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We provide a reanalysis of the 5D Kaluza-Klein theory by implementing the polymer representation of the
dynamics, both on a classical and a quantum level, in order to introduce in the model information about the
existence of a cut off scale. We start by showing that, in the framework of semiclassical quantum mechanics,
the 5D Bianchi I model admits a solution in which three space directions expand isotropically, while the
remaining one is static, offering in this way a very valuable scenario to implement a Kaluza-Klein paradigm,
identifying in such a static dimension the compactified one. We then analyze the behavior of geodesic motion
in the context of the polymer representation, as referred to a 5D space-time with a static dimension. We
demonstrate that such a revised formulation allows overcoming one of the puzzling questions of the standard
Kaluza-Klein model corresponding to the limit of the charge to mass ratio for a particle, inapplicable to any
fundamental one. Indeed, here, such a ratio can be naturally attributed to particles predicted by the Standard
Model and no internal contradiction of the theory arises on this level. Finally, we study the morphology of the
field equation associated with a charged scalar particle, i.e., we analyze a Klein-Gordon equation, whose fifth
coordinate is viewed in the polymer representation. Here we obtain the surprising result that, although the
Kaluza-Klein tower has a deformed structure characterized by irregular steps, the value predicted for the
particle mass can be, in principle, set within the Standard Model mass distribution. Hence, the problem of
the Planckian value of such mass, typical of the standard formulation, is now overcome. However, a problem
with the charge to mass ratio still survives in this quantum field formulation.
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I. INTRODUCTION

The original Kaluza-Klein idea [1–3] consists in a 5D
space-time formulation having the aim to include the
electromagnetic interaction in a geometrical picture.
The surprising formal success in providing a metric

representation of the vector potential suggested, in the
Seventies, to attempt for a geometrical unification [4] able
to assess all the fundamental interactions into a multidi-
mensional space-time, with particular attention to the
electroweak model. The basic idea at the root of this
approach consists of the possibility of reproducing the
Lie algebra, characterizing the elementary particle sym-
metries by the isometries of the extra-dimensional space.
The nontrivial result obtained by the extra-dimensional
Kaluza-Klein theories relies on the emergence from the
multidimensional Einstein-Hilbert–Lagrangian of the cor-
rect Yang-Mills action for the vector bosons which are the
interaction carriers.
However, many nontrivial problems affected this fasci-

nating attempt for a geometrization of nature. One of the
main questions came from the difficulty of providing a

geometrical version of the chirality singled out by the
electroweak interaction [5], as well as the impossibility of
representing the Standard Model of elementary particles
in a Kaluza-Klein scenario [6]. For alternative non-
Riemannian approaches to solve the chirality problem of
the electroweak model see [7,8].
Finally, we observe that a full geometrical picture of

nature would involve the geometrical formulation of the
fermionic field; a really nontrivial perspective if supersym-
metry is not considered [9].
Even the 5D Kaluza-Klein theory presents some impor-

tant difficulties (see [10] for a review) which leaves the
question open concerning the viability of this approach as a
geometrization of the electromagnetic interaction.
First of all, the 5D metric tensor contains an additional

degree of freedom besides the 4D metric and the vector
potential, namely the fifth diagonal component. Under the
necessary restriction of the coordinate transformation in
order to deal with theUð1Þ symmetry, this quantity behaves
as an additional scalar field, whose presence nontrivially
affects basic features of the electromagnetism; for instance,
the charge conservation itself [4,11,12]. But, even fixing
this scalar field to unity in the Lagrangian for the model
(with the right sign of a spacelike object), the ratio between
the charge and the mass of an elementary particle is
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constrained to remain too small in order to reproduce the
StandardModel spectrum of masses (for a proposal to solve
the charge to mass ratio problem see [11]).
Finally, studying the morphology of a five-dimensional

D’Alambertian operator, we immediately recognize the
emergence of huge massive modes of a boson field, as
result of the compactified scale of the fifth dimension [13].
In this analysis we approach the formulation of the

5D Kaluza-Klein theory within the semiclassical and
quantum framework of the so-called polymer quantum
mechanics [14,15]. This revised formulation of quantum
physics has the aim of introducing a discrete nature in the
generalized coordinate (a real coordinate of a generic
degree of freedom), as an effect of the emergence of cut
off physics.
Indeed, the fifth compactified dimension in the standard

approach is about an order of two greater than the Planck
size, so it is the natural condition to be approached via the
continuum limit of polymer quantum mechanics when
referring to a point particle living in this dimension.
Furthermore, the corresponding diagonal metric compo-
nent (namely, the additional Universe scale factor) in such
a dynamical regime is affected—as expected—by cut off
physics effects.
The present analysis follows the scenario proposed in

[13] but is revised in view of the polymer formulation.
We first show that a five-dimensional Kasner solution

[16–18] (characterizing the Bianchi I Universe) admits a
configuration in which three spatial directions isotropically
expand, while the fourth remains static. This result is of
impact in the implementation of Kaluza-Klein theory, since
it removes some of the nontrivial inconvenient features
of a collapsing dimension, close to a Planckian size. For a
previous attempt to deal with a static compactified dimen-
sion, on the base of a physical phenomenon see [19].
Then, we analyze the geodesic motion on a generic 5D

space-time, having a fifth steady dimension and we outline
a natural solution to the charge to mass ratio problem. This
result comes from the details of the semiclassical polymer
formulation, adopted for the Hamiltonian dynamics of the
free-falling particle. In particular, the modified expression
used by the fifth momentum of the particle leads to a
modified constitutive relation; that is, when passing from
the momenta to the velocities the previous constraint on the
charge to mass ratio allows the consideration of values
which are natural in the Standard Model particles.
Finally, we study a five-dimensional Klein-Gordon

equation and we clarify that by addressing the fifth
coordinate via the quantum polymer prescription, the
spectrum of emerging masses can fit some values of the
Standard Model one and no tachyonic modes emerge,
unlike the case discussed in [13].
However, it should be noted that, in this quantum field

approach, a problem with the definition of the correct q=m
ratio for a Standard Model particle still survives.

The present study suggests that when cut off physics is
included in the Kaluza-Klein formulation, some of the
puzzling features of this approach are restated into a form
that can give new physical insight for their understanding
and overcoming.
The manuscript presentation is structured as follows:

In Section II we review the main features of ordinary
Kaluza-Klein theory, from the metric tensor construction
and the resulting field equations to the geodesic motion
of a pointlike particle. This analysis leads to the
ordinary quantization law for the electric charge, an
estimate for the size L of the fifth dimension, and the
aforementioned shortcoming of the charge to mass ratio
of a particle.
In Section III we review polymer quantum mechanics,

summarizing the construction of the relative kinematic
Hilbert space via the introduction of a Weyl-Heisenberg
algebra and under the assumption of the existence of a
discrete spatial coordinate, and the implementation of the
proper dynamics both on a quantum and semiclassical
level, with particular regard to the p-polarization.
In Section IV we analyze the polymer-modified Kasner

solution obtained from the introduction of the polymer
framework on a semiclassical level in a 5D Bianchi I
model, focusing on the behavior of the fifth dimension.
Finally, in Section V (based on the result of the previous

section) we analyze, in a semiclassical formulation of
polymer quantum mechanics, the geodesic motion of a
pointlike particle and all its features. We compare all the
results with the ones from ordinary theory and then carry
out the study of the polymer quantum dynamics of a
complex Klein-Gordon field (along the lines of [13])
discussing with particular attention the resulting electric
charge distribution and mass spectrum. In Section VI brief
concluding remarks follow.

II. KALUZA-KLEIN THEORY

Kaluza-Klein theory is a 5D extension of Einstein’s
theory of general relativity which aims to provide a unified
description of gravitational and electromagnetic interaction
in a purely geometric fashion.
In the original theory [1–3] the space-time is described

by a 5D smooth manifold V5, which is assumed to be the
direct product V4 ⊗ S1 between a generic 4Dmanifold and
a circus of length L, that is a compact space.
A crucial assumption relies on the fact that all the

observable physical quantities do not depend on the fifth
coordinate x5. This hypothesis is further motivated by
noticing that, due to the compactness of the fifth dimension,
all the observable physical quantities are periodic in x5;
hence the independence on the fifth coordinate can be
regarded as zero-order cut off of a Fourier expansion
of these quantities themselves—dubbed as the cylinder
condition.
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Once restricted the 5D general relativity principle to the
following coordinate transformations (and their inverse)

�
xμ

0 ¼ ΨðxμÞ
x5

0 ¼ x5 þ kΛðxμÞ; ð1Þ

and the 5D metric tensor of the expanded theory can be
written as follows:

g̃ab ¼
� gμν þ k2ϕ2AμAν kϕ2Aμ

kϕ2Aν ϕ2

�
; ð2Þ

where gμν is the 4Dmetric tensor of the ordinary theory, Aμ

is the electromagnetic four-potential, ϕ is a scalar field, and
k is a constant to be properly determined.

A. Kaluza-Klein field equations

The field equations of the theory can be obtained from a
5D Einstein-Hilbert action

ð5ÞS ≔ S̃ ¼ −
1

16πG̃

Z
V4⊗S1

d5x
ffiffiffiffiffiffi
−g̃

p
R̃; ð3Þ

where G̃, g̃, and R̃ are respectively the 5D gravitational
constant, the metric tensor g̃ab determinant, and the 5D
scalar curvature.
By performing a (4þ 1)-dimensional reduction the ordi-

nary 4D Einstein-Maxwell action is surprisingly obtained

S̃¼−
c3

16πG

Z
V4

d4x
ffiffiffiffiffiffi
−g

p
ϕ

�
Rþ1

4
ϕ2k2FμνFμνþ 2

ϕ
∇μ∂μϕ

�
:

ð4Þ

By setting ϕ ¼ 1 in the action—as in the original work of
Kaluza [1] and Klein [2,3]—and by using the ordinary
variational principle, the Einstein-Maxwell field equations
can be correctly recovered once k is set equal to 2

ffiffiffiffi
G

p
=c2.

B. Geodesic motion

A free pointlike particle in this theory will move along a
5D geodesic; hence the respective action, with signature
(−;þ;þ;þ;þ), will be

S̃ ¼ −mc
Z

ds̃ ¼ −mc
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−g̃ab
dxa

ds̃
dxb

ds̃

r
ds̃; ð5Þ

where ds̃ is the 5D line element, to be distinguished from
the 4D line element ds.
Once set—here and in further developments—ϕ ¼ 1

in the metric (2), and from the variational principle 5D
geodesic equation is immediately restored

ũa∇̃aũb ¼ 0: ð6Þ

It is essential to point out that the 5D velocity ũa is
different from 4D velocity ua; indeed they are related as
follows:

ũa ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u25

q ua: ð7Þ

From relations (6) and (7) it can be easily shown that u5
is a constant of motion.
In order to achieve 4D equation of motion, the geodesic

equation (6) has to be evaluated for the usual space-time
variables only, which we indicate with Greek letters.
By making use of relation (7), the following result is

attained,

uν∇νuμ ¼
2

ffiffiffiffi
G

p

c2
u5uνgμλFνλ; ð8Þ

where Fνλ is the antisymmetric electromagnetic tensor.
By comparison with the ordinary classical equation

uν∇νuμ ¼
q

mc2
uνgμλFνλ; ð9Þ

the following fundamental identification is achieved

u5 ¼
q

2m
ffiffiffiffi
G

p : ð10Þ

Since p5 ¼ mcu5 it can then be written as

p5 ¼
qc

2
ffiffiffiffi
G

p ; ð11Þ

which establishes a fundamental relation between the
particle’s fifth component of momentum and its electric
charge.
The compactness of the fifth dimension implies a

quantization of momentum along the fifth direction

p5 ¼
2πℏ
L

n; n ∈ Z; ð12Þ

where we recall that L is the length of the circus describing
the fifth dimension. By a direct comparison between
relations (11) and (12) a natural quantization law for the
electric charge and an estimate of the size L of the fifth
dimension are obtained,

L ¼ 4π
ℏ

ffiffiffiffi
G

p

ec
≈ 2.37 × 10−31 cm; q ¼ ne; ð13Þ

where e is the electron charge.
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Coherently the size of the fifth dimension is in agreement
with its nonobservability and with its impossibility to be
currently detected.
Nevertheless, despite these remarkable results, the

relation (7) sets the constraint ju5j < 1; by virtue of
relation (10), this implies the following condition on the
charge/mass ratio of a particle

jqj
m

< 2
ffiffiffiffi
G

p
≈ 5.16 × 10−4 e:s:u:=g; ð14Þ

which, unfortunately, has no phenomenological confirma-
tion, either for elementary particles or for macroscopic
objects—hence representing one of the puzzling short-
comings of the theory.

III. POLYMER QUANTUM MECHANICS

Polymer quantum mechanics is a nonstandard represen-
tation of nonrelativistic quantum theory, unitarily inequi-
valent to the Schrödinger one [14,15]. Its developments are
due mainly to the exploration of background-independent
theories, such as quantum gravity, of which mimics several
structures [20].
Given a discrete orthonormal basis jμii for a space H0,

such that hμijμji ¼ δij, where μi ∈ R and i ¼ 1; 2.::; n, the
kinematic polymer Hilbert space Hpoly is obtained as a
Cauchy completion of H0.
On this space two abstract operators can be defined,

ϵ̂jμi ≔ μjμi; ð15Þ
ŝðλÞjμi ≔ jμþ λi: ð16Þ

The operator ϵ̂ is a symmetric operator and ŝðλÞ defines a
one-parameter family of unitary operators. In spite of this
ŝðλÞ is discontinuous with respect to λ; this means that no
self-adjoint operator exists that can generate ŝðλÞ by
exponentiation. Examining a physical system with con-
figuration space spanned by the coordinate q, which is
assumed to have a discrete character, and its conjugate
momentum p, the previous abstract representation can be
projected and studied with respect to p-polarization. In this
polarization the basis states will be

ψμðpÞ ¼ hpjμi ¼ eiμp=ℏ: ð17Þ
Following the algebraic construction method, a Weyl-
Heisenberg algebra is introduced on Hpoly and the action
of its generators on the basis states is defined as follows:

ÛðνÞψμðpÞ ¼ ψμðpþ νÞ ¼ eiμðpþνÞ=ℏ ð18Þ

V̂ðλÞψμðpÞ ¼ eiðλþμÞp=ℏ ¼ ψμþλðpÞ: ð19Þ

From this it can be inferred that the shifting operator ŝðλÞ
can be identified with the operator V̂ðλÞ, which is then

discontinuous in λ; this means that the spatial translations
generator, that is the momentum operator p̂, does not exist.
On the other hand, the operator ÛðνÞ is continuous, so that
the translation generator in the momentum space, i.e., the
position operator q̂, exists and it can be identified with the
abstract operator ϵ̂.
Indeed

q̂ψμðpÞ ¼ −iℏ∂pψμðpÞ ¼ μψμðpÞ: ð20Þ
It can be proved [15] that the kinematic polymer Hilbert
space in this polarization is explicitly given by Hpoly;p ¼
L2ðRB; dμHÞ, where RB is the so-called Bohr compactifi-
cation of the real line and dμH is the Haar measure.
Universally speaking, the Bohr compactification of a

topological group G is a compact Hausdorff topological
group H, canonically associated to G.
In particular, the Bohr compactification of an Abelian

locally-compact topological group A (such as R) is the
dual group (in the sense of Pontryagin duality) of A itself,
equipped with a discrete topology (see [21] for an extensive
treatment on the subject).
It can be shown that the Bohr compactification RB of the

real line R is the dual group of R, equipped with a discrete
topology, in which any open set does not contain more than
one point and which contains R itself densely.
It is interesting to notice that RB is an Abelian topo-

logical group and there exists a one to one correspondence
between irreducible representations of R and irreducible
representations of RB, which can also be used as a
definition for the Bohr compactification itself.
In the end, since the resulting configuration space of the

theory is a compact group, the introduction of the Haar
measure—which is unique for these kind of groups—is the
most natural choice.
A similar picture is obtained in the q-polarization; the

momentum operator cannot still be defined, while it is
possible to show that the fundamental wave functions are
Kronecker deltas and that the kinematic polymer Hilbert
space is explicitly given by Hpoly;x ¼ L2ðRd; dμcÞ, where
Rd is the real line equipped with a discrete topology and
dμc is the counting measure.
In order to build the dynamics a Hamiltonian operator Ĥ

has to be defined on Hpoly, but since p̂ does not exist, a
direct implementation is not possible. To overcome this
problem the momentum operator can be approximated by
defining a regular graph γμ ¼ fq ∈ Rjq ¼ nμ; n ∈ Zg on
the configuration space of the system, where μ is the
fundamental scale introduced by the polymer representa-
tion. The basis kets jμi can now be indicated as jμni, where
μn ¼ nμ are the points belonging to the graph γμ0 .
Consequently the generic states will be

jψiγμ ¼
X
n

anjμni; ð21Þ
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and they will belong to the new Hilbert spaceHγμ ⊂ Hpoly,
given that they satisfy the condition

P
n janj2 < ∞. Since

the dynamics have to be closed inHγμ , the shift parameter λ

has to be fixed equal to μ, hence the action of V̂ðλÞ will be

V̂ðλÞjμni ¼ V̂ðμÞjμni ¼ jμnþ1i: ð22Þ

In general, the variable p it can be written as

p ≈
ℏ
μ
sin

�
μ

ℏ
p

�
¼ ℏ

2iμ
ðeiμℏp − e−i

μ
ℏpÞ; ð23Þ

when the condition p ≪ ℏ=μ holds.
Based on this approximation and visualizing the action

of V̂ðμÞ in the p-polarization, it is clear that the operator p̂
and its action can be approximated as

p̂μjμni ≈
ℏ
2iμ

½V̂ðμÞ − V̂ð−μÞ�jμni; ð24Þ

where μ acts as a regulator.
To approximate the operator p̂2 two paths are possible

p̂2
μ ≈

ℏ2

4μ2
½2 − V̂ð2μÞ − V̂ð−2μÞ�; ð25Þ

based on the approximation

p2 ≈
ℏ2

μ2
sin2

�
μ

ℏ
p

�
; ð26Þ

and hence defined by iterating the action of p̂ according
(24), or

p̂2
μ ≈

ℏ2

μ2
½2 − V̂ðμÞ − V̂ð−μÞ�; ð27Þ

by exploiting the approximation

p2 ≈
2ℏ2

μ2

�
1 − cos

�
μ

ℏ
p

��
; ð28Þ

which is valid as long as p ≪ ℏ=μ.
Hence, the well-defined, symmetric Hamiltonian oper-

ator will be

Ĥμ ≔
p̂2
μ

2m
þ V̂ðq̂Þ; ð29Þ

where V̂ðq̂Þ is the potential operator.
Therefore, quantizing a system according to the polymer

representation, in the p-polarization, implies the use of the
approximation (25) or (27) for the momentum operator,
while the position operator will be the natural differential
operator, whose action is expressed in (24).

In a semiclassical approach, this procedure corresponds
to the proper introduction of the approximations (23), (26),
and (28) on the variable p in the dynamics of the system of
interest. Hence, on this level, the whole procedure can be
thought of as a prescription to provide physical insight into
the behavior of the quantum expectations values, according
to the so-called Ehrenfest theorem.

IV. POLYMER KASNER SOLUTION

We will now apply the polymer formalism in a semi-
classical framework to the study of a 5D Bianchi I model,
whose solution in the vacuum is the well-known Kasner
metric [16,17], focusing on the kinematics and dynamics of
the fifth dimension.
In order to obtain the polymer Kasner cosmological

solution, we need a minisuperspace Hamiltonian formu-
lation, extended to the 5D case.
The 5D Bianchi I line element, written in the ADM

formalism [22], is a straightforward generalization of the
4D one1

ds2 ¼ −N2ðtÞc2dt2 þ ð4Þhijdxidxj

¼ −N2ðtÞc2dt2 þ a2ðtÞðdx1Þ2 þ b2ðtÞðdx2Þ2
þ c2ðtÞðdx3Þ2 þ d2ðtÞðdx5Þ2; ð30Þ

where NðtÞ is the lapse function of the ADM formalism,
ð4Þhij (i; j ¼ 1; 2; 3; 5) is the metric tensor of the 4D
manifold, which has coordinates that are all spacelike.
Having the general structure of this metric as starting

point, we can build the Hamiltonian of the system

HB ¼ Ne−
P

a
qa=2

�X
a

p2
a −

1

3

�X
b

pb

�
2
�
; ð31Þ

which, by varying with respect to NðtÞ turns out to be a
constraint for the dynamics, namely HB ¼ 0.
The couple ðqa; paÞ in (31) are the conjugate variables

spanning an highly symmetric phase space, the so-called
minisuperspace, and the relation between the metric factors
and the q-variable is the usual one in the literature [18],
extended to the 5D case

aðtÞ ¼ eq
1ðtÞ=2; bðtÞ ¼ eq

2ðtÞ=2;

cðtÞ ¼ eq
3ðtÞ=2; dðtÞ ¼ eq

5ðtÞ=2: ð32Þ

As is well known, it is more convenient to express the
obtained Hamiltonian in its diagonal form

1As it should be clear from the context, the metric factor cðtÞ is
not to be confused with the velocity of light c.

KALUZA-KLEIN THEORIES IN THE FRAMEWORK OF POLYMER … PHYS. REV. D 104, 064020 (2021)

064020-5



H0
B ¼ Ne−α

�
−
1

3
p2
α þ p2þ þ p2

− þ p2
γ

�
; ð33Þ

which is the canonical form of the quadratic form asso-
ciated to HB.
The p-variables in the Hamiltonian (33) are the con-

jugate momenta of a set of variables α, βþ, β−, γ, which
represent the generalization of the Misner variables [23].
The relation between these variables and the previous
q-variables is defined through the following linear
transformation

8>>>>>>>><
>>>>>>>>:

q1 ¼ 1
2
α − 1

2
ffiffi
3

p βþ − 1ffiffi
6

p β− − 1ffiffi
2

p γ

q2 ¼ 1
2
α − 1

2
ffiffi
3

p βþ − 1ffiffi
6

p β− þ 1ffiffi
2

p γ

q3 ¼ 1
2
α − 1

2
ffiffi
3

p βþ þ
ffiffi
2
3

q
β−

q5 ¼ 1
2
αþ

ffiffi
3

p
2
βþ:

ð34Þ

By using the Hamilton-Jacobi method and the Hamilton
equation for the variable α (which represents the universe
volume) in the synchronous reference frame, the standard
classical Kasner solution for the 5D case can be recovered,

ds2 ¼ −c2dt2 þ ðt=t0Þ2k1ðdx1Þ2 þ ðt=t0Þ2k2ðdx2Þ2
þ ðt=t0Þ2k3ðdx3Þ2 þ ðt=t0Þ2k5ðdx5Þ2: ð35Þ

The k parameters are the so-called Kasner exponents and
they satisfy the following conditions

X
i¼1;2;3;5

ki ¼ 1;

X
i¼1;2;3;5

k2i ¼ 1: ð36Þ

In particular, if we assume isotropy in the three usual
spatial dimensions as observations suggest, that is, if we set
k1 ¼ k2 ¼ k3, the solution of the previous system becomes

k1 ¼ k2 ¼ k3 ¼
1

2
; k5 ¼ −

1

2
: ð37Þ

This means that while the three usual spatial dimensions
expand, the fifth one collapses indefinitely.
We want now to introduce polymer formalism in Bianchi

I dynamics. In order to do this we choose to operate the
substitutions (23) and (26) on the conjugate momentum pγ

of the Misner variable γ, connected with the metric factor of
the fifth dimension.
We rewrite the action of Bianchi I Universe

SpolyB ¼
Z

dt½pα _αþ pþ _βþ þ p− _β− þ pγ _γ −Hpoly
B �; ð38Þ

where Hpoly
B is the new polymerized Hamiltonian:

Hpoly
B ¼Ne−α

�
−
1

3
p2
αþp2þþp2

−þ
ℏ2

μ2
sin2

�
μ

ℏ
pγ

��
: ð39Þ

As it is known from the Hamiltonian formulation of
general relativity, the expression (33) is constrained by the
dynamics to be zero.
This must happen also for the modified Hamiltonian (39)

Hpoly
B ¼ 0 → −

1

3
p2
α þ p2þ þ p2

− þ ℏ2

μ2
sin2

�
μ

ℏ
pγ

�
¼ 0:

ð40Þ

Following the literature, we explicitly solve the previous
constraint for pα, given the physical meaning of the α
variable

H0poly
B ≔ pα ¼ �

ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ þ p2

− þ ℏ2

μ2
sin2

�
μ

ℏ
pγ

�s
: ð41Þ

To proceed in solving the dynamics we make use (as for the
standard case) of the Hamilton-Jacobi method, according to
which the following relations hold

8>>><
>>>:

pα ¼ ∂αSB;

pþ ¼ ∂βþSB;

p− ¼ ∂β−SB;

pγ ¼ ∂γSB;

ð42Þ

where SB is the action of the system.
Through the combination of the relations (40) and (42)

we attain the Hamilton-Jacobi equation for the system

−
1

3
ð∂αSBÞ2 þ ð∂þSBÞ2 þ ð∂−SBÞ2 þ ð∂γSBÞ2 ¼ 0: ð43Þ

By taking into account the fact that all the p-variables are
first integrals of motion, we are able to write the solution of
the above partial differential equation as

SB¼�
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þþp2

−þp2
γ

q
αþβþpþþβ−p−þγpγ; ð44Þ

where we have used the expression (41) for pα.
In the Hamilton-Jacobi method, the action SB can be

seen as a generating function of a proper canonical trans-
formation and its partial derivatives with respect to the
momenta are constructed to be constant, that is,
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� ∂p�SB ¼ β̃� ¼ constant;

∂pγ
SB ¼ γ̃ ¼ constant:

ð45Þ

From the latter system we are able to write down the
polymer solutions for the Misner variables as function of α

βþðαÞ ¼ ∓ 3pþ
H0poly

B

αþ β̃þ; ð46Þ

β−ðαÞ ¼ ∓ 3p−

H0poly
B

αþ β̃−; ð47Þ

γðαÞ ¼ ∓ ℏ
μ

3 sinðμℏpγÞ cosðμℏpγÞ
H0poly

B

αþ γ̃: ð48Þ

In this semiclassical picture, it is still possible to recover
the notion of coordinate synchronous time through the
Hamilton equations for the couple ðα; pαÞ by exploiting the
Hamiltonian (39)

8<
:

_α ¼ ∂Hpoly
B∂pα

¼ − 2
3
Npαe−α;

_pα ¼ − ∂Hpoly
B∂α ¼ 0;

ð49Þ

where in the second equation we have taken into account
the dynamic constraint (40), which coherently confirms
that pα is a constant of motion.
Since α is linked to the volume of the Universe, the

previous equations clearly show that if we want to deal with
an expanding Universe we need to choose pα < 0.
As a consequence, this choice determines the � sign in

the functional SB (44) and in the expressions of the Misner
variables (46), respectively a minus sign and a plus sign.
The Hamilton equations (49) leads to the following

solution for α as a function of the coordinate time

αðtÞ ¼ ln
�
−
2

3
pαt

�
; ð50Þ

where, without loss of generality, we set N ¼ 1, a choice
which is always possible in a synchronous reference frame.
By inserting the obtained expression in the system (46)

we can write down the Misner variables as a function of the
coordinate time

βþðtÞ ¼
3pþ
H0poly

B

lnðt=t0Þ; ð51Þ

β−ðtÞ ¼
3p−

H0poly
B

lnðt=t0Þ; ð52Þ

γðtÞ ¼ ℏ
μ

3 sinðμℏpγÞ cosðμℏpγÞ
H0poly

B

lnðt=t0Þ; ð53Þ

where we set ð−2=3pαÞ ¼ 1=t0 and ignore the additive
constants, which only leads to a new rescaling of the time
constant t0.
In order to determine the expression of cosmic metric

factors which appear in the line element (30), we have to
trace back all the changes of variables made so far.
First we recover the expression of the q-coordinates from

the system (34)

8>>>>>>>>>>><
>>>>>>>>>>>:

q1ðtÞ ¼
h
1
2
þ

ffiffi
3

p
H0poly

B

Π−

i
lnðt=t0Þ;

q2ðtÞ ¼
h
1
2
þ

ffiffi
3

p
H0poly

B

Πþ
i
lnðt=t0Þ;

q3ðtÞ ¼
�
1
2
þ

ffiffi
3

p
H0poly

B

�
− 1

2
ffiffi
3

p pþ þ
ffiffi
2
3

q
p−

��
lnðt=t0Þ;

q5ðtÞ ¼
h
1
2
þ

ffiffi
3

p
2

ffiffi
3

p
pþ

H0poly
B

i
lnðt=t0Þ;

ð54Þ

where we have defined the quantity

Π� ¼ −
1

2
ffiffiffi
3

p pþ −
1ffiffiffi
6

p p− � 1ffiffiffi
2

p ℏ
μ
sin

�
μ

ℏ
pγ

�
cos

�
μ

ℏ
pγ

�
:

ð55Þ

Then, recalling the relations (32), we obtain the expression
for the cosmic metric factors

8>>>>><
>>>>>:

aðtÞ ¼ eq
1ðtÞ=2 ¼ ðt=t0Þk1 ;

bðtÞ ¼ eq
2ðtÞ=2 ¼ ðt=t0Þk2 ;

cðtÞ ¼ eq
3ðtÞ=2 ¼ ðt=t0Þk3 ;

dðtÞ ¼ eq
5ðtÞ=2 ¼ ðt=t0Þk5 ;

ð56Þ

where ki are now the polymer Kasner exponents, and the
explicit expression is

k1 ¼
1

2

�
1

2
þ

ffiffiffi
3

p

H0poly
B

Π−

�
;

k2 ¼
1

2

�
1

2
þ

ffiffiffi
3

p

H0poly
B

Πþ

�
;

k3 ¼
1

2

�
1

2
þ

ffiffiffi
3

p

H0poly
B

�
−

1

2
ffiffiffi
3

p pþ þ
ffiffiffi
2

3

r
p−

��
;

k5 ¼
1

2

�
1

2
þ

ffiffiffi
3

p

2

ffiffiffi
3

p
pþ

H0poly
B

�
: ð57Þ

We see that our solution is still a Kasner-like one, where
the cosmic metric factors have a coordinate time power
trend as in (35), but their exponents (that is the Kasner
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indices, due to the quantum polymer modifications) satisfy
different constraints.
Indeed it is straightforward to show that the following

relations holdX
i¼1;2;3;5

ki ¼ 1;

X
i¼1;2;3;5

k2i ¼ 1 −
3

4

ℏ2

μ2
sin4ðμℏpγÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2þ þ p2
− þ ℏ2

μ2
sin2ðμℏpγÞ

q : ð58Þ

The second term of the right-hand side of the second
condition is non-negative, so that we can restate the system
as follows: X

i¼1;2;3;5

ki ¼ 1;

X
i¼1;2;3;5

k2i ≤ 1: ð59Þ

Assuming isotropy in the three usual spatial dimensions
and introducing an order between exponents (in particular
setting k5 < k) the system (59) has the following solution:8>><

>>:
3kþ k5 ¼ 1

3k2 þ k25 ≤ 1

k5 < k

⇒

�
1=4 < k ≤ 1=2

−1=2 ≤ k5 < 1=4:
ð60Þ

We note that the Kasner exponents relative to the three
usual spatial dimensions are bound to be positive and they
can take values in a precise interval while the exponent
relative to the fifth dimension has values in an interval in
which it can take both positive and negative values, which
is a new feature of the Kasner solution entirely due to the
polymer physics.
The latter statement grows in importance when we draw

our attention to the permitted values of k5.
Indeed, even if the power trend with respect to the

coordinate time variable of fifth dimension metric factor—
which is ultimately responsible for the singularity at an
infinite time—is not removed in this scenario; the intro-
duction of the polymer formalism leads to a modification
on the constraint of the fifth Kasner exponent k5, where the
interval of definition allows the value k5 ¼ 0.
For this particular choice of k5, the other Kasner indices

will be equal to k ¼ 1=3, correctly reproducing the
observed isotropic expansion in the three usual spatial
dimensions, while the metric factor relative to the fifth
dimension will, of course, be equal to one.
This means that the fifth dimension has no dynamics since

the time dependence of the relative metric factor disappears.
We, therefore, have obtained a static solution, which

somehow solves the singularity problem by remarkably
removing the indefinite collapse of the dimension itself.

The developments of the next sections will be based on this
important result.
Finally, it is worth noticing that, once a set of Kasner

indices is chosen—for example ð1=3; 1=3; 1=3; 0Þ in our
case—the quadratic condition of the constraints (58)
establishes a relation among the conjugate momenta of
the generalized Misner variables, the polymer scale μ and
the Planck constant ℏ. Since these momenta are constants
of motion, for any fixed value of μ, the above relation
represents a constraint on the initial conditions of the
problem, which coherently derives from the Hamiltonian
constraint of the whole theory.
In particular, this implies that any value of the polymer

scale μ can account for our choice on the Kasner exponents,
by properly varying the initial conditions pþ, p−, pγ

according to (58).

V. KALUZA-KLEIN THEORY IN POLYMER
QUANTUM MECHANICS FRAMEWORK

In this section we face the analysis of the Kaluza-Klein
paradigm in the framework of polymer quantum mechan-
ics, both studying the behavior of the geodesic motion and
the quantum dynamics of a Klein-Gordon field. From the
point of view of the geodesic discussion, the polymer
framework is addressed on a semiclassical level, in the
spirit of the Ehrenfest theorem. Instead, the study of the
quantum scalar field is performed in a full quantum picture,
as restricted to the fifth coordinate.

A. Geodesic motion

In this section polymer formalism will be now applied to
the Hamiltonian formulation of the 5D geodesic motion,
at a semiclassical level, that is introducing quantum
modifications to the classical dynamics.
The 5D Hamiltonian of a free particle in a general

Kaluza-Klein background, with g̃55 ¼ 1 (see previous
section) reads as

H̃ ¼ 1

2mc

�
p̃μp̃νgμν −

4
ffiffiffiffi
G

p

c2
p̃μp̃5Aμ

þ p̃2
5

�
1þ 4G

c4
AμAμ

��
; ð61Þ

where, as before, the quantities with a tilde are the 5D ones,
that is those defined with respect to the 5D line element.
Wewant now introduce the polymer formalism only with

respect to the canonical couple ðx5; p̃5Þ, that is we assume
that the coordinate x5 has an essential discrete nature and
we redefine the respective conjugate momentum p̃5 by
introducing a regular graph structure on S1

x5
, i.e., on the fifth

dimension, which is now equipped with a discrete topology
according to the discussion in Section III. Following the
polymer prescription (23), we can made the substitution
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p̃5 →
ℏ
μ
sin

�
μ

ℏ
p̃5

�
: ð62Þ

The new Hamiltonian will be rewritten as

H̃poly ¼
1

2mc

�
p̃μp̃νgμν −

4
ffiffiffiffi
G

p

c2
ℏ
μ
p̃μ sin

�
μ

ℏ
p̃5

�
Aμ þ ℏ2

μ2
sin2

�
μ

ℏ
p̃5

��
1þ 4G

c4
AμAμ

��
; ð63Þ

from which the equations of motion (Hamilton equations) can be obtained

8<
:

ũμ ¼ p̃νgμν

mc − 2
ffiffiffi
G

p
mc3

ℏ
μ sin

	
μ
ℏ p̃5



Aμ

_̃pμ ¼ − p̃ρp̃σ∂μgρσ
2mc þ 2

ffiffiffi
G

p
mc3 p̃ρ

ℏ
μ sin

	
μ
ℏ p̃5



∂μAρ − 2G

mc5
ℏ2

μ2
sin2

	
μ
ℏ p̃5



∂μðAνAνÞ;

ð64Þ

8<
: ũ5 ¼ 1

mc

�
− 2

ffiffiffi
G

p
c2 p̃μAμ cos

	
μ
ℏ p̃5



þ ℏ

μ sin
	
μ
ℏ p̃5



cos

	
μ
ℏ p̃5


	
1þ 4G

c4 AνAν

�

_̃p5 ¼ 0;

ð65Þ

where the dot refers to the derivative with respect to the five-dimensional line element ds̃.

We outline that in the last equation we made use of the
cylinder condition, which implies that p̃5 is a constant of
motion, as expected.
As we know from the standard case, in order to make a

comparison with the 4D equations of motion, we need to
know the relation between 4D and 5D quantities, in
particular the relation between five-velocities and four-
velocities. These are formally the same of equation (7) also
in our framework.
Nevertheless, while in the ordinary theory with the scalar

field of the Kaluza-Klein metric set to be constant, u5 is a
constant of motion; in the polymer framework this is not
the case.
Indeed, from the explicit expression of ũ5 (65) we can

obtain the corresponding expression of ũ5

ũ5 ¼
2

ffiffiffiffi
G

p

c2
cos

�
μ

ℏ
p̃5

�
Aμũμ þ

ℏ
μmc

sin

�
μ

ℏ
p̃5

�
cos

�
μ

ℏ
p̃5

�
;

ð66Þ

where we have made use of the first Hamilton equation
for ũμ.
The latter can be solved as a function of u5 and two

solutions are obtained

u5 ¼
1

Dðμ; p̃5Þ
�
16

ffiffiffiffi
G

p
μ2m2

�
1 − cos

�
μ

ℏ
p̃5

��
Aμuμ

�
ffiffiffi
2

p
ℏ

����sin
�
2
μ

ℏ
p̃5

�����Rμ;p̃5
ðAμ; uμÞ

�
; ð67Þ

where

Rμ;p̃5
ðAμ; uμÞ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðμ; p̃5Þ þ Kðμ; p̃5ÞðAμuμÞ2

q
; ð68Þ

Dðμ; p̃5Þ ≔ ℏ2 þ 8μ2m2c2 − ℏ2 cos

�
4
μ

ℏ
p̃5

�
; ð69Þ

Kðμ; p̃5Þ ≔ −128
G
c2

μ2m2sin4
�

μ

2ℏ
p̃5

�
: ð70Þ

These are rather complicated nonconstant expressions,
due to the dependence from the electromagnetic and the
four-velocity fields, which consequently heavily modify
the ds

ds̃ factor.
From the Hamilton equations (64), by exploiting the

formal relation (7), we can write down the part relative to
the 4D indices of the new generalized 5D geodesic as a
function of the 4D quantities

uν∇νuμ ¼
2

ffiffiffiffi
G

p
ℏ

μmc3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u25

q
sin

�
μ

ℏ
p̃5

�
uνFμ

ν −
u5uμ

1 − u25

du5
ds

;

ð71Þ

in which it is possible to distinguish the polymer-modified
part of the standard 4D geodesic (9) and an extra term
entirely due to the variation of u5. It is worth pointing out
that Eq. (71) correctly reduces to the standard one in the
μ → 0 limit.
At this point, in order to compare the last expression with

the equation of motion (9), we need to make a series
expansion of u5 by assuming Aμ ≪ 1. This can be perfectly
legitimate in a cosmological setting since there is no
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relevant coherent electromagnetic field which permeates
the Universe.
This leads to the following expression, to the first order

in Aμ

u5 ≈�
�
16

ffiffiffiffi
G

p
μ2m2ðcosðμℏ p̃5Þ − 1Þ

Dðμ; p̃5Þ
Aμuμ

þ
ffiffiffi
2

p
ℏjsinð2 μ

ℏ p̃5Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðμ; p̃5Þ

p þOðA2Þ
�
: ð72Þ

Hence, by inserting this expansion in the geodesic equa-
tion (71) and ignoring the extra term—the meaning of
which is beyond the purpose of this article—we obtain,
keeping only the overall first order term in Aμ

uν∇νuμ ≈
2

ffiffiffiffi
G

p
ℏ

μmc3
2

ffiffiffi
2

p
μmc sinðμℏ p̃5Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðμ; p̃5Þ

p uνFμ
ν ; ð73Þ

from which we can read off the perturbative polymer
relation between the electric charge q and p̃5—which
we recall is a constant of motion

q ≈
2

ffiffiffiffi
G

p

c
2

ffiffiffi
2

p
ℏmcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dðμ; p̃5Þ
p sin

�
μ

ℏ
p̃5

�
: ð74Þ

To correctly interpret this formula we can refer to the
ordinary relation between q and p̃5, which can be obtained
from the expression (11). In fact, since in the standard case
the following simple statement holds

p̃5 ¼
mcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c2 − p2
5

q p5; p5 ¼
mcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c2 þ p̃2
5

q p̃5; ð75Þ

the relation (11) can be rewritten as

q ¼ 2
ffiffiffiffi
G

p

c
mcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c2 þ p̃2
5

q p̃5: ð76Þ

This suggests that the expression (74) is the polymer
generalization to the first perturbative order in the electro-
magnetic field of the latter relation.
This interpretation is confirmed by the μ → 0 limit

of (74), from which the standard expression (76) is
recovered.
Therefore, based on the relations (75), we can impose

ℏ
μ
sin

�
μ

ℏ
p5

�
≈

2
ffiffiffi
2

p
ℏmcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dðμ; p̃5Þ
p sin

�
μ

ℏ
p̃5

�
ð77Þ

and, in the end

q ≈
2ℏ

ffiffiffiffi
G

p

μc
sin

�
μ

ℏ
p5

�
: ð78Þ

This is a periodic and bounded function of p5 with
period 2π, defined in the generic periodic interval
½πð2k − 1Þℏ=μ; πð2kþ 1Þℏ=μ�, with k ∈ Z. Since we want
to preserve the Cauchy problem symmetry with respect to
the initial values of p5 (that is the symmetry of left-handed
and right-handed particles in the fifth direction) we are led
to choose the interval ½−πℏ=μ; πℏ=μ�, i.e., the one for
k ¼ 0, as the natural periodic interval of definition. In the
μ → 0 limit, the obtained function correctly reproduces the
ordinary relation inferable from (11).
As in the ordinary case, being the fifth dimension a

compact space, we have to assume that p5 is quantized;
in order to determine the quantization law, we need to
represent the free-particle state in the fifth coordinate as
described by the wave function of the polymer free-particle.
As comprehensively discussed in [15], in the position
representation, this will be

ψμðx5Þ ¼
1ffiffiffiffi
L

p eix
5pðμÞ

5
=ℏ; ð79Þ

normalized on S1x5 , where L is the length of the circus
which characterizes the fifth dimension. Hence, by impos-
ing ψμðx5Þ to be periodic in x5, we achieve the following
quantization law

pðμÞ
5 ¼ 2πn

L
ℏ; n ∈ Z; ð80Þ

which immediately leads, accordingly to (78), to a new
quantization law for the electric charge

qn ≈
2ℏ

ffiffiffiffi
G

p

μc
sin

�
2πμ

L
n

�
; ð81Þ

defined in the aforementioned periodic interval.
We can choose qn to be equal to the electron electric

charge e for n ¼ 1, as in the ordinary case, and in this way
we are able to find an expression for L,

L ≈
2πμ

arcsinð eμc
2ℏ

ffiffiffi
G

p Þ ; ð82Þ

from which we deduce a constraint for the polymer scale μ

0 < μ ≤
2ℏ

ffiffiffiffi
G

p

jejc ≈ 3.78 × 10−32 cm: ð83Þ

At this point we choose μ equal to the Planck length and
obtain
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L ≈ 2.377 × 10−31 cm; ð84Þ

which almost coincides with the result of the standard
theory and therefore it can account for the nonobservability
of the fifth dimension.
There are basically two reasons behind this particular

choice of the polymer scale:
a. it is a scale with a strong physical meaning
b. the L=μ ratio, for this value of μ, is large enough to

ensure some calculations to be carried out in the
polymer continuum limit, through the assumptions
discussed in [14,15].

A further discussion about the function (82) is postponed to
the next subsection.
The charge function (78), instead, can be rewritten, by

means of the function LðμÞ (82), as follows:

qðμ; nÞ ¼ 2ℏ
ffiffiffiffi
G

p

μc
sin

�
n arcsin

�
μec

2ℏ
ffiffiffiffi
G

p
��

ð85Þ

and by setting the polymer scale μ equal to the Planck
length, we obtain the symmetric distribution of positive and
negative charges reported in Fig. 1.
The number of modes n in the considered interval is

limited by the periodic condition of the function itself and
it clearly depends on μ. For our choice of μ we find that
−73 ≤ n ≤ 73 (see again Fig. 1).
It is worth noting that for any fixed value of n ¼ n� it is

always possible to expand the sine function in correspon-
dence to a suitable small cut off parameter μ, accordingly
to the inequality n�μ ≪ 2ℏ

ffiffiffiffi
G

p
=ec, where we also have

expanded the function LðμÞ.
In this limit we recover the standard expression for the

charge as multiple of the elementary electron charge, at
least for n < n�.
Finally, we want to evaluate the consequence of

the condition ju5j < 1 in our framework. The relation
between u5 and q can be found employing the
expression (74). Hence, by retaining only the zero-order
term in u5—coherently with the overall expansion in Aμ

and its derivatives we have done in the equation of
motion (71)—we can write

ju5j ≈
jqj

2m
ffiffiffiffi
G

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ 2G
q2m2

� 1

q2ℏ
FðμÞ

s
; ð86Þ

where

FðμÞ≔ ½16G2ℏ2m4 − 8Gℏ2m2q2 þ 4μ2m2c2q4 þ h2q4�1=2:
ð87Þ

By imposing the condition ju5j < 1, the solution with a
plus sign can be ruled out since it always violates the
constraint, while for the solution with minus sign (which is
the meaningful one) we obtain

jqj
m

≤
2ℏ

ffiffiffiffi
G

p

μmc
; ð88Þ

which is in agreement with the quantization law (78).
This constraint—that we stress is valid only in a

perturbative regime—is different from the ordinary one
(14) and it introduces a dependence in the q=m ratio from
the polymer scale μ (as expected) and from the mass itself.
Remarkably, the empirical q=m ratio of any known particle
always respects the bound for every value of μ in the
interval (83). This means that the new constraint does not
set an unphysical condition and at least does not contradict
the experimental evidence; thus resolving one of the
shortcoming aspects of the standard theory. In other words,
we are now able, in principle, to reproduce the q=m ratio of
any Standard Model particle.

B. Polymer complex scalar field coupled
with Kaluza-Klein metric

In this subsection we will carry out the study of a
complex scalar field polymer dynamics, on a Kaluza-Klein
background, obtained through a proper perturbation of the
previous polymer Kasner metric.
Following the literature [13,17,18], under the isotropy

assumption in the three usual spatial dimensions, we
rewrite the polymer Kasner solution as

ds2 ¼ −c2dt2 þ
�
t
τ

�
2k
ðdx⃗Þ2 þ

�
t
τ

�
2k5ðdx5Þ2; ð89Þ

where τ is a time characteristic of the present age of the
Universe and we have rescaled the coordinates by the
same factor.
Since we are interested in the static case with respect to

the fifth dimension, we choose k5 ¼ 0 and hence, as we
have seen in the previous section, k ¼ 1=3

FIG. 1. Plot of charges distribution for a value of μ equal to the
Planck length. It is possible to appreciate the oscillating profile of
the function and the negative and positive symmetric branches.
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ds2 ¼ −c2dt2 þ
�
t
τ

�
2=3

ðdx⃗Þ2 þ ðdx5Þ2: ð90Þ

Taking into account the rescaling, the coordinates will now
satisfy the following conditions,

0 ≤ jx⃗j < Lðτ=t0Þk; 0 ≤ x5 < L: ð91Þ

In order to include a perturbative electromagnetic field,
a small perturbation hμ5 (μ ¼ 0; 1; 2; 3) is added to the
polymer-modified Kasner metric, properly proportional to
the electromagnetic field itself

hμ5 ¼
2

ffiffiffiffi
G

p

c2
Aμ: ð92Þ

As stated in the previous section this is naturally justified in
a cosmological setting.
Coupled with this background we introduce a quantum

complex scalar field Φ, which ordinary dynamics is
described by a 5D Klein-Gordon equation and we set
the 5D “mass” term equal to zero

ð5Þ
□ΦðxaÞ ¼ 0; a ¼ 0; 1; 2; 3; 5: ð93Þ

As in the standard case, our analysis relies on the
assumption of the cylinder hypothesis for observable
physical quantities, still providing the scalar field Φ
with a phase factor depending on x5, the latter described
by the polymer free-particle wave function, with periodicity
condition on the fifth coordinate due to the topology of
the space

Φðxμ; x5Þ ¼ 1ffiffiffiffi
L

p ϕðxμÞeix52πn=L; ð94Þ

where the function ϕðxμÞ depends only on the variables of
the 4D space-time.
A (4þ 1)-dimensional splitting of Eq. (93) results in the

following expression

∂μ∂μΦ −
2

ffiffiffiffi
G

p

c2
∂μAμ∂5Φ −

4
ffiffiffiffi
G

p

c2
Aμ∂μ∂5Φ

þ
�
1þ 4G

c4
AνAν

�
∂2
5Φ ¼ 0: ð95Þ

We want now to study Eq. (95) by introducing the polymer
quantum framework only with respect to the fifth dimen-
sion; therefore we switch to momentum representation only
on the fifth coordinate and then let the operator p̂5 act
according to the polymer prescription (24).
It is worth noting that, acting in this way, we are working

in a mixed representation of position and momentum,
which would not be possible universally speaking, never-
theless, since the coupling term in (95) between xμ and x5 is

a small perturbation, we are legitimate, under this
assumption, to proceed along this path according to the
diagonal form of the background metric.
Finally, the following equation for the complex scalar

field is achieved

ð4Þ
□ϕðxμÞ − i

2
ffiffiffiffi
G

p

c2μ
ϕðxμÞ∂μAμ sin

�
μ
2πn
L

�

− i
4

ffiffiffiffi
G

p

c2μ
sin

�
μ
2πn
L

�
Aμ∂μϕðxμÞ

−
�
1þ 4G

c4
AνAν

�
1

μ2
sin2

�
μ
2πn
L

�
ϕðxμÞ ¼ 0: ð96Þ

By comparing term by term the latter with the 4D
equation of a massive complex scalar field, coupled with an
electromagnetic one, on a curved space-time, we attain the
following identifications

qn ¼
2ℏ

ffiffiffiffi
G

p

μc
sin

�
2πμ

L
n

�
;

mn ¼
ℏ
μc

����sin
�
2πμ

L
n

�����: ð97Þ

The first one is again a quantization law for the electric
charge and it is clearly the same we obtained in (81) in the
modified geodesic study.
Hence, by imposing qn ¼ e for n ¼ 1 again, we recover

for the size L of the fifth dimension the function (82), with
the constraint (83).
This function is a monotonically decreasing function of

μ, which reaches its minimum value at the right endpoint
of the interval in which is defined and it tends exactly to
the value of the ordinary theory (13) as μ approaches zero
(see Fig. 2). Clearly, choosing again μ around the Planck
length, we find for the value of L the result (84),
discussed above.
On the other hand, the second relation (97) represents a

mass distribution law for the scalar field, which, by means

µ

µ

FIG. 2. Monotonically decreasing trend of the size L of the
fifth dimension as a function of the polymer scale μ. The
constraint (83) for μ establishes a precise domain and codomain
for the function LðμÞ.
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of the expression (82), can be rewritten as a function of the
integer parameter n and of the continuous variable μ

mðμ; nÞ ¼ ℏ
μc

����sin
�
n arcsin

�
μec

2ℏ
ffiffiffiffi
G

p
������: ð98Þ

This function—for the same reasons stated in the
previous subsection regarding the charge function—can
be defined in the periodic interval ½−πℏ=μ; πℏ=μ�, but,
because of the presence of the modulus, we can restrict our
attention only on the positive segment of the interval itself,
that is ½0; πℏ=μ�. For a fixed value of the polymer scale μ,
the resulting sequence of masses, due to the periodicity
condition, will include only a finite number of mass modes
n and it clearly will be bounded and oscillating, as n
changes.
This freedom in the choice of the scale leads to a crucial

feature of such distribution; picking a particular mode n,
through a fine tuning of μ, it is possible to fit any desired
value of the mass, and therefore also Standard Model-
comparable masses. In particular, the spectrum can be
explored in correspondence to a Planckian-like value of the
parameter μ.
The specific pattern of the distribution then will depend

on the chosen reference mass to be fitted to a certain mode
n, for a fixed value of μ; nevertheless, it can be shown that a
qualitative general trend can be recovered, which provides
the presence of the assigned mass in the minimum of the
sequence as a ground level of the Kaluza-Klein tower. We
stress that these regular values appear accompanied by
Planckian masses, as sketched in Fig. 3.
This distribution deeply differs from the one obtained in

the standard theory, reported in [13]. In fact, the latter is a
linear and increasing sequence of only Planckian masses
without an upper limit.
Actually, the possibility of fitting arbitrary masses, and

from this obtaining various distributions can be achieved in
the ordinary theory, as shown in [13] [by introducing a 5D
mass term a in the Klein-Gordon Eq. (93)] the role of which
is that of an additive parameter to be fine tuned.

Nevertheless, this way of proceeding reveals several
issues, which consequently are all addressed in our frame-
work, the introduction of such an extra quantity a not being
necessary. First of all, in general, the fine-tuning procedure
cannot be applied to every mode, since the linear and
increasing trend of the distribution is not modified at all.
Secondly, the addition of this parameter eventually gen-
erates the rise of tachyonic masses in the past. This happens
because of the presence of the metric coefficient ðt=τÞjk5j in
the standard momentum expression, as discussed in [13],
which cannot be removed, since in the ordinary theory the
Kasner solution does not admit the case k5 ¼ 0. This means
that in our framework the tachyonic masses are ruled out
from the polymer-modified distribution.
We outline that, in our analysis, even in the case k5 ≠ 0,

i.e., in the nonstatic case, the tachyonic problem would be
solved since it is the chance to set a ¼ 0 which removes the
unphysical masses.
Finally, the a parameter has to be introduced on purpose

in the theory and its physical meaning remains ambiguous,
while in our framework the fine-tuning parameter is an
internal degree of freedom of the theory.
Hence, even if polymer quantum mechanics fails in

removing completely the Planckian masses from the spec-
trum, it succeeds first in introducing a cutoff since the mass
distribution is bounded. Furthermore, in the considered
natural interval a finite number of variable mass values take
place in the mass distribution in the considered periodic
interval of definition of the mass function itself, and secondly
in accounting for StandardModel-comparable masses, under
a proper fine-tuned choice of the scale variable μ.
Since we are dealing with a complex scalar field, the

charged pions π� seem to be relevant (phenomenologi-
cally) candidates in nature for the reference masses. The
result is that the pion mass can be fitted at the mode n ¼ 73
for a fine-tuned value of μ (up to twenty decimal figures)
almost equal to the Planck length, which we will denote
from now on as μPlanck.
Nevertheless, for this procedure to be consistent, it is

necessary to verify that the resulting mode n ¼ 73 belongs
to the range of n admitted in the periodic interval of
definition of the masses function. It is easy to show that for
μ ¼ μPlanck the condition for positive n for belonging—in
which we are interested—is n ≤ 73. Therefore, the results
coming from the fit procedure are valid and legitimate in
this regard.
In Fig. 3 it is reported the whole sequence of masses

resulting for μ ¼ μPlanck, where it is possible to appreciate
the general behavior discussed above.
In particular, we observe that the pion mass is in the

minimum of the distribution and that the maximum
available mass is always

mmax ¼
ℏ
μc

;

FIG. 3. Plot of masses distribution for the complex scalar
field, for the value μPlanck ≈ 1.627 × 10−33 cm. It is possible to
observe the oscillating profile of the function and the fitted pion
mass, placed in the minimum, as ground level of the Kaluza-
Klein tower.
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which is inversely proportional to μ, while the first mode of
the sequence (n ¼ 1) is

mðμ; 1Þ ¼ e

2
ffiffiffiffi
G

p ≈ 9.29 × 10−7 g: ð99Þ

It does not depend on μ and it is almost a Planckian mass,
defined only by fundamental constants, equal to the one
obtained in the standard framework (without the introduc-
tion of the ad hoc parameter a).
In Fig. 4 instead the corresponding charge distribution

[which again can be put in the form (85)] for μ ¼ μPlanck is
represented.
We observe, however, that only the electron charge

(n ¼ 1) has a phenomenological correspondence, while
the remaining points of the sequence have not a clear
interpretation. In particular according to these mass and
charge distributions the fundamental charge e has to be
associated with a particle of Planckian mass, while the
corresponding charge of the pion would be several orders
of magnitude smaller than the electron charge. Clearly, this
peculiar charge-mass configuration is not phenomenologi-
cal consistent. Indeed, calculating the q=m ratio for the
modes of the scalar field, we obtain

qðμ; nÞ
mðμ; nÞ ¼ �2

ffiffiffiffi
G

p
≈ 5.16 × 10−4 e:s:u:=g; ð100Þ

where the � sign is due to the sign of the electric charge.
This value, which coincides with the upper limit of the

q=m ratio (14) of the standard classical case, does not
depend on μ or n, rather it is constant for every polymer
scale and every mode and no known particle satisfies
such a relation.

VI. CONCLUSION

We investigated the formulation of a five-dimensional
Kaluza-Klein theory in the framework of polymer quantum
mechanics, viewed both in a semiclassical and quantum
approach. The polymer modifications have been

implemented to the fifth coordinate only, on a semiclassical
level in the spirit of the Ehrenfest theorem (the modification
provides the dynamics of the quantum expectation values)
and in a full quantum approach when a Klein-Gordon
equation has been investigated.
We started by applying the semiclassical polymer formu-

lation to the evolution of the Bianchi I model, by showing
that the corresponding Kasner solution can be taken in a
form in which three scale factors isotropically expand and
the remaining one is static and, in the considered model, it
coincides with the compactified extra dimension.
Then we studied the geodesic motion of a particle, starting

with a Hamiltonian formulation (the only one in which the
polymer formulation is viable) and then turning to a
formalism based on the particle velocities. This procedure
allows us, in analogy to the standard literature on this same
subject, to identify the expression for the electric charge via
the fifth-momentum component of the particle. The impor-
tant consequence of this revised formulation consists of
overcoming the problem of a too small charge to mass ratio
to account in the model for any known elementary particle.
In fact, the revised constraint, due to the polymer relation
between the fifth-momentum component and the corre-
sponding velocity, is in principle compatible with all the
elementary particle predicted by the Standard Model.
Finally, we implemented a quantum polymer modifica-

tion in the Klein-Gordon equation, by adopting a mixed
representation of quantum mechanics (based on the coor-
dinates for the usual four dimensions and themomentum for
the extra one). This study aims to revise the analysis in [13]
for a static (now available) extra dimension, under a polymer
prescription for the compactified dimension physics.
We got the fundamental result that the tachyon mode,

present in [13], is now removed from the mass spectrum
and that the obtained values for the boson mass can fit the
values spanned in the Standard Model. Actually, we arrived
at a deformed morphology of the so-called Kaluza-Klein
tower (the steps are no longer equispaced), but this revised
structure allows us to avoid the only Planckian mode
naturally present in the standard Kaluza-Klein formulation.
All these results suggest that some of the puzzling

questions affecting the viability of the Kaluza-Klein idea
must be reanalyzed phenomenologically including the
notion of a cut off physics. In fact, in the case of small
dimensions, living about two orders of magnitude over the
Planck scale, it should be unavoidable to feel the effects of
the nearby cutoff and when its presence is made manifest a
new paradigm can be assessed. In other words, we argue
that some limits of the geometrical unification theories are
possibly due to the ultraviolet divergence that the gravita-
tional field possesses and when they are somehow attenu-
ated, like by the polymer scenario adopted here, the
compactified dimension takes a more regular behavior,
which is reflected into the solution of some inconsistencies
of the underlying model.

FIG. 4. Plot of charges distribution for value μ ¼ μPlanck. Again,
it is possible to observe the oscillating profile of the sequence and
the negative and positive symmetric branches.
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The emergence of a static dimension in the 5D Kasner solution (which prevents the necessity to deal with unphysical
tachyonic modes) undoubtedly represents the simplest elucidation of this point of view.
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