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We investigate the behavior of null geodesics near future null infinity in asymptotically flat spacetimes.
In particular, we focus on the asymptotic behavior of null geodesics that correspond to worldlines of
photons initially emitted in the directions tangential to the constant radial surfaces in the Bondi coordinates.
The analysis is performed for general dimensions, and the difference between the four-dimensional cases
and the higher-dimensional cases is stressed. In four dimensions, some assumptions are required to
guarantee the null geodesics to reach future null infinity, in addition to the conditions of asymptotic
flatness. Without these assumptions, gravitational waves may prevent photons from reaching null infinity.
In higher dimensions, by contrast, such assumptions are not necessary, and gravitational waves do not
affect the asymptotic behavior of null geodesics.
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I. INTRODUCTION

In the past few years, the LIGO and Virgo collaborations
have reported many detections of the gravitational wave
events [1,2] and opened a new era of gravitational wave
astronomy. The Event Horizon Telescope Collaboration
has recently observed the black hole shadow at the center of
the galaxy M87 [3]. The observational progress motivates
us to examine the asymptotic behavior of null geodesics
near future null infinity. Since the geometric structures
in the neighborhood of infinity are close to those of
Minkowski spacetime, one may naively expect that it
would be rather simple. However, this is not the case.
Indeed, in four dimensions, it is well known that the
supertranslation, which is a part of the asymptotic sym-
metries of null infinity [4,5], gives an observational effect
through the effect of the gravitational wave memory [6–8].
It is pointed out that the signal of gravitational wave
memory could be detected statistically by accumulating
data of gravitational waves observed at ground-based
interferometers (see, e.g., Refs. [9,10]). Furthermore, the
space-based detector, the Laser Interferometer Space
Antenna (LISA), which is planned to be launched in the
2030s [11], may be able to detect it directly in the
observation of supermassive black hole mergers [12].
Moreover, the supertranslation has attracted much attention
to solve the information loss paradox [13] in the evapo-
ration of black holes due to the Hawking radiation [14].

In this paper,we examine the behavior of thenull geodesics
that correspond to worldlines of photons emitted in the
direction tangent to the constant radial surfaces in the neigh-
borhood of future null infinity. In four dimensions, we clarify
the sufficient conditions that guarantee null geodesics to reach
future null infinity. Those sufficient conditions exclude the
possibility that gravitational waves may significantly affect
the fate of emitted photons, and the relation to the supertrans-
lation is discussed. To compare with the four-dimensional
cases, we will also address the higher-dimensional cases,
where the supertranslation is absent [15,16]. Itwill be clarified
that the asymptotic behavior of null geodesics is not affected
by gravitational waves in higher dimensions.
In Minkowski spacetime, any photon emitted in a

direction tangential to the constant radial surface arrives
at future null infinity by increasing the value of the radial
coordinate r of its position unboundedly while keeping the
value of the null coordinate u finite. By contrast, in an
environment with strong gravitational field, the situation is
different. In a Schwarzschild spacetime, for example, there
exist null geodesics that are wholly included in the hyper-
surface at r ¼ 3M. The hypersurface at r ¼ 3M is called
the photon sphere [17] or the photon surface [18], and null
geodesics on it extend toward future timelike infinity iþ,
not future null infinity Iþ. Moreover, all photons emitted
to angular directions in r < 3M fall into the black hole
because of the strong gravitational attraction. If one
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restricts attention on asymptotic regions, one may expect
that the situation would be similar to that of Minkowski
spacetime; i.e., the value of the radial coordinate r is
naively expected to increase for photons emitted in angular
directions. We study whether such naive expectation is
correct or not and clarify the fact that there is a possibility
that gravitational waves pull the photon inside.
The rest of this paper is organized as follows. In Sec. II,

we give a brief introduction of asymptotically flat space-
times in terms of the Bondi coordinates and present initial
conditions for the geodesic equations. In Sec. III, we study
the asymptotic behavior of null geodesics that correspond
to photons emitted in angular directions near future null
infinity of four-dimensional spacetimes. In Sec. IV, we
examine higher-dimensional cases. Section V is devoted to
a summary and discussion. In the Appendix A, we present
the components of the Christoffel symbols in the Bondi
coordinates. In Appendix B, we give some details of our
analysis presented in the main article.

II. BRIEF REVIEW OF NULL INFINITY AND
INITIAL CONDITIONS

A. Null infinity in the Bondi coordinate

We briefly review the essence of the asymptotic
properties of the region near future null infinity in asymp-
totically flat spacetimes based on Refs. [4,5,15] (see also
Refs. [19–21]). Let n be the dimension of a spacetime. We
will restrict our attention to the case n ≥ 4. We adopt the
Bondi coordinates,

ds2 ¼ −AeBdu2 − 2eBdudr

þ hIJr2ðdxI þ CIduÞðdxJ þ CJduÞ; ð1Þ

where A;B;CI and hIJ are functions of u, r, and xI . Here,
xI stands for angular coordinates. In these coordinates,
future null infinity Iþ is supposed to be located at r ¼ ∞.
Then, we expand hIJ near future null infinity as

hIJ ¼ ωIJ þ
X
k≥0

hðkþ1Þ
IJ r−ðn=2þk−1Þ; ð2Þ

where ωIJ is the metric for the unit (n − 2)-sphere, k ∈ Z
for even dimensions, and 2k ∈ Z for odd dimensions. If
hIJ − ωIJ is nonzero, it indicates the presence of gravita-
tional waves. We impose the gauge condition as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det hIJ

p
¼ ωn−2; ð3Þ

where ωn−2 is the volume element of the unit (n − 2)-
dimensional sphere.
By using the vacuum Einstein equations Rμν ¼ 0, the

falloff behavior of A, B, and CI can be given as [15]

A ¼ 1þ
Xk<n=2−2

k¼0

Aðkþ1Þr−ðn=2þk−1Þ

−mðu; xIÞr−ðn−3Þ þOðr−ðn−5=2ÞÞ; ð4Þ

B ¼ Bð1Þr−ðn−2Þ þOðr−ðn−3=2ÞÞ; ð5Þ

CI ¼
Xk<n=2−1

k¼0

Cðkþ1ÞIr−ðn=2þkÞ þ JIðu; xIÞr−ðn−1Þ

þOðr−ðn−1=2ÞÞ; ð6Þ

where Aðkþ1Þ, Bð1Þ, Cðkþ1ÞI,m, and JI are functions of u and
xI . In this paper, we assume the above behavior of the
metric without using the properties of field equations.
Hence, one may be able to apply our result to modified
gravity theories, as well. In general relativity, note that
the integration of mðu; xIÞ over solid angle gives us the
Bondi mass [15],

MðuÞ ≔ n − 2

16π

Z
Sn−2

mdΩ: ð7Þ

The nonzero components of the metric and of the inverse
metric behave as

guu ¼ −AeB þ hIJCICJr2 ¼ −1 − Að1Þr−ðn=2−1Þ þmr−ðn−3Þ þOðr−ðn−1Þ=2Þ;
gur ¼ −eB ¼ −1 − Bð1Þr−ðn−2Þ þOðr−ðn−3=2ÞÞ;
gIJ ¼ hIJr2 ¼ ωIJr2 þ hð1ÞIJ r

−ðn=2−3Þ þOðr−ðn−5Þ=2Þ;
guI ¼ hIJCJr2 ¼ Cð1Þ

Ir−ðn=2−2Þ þOðr−ðn−3Þ=2Þ;
gur ¼ −e−B ¼ −1þ Bð1Þr−ðn−2Þ þOðr−ðn−3=2ÞÞ;
grr ¼ Ae−B ¼ 1þ Að1Þr−ðn=2−1Þ −mr−ðn−3Þ þOðr−ðn−1Þ=2Þ;
grI ¼ CIe−B ¼ Cð1ÞIr−n=2 þOðr−ðnþ1Þ=2Þ;
gIJ ¼ hIJr−2 ¼ ωIJr−2 − hð1ÞIJr−ðn=2þ1Þ þOðr−ðnþ3Þ=2Þ; ð8Þ
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where hIJ is defined by hIJhJK ¼ δIK and the capital latin
indices of the quantities appearing in the right-hand side are
raised and lowered by ωIJ and ωIJ. In particular, in four
dimensions, the behavior of the metric components is
written as

guu ¼ −1þmr−1 þOðr−2Þ;
gur ¼ −1 − Bð1Þr−2 þOðr−3Þ;
gIJ ¼ ωIJr2 þ hð1ÞIJ rþOðr0Þ;
guI ¼ Cð1Þ

I þOðr−1Þ
gur ¼ −1þ Bð1Þr−2 þOðr−3Þ;
grr ¼ 1 −mr−1 þOðr−2Þ;
grI ¼ Cð1ÞIr−2 þOðr−3Þ;
gIJ ¼ ωIJr−2 − hð1ÞIJr−3 þOðr−4Þ; ð9Þ

where O denotes the Landau symbol. In Appendix A, we
present the asymptotic behavior of the Christoffel symbols.
Next, we introduce the asymptotic symmetry as the

transformation which preserves the asymptotic form of the
metric. Then, the variations of the components the metric
near null infinity are restricted to

δgrr ¼ 0; δgrI ¼ 0;

gIJδgIJ ¼ 0; δguu ¼ Oðr−ðn=2−1ÞÞ;
δguI ¼ Oðr−ðn=2−2ÞÞ; δgur ¼ Oðr−ðn−2ÞÞ;
δgIJ ¼ Oðr−ðn=2−3ÞÞ; ð10Þ

where

δgμν ≔ £ξgμν ð11Þ

and ξμ is the generator of the asymptotic symmetry group
[15]. Later, the asymptotic symmetry gives us the asymp-
totic conserved quantities for geodesics.

B. Initial conditions of null geodesics

In the following sections, we examine the asymptotic
behavior of null geodesics near future null infinity. In
particular, we focus on null geodesics that correspond to

worldlines of photons emitted in the tangential directions to
r ¼ constant surfaces near future null infinity, i.e., r0 ¼ 0,
where the prime ( 0) denotes the derivative with respect to
the affine parameter λ.
If a black hole is present, there are null geodesics that

enter the black hole region if its tangent vector is directed
in the inward radial direction. By contrast, bearing the
spherical case or so in mind, one can think that worldlines
of photons emitted in the outward radial direction would
reach future null infinity. The null geodesics with the initial
condition given as above could have a nontrivial fate.

III. ASYMPTOTIC BEHAVIOR OF NULL
GEODESICS IN FOUR DIMENSIONS

In this section, we analyze null geodesics in four-
dimensional spacetimes and figure out sufficient conditions
for spacetimes that any null geodesic corresponding to the
worldline of a photon emitted with r0 ¼ 0 at sufficiently
large r reaches future null infinity. In Sec. III A, we present
the geodesic equations near future null infinity in the Bondi
coordinates. Then, we analyze the behavior of r and u
along the null geodesics in Secs. III B–III D. The study
consists of three steps. In the first step, we show that
the geodesic has r00 > 0 at the initial emission point
(Sec. III B). Next, we prove that the radial coordinate r
of any null geodesic with the above initial conditions will
diverge as the affine parameter λ is increased to infinity
(Sec. III C). In the third step, we study the behavior of u in
the limit λ → ∞ and prove that u remains a finite value
(Sec. III D). This explicitly indicates that the photon arrives
at future null infinity. In this proof, we must require some
conditions to the property of the metric. These conditions
are related to the presence of gravitational waves and
indicate the possibility that photons emitted with the above
initial conditions may not reach future null infinity without
these conditions. In Sec. III E, we confirm the existence of
the asymptotic conserved quantities for null geodesics.

A. Geodesic equations and the null condition

Here, we present the geodesic equations and the null
condition in four dimensions for later convenience. By
using Eqs. (9) and Eqs. (A2), we write down the geodesic
equations near future null infinity as

r00 ¼ −Γr
uuu02 − 2Γr

uru0r0 − Γr
rrr02 − 2Γr

uIu
0ðxIÞ0 − 2Γr

rIr
0ðxIÞ0 − Γr

IJðxIÞ0ðxJÞ0

¼
�
1

2
_mr−1 þOðr−2Þ

�
u02 − ½mr−2 þOðr−3Þ�u0r0 þ ½2Bð1Þr−3 þOðr−4Þ�r02

þ ½ðm;I − Cð1ÞJ _hð1ÞIJ Þr−1 þOðr−2Þ�u0ðxIÞ0 − 2½Cð1Þ
Ir−1 þOðr−2Þ�r0ðxIÞ0

þ
��

ωIJ −
1

2
_hð1ÞIJ

�
rþOðr0Þ

�
ðxIÞ0ðxJÞ0; ð12Þ
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u00 ¼ −Γu
uuu02 − 2Γu

uIu
0ðxIÞ0 − Γu

IJðxIÞ0ðxJÞ0

¼
��

− _Bð1Þ þ 1

2
m

�
r−2 þOðr−3Þ

�
u02 þOðr−2Þu0ðxIÞ0 −

�
ωIJrþ

1

2
hð1ÞIJ þOðr−1Þ

�
ðxIÞ0ðxJÞ0; ð13Þ

where the dot denotes the derivative with respect to u, and we skipped the angular components of null geodesic equations
because we will not use them.
The null condition for the tangent vector of null geodesics,

−AeBu02 − 2eBu0r0 þ hIJr2½ðxIÞ0 þ CIu0�½ðxJÞ0 þ CJu0� ¼ 0; ð14Þ

gives us

u02 ¼ −2½1þmr−1 þOðr−2Þ�u0r0 þ ½ωIJr2 þ ðhð1ÞIJ þmωIJÞrþOðr0Þ�ðxIÞ0ðxJÞ0 þ ½2Cð1Þ
I þOðr−1Þ�ðxIÞ0u0: ð15Þ

This equation can be regarded as an equation for u0, and the solution with a double sign is obtained. Among them, we adopt
the positive solution of u0 because we consider a future directed null geodesic. Then, Eq. (14) is algebraically solved as

u0 ¼ −eBr0 þ hIJCJr2ðxIÞ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½eBr0 − hIJCJr2ðxIÞ0�2 þ ðAeB − hIJCICJr2ÞhKLr2ðxKÞ0ðxLÞ0

p
AeB − hMNCMCNr2

: ð16Þ

B. Behavior around the emission point

We study the behavior of r of a geodesic in the neighborhood of the emission point. Since r0 vanishes at the initial affine
parameter, λ ¼ 0, the behavior is characterized by r00.
For later convenience, we introduce jðxIÞ0j as

jðxIÞ0j ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωIJðxIÞ0ðxJÞ0

q
: ð17Þ

For r0 ¼ 0, Eq. (16) becomes

u0 ¼ hIJCJr2ðxIÞ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½hIJCJr2ðxIÞ0�2 þ ðAeB − hIJCICJr2ÞhKLr2ðxKÞ0ðxLÞ0

p
AeB − hMNCMCNr2

¼ ½rþOðr0Þ�jðxIÞ0j: ð18Þ

Here, note that initially jðxIÞ0j ≠ 0, because otherwise Eq. (18) implies u0 ¼ 0, that is, the tangent vector becomes zero.
At λ ¼ 0 (that is r0 ¼ 0), Eq. (12) becomes

r00 ¼
�
1

2
_mr−1 þOðr−2Þ

�
u02 þ ½ðm;I − Cð1ÞJ _hð1ÞIJ Þr−1 þOðr−2Þ�u0ðxIÞ0 þ

��
ωIJ −

1

2
_hð1ÞIJ

�
rþOðr0Þ

�
ðxIÞ0ðxJÞ0

¼ Oðr−1Þu0ðxIÞ0 þ ΩIJrðxIÞ0ðxJÞ0 þOðr0ÞjðxIÞ0j2; ð19Þ

where we used Eq. (15) in the second equality, and ΩIJ is defined by

ΩIJ ≔ ωIJ −
1

2
_hð1ÞIJ þ 1

2
_mωIJ: ð20Þ

Furthermore with Eq. (18), we see that the first term of the second line in the right-hand side of Eq. (19) is next-to-leading
order and then

r00 ¼ ΩIJrðxIÞ0ðxJÞ0 þOðr0ÞjðxIÞ0j2: ð21Þ

The second and third terms in the expression of Eq. (20) originate from the presence of gravitational waves. Thus, at leading
order, gravitational waves affect the null geodesic motion near future null infinity in four dimensions. As clarified later,
this is a fairly unique feature compared to higher-dimensional cases and would be related to the so-called supertranslation.
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Since ΩIJ does not have two positive eigenvalues in

general, one cannot claim that r00 is positive. Since hð1ÞIJ
and m appear with the 1=r factor in the metric, weak
gravitational waves at large r can make eigenvalues of ΩIJ
negative. The negativity of r00 results in the decrease in r
just after λ ¼ 0. Then, there remains the possibility to have
photons emitted in the angular direction near future null
infinity which do not reach future null infinity. Note that, in
order for the value of r continues to be decreased, the sign
of the eigenvalues ΩIJ must be kept negative until the
velocity of the photon becomes directed toward the central
region. That is, gravitational waves must be sufficiently
strong or continuously give such an effect. Although such a
case might be rare, the formation of caustics of gravitational
waves at the emission point of the photon could realize
such a situation. Therefore, this result at least indicates the
importance of the effects by gravitational waves in the
dynamics of photons near future null infinity. To guarantee
that photons will arrive future null infinity, a straightfor-
ward way is to assume ΩIJ to be positive definite, which
means the effects by gravitational waves are not large.
Under this assumption, we have

r00 ¼ ΩIJrðxIÞ0ðxJÞ0 þOðr0ÞjðxIÞ0j2 > 0; ð22Þ

where we used jðxIÞ0j ≠ 0 at the initial point, which, in turn,
indicates that there exists a constant λc such that r0 > 0 for
0 < λ < λc. Then, we can prove that r0 > 0 for any positive
λ using proof by contradiction. Suppose that there exists a
positive affine parameter at which r0 ¼ 0. Let λ0ð> 0Þ
denote the minimum of such affine parameters. Then,
r00 ≤ 0 at this point, which gives a contradiction to
Eq. (22). Therefore, we obtain r0 > 0 for arbitrary λ > 0.

C. Asymptotic behavior of rðλÞ
In this subsection, we prove the existence of the lower

bound of r0. This implies that r diverges as λ → ∞.

This result is also used for the proof of finiteness of u
in the next subsection.
First, using Eq. (16), we estimate the order of u0 in terms

of jðxIÞ0j. In the case eBr0 − hIJCJr2ðxIÞ0 > 0, on the one
hand, Eq. (16) gives us

u0 ¼ eBr0 − hIJCJr2ðxIÞ0
AeB − hMNCMCNr2

×

"
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðAeB − hIJCICJr2ÞhKLr2ðxKÞ0ðxLÞ0

½eBr0 − hPQCPr2ðxQÞ0�2
s #

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hIJr2ðxIÞ0ðxJÞ0
AeB − hKLCKCL r

2

s
¼ ½rþOðr0Þ�jðxIÞ0j; ð23Þ

where we used
ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
− 1 ≤

ffiffiffi
x

p
for x ≥ 0 in the

second inequality. On the other hand, in the case
eBr0 − hIJCJr2ðxIÞ0 ≤ 0, we have

jeBr0−hIJCJr2ðxIÞ0j≤hIJCJr2ðxIÞ0 ¼Oðr0ÞjðxIÞ0j; ð24Þ

and hence, Eq. (16) tells us

u0 ¼ Oðr0ÞjðxIÞ0j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½r2 þOðr1Þ�jðxIÞ0j2

q
¼ ½rþOðr0Þ�jðxIÞ0j: ð25Þ

Therefore, we find

u0 ¼ ½rþOðr0Þ�jðxIÞ0j ð26Þ

for arbitrary λ > 0 in both cases. Note that u0 is positive
because the tangent vector is future directed.
By introducing positive constants C̃1 and C̃2, we can

give a lower bound for r00 as

r00 ¼ −½ _mr−1 þOðr−2Þ�u0r0 þ ½ΩIJrþOðr0Þ�ðxIÞ0ðxJÞ0 − ½2Cð1Þ
Ir−1 þOðr−2Þ�r0ðxIÞ0 þ ½2Bð1Þr−3 þOðr−4Þ�r02

þ ½ðCð1Þ
I _mþm;I − Cð1ÞJ _hð1ÞIJ Þr−1 þOðr−2Þ�ðxIÞ0u0

¼ − _mr−1u0r0 þ ½ΩIJrþOðr0Þ�ðxIÞ0ðxJÞ0 þOðr−1Þr0jðxIÞ0j þ ½2Bð1Þr−3 þOðr−4Þ�r02
> − _mr−1u0r0 þ ½ΩIJrþOðr0Þ�ðxIÞ0ðxJÞ0 − C̃1r−1r0jðxIÞ0j þ ½2Bð1Þr−3 þOðr−4Þ�r02

≥ − _mr−1u0r0 þ ½ΩIJrþOðr0Þ�ðxIÞ0ðxJÞ0 − 1

2
C̃1½r−2r02 þ jðxIÞ0j2� þ ½2Bð1Þr−3 þOðr−4Þ�r02

> − _mr−1u0r0 þ ½ΩIJrþOðr0Þ�ðxIÞ0ðxJÞ0 − C̃2r−2r02; ð27Þ
where we used Eqs. (12) and (15) in the first equality, used Eq. (26) in the second equality, gave a lower bound for the
coefficient of r0jðxIÞ0j in the third inequality, used the arithmetic-geometric mean inequality

jr−1r0jðxIÞ0jj ≤ 1

2
½r−2r02 þ jðxIÞ0j2� ð28Þ

in the fourth inequality, and gave a lower bound for the coefficient of r02 in the fifth inequality.
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The Einstein equation implies the monotonicity of

mðu; xIÞ as _m ¼ − 1
4
_hð1ÞIJ

_hð1ÞIJ ≤ 0 [15]. Since this is a
natural property for mðu; xIÞ regardless of gravitational
theories, we assume this monotonicity for mðu; xIÞ,

_m ≤ 0: ð29Þ

Under the assumptions of the positive definiteness of ΩIJ
and (29), we have

r00 > −C̃2r−2r02; ð30Þ

from Eq. (27). Inequality (30) and the positivity of r0 give

r00

r0
> −

C̃2

r2
r0: ð31Þ

By integrating out this inequality,

log r0 >
C̃2

r
þ C̃3 ð32Þ

is obtained, where C̃3 is the integral constant. Thus,
we have

r0 > exp

�
C̃2

r
þ C̃3

�
> C̃4; ð33Þ

where C̃4 ≔ eC̃3 > 0. Integrating this inequality again,
we obtain

r > C̃4λþ C̃5; ð34Þ

where C̃5 is the integral constant. Thus, r diverges as
λ → ∞. Note that the same procedure does not work
without the assumption of Eq. (29) because the term
− _mr−1u0r0 in the last line of Eq. (27) gives the contribution
of Oðr0Þr0jðxIÞ0j through Eq. (26).
To confirm that the current null geodesics reach future

null infinity, one has to check that uðλÞ asymptotically
converges to a finite value. We study this issue in the next
subsection.

D. Asymptotic behavior of uðλÞ
We now examine the asymptotic behavior of uðλÞ.

Equation (15) gives

½ωIJ þ ðhð1ÞIJ þmωIJÞr−1 þOðr−2Þ�ðxIÞ0ðxJÞ0 ¼ r−2u02 þ 2½r−2 þmr−3 þOðr−4Þ�u0r0 − ½2Cð1Þ
Ir−2 þOðr−3Þ�ðxIÞ0u0

¼ ½r−2 þOðr−3Þ�u02 þ 2½r−2 þmr−3 þOðr−4Þ�u0r0 þOðr−1ÞjðxIÞ0j2; ð35Þ

where the first equality is obtained in a simple rearrange-
ment of Eq. (15) and we used the arithmetic-geometric
mean inequality

0 ≤ r−2u0jðxIÞ0j ¼ ðr−3u02Þ1=2½r−1jðxIÞ0j2�1=2

≤
1

2
½r−3u02 þ r−1jðxIÞ0j2�; ð36Þ

which implies

r−2u0ðxIÞ0 ¼ Oðr−3Þu02 þOðr−1ÞjðxIÞ0j2 ð37Þ

in the order estimate of the second equality. This means

½ωIJ þOðr−1Þ�ðxIÞ0ðxJÞ0
¼ ½r−2 þOðr−3Þ�u02 þ ½2r−2 þOðr−3Þ�u0r0: ð38Þ

Substituting this relation into Eq. (13), we have

u00 ¼
��

− _Bð1Þ þ 1

2
m

�
r−2 þOðr−3Þ

�
u02 þOðr−3Þu02 þOðr−1ÞjðxIÞ0j2 −

�
ωIJrþ

1

2
hð1ÞIJ þOðr−1Þ

�
ðxIÞ0ðxJÞ0

¼ Oðr−2Þu02 − ½ωIJ þOðr−1Þ�rðxIÞ0ðxJÞ0

¼ Oðr−2Þu02 −
�
1

r
þOðr−2Þ

�
u02 −

�
2

r
þOðr−2Þ

�
u0r0

¼ −
�
1

r
þOðr−2Þ

�
u02 −

�
2

r
þOðr−2Þ

�
u0r0

< −
�
2

r
−
C̃6

r2

�
u0r0 ð39Þ
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for large r (i.e., for large λ), where we used Eq. (37) in the
first equality, used Eq. (38) in the third equality, and
excluded a nonpositive term and gave an upper bound
for the coefficient of u0r0 in the fifth inequality by
introducing a positive constant C̃6. Next, we define U as

U ≔ r2 exp

�
C̃6

r

�
u0; ð40Þ

and then, the above inequality is simply written as

U0 < 0: ð41Þ

Integration of this inequality gives

U < C̃7; ð42Þ

where C̃7 is a positive constant. Recalling the definition of
U of Eq. (40), we have

0 ≤ u0 < C̃7r−2 < C̃7ðC̃4λþ C̃5Þ−2; ð43Þ

where expð−C̃6=rÞ < 1 was used. Integrating this inequal-
ity in the domain ½λL; λ�, we have

u − ujλ¼λL
< −

C̃7

C̃4

½ðC̃4λþ C̃5Þ−1 − ðC̃4λL þ C̃5Þ−1�: ð44Þ

Therefore, u is bounded from above as

u <
C̃7

C̃4

ðC̃4λL þ C̃5Þ−1 þ ujλ¼λL
; ð45Þ

and thus, u does not diverge. Therefore, the null geodesic
reaches future null infinity under the assumptions of the
positive definiteness of ΩIJ and Eq. (29). We stress that
these assumptions are not so strong in realistic physical
processes. In addition, this conclusion holds for any null
geodesics with r0ð0Þ ≥ 0.

E. Asymptotic constants of motion

Since asymptotically flat spacetimes have the asymptotic
symmetry as explained at the end of Sec. II A, we expect
that a geodesic has constants of motion in approximate
sense near future null infinity. We confirm this here.
Let ξ be a generator of the asymptotic symmetry. We
define Qξ by

Qξ ≔ ðxμÞ0ξμ: ð46Þ

Recalling the definition of δgμν given in Eq. (11), the
derivative of Qξ with respect to the affine parameter of this
geodesic is calculated as

ðxμÞ0∇μQξ ¼
1

2
ðxμÞ0ðxνÞ0£ξgμν

¼ 1

2
½u02δguu þ 2u0r0δgur þ ðxIÞ0ðxJÞ0δgIJ þ 2u0ðxIÞ0δguI�

¼ 1

2
½u02Oðr−1Þ þ 2u0r0Oðr−2Þ þ ðxIÞ0ðxJÞ0Oðr1Þ þ 2u0ðxIÞ0Oðr0Þ�

¼ 1

2
½Oðr−5Þ þOðr−4Þ þOðr−3Þ þOðr−4Þ�

¼ Oðr−3Þ; ð47Þ

where we used Eq. (10) in the third equality and used
Eqs. (43), (B11), and (B14) in the fourth equality. This can
be regarded as the approximate conservation law because

Qξ ¼ constantþOðr−2Þ ð48Þ

holds from Eqs. (34) and (B12). In the case ξ ¼ ∂u,
Eq. (47) corresponds to the approximate conservation of
the energy. There also exists the Killing vector ξ ¼ fI∂I
that represents rotational symmetry, and for this choice,
Eq. (47) corresponds to the approximate conservation of
the angular momentum.

IV. ASYMPTOTIC BEHAVIOR OF NULL
GEODESICS IN HIGHER DIMENSIONS

In this section, we study null geodesics in higher
dimensions n ≥ 5 paying attention to the difference from
the case n ¼ 4. Although most of the analyses in this
section are parallel to that in Sec. III, a critical difference
arises in the power of r. In particular, it is shown that any
null geodesic with the initial condition r0 ¼ 0 at sufficiently
large r reaches future null infinity without any additional
assumption. First, we show the geodesic equations near
future null infinity in Sec. IVA. Next, we discuss the
behavior of r along the null geodesics emitted with r0 ¼ 0
in Secs. IV B and IV C. Then, we prove the finiteness of u
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along the null geodesics in Sec. IV D. Last, we confirm the existence of asymptotic conserved quantities for null geodesics
in Sec. IV E.

A. Geodesic equations and the null condition

In this subsection, we present the geodesic equations and the null condition for n ≥ 5. The geodesic equations near null
infinity are

r00 ¼
�
−
1

2
_Að1Þr−ðn=2−1Þ þOðr−ðn−1Þ=2Þ

�
u02 þ

�
n− 2

2
Að1Þr−n=2 þOðr−ðnþ1Þ=2Þ

�
u0r0 þ ½ðn− 2ÞBð1Þr−ðn−1Þ þOðr−ðn−1=2ÞÞ�r02

þ
��

−
n− 4

2
Cð1Þ

I −Að1Þ
;I

�
r−ðn=2−1Þ þOðr−ðn−1Þ=2Þ

�
u0ðxIÞ0 −

�
n
2
Cð1Þ

Ir−ðn=2−1Þ þOðr−ðn−1Þ=2Þ
�
r0ðxIÞ0

þ
�
ωIJr−

1

2
_hð1ÞIJ r

−ðn=2−3Þ þOðr−ðn−5Þ=2Þ
�
ðxIÞ0ðxJÞ0; ð49Þ

u00 ¼ −
�
n − 2

4
Að1Þr−n=2 þOðr−ðnþ1Þ=2ÞÞ

�
u02 − 2

�
−
n − 4

4
Cð1Þ

Ir−ðn=2−1Þ þOðr−ðn−1Þ=2Þ
�
u0ðxIÞ0

−
�
ωIJr −

n − 6

4
hð1ÞIJ r

−ðn=2−2Þ þOðr−ðn−3Þ=2Þ
�
ðxIÞ0ðxJÞ0; ð50Þ

where we skipped the angular component of null geodesic equations because we will not use them. The null condition for
the tangent vector of null geodesics is the same as Eq. (14). For general n ≥ 5, Eq. (14) gives

u02 ¼ −2½1 − Að1Þr−ðn=2−1Þ þOðr−ðn−1Þ=2Þ�u0r0 þ ½ωIJr2 þ ðhð1ÞIJ − ωIJAð1ÞÞr−ðn=2−3Þ þOðr−ðn−5Þ=2Þ�ðxIÞ0ðxJÞ0
þ ½2Cð1Þ

Ir−ðn=2−2Þ þOðr−ðn−3Þ=2Þ�ðxIÞ0u0: ð51Þ

The algebraic solution for u0 is the same as Eq. (16).

B. Behavior around the emission point

In this subsection, we show r0 > 0 after the emission
by the parallel argument to Sec. III B. We focus on the
case where r0 is initially zero and set λ ¼ 0 at the emission
point. Then, the relation u0 ¼ Oðr1ÞjðxIÞ0j, given in
Eq. (18), holds also for n ≥ 5. Equation (49) at λ ¼ 0
becomes

r00 ¼ Oðr−ðn=2−1ÞÞu0ðxIÞ0 þ ωIJrðxIÞ0ðxJÞ0
þOðr−ðn=2−3ÞÞjðxIÞ0j2; ð52Þ

where jðxIÞ0j ≠ 0 as discussed in Sec. III B. Furthermore,
with Eq. (18), the first term in the right-hand side is of
higher order, and then,

r00 ¼ ωIJrðxIÞ0ðxJÞ0 þOðr−ðn=2−3ÞÞjðxIÞ0j2 > 0 ð53Þ

holds. This equation is different from Eq. (21) in the four-

dimensional case: neither _hð1ÞIJ nor _m is included in the
coefficient of r. This is because the falloff of the metric is
faster in higher dimensions, which is the same reason
why the supertranslation group and the memory effect are

absent in higher dimensions [15,16]. By the same argument
as that of Sec. III B after Eq. (22), we obtain r0 > 0 for
arbitrary λ > 0.

C. Asymptotic behavior of rðλÞ
We now consider the asymptotic behavior of rðλÞ for

λ → ∞ along the null geodesics. In a similar manner to the
study in Sec. III C, we relate u0 to jðxIÞ0j. In the case
eBr0 − hIJCJr2ðxIÞ0 > 0, on the one hand, the calculation
similar to Eq. (23) gives u0 ¼ ½rþOðr−ðn=2−2ÞÞ�jðxIÞ0j. In
the case eBr0 − hIJCJr2ðxIÞ0 ≤ 0, on the other hand, we
obtain the same equation as Eq. (24) but with Oðr0Þ of
the right-hand side being replaced by Oðr−ðn=2−2ÞÞ, and
Eq. (16) gives us

u0 ¼ Oðr−ðn=2−2ÞÞjðxIÞ0j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½r2 þOðr−ðn=2−3ÞÞ�jðxIÞ0j2

q
¼ ½rþOðr−ðn=2−2ÞÞ�jðxIÞ0j: ð54Þ

Therefore, we have u0 ¼ ½rþOðr−ðn=2−2ÞÞ�jðxIÞ0j, the lead-
ing order being the same as that of Eq. (26), for arbitrary
λ > 0 in both cases.
We now consider Eq. (49). r00 is calculated as
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r00 ¼ ½ _Að1Þr−ðn=2−1Þ þOðr−ðn−1Þ=2Þ�u0r0 þ
�
ωIJr −

1

2
ð _Að1ÞωIJ þ _hð1ÞIJ Þr−ðn=2−3Þ þOðr−ðn−5Þ=2Þ

�
ðxIÞ0ðxJÞ0

þ
�
−
�
n − 4

2
Cð1Þ

I þ Að1Þ
;I

�
r−ðn=2−1Þ þOðr−ðn−1Þ=2Þ

�
u0ðxIÞ0 þ ½ðn − 2ÞBð1Þr−ðn−1Þ þOðr−ðn−1=2ÞÞ�r02

−
�
n
2
Cð1Þ

Ir−ðn=2−1Þ þOðr−ðn−1Þ=2Þ
�
r0ðxIÞ0

¼
�
ωIJr −

1

2
ð _Að1ÞωIJ þ _hð1ÞIJ Þr−ðn=2−3Þ þOðr−ðn−5Þ=2Þ

�
ðxIÞ0ðxJÞ0 þOðr−ðn=2−2ÞÞr0jðxIÞ0j

þ ½ðn − 2ÞBð1Þr−ðn−1Þ þOðr−ðn−1=2ÞÞ�r02; ð55Þ

where we used Eqs. (49) and (51) in the first equality and
used Eq. (26) in the second equality. In contrast to the four-
dimensional case, the condition of Eq. (29) is not necessary
because the corresponding term − _mr−ðn−3Þu0r0 is of higher
order. For a technical reason, we introduce α that satisfies
0 < α < 1. Then, we have

r00 > ðωIJrþOðrαÞÞðxIÞ0ðxJÞ0 − Ĉ1r−ðnþα−4Þr02

≥ −Ĉ1r−ðnþα−4Þr02; ð56Þ

where we used the arithmetic-geometric mean inequality

jr−ðn=2−2Þr0jðxIÞ0jj ≤ 1

2
½r−ðnþα−4Þr02 þ rαjðxIÞ0j2� ð57Þ

in the first line, we used α < 1 in the second line, and Ĉ1 is
a positive constant. Here, the introduction of α is
necessary for the case n ¼ 5, and we can set α ¼ 0 for
n ≥ 6. Equation (56) and the positivity of r0 implies
r0−1r00 > −Ĉ1r−ðnþα−4Þr0, and integrating this inequality,
we obtain

log r0 >
Ĉ1

nþ α − 5
r−ðnþα−5Þ þ Ĉ2; ð58Þ

where Ĉ2 is an integral constant. Then, we have

r0 > exp

�
Ĉ1

nþ α − 5
r−ðnþα−5Þ þ Ĉ2

�
> eĈ2 ; ð59Þ

where we used α > 0 and n ≥ 5. Integrating this inequality
again, we obtain

r > eĈ2λþ Ĉ3; ð60Þ

where Ĉ3 is an integral constant. Thus, r diverges to infinity
as λ → ∞.

D. Asymptotic behavior of uðλÞ
Here, we examine the asymptotic behavior of uðλÞ as in a

similar manner to Sec. IV D. Equation (51) gives

½ωIJ þ ðhð1ÞIJ − ωIJAð1ÞÞr−ðn=2−1Þ þOðr−ðn−1Þ=2Þ�ðxIÞ0ðxJÞ0
¼ r−2u02 þ 2½r−2 − Að1Þr−ðn=2þ1Þ þOðr−ðnþ3Þ=2Þ�u0r0
− ½2Cð1Þ

Ir−n=2 þOðr−ðnþ1Þ=2Þ�ðxIÞ0u0
¼ r−2u02 þ 2½r−2 − Að1Þr−ðn=2þ1Þ þOðr−ðnþ3Þ=2Þ�u0r0
þOðr−3Þu02 þOðr−ðn−3ÞÞjðxIÞ0j2; ð61Þ

where we used the arithmetic-geometric mean inequality

0 ≤ r−n=2u0jðxIÞ0j ¼ ðr−3u02Þ1=2½r−ðn−3ÞjðxIÞ0j2�1=2

≤
1

2
½r−3u02 þ r−ðn−3ÞjðxIÞ0j2�; ð62Þ

that implies

r−n=2u0ðxIÞ0 ¼ Oðr−3Þu02 þOðr−ðn−3ÞÞjðxIÞ0j2 ð63Þ

to estimate the order of terms in the second equality. This
indicates

½ωIJ þOðr−ðn=2−1ÞÞ�ðxIÞ0ðxJÞ0
¼ ½r−2 þOðr−3Þ�u02 þ 2½r−2 þOðr−ðn=2þ1ÞÞ�u0r0: ð64Þ

Substituting this into Eq. (50), we obtain
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u00 ¼ −
�
n − 2

4
Að1Þr−n=2 þOðr−ðnþ1Þ=2ÞÞ

�
u02 þOðr−2Þu02 þOðr−ðn−4ÞÞjðxIÞ0j2

−
�
ωIJr −

n − 6

4
hð1ÞIJ r

−ðn=2−2Þ þOðr−ðn−3Þ=2Þ
�
ðxIÞ0ðxJÞ0

¼ Oðr−2Þu02 − ½ωIJ þOðr−ðn=2−1ÞÞ�rðxIÞ0ðxJÞ0
¼ Oðr−2Þu02 − ½r−1 þOðr−2Þ�u02 − ½2r−1 þOðr−n=2Þ�u0r0
¼ −½r−1 þOðr−2Þ�u02 − ½2r−1 þOðr−n=2Þ�u0r0

< −
�
2

r
−
Ĉ4

r2

�
u0r0 ð65Þ

for large r (i.e., for large λ), where we used Eq. (63) in the first equality, used Eq. (64) in the third equality, and excluded
a nonpositive term and gave an upper bound for the coefficient of u0r0 in the fifth inequality by introducing a positive
constant Ĉ4. Thus, by the same argument as in Sec. III D after Eq. (39),

u0 ¼ Oðr−2Þ ¼ Oðλ−2Þ; ð66Þ

and u does not diverge. Therefore, the null geodesic reaches future null infinity. Again, this conclusion is also correct for
any null geodesic with r0ð0Þ > 0.

E. Asymptotic constants of motion

It is expected that a geodesic has constants of motion in the approximate sense near future null infinity in higher-
dimensional spacetimes as well. In this subsection, we show the approximately conserved quantities using the results in
Appendix B.
In a similar manner to Eq. (47), the derivative of Qξ with respect to λ is

ðxμÞ0∇μQξ ¼
1

2
½u02δguu þ 2u0r0δgur þ ðxIÞ0ðxJÞ0δgIJ þ 2u0ðxIÞ0δguI�

¼ 1

2
½u02Oðr−ðn=2−1ÞÞ þ 2u0r0Oðr−ðn−2ÞÞ þ ðxIÞ0ðxJÞ0Oðr−ðn=2−3ÞÞ þ 2u0ðxIÞ0Oðr−ðn=2−2ÞÞ�

¼ 1

2
½Oðr−ðn=2þ3ÞÞ þOðr−nÞ þOðr−ðn=2þ1ÞÞ þOðr−ðn=2þ2ÞÞ�

¼ Oðr−ðn=2þ1ÞÞ; ð67Þ

where we used Eq. (10) in the second equality and
Eqs. (43), (B11), and (B14) in the third equality. This
can be regarded as the approximate conservation law. From
Eqs. (60) and (B12), we have

Qξ ¼ constantþOðr−n=2Þ: ð68Þ

In the case ξ ¼ ∂u, Eq. (67) corresponds to the approximate
conservation of the energy. In the case that ξ can be written
as ξ ¼ fI∂I, Eq. (67) corresponds to the approximate
conservation of the angular momentum.

V. CONCLUSIONS

In this paper, we have analyzed null geodesics that
correspond to worldlines of photons emitted with the initial
condition r0 ¼ 0 (or r0 > 0) at which r is sufficiently large

in the Bondi coordinates. We have proven that any such
geodesic reaches future null infinity under the asymptoti-
cally flat conditions in the higher-dimensional cases. In the
four-dimensional cases, the additional assumptions have
been required to be imposed. There is a nontrivial differ-
ence between the cases in four dimensions and in higher
dimensions.
The two assumptions required in the four-dimensional

cases are the positive definiteness of ΩIJ ≔ ωIJ − 1
2
_hð1ÞIJ þ

1
2
_mωIJ and _m ≤ 0. The latter condition is satisfied in

general relativity. The former condition is not trivial, and
it is satisfied if the effects of gravitational waves are
sufficiently weak near future null infinity. Although the
case where the null geodesic does not reach future null
infinity might be rare, there is a possibility that the null
geodesic may not reach future null infinity if we tune the
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gravitational wave emission (e.g., formation of caustics
just at the emission point). In the case of higher
dimensions, by contrast, these assumptions are not
necessary for any null geodesic to reach future null
infinity. In future work, it should be clarified whether
the sufficient condition in four dimensions is also the
necessary condition or not.
It should be noted that under the assumption that _m ≤ 0

in four dimensions the positive definiteness of ΩIJ is a
stronger condition than the positive definiteness of

χIJ ¼ −Γr
IJ ¼ ωIJr − 1

2
_hð1ÞIJ rþOðr0Þ, where χIJ is the

extrinsic curvature of r ¼ constant hypersurface in the u ¼
constant subspace. It should be beneficial to investigate the
meaning of ΩIJ in more detail. The difference between the
four-dimensional cases and higher-dimensional cases moti-
vates us to investigate the relation to the memory effect,
which also provides a nontrivial difference between four
dimensions and higher dimensions due to the asymptotic
behavior of the metric. The interpretation of ΩIJ would
serve as a key to understand the connection of our analysis
with the memory effect.
The study of this paper is the first step toward clarifying

the general properties of the global behavior of photons in
general dynamical spacetimes. One of the possible appli-
cations is to characterize the strong gravity regions by

extending the concepts of photon sphere from a global
point of view, while most of the existing generalizations of
the photon sphere are defined locally or in spacetimes with
symmetries, or have difficulty in specifying it by calcu-
lation [22–26]. It is also interesting to relate such study to
the observation of the black hole shadow because it might
become possible to observe the neighborhood of dynami-
cally evolving black holes in the near future.
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APPENDIX A: FALLOFF BEHAVIOR OF THE CHRISTOFFEL SYMBOLS

Here, we list the falloff properties of the Christoffel symbols. For n ≥ 4, the components of the Christoffel symbols are
estimated as

Γu
uu ¼

n − 2

4
Að1Þr−n=2 þ

�
_Bð1Þ −

n − 3

2
m

�
r−ðn−2Þ þOðr−ðnþ1Þ=2Þ;

Γu
ur ¼ 0; Γu

rr ¼ 0;

Γu
uI ¼ −

n − 4

4
Cð1Þ

Ir−ðn=2−1Þ þOðr−ðn−1Þ=2Þ;

Γu
rI ¼ 0; Γu

IJ ¼ ωIJr −
n − 6

4
hð1ÞIJ r

−ðn=2−2Þ þOðr−ðn−3Þ=2Þ;

Γr
uu ¼

1

2
_Að1Þr−ðn=2−1Þ −

1

2
_mr−ðn−3Þ þOðr−ðn−1Þ=2Þ;

Γr
ur ¼ −

n − 2

4
Að1Þr−n=2 þ n − 3

2
mr−ðn−2Þ þOðr−ðnþ1Þ=2Þ;

Γr
rr ¼ −ðn − 2ÞBð1Þr−ðn−1Þ þOðr−ðn−1=2ÞÞ;

Γr
uI ¼

�
n − 4

4
Cð1Þ

I þ
1

2
Að1Þ
;I

�
r−ðn=2−1Þ þ

�
−
1

2
m;I þ

1

2
Cð1ÞJ _hð1ÞIJ

�
r−ðn−3Þ þOðr−ðn−1Þ=2Þ;

Γr
rI ¼

n
4
Cð1Þ

Ir−ðn=2−1Þ þOðr−ðn−1Þ=2Þ;

Γr
IJ ¼ −ωIJrþ

1

2
_hð1ÞIJ r

−ðn=2−3Þ þOðr−ðn−5Þ=2Þ;
ΓI
uu ¼ _Cð1ÞIr−n=2 þOðr−ðnþ1Þ=2Þ;
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ΓI
ur ¼ −

n − 4

4
Cð1ÞIr−ðn=2þ1Þ þOðr−ðnþ3Þ=2Þ; ΓI

rr ¼ 0;

ΓI
uJ ¼

1

2
_hð1ÞIJr−ðn=2−1Þ þOðr−ðn−1Þ=2Þ;

ΓI
rJ ¼ δIJr−1 −

n − 2

4
hð1ÞIJr−n=2 þOðr−ðnþ1Þ=2Þ;

ΓI
JK ¼ ðωÞΓI

JK −
�
Cð1ÞIωJK −

1

2
ðDJhð1ÞIK þDKhð1ÞJ −DIhð1ÞJKÞ

�
r−ðn=2−1Þ þOðr−ðn−1Þ=2Þ; ðA1Þ

where we used n ≥ 4; ðωÞΓI
JK is the Christoffel symbol with respect to ωIJ, that is, ðωÞΓI

JK ≔ 1
2
ωILðωJL;K þ ωKL;J − ωJK;LÞ;

and DI is the covariant derivative with respect to ωIJ.
In particular, in four dimensions, the components of the Christoffel symbols are written as follows:

Γu
uu ¼

�
_Bð1Þ −

1

2
m

�
r−2 þOðr−3Þ; Γu

ur ¼ 0; Γu
rr ¼ 0; Γu

uI ¼ Oðr−2Þ;

Γu
rI ¼ 0; Γu

IJ ¼ ωIJrþ
1

2
hð1ÞIJ þOðr−1Þ; Γr

uu ¼ −
1

2
_mr−1 þOðr−2Þ;

Γr
ur ¼

1

2
mr−2 þOðr−3Þ; Γr

rr ¼ −2Bð1Þr−3 þOðr−4Þ;

Γr
uI ¼

�
−
1

2
m;I þ

1

2
Cð1ÞJ _hð1ÞIJ

�
r−1 þOðr−2Þ; Γr

rI ¼ Cð1Þ
Ir−1 þOðr−2Þ;

Γr
IJ ¼ −

�
ωIJ −

1

2
_hð1ÞIJ

�
rþOðr0Þ; ΓI

uu ¼ _Cð1ÞIr−2 þOðr−3Þ; ΓI
ur ¼ Oðr−4Þ; ΓI

rr ¼ 0;

ΓI
uJ ¼

1

2
_hð1ÞIJr−1 þOðr−2Þ; ΓI

rJ ¼ δIJr
−1 −

1

2
hð1ÞIJr−2 þOðr−3Þ;

ΓI
JK ¼ ðωÞΓI

JK −
�
Cð1ÞIωJK −

1

2
ðDJhð1ÞIK þDKhð1ÞIJ −DIhð1ÞJKÞ

�
r−1 þOðr−2Þ: ðA2Þ

APPENDIX B: UPPER BOUNDS OF r0 AND ðxIÞ0
In this Appendix, we will derive the upper bounds of r0 and ðxIÞ0 for n ≥ 4. Using u0 ¼ Oðr−2Þ, we give the upper bound

of r0. From the null condition (14) and the inequality of Eq. (43), which are valid for n ≥ 4, jðxIÞ0j can be estimated as

0 ≤ jðxIÞ0j2 ¼ jðxIÞ0 þ CIu0 − CIu0j2 ≤ 2jðxIÞ0 þ CIu0j2 þ 2jCIu0j2
¼ Oðr−2Þu02 þOðr−2Þu0r0 þ 2jCIj2u02 ¼ Oðr−6Þ þOðr−4Þr0: ðB1Þ

Then, the geodesic equation of r for n ≥ 4 is1

r00 ¼
�
−
1

2
_Að1Þr−ðn=2−1Þ þ 1

2
_mr−ðn−3Þ þOðr−ðn−1Þ=2Þ

�
u02 þ

�
n− 2

2
Að1Þr−n=2 − ðn − 3Þmr−ðn−2Þ þOðr−ðnþ1Þ=2Þ

�
u0r0

þ ½ðn− 2ÞBð1Þr−ðn−1Þ þOðr−ðn−1=2ÞÞ�r02 þ
��

−
n − 4

2
Cð1Þ

I − Að1Þ
;I

�
r−ðn=2−1Þ þ ðm;I −Cð1ÞJ _hð1ÞIJ Þr−ðn−3Þ

þOðr−ðn−1Þ=2Þ
�
u0ðxIÞ0 −

�
n
2
Cð1Þ

Ir−ðn=2−1Þ þOðr−ðn−1Þ=2Þ
�
r0ðxIÞ0 þ

�
ωIJr−

1

2
_hð1ÞIJ r

−ðn=2−3Þ þOðr−ðn−5Þ=2Þ
�
ðxIÞ0ðxJÞ0

¼
�
−
1

2
_Að1Þr−ðn=2−1Þ þ 1

2
_mr−ðn−3Þ þOðr−ðn−1Þ=2Þ

�
u02 þ

�
n− 2

2
Að1Þr−n=2 − ðn − 3Þmr−ðn−2Þ þOðr−ðnþ1Þ=2Þ

�
u0r0

þOðr−ðn−1ÞÞr02 þOðr1ÞjðxIÞ0j2
¼ Oðr−ðn=2þ3ÞÞ þOðr−ðnþ4Þ=2Þr0 þOðr−ðn−1ÞÞr02 þOðr−5Þ þOðr−3Þr0 ¼ Oðr−3Þ þOðr−3Þr02; ðB2Þ

1For n ¼ 4, from the definition, Að1Þ is set to be zero because of its absence.
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where we used Eqs. (A1) in the first equality; the
arithmetic-geometric mean inequality

Oðr−ðn=2−1ÞÞu0jðxIÞ0j ≤ 1

2
½Oðr−ðn−2ÞÞu02 þ jðxIÞ0j2� ðB3Þ

and

Oðr−ðn=2−1ÞÞr0jðxIÞ0j ¼ Oðr−ðn−1Þ=2Þr0Oðr1=2ÞjðxIÞ0j

≤
1

2
½Oðr−ðn−1ÞÞr02 þOðr1ÞjðxIÞ0j2�

ðB4Þ

in the second equality; and Eqs. (43), (66), and (B1) in the
third equality; and

Oðr−3Þr0 ¼ Oðr−3=2ÞOðr−3=2Þr0

≤
1

2
½Oðr−3Þ þOðr−3Þr02� ðB5Þ

in the fourth equality. Equation (B2) means

r00 < C̄1

r02 þ C̄2

2r0
r0

r3
; ðB6Þ

with positive constants C̄1 and C̄2. This gives

log ðr02 þ C̄2Þ0 < C̄1

r0

r3
: ðB7Þ

Integrating this, we have

log ðr02 þ C̄2Þ < C̄3 − C̄1

1

2r2
; ðB8Þ

where C̄3 is the integration constant. From this inequality,
we have

r02 þ C̄2 < exp

�
C̄3 − C̄1

1

2r2

�
< exp C̄3; ðB9Þ

that is

r02 < ðexp C̄3Þ − C̄2≕ C̄4: ðB10Þ

Here, C̄4 should be positive. This means r0 has a positive
upper bound

r0 <
ffiffiffiffiffiffi
C̄4

q
: ðB11Þ

Integration of this gives

r <
ffiffiffiffiffiffi
C̄4

q
λþ C̄5; ðB12Þ

where C̄5 is the integration constant.
In addition, inequalities of Eqs. (B1) and (B11) give

0 ≤ jðxIÞ0j2 ¼ Oðr−6Þ þOðr−4Þr0 ¼ Oðr−4Þ: ðB13Þ

Therefore, we have

ðxIÞ0 ¼ Oðr−2Þ: ðB14Þ
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