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In Eddington gravity, the action principle involves only the symmetric parts of the connection and the
Ricci tensor, with a metric that emerges proportionally to the latter. Here, we relax this symmetric character,
prolong the action with the antisymmetric parts of the Ricci term, and allow for various couplings with
scalar fields. We propose two possible invariant actions formed by distinct combinations of the independent
Ricci tensors and show that the generated metric must involve an additional antisymmetric part due to the
relaxation of the symmetrization property. The comprehensive study shows that the second curvature
influences the dynamics of the connection, hence its solution in terms of the metric, and the evolution of the
scalar fields. These new dynamical features are expected to stand viable and to have interesting
implications in domains where scalar fields are indispensable.
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I. PRELIMINARY REMARKS
AND MOTIVATION

General relativity (GR) has revolutionized our under-
standing of gravity and the structure of the Universe at
various scales. Despite cosmological puzzles such as the
requirement to invoke some dark energy components, as
well as the lack of a complete quantum description of the
gravitational interaction, GR remains the only theory that,
successfully, relates spacetime geometry to the physical
phenomenon. The intimate connection between gravitation
and spacetime structure has led to several proposals in
attempts to incorporate the other (nongravitational) inter-
actions into a wider geometric description [1]. These early
days of unifying endeavors turned out to be unsuccessful
and ended, especially after the enormous progress made in
elementary particle physics in which electroweak and
strong interactions do not seem to be aspects of the
spacetime geometry like gravity.
Nevertheless, apart from the motivation behind these

early proposals, mainly by Einstein, Schrödinger, and
Eddington [1–4], one of the interesting ideas that can be
drawn from these works is to be less restrictive in choosing
the type of spacetime geometry. In other words, it is well
known that in GR one assumes a priori that the background
geometry is fully Riemannian, i.e., spacetime connection
becomes torsionless and metric compatible; thus, it is given
(also the curvature) in terms of the metric which is the only
remaining geometric quantity. That being said, a geometry

free of this restriction would involve additional fields such
as torsion and nonmetricity that would finally bring out
interesting effects [5]. For instance, one of the most
interesting modifications of GR that allows spacetime to
have torsion is the famed Einstein-Cartan-Kibble-Sciama
theory which relates torsion to the spin density of matter [6]
(see also [7] for its cosmological implications.) Coupling to
higher spin fields in this theory has also been studied [8].
Now, one raises the question of whether it is the metric

(as in GR) or the affine connection which stands as the
central object in the variational principle.
While both connection and metric could be considered

fundamental (though independent) in an interesting for-
mulation of gravity named Palatini, there have been,
however, attempts to go beyond this formulation where
gravity stands only on connections. This idea of purely
affine gravity, in which the metric seems to emerge as an
integration constant, has been developed by Eddington by
restricting the dynamics to only symmetric parts of the
connection and the Ricci curvature [2]. In Eddington
gravity, since the metric concept is not defined, one builds
an invariant action via a volume measure given by the
square root of the determinant of the Ricci tensor. This was
followed by several attempts to extend it by incorporating
different types of matter sources [9–15].
In this regard, unlike fermions and gauge bosons, which

to some extent still require efforts to incorporate them in
Eddington gravity completely, scalar fields, on the other
hand, are found to be easily placed inmetric-free actions and
allow for interesting features when applied to inflation
[16,17] and gravitational dark matter [18], as well as
spontaneous scalarization [19] and other phenomena [20].
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These models are still formulated through the strong
Eddington criteria of symmetric connection and Ricci
tensor. Therefore, being less restrictive when using these
quantities in models of gravity would be more natural, and
one would have an interesting and wide setup at hand.
In this work, we study various dynamical aspects of a

purely affine gravity without imposing any restriction on
the affine connection and the curvature, in particular. We
also pay much attention to the dynamics of multiple scalar
fields that couple to gravity via the second Ricci tensor. In
this study, the metric tensor, which is absent in primary
actions, will arise through the dynamical equations, and
since the Ricci tensor is not taken symmetric a priori, this
implies that the metric might involve a nonsymmetric part
that interacts with matter. Scalar fields are known to serve
for various cosmological and particle physics problems,
given that the inflationary paradigm, baryogenesis, and
dark energy (if dynamical) are already modeled by scalar
fields. The framework that we present here generalizes the
dynamics of scalar fields nonminimally coupled to gravity,
thus leading to new features through their coupling to the
novel degree of freedom, namely, the skew-symmetric
curvature. We carry out a thorough study of the dynamical
aspects of this asymmetric affine gravity and point out
various possible cosmological implications in domains
where scalars are thought to play important roles.
The rest of this paper is organized as follows. In the next

section, we prepare for our setup by providing some
preliminary concepts in purely affine spacetime, such as
the notion of a general affine connection, curvature, and
construction of the two types Ricci tensors without refer-
ring to the concept of metric. In Sec. III, we involve
multiple scalar fields into the study and illustrate how
invariant actions are formed based on the relevant second-
rank tensors. We then derive the main field equations from
a principle of variations in which the field configurations
are described by the connections (for the gravitational
sector) and the scalars for matter. We also discuss the
effects of the curvature on the scalar fields and how to
generate the metric tensor. We then conclude in Sec. IV.

II. PURELY AFFINE SPACETIME:
PRELIMINARY CONCEPTS

In the present setup, spacetime is equipped with an
asymmetric affine connection ΓðxÞ as its central object,
from which one defines the covariant derivative ∇. In
general, the primary role of an affine connection is to map
the tangent space at a point P to that of a neighboring point
Pþ dP, which is performed by parallel transferring a
vector ξαðxÞ via the coordinate displacement δxν as

δξα ¼ −Γα
μνξμδxν: ð1Þ

A geometry with this simple structure is said to be purely
affine, and the concept of metric in GR is not defined yet.

Therefore, the so-called geodesics, i.e., the straightest lines
in this geometry, are not said to extremize distances
between points but are defined as those curves with tangent
vectors that remain parallel to themselves through parallel
displacements.
The curvature tensor in this case, which generalizes the

Riemann tensor of GR, arises as a measure of the failure of
the commutativity of the covariant derivation of any vector
field ξαðxÞ as [21,22]

½∇μ;∇ν�ξα ¼ Rα
λμνξ

λ − 2Sλμν∇λξα; ð2Þ

where Sλμν is the torsion tensor (the antisymmetric part of
the affine connection), and the spacetime curvature tensor is
given in terms of the connection as

Rα
λμν ¼ ∂μΓα

λν − ∂νΓα
λμ þ Γα

ρμΓ
ρ
λν − Γα

ρνΓ
ρ
λμ: ð3Þ

This curvature allows for the construction of two Ricci
tensors which are obtained by contraction

RμνðΓÞ≡ Rλ
μλν; and QμνðΓÞ≡ Rλ

λμν: ð4Þ

In terms of the affine connection, the second Ricci tensor
takes a simple form

QμνðΓÞ ¼ ∂μΓλ
λν − ∂νΓλ

λμ: ð5Þ

For arbitrary connection, these two Ricci curvatures are
totally independent. In fact, from the symmetry properties
of the curvature tensor (3), one can show that [21]

QμνðΓÞ ¼ RνμðΓÞ − RμνðΓÞ
þ ∇αSαμν þ ∇νSμ − ∇μSν þ SαSαμν; ð6Þ

where Sμ ¼ Sαμα is the torsion vector. However, this identity
shows that if the affine connection is symmetric (when
torsion vanishes), then the second Ricci curvature (5) is
nothing but the skew-symmetric part of the Ricci curvature
RμνðΓÞ. This means that, generally, the antisymmetric part
of the affine curvature must play an important role in the
dynamics unless it is assumed to be zero from scratch as in
the case of Eddington gravity [2]. In the subsequent
sections, we propose invariant actions that involve both
Ricci tensors coupled to multiple scalar fields.

III. VARIATIONAL PRINCIPLE IN
ASYMMETRIC EDDINGTON GRAVITY

In addition to the geometric sector, which has been set up
in the previous section, we consider matter represented by
scalar fields ϕa (a ¼ 1;…; N). The main aim of this section
is to describe and study the possible coupling of these
scalar fields with the spacetime curvatures (4), thus, in a
purely affine framework. The variational principle of field
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theory in curved spacetime is known to be constructed from
Lagrangian (scalar) densities formed by contractions of
relevant tensors. This process requires a metric at the first
place to allow for lowering and raising indices. This is not
possible at this stage since the geometry discussed above is
metric free. One possibility that goes beyond the familiar
field theoretic polynomial Lagrangian is to use the square
root of the determinant of two-rank tensors. Therefore, the
following important steps are required in constructing an
invariant action in the previous setup:

(i) For the gravitational sector (geometric part), the
natural quantities to mind are the Ricci tensors (4).
Hence, the first quantity to consider is a linear
combination of these tensors.

(ii) On the other hand, scalar fields in particular do not
require a metric so that one gets two-rank tensors
∂μϕa∂νϕa generating their kinetic terms.

(iii) Scalar potential energies can enter the invariant
action rendering the total quantity dimensionless.
The latter requires that the potential must come in
division instead of addition.
Hence, unlike the familiar actions, the total

quantity may become singular if the total potential
vanishes, a case which occurs in spontaneous
symmetry breaking models when the fields stay at
their minimum. Nevertheless, nonzero potentials are
recovered in this type of potential by adding a
cosmological constant term that guarantees the
existence of a nonzero vacuum energy [16].

(iv) The final point concerns whether the scalar fields
couple directly to the spacetime curvature through
only one of the Ricci tensors in (4) or both of them.
In either case, we say that matter is coupled non-
minimally to (purely affine) gravity.

These steps and requirements have been considered in
forming models of affine inflation in the symmetric
case, i.e., when the spacetime connection is torsionless
and only the symmetric part of the Ricci curvature is
used [16,17].
In what follows, based on the above points, we general-

ize these models by keeping the spacetime geometry free of
these restrictions.

A. The case of RμνðΓÞ+ λQμνðΓÞ
First of all, it is worth mentioning that as in the case of

GR or standard field theory in curved space there is no
unique Lagrangian density. However, the first model of
interest that satisfies the above properties is merely based
on a linear combination of the Ricci tensors (4). Now, the
scalar fields will manifest through their derivatives which in
turn can be involved to extend the two tensors formed by
the previous linear combination. An important coupling
[see point (iv) above] comes from the interaction of the
scalar fields with this linear combination. All this can be
expressed by the invariant action

S½Γ;ϕ� ¼
Z

d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijfðϕÞðRμνþλQμνÞ−∂μϕa∂νϕajp
VðϕÞ ; ð7Þ

where λ is a dimensionless constant, fðϕÞ is a nonminimal
coupling function, and VðϕÞ is a nonzero potential.
For brevity, we denote the total two-rank tensor, from

which this action is formed, as

KμνðΓ;ϕÞ≡ fðϕÞðRμν þ λQμνÞ − ∂μϕa∂νϕa: ð8Þ

Since the affine connection is arbitrary, variations of the
first Ricci curvaturewill merely involve the torsion tensor as

δRμν ¼ ∇αðδΓα
μνÞ − ∇νðδΓα

μαÞ − 2SαβνδΓ
β
μα: ð9Þ

Before performing the variation of the action, it is necessary
to bring here some useful formulas to manipulate any
surface term that will appear through the variation. The
covariant derivation of any scalar densityE (of weightþ1),
like the one inside integral (7), reads

∇μE ¼ ∂μE − Γα
αμE: ð10Þ

With the aid of this identity, one states the Gauss theorem,
where for a given vector (or tensor) field ξμ we have

Z
d4x∇μðEξμÞ ¼ 2

Z
d4xðEξμÞSμ: ð11Þ

Here, one notices the familiar surface term (vanishing of the
integral) when the connection is symmetric.
The field equations of interest are now obtained by

extremizing the action (7) with respect to the arbitrary
connection Γ; i.e., δΓS ¼ 0, which yields

∇α

�
fðϕÞ

ffiffiffiffiffiffiffijKjp
VðϕÞ ðK

−1Þμν
�
− ∇β

�
fðϕÞ

ffiffiffiffiffiffiffijKjp
VðϕÞ ðK

−1Þμβ
�
δνα

þ 2fðϕÞ
ffiffiffiffiffiffiffijKjp

VðϕÞ ðK
−1ÞμβSναβ − 2fðϕÞ

ffiffiffiffiffiffiffijKjp
VðϕÞ ðK

−1ÞμνSα

þ 2fðϕÞ
ffiffiffiffiffiffiffijKjp

VðϕÞ ðK
−1ÞμβSβδνα

− 2λ∂β

�
fðϕÞ

ffiffiffiffiffiffiffijKjp
VðϕÞ ðK

−1Þ½νβ�
�
δμα ¼ 0: ð12Þ

These equations represent the gravitational field equa-
tions in the purely affine formulation. At first sight, they
seem quite complicated and impossible to solve directly
since they involve high order terms in the connection,
particularly through the determinant of the tensor field
KðΓ;ϕÞ. The way to deal with this issue is to follow
Eddington’s approach and write these equations in terms of
a second-rank tensor that will appear as an integration
constant. This new quantity would simply lead to the
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so-called metric tensor from which the equations of motion
take a familiar form. We now turn to the transition from
purely affine dynamics to the metric structure.

1. Metric structure and field equations

As we have seen so far, unlike GR, the metric tensor in
purely affine gravity is not assumed from the beginning. In
Eddington gravity, since the action is constructed out of the
symmetric part of the Ricci curvature, the metric (neces-
sarily symmetric) emerges easily as a quantity proportional
to the Ricci tensor, and the theory leads to Einstein’s gravity
with a nonzero cosmological constant. Now, since the
assumption of this symmetric character is relaxed, a general
tensor must be defined so that it extends the metric of
Eddington gravity. To that end, we introduce an invertible
two-rank tensor gμνðxÞ and define an associated tensor
density as

M2
ffiffiffiffiffiffi
jgj

p
gμν ¼ fðϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijKðΓ;ϕÞjp
VðϕÞ ðK−1Þμν; ð13Þ

where we have introduced a constant mass scale M for
dimensional homogeneity of the equation. The form of this
tensor density is chosen so that the dynamics coincides with
the symmetric models, i.e., the limiting case where gμν is
reduced to the metric tensor, and the resulting field
equations describe the gravitational equations with non-
minimally coupled scalar fields [16,17]. Additionally,
identity (13) can be seen as a generalized metrical density
of Eddington gravity in free space, which is defined as the
derivative of the Lagrangian with respect to the symmetric
part of the Ricci tensor [2],

ffiffiffiffiffiffi
jgj

p
gμν ≡ 2

∂L
∂Rμν

; ð14Þ

and appears like a momentum conjugate of the field
configuration (considered as the affine connection [9]).
Therefore, when the Ricci tensor in (14) is symmetric, the
generated metric is automatically symmetric and will
describe the physical metric (gravitational field).
Returning to our case, now with the new quantity (13),

the dynamical equation (12) is reduced to a linear equation
for the connection Γ,

∇αð
ffiffiffiffiffiffi
jgj

p
gμνÞ þ 2

ffiffiffiffiffiffi
jgj

p
gμβ

�
Sναβ þ

1

3
Sβδνα

�

− 2
ffiffiffiffiffiffi
jgj

p
gμνSα þ 2λ

�
1

3
J μδνα − J νδμα

�
¼ 0; ð15Þ

where we have defined the vector density,

J μ ¼ ∂αð
ffiffiffiffiffiffi
jgj

p
g½μα�Þ: ð16Þ

From (13), it is clear that the tensor gμν is not symmetric,
and thus, its skew-symmetric part must also have crucial
effects on the dynamics. A useful equation that constraints
the antisymmetric part of this tensor can be obtained from
(12) by the contraction α ¼ μ, which yields

ð1þ 4λÞJ μ ¼ 0: ð17Þ

Hence, its divergence can be determined from the theory
unless λ ¼ −1=4. The latter, which appears also in the
vacuum case [23,24], is a result of the invariance of action
(7) under projective transformation, Γα

μν → Γα
μν þ δαμξν,

for an arbitrary real one-form field ξμðxÞ. In fact, the linear
combination of the two Ricci tensors transforms as

RμνþλQμν→RμνþλQμνþ2ð1þ4λÞð∂μξν−∂νξμÞ: ð18Þ

In addition to general coordinate transformations, several
gravity models which are based on the affine Ricci
curvature enjoy also the projective transformation. The
well-known feature of this transformation is that it does not
affect the rule of parallel displacement of vectors along
arbitrary curves.
Therefore, yet the case λ ¼ −1=4, which spoils the

constraint on J μ, is preserved. It is not altered by the
presence of the scalar fields given that the tensor density
(13) is a relevant generalization of the metric in the
vacuum case.
Notice also that, for arbitrary values of λ, both Ricci

terms are already invariant under the projective symmetry
when the one-form ξμðxÞ is a gradient. Needless to say, it
was usually realized that the dynamics of the second Ricci
tensor resembles to some extent that of a complex vector
field. The constraint (17) reminds us of a massive vector
field where a divergence-free relation arises only when the
mass of the field is nonzero, and in the massless case, one
ends up with an additional symmetry: the gauge invariance.
Returning to identity (13), which can be easily inverted,

finally takes the form

fðϕÞðRμν þ λQμνÞ − ∂μϕa∂νϕa −
M2VðϕÞ
fðϕÞ gμν ¼ 0: ð19Þ

This equation has the form of gravitational field equations
where the spacetime connection that defines the curvature
satisfies the nontrivial dynamical equation (15). Therefore,
solving the latter in terms of the tensor field g and the
torsion will provide the complete gravitational dynamics.
One may also write these equations in a standard form by
constructing a generalized Einstein tensor and obtain
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fðϕÞ
�
Rμν −

1

2
gμνgαβRαβ

�

¼ ∂μϕa∂νϕa −
1

2
gμνgαβ∂αϕa∂βϕa −

M2VðϕÞ
fðϕÞ gμν

− λfðϕÞ
�
Qμν −

1

2
gμνgαβQαβ

�
: ð20Þ

A few important aspects of these equations are worth
stating here:

(i) The scalar fields interact with both the asymmetric
metric and the two types of curvatures, and hence,
the equations generalize the case of nonminimal
coupling to gravity. In this case, notice the absence
of the second derivatives of the scalar fields com-
pared to familiar models with nonminimal cou-
plings, and the reason here is simply that action
(7) is linear in the connection. As a result, one can
easily show that the nonminimal coupling terms
fðϕÞ could be completely absorbed by redefining
the potential and the kinetic terms of the scalars
without altering the geometric sector by any trans-
formation like the familiar conformal mapping.
Inflationary models driven by multiscalar fields
are known to predict a second type of cosmological
perturbation, namely, isocurvature [25], especially
when the fields are nonminimally coupled to gravity
[17,26]. The present setup offers possible effects on
these generic predictions due to the interaction of the
multifields with the new degrees of freedom (cur-
vature) through the last term of the gravitational
equations (20).

(ii) In addition to the second curvature term, the other
important element which is also present due to the
relaxation of the symmetric character is the torsion
tensor field. Unlike the curvature, this tensor does
not appear explicitly in the equations of motion (20)
but should emerge through the connection that
defines the curvature. Its effect on the dynamics is
to shift the curvature and interact with the scalar
fields. Here, a particular limiting case which is in
the spirit of Eddington gravity arises when only the
connection (not the curvature) is symmetric. As
stated in Sec. II, the two Ricci tensors are not
independent in this case since we simply would
have QμνðΓÞ ¼ 2R½μν�ðΓÞ.

(iii) The final remark is that this setup cannot be
considered as only a different formulation to gravity.
Indeed, the symmetric cases, such as Eddington
gravity and its extensions with scalar fields, are
admitted as purely affine formulations to GR despite
their new cosmological features [9,16,17]. While
these models can have their GR (purely metric)
counterparts, the present work however necessitates
the concept of an affine connection in the first place

for the other degrees of freedom (second Ricci tensor
and torsion) to make sense.

The gravitational field equations need to be accompanied
with an equation for the evolution of the scalar fields, which
can be derived by performing a variation of the action (7)
with respect to ϕa, and obtain

∂ν

� ffiffiffiffiffiffiffijKjp
VðϕÞ K

ðμνÞ∂μϕa

�
þ f;a

2

ffiffiffiffiffiffiffijKjp
VðϕÞ K

μνðRμν þ λQμνÞ

−
ffiffiffiffiffiffiffijKjp

V2ðϕÞV;a ¼ 0; ð21Þ

where the underscript “,” represents the derivative with
respect to ϕa. We notice the absence of the torsion
compared to the field equations (12) since the derivative
operators acting on the scalars are only ordinary, and thus,
when integrating by parts the surface terms would not
involve the torsion vector as in (11). Nevertheless, as we
have mentioned above, the torsion is implicitly present
through the asymmetric connection in the curvature terms.
With the defined tensor density (13), this equation finally

reads

∂νð
ffiffiffiffiffiffijgjp

gðμνÞ∂μϕaÞffiffiffiffiffiffijgjp −
∂V
∂ϕa þ

1

2

∂f
∂ϕa g

μνRμν

þ λ
2

∂f
∂ϕa g

μνQμν þΨðϕaÞ ¼ 0; ð22Þ

where the last quantity is given by

ΨðϕaÞ ¼
�
1 −

M2

f

� ∂V
∂ϕa −

1

f
∂f
∂ϕa g

ðμνÞ∂μϕa∂νϕa: ð23Þ

Like the gravitational field equations (20), this equation
has also the standard and familiar (metrical) form. The
important quantities in this equation are as follows: (i) The
first term is nothing but the generalized d’Alembert wave
propagator□gϕa. (ii) The third term is caused by the direct
interaction of the scalars with the curvature and is generic in
all theories with nonminimal couplings, though in this case
it is the spacetime connection (not the metric) which
defines the type of this coupling. An unfamiliar quantity
arises in the fourth term, which shows the novel non-
minimal coupling between matter and curvature (second
Ricci tensor). (iii) The last term given explicitly in (23) is
not a result of the relaxation of the symmetric character of
the connection and the curvature, but it appears even in the
symmetric models with nonminimal couplings [16,17].
This quantity would disappear if the fields were coupled
only minimally, i.e., when f → M2. In this case, the mass
scale is reduced to the Planck mass.
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2. Dynamics of the connection

The above dynamics depends on the arbitrary connection
which must be determined in terms of the tensor gμν from
which one can define a symmetric physical metric. Before
going further, one can first simplify the dynamical equa-
tion (15), based on the projective transformation discussed
above. For that, one introduces the following connection:

Γ̃α
μν ¼ Γα

μν þ
2

3
δαμΓ

ρ
νρ; ð24Þ

from which arises Γ̃ρ
½μρ� ¼ 0, leading to considerable

simplification as we see below.
In terms of this connection, equation (15) reads

∂αð
ffiffiffiffiffiffi
jgj

p
gμνÞ þ

ffiffiffiffiffiffi
jgj

p
gρνΓ̃μ

ρα þ
ffiffiffiffiffiffi
jgj

p
gμβΓ̃ν

αβ −
ffiffiffiffiffiffi
jgj

p
gμνΓ̃β

αβ

¼ 2λ

�
1

3
J μδνα − J νδμα

�
: ð25Þ

Therefore, the dynamics of model (7) is summarized in
this equation for the connection. A solution of this equation
in terms of the tensor gμν would recast the gravitational
field equation (20) and the scalar field equations (22) to
finally take a metrical form.
Relaxation of the symmetric character of the connection

and Ricci tensor increases the degrees of freedom of the
system to 64 unknown coefficients of Γ, which must be
determined in terms of the 16 components of gμν. To solve
the above equation, we introduce the symmetric and the
antisymmetric parts of the tensor gμν which are denoted,
respectively, as

gðμνÞ ≡ gμνðxÞ and g½μν� ≡ fμνðxÞ ð26Þ

Thus, the case λ ≠ −1=4 implies J μ ¼ 0 [see constraint
(17)], and then, one can show that the general solution of
the dynamical equation (25) is given as [4,23]

Γ̃α
μν ¼ Γα

μνðgÞþ
1

2
Tα

μνþ fβ½νT
σ
μ�βf

α
σ

þ gσαfρðκT
ρ
τÞγfδγτκσðμνÞ − 2δτσf

γ
ðμf

κ
νÞ− 2δκðμf

τ
νÞf

γ
σg; ð27Þ

where Γα
μνðgÞ is the Levi-Civita connection of the metric

tensor gμν, and tensor T is given in terms of the covariant
derivative with respect to Γα

μνðgÞ (denoted ∇) as
Tαμν ¼ ∇αfνμ þ∇μfαν þ∇νfαμ: ð28Þ

Here, raising and lowering the indices are performed by
the symmetric metric gμν, which is considered now as a
relevant tensor for the gravitational field as in GR. To that
end, the spacetime connection is given in terms of the
Levi-Civita connection (metric compatible) of gðxÞ.
This nontrivial solution would lead to significant deviations

from GR when substituted into the field equations (20)
and (22).

B. General nonminimal coupling dynamics

Given the various ways in defining an invariant action, it
is clear that action (7) is not the unique extension of
Eddington gravity with scalar fields, though the proposed
linear combination of the curvatures is interesting for
tracking the effects of the projective symmetry. Now, since
there is no symmetry that implies a unique nonminimal
coupling function fðϕÞ for both curvature components (4),
interesting dynamical aspects arise when the two curvature
parts couple to matter via two distinct functions fRðϕÞ and
fQðϕÞ, respectively. In this case, the invariant action that
also satisfies the properties (i)–(iv) reads

S½Γ;ϕ� ¼
Z

d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijfRðϕÞRμν þ fQðϕÞQμν − ∂μϕa∂νϕajp
VðϕÞ :

ð29Þ

A remarkable feature of this action compared to the
previous one is that the nonminimal couplings can be
absorbed only from one of the curvatures, not both of them
simultaneously (see Refs. [16,17] for how to make a
transition to minimal couplings in the symmetric models).
Here, all the field equations of this action will emerge like
in the previous section. Similarly, for simplicity, one
introduces the tensor field

KμνðΓ;ϕÞ ¼ fRðϕÞRμν þ fQðϕÞQμν − ∂μϕa∂νϕa: ð30Þ

The equation of motion in this case, arising from variation
with respect to the connection, reads

∇α

�
fRðϕÞ

ffiffiffiffiffiffiffijKjp
VðϕÞ ðK

−1Þμν
�
−∇β

�
fRðϕÞ

ffiffiffiffiffiffiffijKjp
VðϕÞ ðK

−1Þμβ
�
δνα

þ2fRðϕÞ
ffiffiffiffiffiffiffijKjp

VðϕÞ ðK
−1ÞμβSναβ−2fRðϕÞ

ffiffiffiffiffiffiffijKjp
VðϕÞ ðK

−1ÞμνSα

þ2fRðϕÞ
ffiffiffiffiffiffiffijKjp

VðϕÞ ðK
−1ÞμβSβδνα

−2∂β

�
fQðϕÞ

ffiffiffiffiffiffiffijKjp
VðϕÞ ðK

−1Þ½νβ�
�
δμα¼ 0; ð31Þ

which describes the purely affine version of the gravita-
tional field equations involving high order terms in the
connection, which make them difficult to solve directly.
Therefore, as in (13), the generalized metrical tensor
density can be defined as

M2
ffiffiffiffiffiffi
jgj

p
gμν ¼ fRðϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijKðΓ;ϕÞjp
VðϕÞ ðK−1Þμν: ð32Þ
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Notice that this density is proportional to fRðϕÞ not fQðϕÞ.
The reason is that in the Eddington gravity approach the
metric density emerges from the derivative of the
Lagrangian with respect to the Ricci tensor RμνðΓÞ as in
(14), and since the latter can always have a symmetric part,
the physical symmetric metric is always defined from this
approach. A tensor density defined from the derivative of
the Lagrangian with respect toQμνðΓÞ cannot be symmetric
and hence cannot be used to define a physical metric.
As we have seen in the previous section, in purely affine

gravity, the tensor density (13) or (32) which is generated
a posteriori does not only lead to the concept of metric but
turns out to be very essential in simplifying the dynamics of
the connection which arise in very complicated equations
of motion. Given the metric tensor density (32), the last
equation of motion takes the form

∇αð
ffiffiffiffiffiffi
jgj

p
gμνÞ þ 2

ffiffiffiffiffiffi
jgj

p
gμβ

�
Sναβ þ

1

3
Sβδνα

�
− 2

ffiffiffiffiffiffi
jgj

p
gμνSα

þ 2∂β

�
fQ
fR

��
1

3

ffiffiffiffiffiffi
jgj

p
g½μβ�δνα −

ffiffiffiffiffiffi
jgj

p
g½νβ�δμα

�

þ 2
fQ
fR

�
1

3
J μδνα − J νδμα

�
¼ 0: ð33Þ

This implies that instead of (17), one gets

�
1þ 4fQ

fR

�
J μ þ 4∂α

�
fQ
fR

� ffiffiffiffiffiffi
jgj

p
g½αμ� ¼ 0; ð34Þ

which means that unlike the previous model, the quantity
J μ does not vanish, and therefore, it influences the solution
to the dynamical equation (33). This is one of the effects of
distinct couplings between the scalar fields and the Ricci
tensors. Now, the identity (32) represents the gravitational
field equations of model (29), and it is equivalent to

fRðϕÞRμν þ fQðϕÞQμν − ∂μϕa∂νϕa

−
M2VðϕÞ
fRðϕÞ

gμν ¼ 0: ð35Þ

Another interesting property of the purely affine gravity
with scalar fields is that the metric tensor can be integrated
out easily from the field equations. This is clear from both
equations (35) and (19) thanks to the nonzero potential. As
we have seen above, VðϕÞ ≠ 0 is a primary requirement for
generating the metric in this approach, and in the absence of
the scalar fields (the case of free space), this metric will
require a nonzero cosmological constant (already supported
by observation) which replaces the potential [20]. The idea
of decoupling the metric tensor from matter fields through a
metric-affine action in which the metric is not dynamical,
has been used to construct a metric-free action for dark
matter separable from an ordinary matter sector [18].

As we have done in order to get the field equations (20),
we also construct here a generalized Einstein tensor and
write the previous equation in a standard form,

fRðϕÞ
�
Rμν −

1

2
gμνgαβRαβ

�

¼ ∂μϕa∂νϕa −
1

2
gμνgαβ∂αϕa∂βϕa

− fQðϕÞ
�
Qμν −

1

2
gμνgαβQαβ

�
: ð36Þ

The final equation one derives from action (29) is the
equation for the fields ϕaðxÞ. Variation with respect to ϕa

yields

∂ν

� ffiffiffiffiffiffiffijKjp
VðϕÞ K

ðμνÞ∂μϕa

�
−

ffiffiffiffiffiffiffijKjp
V2ðϕÞ

∂V
∂ϕa

þ 1

2

ffiffiffiffiffiffiffijKjp
VðϕÞ K

μν

�∂fR
∂ϕa Rμν þ

∂fQ
∂ϕa Qμν

�
¼ 0: ð37Þ

Like the gravitational field equations (31), this is also
complicated and written in terms of the connection only. It
is this equation that must describe the evolution of the
scalar fields in a background endowed with a connection
and not a metric. Once again, using the metric tensor
density g of (32), we get

∂νð
ffiffiffiffiffiffijgjp

gðμνÞ∂μϕaÞffiffiffiffiffiffijgjp −
∂V
∂ϕa þ

1

2

∂fR
∂ϕa g

μνRμν

þ 1

2

∂fQ
∂ϕa g

μνQμν þΨðϕÞ ¼ 0; ð38Þ

where the last term is given by

ΨðϕÞ ¼
�
1 −

M2

fR

� ∂V
∂ϕa −

1

fR

∂fR
∂ϕa g

ðμνÞ∂μϕa∂νϕa: ð39Þ

All the remarks and comments addressed above con-
cerning equations (20) and (22) can be brought here. The
main difference however relies on the constraint (34) for the
vector density J μ, which does not vanish in this case. This
clearly affects the dynamics of the affine connection, which
cannot take the form (27). Therefore, we conclude that the
interaction between the scalar fields and the second Ricci
tensor does not only bring new effects at the level of the
equations of motion but also plays an important role in the
solution of the dynamical equation for the connection.
The dynamical aspects of the gravitational setup that we

have discussed throughout the above sections can be
summarized as follows: (a) The proposed action principles
stand on the affine connection as the central geometric
element. (b) They extend Eddington gravity by allowing
the effects of both torsion and the skew-symmetric Ricci
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curvature (c) Matter is incorporated as multiple scalar fields
and are permitted to interact directly with the two Ricci
tensors. (d) As a limiting case, the resulting dynamics is
equivalent to that of GR when both the connection and
Ricci tensor are taken as symmetric. When one or both of
these symmetric characters are relaxed, the dynamics then
shows a significant difference from GR. Since it involves
the scalar fields in the first place, this setup must be
explored in line with the well-known scenarios, mainly
inflation and dynamical dark energy.

IV. CONCLUSION

In this paper, we have explored various dynamical
aspects of the asymmetric affine theory with scalar fields
in the spirit of Eddington gravity. We have started with the
fact that in the latter the fundamental quantities behind the
action principle, namely, the connection and the associated
curvature, are constrained to be symmetric in the first place
leaving no place for other interesting geometric objects that
can lead to new physical and cosmological effects.
Furthermore, due to the absence of the concept of metric,
the action of the theory is known to be very arduous to
accept matter fields. For those reasons, we intended, first, to
enlarge the theory by alleviating the constraints applied on
the geometric quantities, and as a result, the theory gained
new objects, namely, the torsion and the skew-symmetric
part of the Ricci tensor. Second, we incorporated matter
sources into the action as multiple scalar fields which seem
not to require a metric. With this structure, we have
investigated various possible ways in which the scalars
are coupled to the central object (the affine connection) via
the two types of Ricci tensors and have realized that crucial
effects and deviations from general relativity can emerge
from the nonminimal couplings between matter sources
and both curvatures.
The second Ricci tensor cannot be involved in the purely

metric theories of gravity since it vanishes once the
connection is metric compatible (Levi-Civita) from the

beginning. Otherwise, this skew-symmetric part can enter
the gravitational action but in the Palatini formulation
where also an independent connection is introduced, and
in this case, the resulting theories may resemble that of a
vector field [27]. In contrast, the present setup does not
stand on the Palatini formulation. Indeed, the second Ricci
curvature, one of the essential elements in this framework,
needs not to couple to metric since it is already a second-
rank tensor field that contributes to the volume measure
itself.
Throughout the paper, we have focused on the resulting

equations of motion, which originally take a purely affine
form, and provided a way to express them in a familiar
form. It is through this step that the concept of metric
emerges and facilitates the solution of the dynamical
equations for the connection. At this point, we have shown
that the solution (the connection in terms of the metric) can
be similar to the vacuum case if the scalar fields are coupled
to both curvatures by the same function, while different
coupling functions lead to different physics. Another
important feature in this framework is that due to the
relaxation of the constraint on the curvature the metric
tensor of the theories emerges with both symmetric and
antisymmetric parts where the former is taken as the
relevant physical field for the gravitational phenomenon,
while the latter contributes to the measurable deviations
from the symmetric models.
Finally, one needs more investigations throughout the

present aspects especially when these scalar fields are
considered as sources of some cosmological phenomena.
We leave this quest for a separate study [28].
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