and in Sec. V for k ≠ 0) depending on an arbitrary
function of time and an arbitrary function QðrÞ of the
spatial coordinate r.
We have recovered some known solutions and we have

obtained new ones by applying any of the above quoted
algorithms. The physical meaning of these T-models can be
analyzed a posteriori by using our hydrodynamic approach
to the perfect fluid solutions [18,19,22]. Nevertheless, it
would be appropriate to be able to impose specific physical
or geometrical properties established a priori, as we have
performed with the ideal T-models analyzed in [15] and
quoted here in Sec. II B. This aim justifies having presented
different integration methods here so that we can choose the
one that is the most suitable for the restrictions we impose.
The Herlt and our modified Herlt algorithms provide a

(particular) homogeneous solution with a quadrature, and
the general solution of the nonhomogeneous case follows
by obtaining another indefinite integral. The general
solution of the homogeneous T-models corresponds with
the nonhomogeneous one for the case QðrÞ ¼ constant.
Consequently, our study also provides the general solutions
of the KCKS T-models.

The Szekeres-Szafron solutions of class II [6,7,25–27]
are a generalization without symmetries of the T-models.
A thermodynamic analysis of these solutions shows [23]
that three subfamilies in local thermal equilibrium can be
considered: the singular models, the regular models and the
T-models. The latter are the object of the present paper and
have been analyzed from a thermodynamical point of view
in [15]. The Szekeres-Szafron singular and regular models
have been studied in [23,22], respectively. In both cases the
metric line element and the field equation are similar to
those of the T-models by changing the function QðrÞ by

Q̃ðr; x; yÞ ¼ 1

2
UðrÞðx2 þ y2Þ þ V1ðrÞxþ V2ðrÞy

þ 2WðrÞ; ð59Þ

where V1ðrÞ, V2ðrÞ, WðrÞ are arbitrary real functions, and
UðrÞ þ kWðrÞ ¼ 1 for the regular models, and UðrÞ ¼ 0
and k ¼ 0 for the singular models. Consequently, all
the integration algorithms obtained in this paper for the
T-models also apply for the thermodynamic class II
Szekeres-Szafron solutions (singular and regular models).
These solutions without symmetries can be obtained from a
T-model by changing QðrÞ by Q̃ðr; x; yÞ.
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