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In Einstein-aether theory, we study the stability of black holes against odd-parity perturbations on a
spherically symmetric and static background. For odd-parity modes, there are two dynamical degrees of
freedom arising from the tensor gravitational sector and aether vector field. We derive general conditions
under which neither ghosts nor Laplacian instabilities are present for these dynamical fields. We apply these
results to concrete black hole solutions known in the literature and show that some of those solutions can be
excluded by the violation of stability conditions. The exact Schwarzschild solution present for
c13 ¼ c14 ¼ 0, where ci’s are the four coupling constants of the theory with cij ¼ ci þ cj, is prone to
Laplacian instabilities along the angular direction throughout the horizon exterior. However, we find that
the odd-parity instability of high radial and angular momentum modes is absent for black hole solutions
with c13 ¼ c4 ¼ 0 and c1 ≥ 0.
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I. INTRODUCTION

General Relativity (GR) is a fundamental theory of
gravity well tested by solar-system experiments. With
the dawn of gravitational-wave astronomy, it is now
possible to probe the validity of GR around black holes
(BHs) and neutron stars [1,2]. Recently, there has been
growing interest in searching for extra degrees of freedom
beyond GR and standard model of particle physics in such a
strong gravity regime [3,4]. The existence of new degrees
of freedom is also motivated by the firm observational
evidence of dark matter and dark energy [5–7].
The construction of GR is based on Lorentz invariance

(LI), which is a continuous symmetry invariant under the
4-dimensional diffeomorphism. In discrete spacetime that
can arise from the quantization of gravity, the Lorentz
symmetry can be broken at very high energy. The violation
of LI in standard model fields is tightly limited from various
experiments [8,9], but the Lorentz violation in the gravity
sector is much less constrained [10,11]. Hořava gravity
[12,13] is an example of allowing for gravitational Lorentz
violation at high energy, in which a Lifshitz-type anisotropic
scaling is introduced to realize a power-counting renorma-
lizable theory of gravity (for a recent review of Hořava
gravity, see, for example, [14] and references therein).

There is yet the other type of a gravitational Lorentz-
violating scenario dubbed Einstein-aether theory [15,16].
In this scenario there is a unit timelike vector (aether) field
uα at every point in spacetime characterized by the metric
tensor gαβ, so it breaks local Lorentz symmetry under a
rotation. This is a subclass of vector-tensor theories
possessing two derivative terms of the aether field. The
existence of a unit aether field is ensured by the constraint
gαβuαuβ ¼ −1 [with the metric signature ð−;þ;þ;þÞ],
which appears as the Lagrange multiplier λðgαβuαuβ þ 1Þ
in the action. We note that generalized Proca theories with a
broken Uð1Þ gauge symmetry [17–21] do not have such a
constraint, so the vector-field dynamics is generally differ-
ent from that in Einstein-aether theory.
In Einstein-aether theory there are scalar, transverse

vector, and tensor perturbations, whose propagation speeds
cS, cV , cT on the Minkowski background are generally
different from that of light [22]. To ensure the stability of
Minkowski spacetime, we require that all of c2S, c

2
V , and c2T

are positive. Moreover, the observations of gravitational
Cerenkov radiation [23], solar system tests [24], big bang
nucleosynthesis [25], binary pulsars [26,27], and gravita-
tional waves [28,29] put constraints on the dimensionless
coupling constants c1;2;3;4 of aether derivative interactions.
In particular, the gravitational-wave event GW170817 [2]
together with the gamma-ray burst 170817A [30] placed
the upper limit jcT − 1j≲ 10−15, which translates to jc13j ≲
10−15 [28,29], where cij ≔ ci þ cj. However, there are still
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theoretically viable parameter spaces in which all the
observational constraints are satisfied.
In Einstein-aether theory, the existence and properties of

spherically symmetric vacuum solutions have been exten-
sively studied in the literature [31–44]. Some of them were
already excluded by the combination of observational
bounds mentioned above. However, the recent papers
[45,46] have shown the presence of spherically symmetric
and static BH solutions compatible with current observa-
tional constraints. Since the speeds of scalar and transverse
vector perturbations can be arbitrarily large, there exists a
universal horizon corresponding to a causal boundary of
any large speeds of propagation [14,35,36]. The universal
horizon can exist inside the event horizon, so that particles
can cross the event horizon to escape toward infinity. It is
expected that this unique feature of Einstein-aether BHs
may leave some distinguished signatures in the gravita-
tional-wave measurements of binary BHs.
In this paper, we study the stability of spherically

symmetric and static BHs against odd-parity perturbations
in Einstein-aether theory. We first identify two dynamical
gauge-invariant perturbations corresponding to the tensor
and vector propagations. Then, we obtain the second-order
action of odd-parity perturbations and explicitly derive
stability conditions for the absence of ghosts and Laplacian
instabilities. The tensor and vector propagation speeds
along the radial and angular directions are different from
those in Minkowski spacetime. Thus, our analysis of BH
perturbations in the odd-parity sector provides new stability
conditions for Einstein-aether BHs. We also note that our
general formulation of odd-parity perturbations will be
useful to study the propagation of gravitational waves
during the inspiral and ringdown phases of binary BHs.
We apply our conditions to the Einstein-aether BH

solutions known in the literature. We show that an exact
Schwarzschild BH present for the couplings c13 ¼ 0 and
c14 ¼ 0 is excluded by the Laplacian instability along the
angular direction. The BH solutions with c13 ¼ 0, c14 ≠ 0,
and c4 ≠ 0 are prone to the ghost instability by imposing a
superluminal propagation of the transverse vector mode
(c4 < 0) to avoid the gravitational Cerenkov radiation.
However, provided that c1 ≥ 0, the BH solutions with c13 ¼
0 and c4 ¼ 0 are stable against odd-parity perturbations with
high radial and angularmomentummodes. Thus, our general
stability conditions are sufficiently powerful to distinguish
between unstable and stable BHs in Einstein-aether theory.

II. BACKGROUND EQUATIONS OF MOTION

We begin with the Einstein-aether theory given by the
action [22]

S ¼ 1

16πGæ

Z ffiffiffiffiffiffi
−g

p
d4x½Rþ Læ þ λðgαβuαuβ þ 1Þ�;

ð2:1Þ

where Gæ is a constant, R is the Ricci scalar, g is the
determinant of metric tensor gαβ, λ is a Lagrange multipler,
uα is the aether vector field, and

Læ ¼ −Mαβ
μν∇αuμ∇βuν; ð2:2Þ

with

Mαβ
μν ≔ c1gαβgμν þ c2δαμδ

β
ν þ c3δανδ

β
μ − c4uαuβgμν: ð2:3Þ

Here, the Greek indices represent from 0 to 3, ∇α is a
covariant derivative operator with respect to the metric
tensor gμν, and ci’s are four dimensionless coupling
constants.
Variation of the action (2.1) with respect to λ leads to

uαuα þ 1 ¼ 0: ð2:4Þ
This constraint ensures the existence of a timelike unit
vector field, so that there is a preferred frame responsible
for the breaking of LI. Varying Eq. (2.1) with respect to uμ,
it follows that

∇μJμα þ λuα þ c4 _uμ∇αuμ ¼ 0; ð2:5Þ

where

Jμα ≔ Mμν
αβ∇νuβ; ð2:6Þ

_uμ ≔ uβ∇βuμ: ð2:7Þ

Multiplying Eq. (2.5) by uα and using Eq. (2.4), the
Lagrange multiplier can be expressed as

λ ¼ uα∇μJμα þ c4 _uμ _uμ: ð2:8Þ
For the general line element ds2 ¼ gμνdxμdxν, the

gravitational field equations derived by the variation of
(2.1) with respect to gμν are

Gαβ ¼ ∇μ½uðαJμβÞ þ uμJðαβÞ − uðαJβÞμ�
þ c1ð∇αuν∇βuν −∇νuα∇νuβÞ

þ c4 _uα _uβ þ
1

2
gαβLæ þ λuαuβ; ð2:9Þ

where Gαβ is the Einstein tensor.
In general, the theory admits three different species of

gravitons, the spin-0, spin-1, and spin-2 ones. According to
the perturbative analysis on the Minkowski background,
their squared speeds are given by [22]

c2S ¼
c123ð2 − c14Þ

c14ð1 − c13Þð2þ c13 þ 3c2Þ
; ð2:10Þ

c2V ¼ 2c1 − c13ð2c1 − c13Þ
2c14ð1 − c13Þ

; ð2:11Þ
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c2T ¼ 1

1 − c13
; ð2:12Þ

where cijk ≔ ci þ cj þ ck, and cS;V;T represent the speeds
of the spin-0, spin-1, and spin-2 gravitons, respectively. If
we require that the theory: (i) be self-consistent, such as
free of ghosts and instability; and (ii) be compatible with all
the observational constraints obtained so far, it was found
that the parameters ci’s must satisfy the conditions [29]

jc13j≲ 10−15; ð2:13Þ

0 < c14 ≤ 2.5 × 10−5; ð2:14Þ

c14 ≤ c2 ≤ 0.095; ð2:15Þ

c4 ≤ 0: ð2:16Þ

It should be noted that the above conditions assure
cS;V;T ≥ 1, that is, all the propagation speeds are not
subluminal, in order to avoid the gravitational Cerenkov
radiation [23]. Later, we shall come to this point again
when we study the odd-parity stability of BHs in Sec. V.
With the above in mind, let us consider a spherically

symmetric and static background given by

ds2 ¼ −fðrÞdt2 þ h−1ðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ;
ð2:17Þ

where f and h depend on the distance r from the center of
symmetry. The aether-field profile compatible with the
background (2.17) is of the form

uμ ¼ ðaðrÞ; bðrÞ; 0; 0Þ; ð2:18Þ

where a and b are functions of r. The constraint (2.4) gives
the following relation

b ¼ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2f − 1Þh

q
; ð2:19Þ

where ϵ ¼ �1. The existence of the aether-field profile
(2.19) requires that ða2f − 1Þh ≥ 0.
Under the constraint (2.19), there are three independent

background equations of motion following from (2.5) and
(2.9), with the Lagrange multiplier λ determined by
Eq. (2.8). Then, the α ¼ 0 component of Eq. (2.5) and
ðα; βÞ ¼ ð1; 1Þ; ð2; 2Þ components of Eq. (2.9) lead to

2hα1a00 þ α1h0a0 þ 2hα2f00 þ α2f0h0 þ α3a02 þ α4f02

þ α5a0f0 þ α6f0 þ α7h0 þ α8a0 þ α9 ¼ 0; ð2:20Þ

2hβ1a00 þ β1h0a0 þ 2hβ2f00 þ β2f0h0 þ β3a02 þ β4f02

þ β5a0f0 þ β6f0 þ β7h0 þ β8a0 þ β9 ¼ 0; ð2:21Þ

2hμ1a00 þ μ1h0a0 þ 2hμ2f00 þ μ2f0h0 þ μ3a02 þ μ4f02

þ μ5a0f0 þ μ6f0 þ μ7h0 þ μ8a0 ¼ 0; ð2:22Þ

where a prime represents the derivative with respect to r.
The explicit form of λ as well as the coefficients α1; � � �α9,
β1;…; β9, and μ1; � � � μ8 are given in Appendix A. We note
that Eqs. (2.20)–(2.22) hold irrespective of the sign of ϵ in
Eq. (2.19). For given coupling constants ci’s, the variables
f, h, and a are known by integrating Eqs. (2.20)–(2.22)
with appropriate boundary conditions.

III. SECOND-ORDER ACTION OF ODD-PARITY
PERTURBATIONS AND GENERAL STABILITY

CONDITIONS

In this section, we derive the second-order action of
dynamical perturbations in the odd-parity sector to study
the stability of spherically symmetric and static BH
solutions in Einstein-aether theory. Analogous to the
analysis performed in Ref. [47] in the context of general-
ized Proca theories, we consider metric perturbations hμν
on the background (2.17) as well as the perturbation of the
aether field. We express the perturbations in terms of the
sum of spherical harmonics Ylmðθ;φÞ.
For l ≥ 2, we choose the Regge-Wheeler gauge in which

the components hij, where i and j correspond to either θ or
φ, vanish [48,49]. For the dipole (l ¼ 1), the metric
components hij vanish identically, so we need to handle
this case separately. In the following, we first study the case
l ≥ 2 and then proceed to the discussion for l ¼ 1.

A. l ≥ 2

In the Regge-Wheeler gauge, the nonvanishing compo-
nents of metric perturbations are given by

hti ¼
X
l;m

Qlmðt; rÞEij∂jYlmðθ;φÞ; ð3:1Þ

hri ¼
X
l;m

Wlmðt; rÞEij∂jYlmðθ;φÞ; ð3:2Þ

where the subscripts i, j represent either θ or φ with the
notation ∂jYlm ¼ ∂Ylm=∂xj, and Qlm and Wlm are func-
tions of t and r. The tensor Eij is defined by Eij ¼ ffiffiffi

γ
p

εij,
where γ ¼ sin2 θ is the determinant of two dimensional
metric γij on the sphere and εij is the antisymmetric symbol
with εθφ ¼ 1.
In the presence of odd-parity perturbations, the covariant

aether field is expressed as

uμ ¼
�
−aðrÞfðrÞ; bðrÞ

hðrÞ ; uθ; uφ
�
; ð3:3Þ

where the i ¼ θ;φ components are
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ui ¼
X
l;m

δulmðt; rÞEij∂jYlmðθ;φÞ: ð3:4Þ

The perturbation δulm is a function of t and r. We expand
the action (2.1) up to second order in odd-parity perturba-
tions. In doing so, we can set m ¼ 0 without loss of
generality and multiply the action 2π for the integral with
respect to φ [47]. In the following, we also omit the
subscripts “lm” from the variables Qlm, Wlm, and δulm for
the simplification of notation. On using the background

Eqs. (2.20)–(2.22), the resulting second-order action of
odd-parity perturbations is expressed in the form

Sodd ¼
X
l;m

L
Z

dtdrLodd; ð3:5Þ

where

L ≔ lðlþ 1Þ; ð3:6Þ
and

Lodd ¼
r2

16πGæ

ffiffiffi
f
h

r �
C1

�
_W −Q0 þ 2

r
Q

�
2

þ 2ðC2
_δuþ C3δu0 þ C4δuÞ

�
_W −Q0 þ 2

r
Q

�
þ C5

_δu2 þ C6
_δuδu0

þ C7δu02 þ ðL − 2ÞðC8W2 þ C9Wδu − aC9WQþ C10Q2 þ C11QδuÞ þ ðLC12 þ C13Þδu2
�
; ð3:7Þ

with a dot being the derivative with respect to t. The
coefficients Ci’s in Eq. (3.7) are given in Appendix B. Even
with the unit-vector constraint uαuα þ 1 ¼ 0 in Einstein-
aether theory, the Lagrangian (3.7) is of the same form as
that derived for generalized Proca theories [47], with the
correspondence of the temporal vector component
A0 → −af. The difference appears only for the coefficients
Ci’s, so we can resort to the prescription exploited in
Ref. [47] for the derivation of stability conditions of
dynamical perturbations.
Let us consider the gauge transformation xμ → xμ þ ξμ,

where

ξt ¼ ξr ¼ 0; ξi ¼
X
lm

Λðt; rÞEij∂jYlmðθ;φÞ: ð3:8Þ

Then, the perturbations Q, W, and δu transform as
[47,50,51]

Q → Qþ _Λ; ð3:9Þ

W → W þ Λ0 −
2Λ
r
; ð3:10Þ

δu → δu: ð3:11Þ

Besides the aether perturbation δu, we consider the
following gauge-invariant combination

χ ¼ _W −Q0 þ 2

r
Qþ C2

_δuþ C3δu0 þ C4δu
C1

; ð3:12Þ

which is associated with the tensor perturbation in the odd-
parity gravity sector. The gauge-invariant perturbation
(3.12) is introduced to combine the first and second
contributions to the square brackets of Eq. (3.7). We
express the Lagrangian (3.7) in the form

Lodd ¼
r2

16πGæ

ffiffiffi
f
h

r �
C1

�
2χ

�
_W −Q0 þ 2

r
Qþ C2

_δuþ C3δu0 þ C4δu
C1

�
− χ2

�
−
ðC2

_δuþ C3δu0 þ C4δuÞ2
C1

þ C5
_δu2

þ C6
_δuδu0 þ C7δu02 þ ðL − 2ÞðC8W2 þ C9Wδu − aC9WQþ C10Q2 þ C11QδuÞ þ ðLC12 þ C13Þδu2

�
; ð3:13Þ

where χ is regarded as a Lagrange multiplier independent of the fieldsW andQ in Eq. (3.13). The similar treatment was also
performed in the context of scalar-tensor theories [50–52] and generalized Proca theories [47].
Varying Eq. (3.13) with respect to W and Q, it follows that

2C1 _χ − ðL − 2Þ½2C8W þ C9ðδu − aQÞ� ¼ 0; ð3:14Þ

2C1χ
0 þ 2rfhC0

1 þ ð8fhþ rf0h − rfh0ÞC1

rfh
χ − ðL − 2ÞðaC9W − 2C10Q − C11δuÞ ¼ 0: ð3:15Þ
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These equations can be solved forW andQ to express them
in terms of χ, _χ, χ0, and δu. Substituting them into
Eq. (3.13) and integrating it by parts, we obtain the reduced
Lagrangian

Lodd ¼
r2

16πGæðL − 2Þ

ffiffiffi
f
h

r
ð _X⃗ t

K _X⃗ þ _X⃗
t
RX⃗ 0

þ X⃗ 0tGX⃗ 0 þ X⃗ tMX⃗Þ; ð3:16Þ

where

X⃗ t ¼ ðχ; δuÞ; ð3:17Þ

and K, R, G,M are 2 × 2 symmetric matrices. We note that

the contributions to Eq. (3.16) of the forms _X⃗
t
TX⃗ and

X⃗ 0tSX⃗ , which appear in generalized Proca theories [47],
vanish in Einstein-aether theory. The Lagrangian (3.16) can
now be used to study the stability of dynamical fields χ
and δu.
The nonvanishing components of K are given by

K11 ¼ q1; K22 ¼ ðL − 2Þq2; ð3:18Þ

where

q1 ≔
4C2

1C10

a2C2
9 − 4C8C10

; q2 ≔
C1C5 − C2

2

C1

: ð3:19Þ

To avoid the appearance of ghosts, we require that

q1 > 0; ð3:20Þ

q2 > 0; ð3:21Þ

where the former and latter correspond to the no-ghost
conditions of gravity and vector-field sectors, respectively.
The matrices R and G have the following nonvanishing

components

R11 ¼ R11q1; R22 ¼ ðL − 2ÞR22; ð3:22Þ

G11 ¼ G11q1; G22 ¼ ðL − 2ÞG22; ð3:23Þ

where

R11 ≔ −
aC9

C10

; R22 ≔
C1C6 − 2C2C3

C1

; ð3:24Þ

G11 ≔
C8

C10

; G22 ≔
C1C7 − C2

3

C1

: ð3:25Þ

To derive the dispersion relation along the radial direction,
we assume the solutions of Eq. (3.17) in the form

X⃗ t ¼ X⃗ t
0eiðωt−krÞ, where X⃗ t

0 is a constant vector, and ω
and k are the constant frequency and wave number respec-
tively. In the limits k → ∞ and ω → ∞, the existence of
nonvanishing solutions of X⃗ t requires that detðω2K − ωkRþ
k2GÞ ¼ 0. Since there are no off-diagonal components in K,
R, and G, it follows that

ω2 − ωkR11 þ k2G11 ¼ 0; ð3:26Þ

ω2q2 − ωkR22 þ k2G22 ¼ 0: ð3:27Þ

In terms of the proper time τ ¼ R ffiffiffi
f

p
dt and the rescaled

radial coordinate r� ¼
R
dr=

ffiffiffi
h

p
, the propagation speed of

perturbations along the radial direction is given by
cr ¼ dr�=dτ ¼ ĉr=

ffiffiffiffiffiffi
fh

p
, where ĉr ¼ dr=dt ¼ ω=k is the

propagation speed in the coordinates t and r. Substituting
ω ¼ k

ffiffiffiffiffiffi
fh

p
cr into Eqs. (3.26) and (3.27), the solutions to cr

are given, respectively, by

cr1 ¼
R11 �

ffiffiffiffiffiffi
F 1

p
2

ffiffiffiffiffiffi
fh

p ; ð3:28Þ

cr2 ¼
R22 �

ffiffiffiffiffiffi
F 2

p
2q2

ffiffiffiffiffiffi
fh

p ; ð3:29Þ

where

F 1 ≔ R2
11 − 4G11; ð3:30Þ

F 2 ≔ R2
22 − 4q2G22: ð3:31Þ

The speeds cr1 and cr2 correspond to the radial sound
speeds associated with the propagation of gravity and
vector-field sectors, respectively. Depending on the direc-
tion of radial propagation, the signs of cr1 and cr2 can be
either positive or negative. As long as cr1 and cr2 are real,
we have c2r1 ≥ 0 and c2r2 ≥ 0. Hence the absence of
Laplacian instabilities along the radial direction requires
that

F 1 ≥ 0; ð3:32Þ

F 2 ≥ 0: ð3:33Þ

The propagation speed cΩ along the angular direction
can be derived by taking the limits L → ∞ and ω → ∞ in
Eq. (3.16). In these limits, the dominant contributions to the
matrix components of M are given by

M11 ¼ −LC1; M22 ¼ L2D1; ð3:34Þ

where
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D1 ≔ C12 þ
C8C2

11 þ C2
9ðC10 þ aC11Þ

4C2
1C10

q1: ð3:35Þ

There are also the matrix componentsM12ð¼ M21Þ propor-
tional to L, but they do not affect the angular sound speeds
derived below. Substituting the solution of the form X⃗ t ¼
X⃗ t

0eiðωt−lθÞ into the perturbation equations following from
(3.16), we obtain the dispersion relation detðω2K þMÞ ¼ 0.
There are no off-diagonal components of K and M, so that

ω2q1 − LC1 ¼ 0; ð3:36Þ

ω2q2 þ LD1 ¼ 0: ð3:37Þ

The angular propagation speed in proper time is given by
cΩ ¼ rdθ=dτ ¼ ĉΩ=

ffiffiffi
f

p
, where ĉΩ ¼ rdθ=dt satisfies

ω2 ¼ ĉ2Ωl
2=r2. Taking the limit L → ∞ and substituting

the relation ω2 ¼ c2ΩfL=r
2 into Eqs. (3.36) and (3.37), the

solutions to c2Ω are given, respectively, by

c2Ω1 ¼
C1r2

fq1
; ð3:38Þ

c2Ω2 ¼ −
D1r2

fq2
: ð3:39Þ

To avoid the Laplacian instabilities along the angular
direction, we require that

c2Ω1 ≥ 0; ð3:40Þ

c2Ω2 ≥ 0; ð3:41Þ

which translate to C1=q1 ≥ 0 and D1=q2 ≤ 0, respectively,
outside the horizon (f > 0).
So far, we have considered the stabilities of perturbations

χ and δu along the radial and angular directions by
separately taking the limits k → ∞ or L → ∞. We will
also study the propagation of inclined modes where the
limits k → ∞ and L → ∞ are taken, with the ratio

ξ ≔
kffiffiffiffi
L

p ; ð3:42Þ

being constant. In this case, we substitute the solution X⃗ t ¼
X⃗ t

0eiðωt−kr−lθÞ into the perturbation equations following
from Eq. (3.16). Then, the dispersion relation yields
detðω2K − ωkRþ k2GþMÞ ¼ 0, so that

q1ðω2 − ωkR11 þ k2G11Þ − LC1 ¼ 0; ð3:43Þ

ω2q2 − ωkR22 þ k2G22 þ LD1 ¼ 0: ð3:44Þ

Solving Eqs. (3.43) and (3.44) for ω respectively, we obtain
the dispersion relations for the perturbations χ and δu, as

ω ¼
ffiffiffiffi
L

p

2

�
R11ξ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 1ξ

2 þ 4C1

q1

s �
; ð3:45Þ

ω ¼
ffiffiffiffi
L

p

2q2

h
R22ξ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2ξ

2 − 4q2D1

q i
; ð3:46Þ

where F 1 and F 2 are defined by Eqs. (3.30) and (3.31).
The absence of Laplacian instabilities for the perturbations
χ and δu can be ensured under the conditions

F 1ξ
2 þ 4C1

q1
≥ 0; ð3:47Þ

F 2ξ
2 − 4q2D1 ≥ 0; ð3:48Þ

respectively. Let us first consider the stability of the
perturbation χ. In the limit ξ → ∞, there is no Laplacian
instability for F 1 ≥ 0, see Eq. (3.32). In the other limit
ξ → 0, the angular propagation speed squared is given by
Eq. (3.38), so the stability is ensured for C1=q1 ≥ 0. Under
these two conditions, the inequality (3.47) holds for any
arbitrary values of ξ. On using Eq. (3.48), we also find that
the same property holds for the perturbation δu, i.e., the
conditions (3.33) and (3.41) are sufficient to ensure the
Laplacian stability of the inclined mode. Hence the inclined
mode does not give rise to additional conditions to those
derived for purely radial and angular modes.
In summary, for l ≥ 2, the stabilities of perturbations for

high radial and angular momentum modes are ensured
under the conditions (3.20), (3.21), (3.32), (3.33), (3.40)
and (3.41). We caution that these conditions are derived in
the large k or (and) l limits, so they are not sufficient to
guarantee all the stabilities for finite values of k and l. Due
to the complexity of matrix components of M, we do not
consider the stability of perturbations for such an inter-
mediate range of k and l.
In addition, instabilities might arise when we consider

the spectrum of X⃗ t, by solving the corresponding differ-
ential equations for χ and δu with boundary conditions.
However, such studies are out of the scope of the current
paper, and we wish to return to this important issue in
another occasion.

B. l = 1

Since the metric components hij vanish identically for
the dipole perturbation (l ¼ 1), there is a gauge degree of
freedom to be fixed. In this case, we choose the gauge
W ¼ 0. From Eq. (3.10), the gauge-transformation scalar
Λðt; rÞ is constrained to be
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Λ ¼ −r2
Z

dr̃
Wðt; r̃Þ

r̃2
þ r2CðtÞ; ð3:49Þ

where CðtÞ is a function of t. The Lagrangian (3.7) has been
derived for l ≥ 2 with a nonvanishingW, but it is also valid
for l ¼ 1 by setting W ¼ 0 for the above gauge choice. An
alternative procedure to be taken for l ¼ 1 is that we
literally exploit the Lagrangian (3.7), vary it with respect to
W and Q, and set W ¼ 0 at the end. This process leads to

_E ¼ 0; ðr2EÞ0 ¼ 0; ð3:50Þ

where

E ≔ r2
ffiffiffi
f
h

r �
C1

�
Q0 −

2

r
Q

�
− ðC2

_δuþ C3δu0 þ C4δuÞ
�
:

ð3:51Þ

From Eq. (3.50), we obtain the integrated solution

E ¼ E0

r2
; ð3:52Þ

where E0 is a constant. On using Eq. (3.51), the perturba-
tion Q can be expressed as

Q ¼ r2
Z

dr̃
1

C1r̃2

�
E0

r̃4

ffiffiffi
h
f

s
þ C2

_δuþ C3δu0 þ C4δu

�

þ r2C2ðtÞ; ð3:53Þ

where C2 is a function of t. From Eqs. (3.9) and (3.53), the
residual gauge mode CðtÞ in Eq. (3.49) can be removed by
setting

CðtÞ ¼
Z

dt̃C2ðt̃Þ: ð3:54Þ

On using Eq. (3.52) with Eq. (3.51), we can eliminate the
terms containing −Q0 þ 2Q=r in Eq. (3.7). This process
leads to the reduced Lagrangian

Lodd ¼
r2

16πGæ

ffiffiffi
f
h

r �
C1C5 − C2

2

C1

_δu2 þ
�
C6 −

2C2C3

C1

�
_δuδu0 þ

�
C7 −

C2
3

C1

�
δu02

−
2C3C4

C1

δu0δuþ
�
2C12 þ C13 −

C2
4

C1

�
δu2 þ hE2

0

C1r8f

�
: ð3:55Þ

This shows that only the aether perturbation δu propagates.
From the coefficient of _δu2 in Eq. (3.55), we find that the
ghost is absent for ðC1C5 − C2

2Þ=C1 > 0, which is equiv-
alent to the condition q2 > 0 derived for l ≥ 2. From the
first three terms in Eq. (3.55), we can also show that the
radial propagation speed is equivalent to cr2 given by
Eq. (3.29). This is analogous to the result found for
generalized Proca theories [47]. In summary, for l ¼ 1,
there are neither ghost nor Laplacian instabilities under the
conditions q2 > 0 and F 2 ≥ 0.

IV. STABILITY CONDITIONS
IN EINSTEIN-AETHER THEORIES

To study the odd-parity stabilities of BHs, we use the
explicit forms of Ci ’s given in Appendix B together with
the value of b constrained by Eq. (2.19). Then, the no-ghost
conditions (3.20) and (3.21) translate to

q1 ¼
hð1 − c13Þð1 − c13a2fÞ

2f2
> 0; ð4:1Þ

q2 ¼
c1 þ c4a2f

r2f
−

c213ða2f − 1Þ
2r2fð1 − c13Þ

> 0: ð4:2Þ

The conditions (3.32) and (3.33), which ensure the absence
of Laplacian instabilities along the radial direction, are
given by

F 1 ¼
4fhð1 − c13Þ
ð1 − c13a2fÞ2

≥ 0; ð4:3Þ

F 2 ¼
2hc14½2c1 − c13ð2c1 − c13Þ�

r4fð1 − c13Þ
≥ 0: ð4:4Þ

The conditions (3.40) and (3.41) for the absence of
Laplacian instabilities along the angular direction translate to

c2Ω1 ¼
1

1 − c13a2f
≥ 0; ð4:5Þ

c2Ω2 ¼
2c1 − c13ð2c1 − c13Þ

2ð1 − c13Þðc1 þ c4a2fÞ − c213ða2f − 1Þ ≥ 0: ð4:6Þ
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For the dipole (l ¼ 1), only the two conditions (4.2) and (4.4)
need to be satisfied for the aether perturbation δu.
On the Minkowski background characterized by the

metric components f ¼ h ¼ 1, the aether field is given by
uμ ¼ ðþ1; 0; 0; 0Þ and hence a ¼ 1 and b ¼ 0. Then, in
Minkowski spacetime, the stability conditions (4.1)–(4.6)
reduce, respectively, to

ðq1ÞMin ¼
ð1 − c13Þ2

2
> 0; ð4:7Þ

ðq2ÞMin ¼
c14
r2

> 0; ð4:8Þ

ðF 1ÞMin ¼
4

1 − c13
≥ 0; ð4:9Þ

ðF 2ÞMin ¼
2c14½2c1 − c13ð2c1 − c13Þ�

r4ð1 − c13Þ
≥ 0; ð4:10Þ

ðc2Ω1ÞMin ¼
1

1 − c13
≥ 0; ð4:11Þ

ðc2Ω2ÞMin ¼
2c1 − c13ð2c1 − c13Þ

2c14ð1 − c13Þ
≥ 0; ð4:12Þ

which are satisfied for

c13 < 1; ð4:13Þ

c14 > 0; ð4:14Þ

2c1 − c13ð2c1 − c13Þ ≥ 0: ð4:15Þ

These conditions coincide with those derived in
Refs. [22,29] by expanding the action (2.1) up to quadratic
order in tensor and vector perturbations on the Minkowski
background. On using the fact that the coefficients C9, C2,
and C6 vanish in Eqs. (3.28) and (3.29), the radial sound
speed squares in Minkowski spacetime are given by

ðc2r1ÞMin ¼
1

1 − c13
; ð4:16Þ

ðc2r2ÞMin ¼
2c1 − c13ð2c1 − c13Þ

2c14ð1 − c13Þ
: ð4:17Þ

Then we have that ðc2r1ÞMin ¼ ðc2Ω1ÞMin and ðc2r2ÞMin ¼
ðc2Ω2ÞMin, while this equality does not generally hold on
the curved background (2.17).
As shown in Refs. [22,29], ðc2r1ÞMin and ðc2r2ÞMin corre-

spond to the propagation speed squares of tensor and vector
perturbations on the Minkowski background, respectively,
see Eqs. (2.12) and (2.11). From the gravitational-wave

event GW170817 [2] together with its electromagnetic
counterpart [30], the speed of the tensor perturbations is in
the range −3 × 10−15 < ðcr1ÞMin − 1 < 7 × 10−16, so the
coupling c13 is constrained to be

jc13j≲ 10−15: ð4:18Þ

We note that there are also stability conditions in the
Minkowski spacetime arising from scalar perturbations
[22,29]. They can be derived by considering even-parity
perturbations on the curved background (2.17) and taking
the Minkowski limit f → 1, h → 1, and a → 1.
In this paper, we will not carry out the analysis of even-

parity perturbations, but we will show in Sec. V that the
stability analysis based on odd-parity perturbations alone is
sufficiently powerful to exclude some BH solutions in
Einstein-aether theory.

V. STABILITY OF EINSTEIN-AETHER
BLACK HOLES

Let us consider the stability of spherically symmetric and
static BH solutions known in the literature. Performing the
transformation

dv ¼ dtþ drffiffiffiffiffiffi
fh

p ; ð5:1Þ

the line element (2.17) is transformed to the Eddington-
Finkelstein coordinate of the form

ds2 ¼ −fðrÞdv2 þ 2BðrÞdvdrþ r2ðdθ2 þ sin2θdφ2Þ;
ð5:2Þ

where

BðrÞ ¼
ffiffiffi
f
h

r
: ð5:3Þ

From Eq. (3.3), the nonvanishing components of the
background aether field uμ are given by ut ¼ −af and
ur ¼ b=h, where b is constrained as Eq. (2.19). On using
Eq. (5.1), we have

utdtþ urdr ¼ uvdvþ ũrdr; ð5:4Þ

where

uv ¼ −af; ũr ¼ a

ffiffiffi
f
h

r
þ b
h
: ð5:5Þ

Since gvv ¼ 0, gvr ¼ grv ¼ ffiffiffiffiffiffiffiffi
h=f

p
, and grr ¼ h, the non-

vanishing components of uμ in the ðv; rÞ coordinate are
given by
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uv ¼ aþ bffiffiffiffiffiffi
fh

p ; ũr ¼ b: ð5:6Þ

In the notation of Ref. [45], the variable A is used for uv, in
which case we have

uv ¼ A ¼ aþ bffiffiffiffiffiffi
fh

p ; ũr ¼ b ¼ fA2 − 1

2AB
: ð5:7Þ

Since we would like to consider the case in which the
gravitational-wave bound (4.18) is satisfied, we will focus
on the BH solutions satisfying the conditions

c13 ¼ 0; ð5:8Þ

in the following analysis.

A. Stealth Schwarzschild solution

We first consider the coupling constants satisfying

c14 ¼ 0: ð5:9Þ

For this choice we have ðq2ÞMin ¼ 0 from Eq. (4.8), so
there is a strong coupling problem on the Minkowski
background. In curved spacetime the stability conditions
are different from those on the Minkowski background, so
we will study whether BH solutions satisfying the con-
dition (5.9) are stable or not.
The background Eqs. (2.20)–(2.22) admit the existence

of an exact stealth BH solution characterized by

f ¼ h ¼ 1 −
rs
r
; ð5:10Þ

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r3ðr − rsÞ þ w2

2

p
2rðr − rsÞ

; b ¼ ϵ
w2

2r2
; ð5:11Þ

where rs is the Schrawarzschild radius, ϵ ¼ �1, and w2 is a
positive constant. From Eqs. (5.3) and (5.7), we have

A ¼ ϵw2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r3ðr − rsÞ þ w2

2

p
2rðr − rsÞ

; B ¼ 1; ð5:12Þ

so that A → 1 as r → ∞. For ϵ ¼ þ1, the temporal vector
component diverges as uv ¼ A ∝ ðr − rsÞ−1 around r ¼ rs.
In this case, the quantity J ≔ A2f is in the range J > 1

outside the horizon and it exhibits the divergence J →
ðw2

2=r
3
sÞðr − rsÞ−1 for r → rs. On the other hand, for

ϵ ¼ −1, the expansion of A around r ¼ rs gives

A ¼ r2s
w2

−
rsðr4s − 2w2

2Þ
w3
2

ðr − rsÞ þOððr − rsÞ2Þ; ð5:13Þ

and hence A is finite at r ¼ rs. In this case, J < 1 outside
the horizon and J ¼ 0 at r ¼ rs. For this latter branch
(b < 0), the above exact BH solution with w2 ¼ 3

ffiffiffi
3

p
r2s=8

gives rise to a universal horizon at r ¼ 3rs=4 [45].
From Eq. (5.11), the temporal vector component ut

in the ðt; rÞ coordinate has the divergent behavior ut ¼ a ∝
ðr − rsÞ−1 as r → rs, irrespective of the signs of b. Defining
the quantity

j ≔ a2f; ð5:14Þ

we have

j ¼ w2
2

4r3ðr − rsÞ
þ 1; ð5:15Þ

and hence j > 1 outside the horizon. There is the divergence
j → ∞ as r → þrs, with the asymptotic behavior j → 1 at
spatial infinity.
From Eqs. (4.1)–(4.6), the quantities associated with the

stability conditions are given by

q1 ¼
1

2f
; q2 ¼ −

c1ðj − 1Þ
r2f

; ð5:16Þ

F 1 ¼ 4f2; F 2 ¼ 0; ð5:17Þ

c2Ω1 ¼ 1; c2Ω2 ¼ −
1

j − 1
: ð5:18Þ

The conditions q1 > 0, F 1 ≥ 0, F 2 ≥ 0, and c2Ω1 ≥ 0 are
satisfied for r > rs. Since j > 1 outside the horizon, we
have c2Ω2 < 0 and hence there is a Laplacian instability
along the angular direction. In particular, as r increases
from rs to spatial infinity, c2Ω2 changes from −0 to −∞. For
c1 > 0, we have q2 < 0 outside the horizon, so the ghost
instability is also present. From Eqs. (3.28) and (3.29), the
radial propagation speed squares are given by

c2r1 ¼ 1; c2r2 ¼
j

j − 1
: ð5:19Þ

Since both c2r1 and c2r2 are positive outside the horizon, the
Laplacian instabilities are absent along the radial direction.
In summary, the stealth Schwarzschild solution with the

vector-field profile (5.11) is unstable due to the Laplacian
instability associated with the negative propagation speed
squared c2Ω2 outside the horizon. In addition, for c1 > 0, the
ghost instability for the aether perturbation also exists. It is
interesting to note that stealth Schwarzschild solutions
present in the context of generalized Proca theories [53–
55] are also unstable against odd-parity perturbations [47].
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B. BH solutions with c14 ≠ 0

We proceed to study the stability of BH solutions for the
couplings

c14 ≠ 0: ð5:20Þ

Then, the quantities in Eqs. (4.1)–(4.6) reduce to

q1 ¼
h
2f2

; q2 ¼
c1 þ c4j

r2f
; ð5:21Þ

F 1 ¼ 4fh; F 2 ¼
4hc1c14
r4f

; ð5:22Þ

c2Ω1 ¼ 1; c2Ω2 ¼
c1

c1 þ c4j
; ð5:23Þ

where j is defined by Eq. (5.14). Since f > 0 and h > 0
outside the horizon, the conditions q1 > 0, F 1 ≥ 0, and
c2Ω1 ≥ 0 are satisfied. The condition F 2 ≥ 0 translates to

c1c14 ≥ 0: ð5:24Þ

Taking the asymptotically flat (Minkowski) limit a → 1,
f → 1, and h → 1 in Eqs. (5.21) and (5.23), it follows that
q2 → c14=r2 and c2Ω2 → c1=c14. Then, the stability con-
ditions q2 > 0 and c2Ω2 ≥ 0 translate to

c14 > 0; c1 ≥ 0; ð5:25Þ

which are compatible with Eq. (5.24). In the Minkowski
limit the propagation speed squares of the transverse vector
mode along both radial and angular directions are
ðc2r2ÞMin ¼ ðc2Ω2ÞMin ¼ c1=c14, so the propagation is sub-
luminal (or superluminal) for c4 > 0 (or for c4 < 0). In
Einstein-aether theory, the gravitational Cerenkov radiation
can occur for the subluminal propagation of transverse
vector mode. For an interaction between a fermion and a
graviton studied in Ref. [23], the emission rate Γ from a
fermion for the transverse vector mode is proportional to
c213½1 − ðc2r2ÞMin� [23], so that Γ ¼ 0 for c13 ¼ 0. When
ðc2r2ÞMin < 1, however, there may be a possibility that other
higher-order interactions give rise to the gravitational
Cerenkov radiation even for c13 ¼ 0. In the superluminal
range realized by the coupling c4 < 0, there is no constraint
arising from the gravitational Cerenkov radiation.
To discuss the stability of BH solutions around the

horizon, we search for background solutions where the
temporal vector component uv ¼ A in the (v, r) coordinate
is regular at r ¼ rs like Eq. (5.13). In doing so, we expand
A, f, h around r ¼ rs in the forms

A ¼ A0 þ A1ðr − rsÞ þ A2ðr − rsÞ2 þ � � � ; ð5:26Þ

f ¼ f1ðr − rsÞ þ f2ðr − rsÞ2 þ f3ðr − rsÞ3 � � � ; ð5:27Þ

h ¼ h1ðr − rsÞ þ h2ðr − rsÞ2 þ h3ðr − rsÞ3 � � � ; ð5:28Þ

where Ai, fi, hi are constants. On using Eqs. (5.3) and
(5.7), there is the following relation

a ¼ A2f þ 1

2Af
: ð5:29Þ

Then, we can express Eqs. (2.20)–(2.22) as the differential
equations for A, f, h, instead of those for a, f, h.
Substituting Eqs. (5.26)–(5.28) into such differential equa-
tions, we find that there are solutions where the coefficients
A1;2;3;��� and metric components are related to the constant
A0. For the special case with c14 ¼ 0, we confirmed that the
iterative solutions derived by this prescription coincide with
those obtained by expanding Eqs. (5.10) and (5.12)
around r ¼ rs.
From Eqs. (5.26)–(5.28), the temporal metric component

a in the (t, r) coordinate and the quantity j ¼ a2f have the
following dependence around the horizon:

a ¼ 1

2A0f1
ðr − rsÞ−1 þOððr − rsÞ0Þ; ð5:30Þ

j ¼ 1

4A2
0f1

ðr − rsÞ−1 þOððr − rsÞ0Þ: ð5:31Þ

Since j diverges at r ¼ rs, the quantities q2 and c2Ω2 around
the horizon can be estimated as

q2 ¼
c4

4A2
0r

2
sf21

ðr − rsÞ−2 þOððr − rsÞ−1Þ; ð5:32Þ

c2Ω2 ¼
4c1A2

0f1
c4

ðr − rsÞ þOððr − rsÞ2Þ: ð5:33Þ

From Eq. (5.32) the ghost is absent for

c4 > 0: ð5:34Þ

Provided that c1 ≥ 0, we also have c2Ω2 ≥ 0 around r ¼ rs.
Indeed, forc1 ≥ 0 and c4 > 0, the two conditionsq2 > 0 and
c2Ω2 ≥ 0 hold throughout the horizon exterior, since j is
positive. We note that the odd-parity stability about the
Minkowski spacetime, which is satisfied under the condi-
tions (5.25), does not necessarily require that c4 > 0 (unless
the superluminality of c2Ω2 is imposed). For BHs the term c4j
in Eq. (5.21) dominates over c1 around the horizon, so the
positivity of q2 demands that c4 > 0. In other words, the
inequality (5.34) is a new stability condition derived by
the analysis on the curved background.
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The BH solution with c4 < 0 and c1 > 0 is plagued by
the ghost instability as well as the Laplacian instability
around the horizon. If we restrict the superluminal propa-
gation of transverse vector mode, we have c4 < 0 and
hence the BH solution in this case is unstable.
So far, we have performed the expansion of Taylor series

of A as Eq. (5.26) with a finite value of A at r ¼ rs. Suppose
that there is a solution of A diverging at r ¼ rs in the form

A ¼ A0

ðr − rsÞp
; ð5:35Þ

where A0 and p are constants. Here we are considering
positive values of p, but we also include the case p ¼ 0 in
the analysis below. Analogous to the discussion in scalar-
tensor theories [56], we consider the scalar product JμνJμν
for the current tensor Jμα defined in Eq. (2.6) and impose the
regularity ofJμνJμν at r ¼ rs. OnusingEq. (5.35) and regular
expansions of f and h as those in Eqs. (5.27) and (5.28), the
scalar product JμνJμν diverges at r ¼ rs apart from the
special cases p ¼ 0 and p ¼ 1. For p close to be 0 or 1,
there is the power-law dependence JμνJμν ∝ 1=ðr− rsÞq with
q close to 2. The powers p ¼ 0 and p ¼ 1 are the special
cases in which JμνJμν is regular at r ¼ rs. For p > 1, the
scalar product diverges as JμνJμν ∝ 1=ðr − rsÞ2p at r ¼ rs.
The expansion of A performed in Eq. (5.26) corresponds

to the power p ¼ 0, in which case the regularity of JμνJμν is
ensured at the horizon. For p ¼ 1, expanding the quantities
q2 and c2Ω2 around r ¼ rs gives

q2 ¼
c4A2

0

4r2s
ðr − rsÞ−2 þOððr − rsÞ−1Þ; ð5:36Þ

c2Ω2 ¼
4c1

c4A2
0f1

ðr − rsÞ þOððr − rsÞ2Þ: ð5:37Þ

Under the superluminal condition c4 < 0, there is the ghost
instability (q2 < 0) as well as the Laplacian instability
(c2Ω2 < 0) for c1 > 0. As in the case of p ¼ 0, we require
the conditions (5.25) and (5.34) to ensure the odd-parity
stability of BHs, but in this case the propagation of
transverse vector mode is subluminal.

C. BH solutions with c4 = 0

Let us finally discuss the stability of BH solutions for the
coupling

c4 ¼ 0: ð5:38Þ

In this case, the quantities q1, F 1, and c2Ω1 are the same as
those given in Eqs. (5.21), (5.22), and (5.23), which are all
positive outside the horizon. For c1 ≠ 0, the other quantities
are given by

q2 ¼
c1
r2f

; F 2 ¼
4hc21
r4f

; c2Ω2 ¼ 1: ð5:39Þ

Provided that c1 > 0, the ghost is absent.
When c1 ¼ 0, both the denominator and numerator of

c2Ω2 in Eq. (5.23) vanish. This reflects the fact that, for
c1 ¼ 0, the vector perturbation does not propagate as in the
case of GR. The coupling constant c2 does not appear in
any of the stability conditions obtained in Sec. IV, so the
case c1 ¼ 0 can be regarded as the GR limit for the
couplings under consideration now (i.e., c1 ¼ 0, c3 ¼ 0,
and c4 ¼ 0). In this case, we only need to consider the
stability conditions q1 > 0, F 1 ≥ 0, and c2Ω1 ≥ 0 in the
odd-parity sector, all of which are trivially satisfied outside
the horizon.
In summary, for c4 ¼ 0, the stability of BHs against odd-

parity perturbations with large values of k and l is ensured for

c1 ≥ 0: ð5:40Þ

There are numerically obtained BH solutions consistent with
this range of couplings [31,45].

VI. CONCLUSIONS

In this paper, we studied the stability of spherically
symmetric and static BHs against odd-parity perturbations
in Einstein-aether theory. On the background (2.17), the
presence of a unit vector constraint (2.4) gives the relation
(2.19) between the temporal and radial components of the
aether field. At the background level, there are three
independent Eqs. (2.20)–(2.22) to be solved for a and
the metric components f and h.
In Sec. III, we derived the second-order action of odd-

parity perturbations by using the expansion in terms of the
spherical harmonics Ylmðθ;φÞ. Choosing the Regge-
Wheeler gauge for l ≥ 2, we obtained the second-order
Lagrangian of the form (3.7) and identified χ and δu as the
two dynamical perturbations associated with the gravity
sector and the aether field, respectively. After the integra-
tion by parts, the Lagrangian of these dynamical fields is
given by Eq. (3.16). We showed that there are neither ghost
nor Laplacian instabilities under the conditions (3.20),
(3.21), (3.32), (3.33), (3.40) and (3.41) for large values
of k and l. For the dipole (l ¼ 1) the propagating degree of
freedom is the aether perturbation δu alone, which does not
give additional constraints to those derived for l ≥ 2.
Using the explicit forms of coefficients Ci’s given in

Appendix B, the stability conditions in Einstein-aether
theory reduce to Eqs. (4.1)–(4.6). In the limit of the
Minkowski spacetime, we also showed in Sec. IV that the
propagation speeds along both radial and angular directions
coincidewith thoseof tensor andvector perturbations already
derived in the literature. The combination of coupling

ODD-PARITY STABILITY OF BLACK HOLES IN EINSTEIN- … PHYS. REV. D 104, 064024 (2021)

064024-11



constants c13 ¼ c1 þ c3 is tightly constrained to be jc13j ≲
10−15 from the GW170817 event together with 170817A.
In Sec. V, the odd-parity stabilities of BHs in Einstein-

aether theory were studied for the couplings satisfying

c13 ¼ 0: ð6:1Þ

This choice is consistent with the constraint (4.18) on the
speed of tensor perturbations in the range −3 × 10−15 <
ðcr1ÞMin − 1 < 7 × 10−16 obtained from the gravitational-
wave event GW170817 [2] and its electromagnetic counter-
part [30]. In doing so, we used the relations of metric and
vector-field components between the two different coor-
dinates (2.17) and (5.2). In Sec. VA, we considered the
exact Schwarzschild solution present for c14 ¼ 0 and found
that there is a Laplacian instability along the angular
direction throughout the horizon exterior. Moreover, for
c1 > 0, the ghost instability also exists for the aether
perturbation. In Sec. V B, we discussed the BH solutions
for c14 ≠ 0 and showed that their stabilities require the
conditions (5.25) and c4 > 0. In this case, the propagation
of the vector perturbation is subluminal in the asymptoti-
cally flat regime, so there is a possibility for the gravita-
tional Cerenkov radiation to occur. In other words, the
superluminal propagation of transverse vector mode occur-
ring for c4 < 0, under which the gravitational Cerenkov
radiation is avoided, is incompatible with the BH stability
conditions. In Sec. V C, we showed that the BH solutions
with

c4 ¼ 0; c1 ≥ 0; ð6:2Þ

are stable against odd-parity perturbations for high radial
and angular momentum modes. Clearly, if we demand the
odd-parity stability of BHs, the viable region of the
parameter space of Eqs. (2.13)–(2.16), obtained recently
in Ref. [29], is reduced further.
It is interesting to note that the instability of perturbations

mainly happens in the aether field, represented by δu, while
the metric part, represented by χ, behaves well for the
coupling with c13 ¼ 0.
The Lagrangian (3.7) of odd-parity perturbations can be

applied to the computation of quasinormal modes of BHs.
Moreover, the analysis of even-parity perturbations will
provide us additional stability conditions of BHs to those
derived in this paper. We leave these issues, together with
the analyses of their corresponding quasinormal mode
spectra, for future separate publications.
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APPENDIX A: QUANTITIES IN BACKGROUND EQUATIONS

On the spherically symmetric and static background (2.17), the Lagrange multiplier (2.8) is given by

λ ¼ ffr2½a2ð6c1 þ 3c2 þ 2c13 − 8c14Þhðf0Þ2 þ c2ð2hf00 þ f0h0Þ�
þ 2a2f4½−2a2ð2ðc2 þ c13Þh − c2rh0Þ þ 4ðc14 − c1Þhr2ða0Þ2 þ að−c1 þ c2 þ c13Þrð2hra00 þ a0ðrh0 þ 4hÞÞ�
− f2½rh0ða2ð−2c1 þ 3c2 þ 2c13Þrf0 − 4c2Þ
þ 2hða4ð3c1 þ c2 þ c13 − 4c14Þr2ðf0Þ2 þ a2rðð−2c1 þ 3c2 þ 2c13Þrf00 þ 2ð−2c1 þ c2 þ 2c13Þf0Þ
− að11c1 − 5c2 − 5c13 − 8c14Þr2a0f0 þ 4ðc2 þ c13ÞÞ� − ð2c2 þ c13Þhr2ðf0Þ2
þ 2f3½a4rðð−c1 þ c2 þ c13Þrf0h0 þ 2hðð−c1 þ c2 þ c13Þrf00 þ ð−2c1 þ c2 þ 2c13Þf0ÞÞ
þ a2ð8ðc2 þ c13Þh − 4c2rh0Þ − 2ð−2c1 þ c2 þ c13 þ 2c14Þhr2ða0Þ2
þ a3ð−11c1 þ 3c2 þ 3c13 þ 8c14Þhr2a0f0 þ aðc1 − c2 − c13Þrð2hra00 þ a0ðrh0 þ 4hÞÞ�g=½4f2r2ða2f − 1Þ�; ðA1Þ

where cij ¼ ci þ cj.
Introducing the following quantity

β ≔ ðc2 þ c3 − c4Þfa2 þ c14; ðA2Þ

We find that the coefficients in Eqs. (2.20)–(2.22) can be expressed as
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α1 ¼ −2βða2f − 1Þr2f2;
α2 ¼ ðc2 þ c13 − 2βÞða2f − 1Þr2af
α3 ¼ 4ðc2 þ c13Þr2f3ah;
α4 ¼ −½ðc2 þ c13 − 2βÞa2f − 2ðc2 þ c13 − βÞ�r2ah;
α5 ¼ 2½ð2c2 þ 2c13 − 3βÞa2f þ 3β�r2fh;
α6 ¼ 4ðc2a2f þ c13 − 2βÞða2f − 1Þrafh;
α7 ¼ −4c2ða2f − 1Þ2raf2;
α8 ¼ −8βða2f − 1Þrf2h;
α9 ¼ 8ðc2 þ c13Þða2f − 1Þ2af2h; ðA3Þ

β1 ¼ 4βða2f − 1Þr2af3;
β2 ¼ −2ðc2 þ c13 − 2βÞða2f − 1Þr2a2f2;
β3 ¼ −4½2ðc2 þ c13Þa2f − β�r2f3h;
β4 ¼ ½2ðc2 þ c13 − 2βÞa4f2 − 8ðc2 þ c13 − βÞa2f

þ c2 þ c13�r2h;
β5 ¼ −4½ð2c2 þ 2c13 − 3βÞa2f þ c2 þ c13 þ β�r2af2h;
β6 ¼ −4ða2f − 1Þ½2þ 2c2 − 2ð2c2 − c13 þ 2βÞa2f

þ 2c2a4f2�rfh;
β7 ¼ 8c2ða2f − 1Þ2rf3a2;
β8 ¼ 16ðc2 þ βÞða2f − 1Þraf3h;
β9 ¼ 4½2 − f2þ 4c2 þ 2c13 − 2ð4c2 þ 3c13Þa2f

þ 4ðc2 þ c13Þa4f2gh�f2ða2f − 1Þ; ðA4Þ

μ1 ¼ −4c2ða2f − 1Þraf3;
μ2 ¼ 2ð1þ c2 − 2c2a2fÞða2f − 1Þrf;
μ3 ¼ 4ð2c2 þ β − 2c2a2fÞrf3h;
μ4 ¼ ½2þ 3c2 þ c13 − 2ð1þ c2 þ 2c13 − 2βÞa2f

− 4c2a4f2�rh;
μ5 ¼ 4ð6c2 − 7c2a2f − c13 þ 2βÞraf2h;
μ6 ¼ 4ða2f − 1Þ½1þ 2c2 þ c13 − 3ð2c2 þ c13Þa2f�fh;
μ7 ¼ 4ða2f − 1Þ½1þ 2c2 þ c13 − ð2c2 þ c13Þa2f�f2;
μ8 ¼ −16ð2c2 þ c13Þða2f − 1Þaf3h: ðA5Þ

APPENDIX B: COEFFICIENTS IN
PERTURBATION EQUATIONS

The coefficients in Eq. (3.7), which should be evaluated
on the background (2.17), are

C1 ¼
ð1 − c13Þh

2r2f
;

C2 ¼ −
c13b
2r2f

;

C3 ¼ −
c13ah
2r2

;

C4 ¼
½ð2c14 − c13Þðfa0 þ af0Þrþ 2c13af�h

2r3f
;

C5 ¼
c1 þ c4a2f

r2f
;

C6 ¼
2c4ab
r2

;

C7 ¼
½c4ða2f − 1Þ − c1�h

r2
;

C8 ¼ −
½c13ða2f − 1Þ þ 1�h

2r4
;

C9 ¼
c13b
r4

;

C10 ¼
1 − c13a2f

2r4f
;

C11 ¼
c13a
r4

;

C12 ¼ −
c1
r4

;

C13 ¼
λ

r2
−
c13½ðrh0 þ 2h − 2Þf þ rhf0�

2r4f

−
2c4ðfa0 þ f0aÞah

r3
; ðB1Þ

where b is given by Eq. (2.19).
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