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We provide a prescription to compute the gravitational multipole moments of compact objects for
asymptotically de Sitter spacetimes. Our prescription builds upon a recent definition of the gravitational
multipole moments in terms of Noether charges associated to specific vector fields, within the residual
harmonic gauge, dubbed multipole symmetries. We first derive the multipole symmetries for spacetimes
which are asymptotically de Sitter; we also show that these symmetry vector fields eliminate the
nonpropagating degrees of freedom from the linearized gravitational wave equation in a suitable gauge.
We then apply our prescription to the Kerr-de Sitter black hole and compute its multipole structure. Our
result recovers the Geroch-Hansen moments of the Kerr black hole in the limit of the vanishing
cosmological constant.
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I. INTRODUCTION AND SUMMARY
OF THE RESULTS

The multipole moments associated with a gravitational
field have always been relevant and important in the study
of various solutions arising from General Relativity, since
its early days. These studies involving multipole moments
have impacted many areas of research ranging from
mathematical physics to astrophysics. The study of multi-
pole moments in various contexts has become even more
timely since the discovery of gravitational waves [1–7].
The observation of gravitational waves from the coales-
cence of binary compact objects can have potential appli-
cations in order to address questions about the nature of
compact objects such as black holes, neutron stars, and the
binary systems thereof [8–14]. Future space-based gravi-
tational wave detectors, besides mass and spin, will be also
able to measure the quadrupole mass moment of a super-
massive object in a binary system with great accuracy
[9,15,16], as well as put bounds on four leading-order
multipole moments in the high mass ratio (∼10) limit [17].
In General Relativity, the gravitational field is decom-

posed in two sets of multipole moments—the mass and
the spin moments [18–20]. Using the Penrose’s conformal
completion technique, a geometrical definition of the multi-
pole moments for static, asymptotically flat spacetimes was
pioneered by Geroch [21,22]. Later, Geroch’s definition was

generalized to the stationary case by Hansen [23].
Subsequently, Beig, Simon, and Kundu [24–28] developed
further properties of the multipole moments for stationary
and asymptotically flat spacetimes. On the other hand,
imposing no incoming radiation for linearized radiating
gravitational fields, Thorne [29] provided a definition of
multipole moments for asymptotically flat spacetimes.
Thorne’s moments are defined within the harmonic gauge,
upon further fixing the residual gauge, where the gravita-
tional field is expanded in spherical harmonics and the
multipole moments are read from such an expansion.
Thorne’s definition applies also to stationary nonlinear
configurations in General Relativity and it is shown to be
equivalent to the Geroch-Hansen’s definition for stationary
spacetimes, up to a choice of normalization [30]. More
recent developments about gravitational multipole moments
in asymptotically flat spacetime can be found in [31–37].
Intriguingly, the multipole moments of a black hole have

very simple structures; e.g., the multipole moments of a
Kerr black hole only depends on its mass and spin [22,23].
However, such is not the situation for neutron stars or for
the exotic compact objects. The multipole structures of
these objects are much more complex and are very much
distinct from one another. Thus the study of the multipole
structure of a compact object may reveal its true nature and
interesting properties. For example, for a Kerr black hole
all the odd mass moments and even spin moments are
identically zero, however for certain fuzzball states odd
mass moments and even spin moments do exist [38–41].
Therefore, if the gravitational wave observations tell us that
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the odd mass moments and even spin moments of the
merging compact objects are indeed nonzero, then the
fuzzball models will become particularly relevant. This
shows the importance of understanding the multipole
moments of compact objects in greater detail.
As emphasized earlier, the multipole moments of gravi-

tational fields are well understood for asymptotically flat
spacetimes, however they remain largely unexplored for
asymptotically nonflat and in particular for asymptotically
de Sitter spacetimes. This is because the Geroch-Hansen
formalism as well as the formalism of Thorne depend
crucially on the asymptotic flatness of the spacetime.
Though there are instances where the formalism can be
applied for asymptotically nonflat spacetimes; this is the
case for spacetimes with NUT charge [42], because the
relevant codimension-one hypersurfaces are asymptotically
flat even in the presence of NUT charge and the Geroch-
Hansen formalism is readily applicable. On the other hand,
for asymptotically de Sitter spacetimes these codimension-
one hypersurfaces are nonflat, rendering the known analy-
sis of multipole moments inapplicable.
The aim of this work is to start filling this gap in the

literature and provide a definition of gravitational multipole
moments for asymptotically de Sitter spacetimes.
The mass and spin multipole moments have been

recently defined for a generic metric theory of gravity in
terms of the Noether charges associated with the so-called
multipole symmetries,1 that are specific residual trans-
formations in the harmonic gauge [37]. This definition
also agrees with the previous results of Thorne for
linearized radiating spacetimes and the Geroch-Hansen
formalism for stationary spacetimes. At this point, let us
briefly summarize the main strategy to compute multipole
moments in [37]. The main idea is to extract the multipole
moments from the radial expansion of the metric tensor.
For asymptotically flat spacetimes, following Thorne [29],
one has to reach the harmonic gauge as explained earlier.
Upon fixing the harmonic gauge, one is left with its residual
gauge transformations. In [37] it was demonstrated that the
multipole symmetries are actually residual gauge trans-
formations preserving the asymptotic behavior of the lapse
function and shift vector. The next step in the analysis of
[37] is to compute the Noether charges associated with the
multipole symmetries. Explicit expressions for the surface
charges in four-dimensional General Relativity can be
found in [44,45]. The multipole moments of the solution
are identified from the Noether charges upon a regulari-
zation procedure.
In this paper, we wish to extend the method of [37],

as outlined above, for asymptotically de Sitter spacetimes.
More specifically, we achieve three main results:

(a) Our first result is to write down the de Sitter spacetime
in harmonic gauge; surprisingly, de Sitter spacetime
was never written in the harmonic gauge before, to
the best of our knowledge. Expressing the de Sitter
spacetime in the harmonic gauge is instrumental to
derive the residual harmonic gauge transformations
and, among these, the multipole symmetries preserv-
ing certain fall-off conditions for asymptotically de
Sitter spacetimes. These fall-off conditions are such
that they preserve the lapse function and the shift
vector, analogously as in [37].

(b) We also provide an alternative derivation of the
multipole symmetries to be those residual-gauge
transformations that eliminate the nonpropagating
degrees of freedom in the linearized outgoing wave
solutions around de Sitter background. This different
interpretation of multipole symmetries sheds more
light over the physics of the multipole symmetries
and complements the original derivation carried
out in [37].

(c) Finally, in order to apply our findings on a concrete
example, we compute the multipole structure of the
Kerr-de Sitter black hole. In particular, we provide
explicit computation of the first few mass and spin
multipole moments. Our expressions reproduce the
well-known mass and angular momentum of the Kerr-
de Sitter black hole and, in the limit of asymptotically
flat spacetime, we recover the Geroch-Hansen’s multi-
pole moments of the Kerr black hole.

The paper is organized as follows. In Sec. II, we briefly
present different coordinate systems for the de Sitter
spacetime, which will be relevant for our purpose.
Section III deals with writing down the de Sitter metric
in the harmonic gauge. In Sec. IV, exploiting the residual
harmonic gauge freedom, we obtain the multipole sym-
metries for asymptotically de Sitter spacetimes. In Sec. V,
we provide the linearized gravitational wave equation in the
de Sitter background, and we obtain the multipole sym-
metries from the residual gauge transformations of the
linearized theory. Finally, in Sec. VI, we compute the
multipole moments of the Kerr de Sitter spacetime.
We conclude with a summary and perspectives for future
works. The two Appendixes contain; (a) the technical
derivation of converting the de Sitter metric to harmonic
coordinates, and (b) the exact analytic expressions of
the first few mass and spin multipole moments of the
Kerr-de Sitter black hole.

A. Notation and conventions

We adopt the mostly positive signature convention, i.e.,
the Minkowski metric in the Cartesian coordinate system
takes the form diagð−;þ;þ;þÞ. The Greek indices run
over all the spacetime coordinates, while the Latin indices
run over the spatial coordinates. Furthermore, we set the
fundamental constants, such that c ¼ 1 ¼ G.

1The concept of multipole symmetries and the relation with
multipole moments has been originally introduced in [43] in the
context of Maxwell electrodynamics.
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II. BRIEF REVIEW OF THE DE SITTER
SPACETIME

We briefly review the de Sitter spacetime to point out the
key features and the coordinate charts we will be using
in this work. Unlike the Minkowski spacetime, which
admits a natural, global Cartesian coordinate chart, the de
Sitter spacetime has several charts appropriate for different
situations—the global, Poincaré, and static patches.
Furthermore, the de Sitter spacetime is a solution to the
equations Rμν ¼ Λgμν, where Λ is referred to as the
cosmological constant term.
The de Sitter spacetime is most naturally defined as the

hyperboloid in the five-dimensional Minkowski spacetime,
which also introduces a set of coordinates covering the full
de Sitter spacetime, known as the global patch. The global
patch is covered by the coordinates ðτ; χ; θ;ϕÞ, and the
de Sitter metric is given by

ds2¼−dτ2þ 1

H2
cosh2ðHτÞ½dχ2þsin2χðdθ2þsin2θdϕ2Þ�;

ð2:1Þ

where H ≔
ffiffiffiffiffiffiffiffiffiffiffiffiðΛ=3Þp

is the Hubble constant. As is evident
from the above metric, the global topology of the de Sitter
spacetime is R × S3 (see Fig. 1). In the global chart, the
axial symmetry of the de Sitter spacetime is guaranteed by
the Killing vector ð∂=∂ϕÞ. However, unlike the Minkowski
spacetime, ð∂=∂τÞ is not a Killing vector in the global
coordinates.
Among the other coordinate systems associated with the

de Sitter spacetime, the Poincaré patch, which constitutes

the causal future (past) of observers and covers “half” of the
global chart is of much interest. As we will see, in the
cosmological context and for our current purpose of
studying compact sources in the de Sitter background,
the Poincaré patch will turn out to be very useful. There
are two natural coordinate charts for the Poincaré patch:
(a) the conformal chart with coordinates ðη; xiÞ, and (b) the
cosmological chart with coordinates ðt; xiÞ. In the con-
formal chart ðη; xiÞ, the de Sitter metric takes the form

ds2 ¼ a2ðηÞð−dη2 þ δijdxidxjÞ; ð2:2Þ

where aðηÞ ¼ −ðHηÞ−1 with η ∈ ð−∞; 0Þ. A drawback of
the conformal coordinates is that they are not suitable for
studying the flat limit Λ → 0 (or, equivalentlyH → 0); see,
e.g., [46] (however also see, [47]). Thus one is led to adopt
the cosmological coordinates, with the cosmic time t being
related to the conformal time η via η ≔ −ð1=HÞe−Ht. In
these coordinates (t; xi), the line element for the de Sitter
spacetime becomes

ds2 ¼ −dt2 þ e2HtðδijdxidxjÞ: ð2:3Þ

This is the most well-known form for the de Sitter metric
and it will be used extensively in this work.
The Poincaré patch has a seven-dimensional isometry

group—three spatial rotations, three spatial translations,
and one time translation. In order to find out the Killing
vector field of time translations, we let t → tþ δt in
Eq. (2.3), where δt is taken to be infinitesimal. This time
translation changes the de Sitter line element and hence in
order to make the de Sitter metric in the Poincaré patch
invariant, we must have the following transformation for
the spatial coordinates: xi → xi −Hxiδt. Hence, the Killing
vector field generating the time translation in the cosmo-
logical coordinate system is

tμ∂μ ¼ ∂t −Hxi∂i: ð2:4Þ

This vector will also play an important role in the study of
multipole symmetries of de Sitter spacetime.
The third patch, corresponding to “half” of the Poincaré

patch, is referred to as the static patch (see Fig. 1). This is a
natural patch for an isolated body or a black hole with a
stationary neighborhood. This patch of de Sitter spacetime
can be covered by static coordinates ðT; R; θ;ϕÞ. In these
coordinates, the line element of the de Sitter spacetime
becomes

ds2 ¼ −ð1 −H2R2ÞdT2 þ dR2

ð1 −H2R2Þ
þ R2ðdθ2 þ sin2 θdϕ2Þ: ð2:5Þ

FIG. 1. ABCD denotes the global chart, ABD is a Poincaré
patch, while AED is a static patch. The angular coordinates,
θ and ϕ, are suppressed. An observer, represented by the world
line DA, has its causal future Jþ spanning the region DBA and is
one of the Poincaré patches. Its spacelike boundary, denoted by
the line AB, is the future “null” infinity, J þ.
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The existence of two Killing vector fields, ð∂=∂TÞ and
ð∂=∂ϕÞ, is clear from the line element above; correspond-
ingly, the spacetime has both axial and time-translational
symmetries. It should be emphasized that the Killing2

vector field ð∂=∂TÞ becomes null on the cosmological
horizon of the de Sitter spacetime located at R ¼ H−1.
Let us conclude this section with a side remark about the

global isometry group in the three patches of the de Sitter
spacetime. The ten-dimensional isometry group of the
full de Sitter spacetime is reduced to a seven-dimensional
subgroup in the Poincaré patch, and to a four-dimensional
subgroup in the static patch [48]. The symmetry reduction
of the global isometry group can be best understood along
the following lines; the null hyperplane BD (see Fig. 1) can
be thought of as adding an additional boundary to the full
de Sitter spacetime. Hence, the symmetry generators which
are not tangential to BD are absent in the Poincaré patch.
Similarly for the static patch, the Killing fields which are
not tangential to the cosmological horizon are not sym-
metry generators in the static patch.

III. DE SITTER METRIC IN THE
HARMONIC GAUGE

The harmonic gauge, also known as the de Donder
gauge, plays a crucial role in solving the Einstein’s
equations [20]. The harmonic gauge is usually the favorite
gauge used to read off the multipole moments from the
spherical harmonic decomposition of the metric tensor
[29]. In addition, the residual harmonic gauge symmetry is
intimately connected with the nature of the multipole
moments of any compact object [37]. Given the metric
tensor gμν, the harmonic gauge condition is given by

∂νð
ffiffiffiffiffiffi
−g

p
gμνÞ ¼ 0: ð3:1Þ

To impose the harmonic gauge condition on the metric gμν,
we first perform the coordinate transformation x0μ ¼ fμðxÞ.
Subsequently, imposing the harmonic gauge condition on
the metric in the x0μ coordinate system amounts to

∂ν0 ð
ffiffiffiffiffiffiffi
−g0

p
gμ

0ν0 Þ ¼
ffiffiffiffiffiffiffi
−g0

p
□g0x0μ ¼ 0; ð3:2Þ

where □g0 ≔ gμν∇μ∇ν. Hence, choosing each coordinate
x0μ to be harmonic in the metric gμν, i.e., satisfying
□g0x0μ ¼ 0, ensures that the harmonic gauge condition
holds in the new coordinates. We will employ this pro-
cedure to transform the de Sitter metric to harmonic

coordinates in all the three coordinate patches discussed
in the previous section.
Intriguingly, despite being one of the most familiar

solution to the Einstein’s equations with a cosmological
constant, to our knowledge, harmonic coordinates for
de Sitter spacetime do not exist in the literature. Even
though we can provide the transformation of all of the three
coordinate patches to harmonic coordinates, here we
provide the explicit coordinate transformation from the
cosmological coordinates to the harmonic coordinates,
since it will be of relevance in what follows. We relegate
to Appendix A the explicit coordinate transformations that
bring the de Sitter metric in global and static coordinates to
the harmonic form.
As discussed in the previous section, the Poincaré

patch of the de Sitter spacetime can be described by the
cosmological coordinates ðt; xiÞ, with the associated line
element given by Eq. (2.3), for which

ffiffiffiffiffiffi
−g

p
gμν ¼ diagð−aðtÞ3; aðtÞ; aðtÞ; aðtÞÞ; ð3:3Þ

where aðtÞ ≔ eHt. Therefore, it follows that the cosmo-
logical coordinates are not harmonic since ∂μð ffiffiffiffiffiffi−gp

gμ0Þ ¼
−3He3Ht ≠ 0. In order to obtain the harmonic coordinates
for de Sitter in the Poincaré patch, we introduce a new set of
coordinates x̄α, such that□gx̄α ¼ 0, where□g is associated
with the metric given in Eq. (2.3). Expanding out the above
harmonic gauge condition, we obtain the following differ-
ential equation for the new coordinates�

−
1

a3
∂tða3∂tÞ þ δij

1

a3
∂iða∂jÞ

�
x̄α ¼ 0: ð3:4Þ

We now have to choose an appropriate coordinate trans-
formation, such that the above differential equation can be
satisfied. For our purpose it will suffice to perform the
following coordinate transformation

x̄ ¼ x; ȳ ¼ y; z̄ ¼ z; t̄ ¼ fðtÞ; ð3:5Þ

where fðtÞ is an arbitrary function of the cosmic time. It is
straightforward to verify that Eq. (3.4) is indeed obeyed for
all the spatial coordinates, while for the time coordinate it
yields the following differential equation

�
d2f
dt2

�
þ 3H

�
df
dt

�
¼ 0: ð3:6Þ

Solving this differential equation for the function fðtÞ,
equipped with the boundary conditions fðt ¼ 0Þ ¼ 0 and
ðdf=dtÞðt ¼ 0Þ ¼ 1 (these boundary conditions are neces-
sary to have a smooth flat spacetime limit), we obtain

t̄ ≔ fðtÞ ¼ 1

3H
ð1 − e−3HtÞ: ð3:7Þ

2It is immediate to show that the Killing vector, defined
in Eq. (2.4) in the cosmological coordinates, transforms to
ð∂=∂TÞ in the static coordinates. For that purpose one simply
has to note that ∂=∂t ¼ ð1 −H2R2Þð∂=∂TÞ þHRð∂=∂RÞ and
rð∂=∂rÞ ¼ Rð∂=∂RÞ þHR2=ð1 −H2R2Þð∂=∂TÞ, such that,
ð∂=∂tÞ −Hrð∂=∂rÞ ¼ ð∂=∂TÞ.

CHAKRABORTY, HOQUE, and OLIVERI PHYS. REV. D 104, 064019 (2021)

064019-4



Therefore, the line element of the Poincaré patch of the
de Sitter spacetime takes the following form in the
harmonic coordinates

ds2 ¼ −
dt̄2

ð1 − 3Ht̄Þ2 þ ð1 − 3Ht̄Þ−2=3ðdx2 þ dy2 þ dz2Þ:

ð3:8Þ

It can again be verified that, with somewhat long but
straightforward algebra, that the de Sitter metric in the
above coordinate system indeed satisfies the harmonic
gauge condition.
Having determined the harmonic coordinates for the

de Sitter spacetime in the Poincaré patch, we proceed to
find out the residual gauge symmetry and the vector fields
generating these symmetries. As we demonstrate, these
vector fields will be crucial in obtaining the multipole
symmetries and hence the multipole moments of compact
objects living in an asymptotically de Sitter spacetime.
We will determine these multipole symmetry vector fields
in the next section.

IV. RESIDUAL HARMONIC GAUGE AND
MULTIPOLE SYMMETRIES

We are now in the position to discuss the residual
harmonic gauge transformations and hence derive the
vector fields from which the multipole moments, in terms
of the Noether charges, can be associated. We choose an
operational definition of asymptotically de Sitter space-
times such that in the harmonic gauge our metric matches
with that of Eq. (2.3) in the asymptotic regime. For our
purpose it will suffice to consider a constant cosmological
time t such that the asymptotic regime corresponds to
the r → ∞ limit, which is also identical to the
rphys ≔ reHt → ∞. Since this corresponds to the point B
in Fig. 1, which is the analog to spatial infinity i0 in
asymptotically flat spacetime, we will use this limit to
define the multipole moments. Therefore, following [37],
here we also demand the following asymptotic conditions
on the metric components

g0μ ¼ ḡ0μ þOð1=rphysÞ: ð4:1Þ

Here ḡμν denotes the background de Sitter spacetime. It
should also be noticed that Eq. (4.1) is a nontensorial
relation and hence must be used in the harmonic coor-
dinates, such that ḡμν satisfies the harmonic gauge con-
dition (note that the radial distance remains the same in
both cosmological and harmonic coordinates). The vector
field ξμ will preserve the asymptotic conditions given in
Eq. (4.1) if it satisfies asymptotically the following relation

£ξḡ0μ≔ ξα∂αḡ0μþ ḡμα∂0ξ
αþ ḡα0∂μξ

α¼Oð1=rphysÞ: ð4:2Þ

For the harmonic coordinates in the Poincaré patch
and for the component μ ¼ 0, Eq. (4.2) becomes ξα∂αg00 þ
2g0α∂0ξ

α ¼ 0. This yields the following solution for
the time component of the vector field ξμ in harmonic
coordinates

ξ0 ¼ ð1 − 3Ht̄ÞϵðxÞ þOð1=rphysÞ; ð4:3Þ

where ϵðxÞ is an arbitrary function of the spatial
coordinates x. Similarly, for the spatial components of
the asymptotic condition given in Eq. (4.2), we obtain the
following differential equation for the vector field ξα

ξα∂αg0i þ g0α∂iξ
α þ giα∂0ξ

α ¼ Oð1=rphysÞ; ð4:4Þ

Using Eq. (4.3) and Eq. (4.4), the solution for the spatial
components, in the harmonic coordinates, is given by

ξi ¼ 1

2H
½1− ð1− 3Ht̄Þ2=3�δij∂jϵðxÞ þ ζiðxÞ þOð1=rphysÞ:

ð4:5Þ

Thus, it follows that under the diffeomorphism
xμ → xμ þ ξμ, the change in the de Sitter metric satisfies
the necessary asymptotic boundary condition given by
Eq. (4.1), provided the time and spatial components of ξμ

are given by Eq. (4.3) and Eq. (4.5), respectively.
The unknown functions, ϵðxÞ and ζiðxÞ, appearing in the

components of the vector field ξμ above, are arbitrary as of
now. However the vector field should satisfy one more
additional condition, namely the harmonic gauge condition
□ḡξ

μ ¼ 0 in the background de Sitter spacetime. We must
emphasize that □ḡξ

μ ¼ 0 should be understood as four
scalar equations, for each one of the four functions ξμ (for a
detailed discussion along these lines, see [19]). The time
component of the above equation,□ḡξ

α ¼ 0, demands that
the function ϵðxÞ must satisfy the following differential
equation3

δij∂i∂jϵðxÞ ¼ 0: ð4:6Þ

The spatial components of the equation, □ḡξ
α ¼ 0, yields

the following differential equation for ξi, in the harmonic
coordinates

−∂2
t̄ ξ

i þ ð1 − 3Ht̄Þ−4=3δkl∂k∂lξ
i ¼ 0: ð4:7Þ

Substituting for the spatial components of the vector field ξi

from Eq. (4.5) and using Eq. (4.6), we obtain the following
differential equation for the spatial vector field ζi

3As we are interested in computing the multipole symmetry
vector in an asymptotic regime, we neglect Oð1=rphysÞ in the rest
of the section to avoid cluttering in notation.

GRAVITATIONAL MULTIPOLE MOMENTS FOR … PHYS. REV. D 104, 064019 (2021)

064019-5



δkl∂k∂lζ
iðxÞ −Hδij∂jϵðxÞ ¼ 0; ð4:8Þ

whose solution can be written as

ζ ¼ −r × ∇ϵ1ðxÞ þ ∇ϵ2ðxÞ −Hrþ V; ð4:9Þ

where ϵ1ðxÞ and ϵ2ðxÞ are two harmonic functions satisfy-
ing Eq. (4.6). Moreover, we have defined ∇ϵ ≔
δij∂iϵðxÞ∂j, and × denotes the cross product defined in
the three dimensional Euclidean space. Further, the vector
field V is the inhomogeneous part of Eq. (4.8) satisfied by
ζi. This vector field is discarded since it does not play any
role in General Relativity [37].
A similar analysis can be performed for the global and

the static patch of the de Sitter spacetime as well. However,
in our subsequent discussions, we will restrict ourselves to
the harmonic coordinates of the de Sitter metric in the
Poincaré patch, since this will turn out to be the most useful
for the ensuing discussions. For this reason, we wish to
express the above vector field ξμ in the cosmological
coordinates, rather than in the harmonic coordinates. A
simple coordinate transformation, following Sec. III,
between the two sets of coordinates, yields

ξμ ¼ ϵðxÞð∂tÞμ þ
�
1

2H
ð1 − e−2HtÞδij∂jϵðxÞ þ ζiðxÞ

�
ð∂iÞμ:

ð4:10Þ

Substituting the above solution for ζi, as in Eq. (4.9), in the
above expression for the residual gauge vector field ξμ in
the cosmological coordinates, we obtain

ξμ ¼ ϵðxÞð∂tÞμ þ
�
1

2H
ð1 − e−2HtÞδij∂jϵðxÞ

þ ð−r × ∇ϵðxÞ þ ∇ϵðxÞ −HrÞi
�
ð∂iÞμ; ð4:11Þ

where ϵðxÞ satisfies the equation ∇2ϵðxÞ ¼ 0, with ∇2

being the three-dimensional Laplacian operator. This vector
field ξμ is the multipole symmetry vector field. In particular,
we can decompose the above multipole symmetry vector
field into three sets, namely

Kϵ ≔ ϵðxÞ∂t þ
1

2H
ð1 − e−2HtÞ∇ϵðxÞ −Hxi∂i; ð4:12aÞ

Lϵ ≔ −r × ∇ϵðxÞ; ð4:12bÞ

Pϵ ≔ ∇ϵðxÞ: ð4:12cÞ

Most importantly, in the limit, H → 0, the above
multipole symmetry vectors reduce to those of the asymp-
totically flat spacetime [37]. Hence, following the flat
spacetime analogy, one can identify the vector field Kϵ

as the generator of the mass multipole moments, Lϵ as the
generator of the spin multipole moments, and Pϵ as the
generator of the momentum multipole moments. Notice
that, except for Kϵ, both Lϵ and Pϵ are identical to their flat
spacetime counterparts. This is expected, since the isometry
group of the Poincaré patch includes both rotation and
spatial translation symmetries as that of the flat spacetime,
but the mass multipole symmetry vector gets modified by
the presence of the cosmological constant.
As evident from the above structure of the vector

fields Kϵ, Lϵ and Pϵ, the multipole symmetries
Eqs. (4.12a)–(4.12c) depend on the harmonic function
ϵðxÞ, whose decomposition consists of irregular and
regular solid spherical harmonics. These are given by,
r−ðlþ1ÞYlmðθ;ϕÞ and rlYlmðθ;ϕÞ, respectively. The first
branch, which is irregular at r ¼ 0, are simply gauge
transformations and hence discarded4; the second branch,
instead, is used to decompose the harmonic function ϵðxÞ as

ϵðxÞ ¼
X∞
l¼0

Xl
m¼−l

ϵlmrlYlmðθ;ϕÞ; ð4:13Þ

where ϵlm are arbitrary coefficients. We notice that for
the l ¼ 0 and l ¼ 1 modes, the multipole symmetries in
Eq. (4.12a)–(4.12c) reduce to the background symmetries
of the de Sitter spacetime, discussed in Sec. II. We now
demonstrate, that the vector associated with the residual
gauge symmetry, also arises from the gauge freedom of
the linear gravitational perturbations around de Sitter
background.

V. LINEARIZED PERTUBATION OF
DE SITTER SPACETIME

In this section, we consider linear gravitational pertur-
bation of the de Sitter background in the cosmological
coordinates. This enables us to provide the perturbation
equations in the cosmological coordinates along with the
associated gauge choice simplifying the equations. It turns
out that there is still a residual gauge freedom left in these
perturbation equations, which enables us to eliminate the
nondynamical degrees of freedom and yields a symmetry
vector identical to the one derived in Sec. IV. This provides
a completely independent way of deriving the multipole
symmetries, further bolstering our claims in the previous
section. We start by fixing the gauge condition associated
with the linear perturbation equations.

4Another reason to discard the branch of irregular solid
spherical harmonics is the following [37]: we want to probe
the multipole moments, that naively are the coefficients of the 1=r
expansion of the metric tensor. In order to extract such coef-
ficients, one needs a vector field that—after being contracted with
the metric tensor and derivative thereof—gives us access to the
r−l component of the metric tensor. This is achieved by the
regular branch of the solid spherical harmonics.
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A. Fixing the wave gauge: Evolution of the linear
gravitational perturbations

The gravitational perturbation around the de Sitter
background is often considered in the conformal coordi-
nates ðη; x; y; zÞ [49–51]. However, for our current purpose,
it will prove useful to consider the gravitational perturba-
tions around de Sitter spacetime in the cosmological
coordinates ðt; x; y; zÞ. This is primarily because the
residual gauge symmetry has the cleanest expression in
the cosmological coordinates and can be compared to the
corresponding expression for the flat spacetime with ease.
The de Sitter metric in the cosmological coordinates has
already been presented in Eq. (2.3), for which the nonzero
components of the Christoffel connections are

Γ0
ij ¼ He2Htδij; Γi

0j ¼ Hδij: ð5:1Þ

Given the above expressions for the nonzero connection
components and the fact that the background de Sitter
spacetime is maximally symmetric, one can determine the
differential equation satisfied by the gravitational pertur-
bation hμν. To linear order in hμν, one obtains the following
wave equations in the de Sitter background

□̄h̃μν − ½∇̄μBν þ ∇̄νBμ − ḡμνð∇̄αBαÞ�

−
2Λ
3

ðh̃μν − h̃ḡμνÞ ¼ −16πTμν; ð5:2Þ

where, as in the previous section, the “bar” denotes
quantities evaluated for the background de Sitter spacetime.
Also in the above expression, we have used the trace-
reversed perturbation h̃μν ≔ hμν − ð1=2Þḡμνh and its covar-
iant divergence Bμ ≔ ∇̄αh̃

α
μ.

The above equation for the gravitational perturbation
looks complicated and thus we need to impose an appro-
priate gauge condition in order to simplify it further. In the
case of an asymptotically flat background, one often
chooses the Lorenz gauge condition, Bμ ¼ 0, to simplify
the perturbation equations. However, in the present context
it is possible to choose another gauge, which will simplify
the above wave equation considerably.
For that purpose, let us concentrate on the wave

equation associated with the spatial components h̃ij of
the gravitational perturbation. We choose the following
wave gauge condition

Bμ ≔ fðtÞh̃0μ; ð5:3Þ

where fðtÞ is an arbitrary function. For this choice of Bμ,
taking a cue from Eq. (5.2), the linearized wave equation
for h̃ij becomes

− ∂2
0h̃ij þ e−2Htðδmk∂m∂kh̃ijÞ þH∂0h̃ij þ 2H2h̃ij

− δij½−2H2e2Htḡklh̃kl þ fðtÞHe2Hth̃00

þ e2Htðdf=dtÞh̃00 þ e2HtfðtÞ∂0h̃00 − fðtÞ∂kh̃0k�
− ðfðtÞ þ 2HÞð∂ih̃0j þ ∂jh̃0iÞ ¼ −16πTij: ð5:4Þ

We observe that fðtÞ ¼ −2H will simplify it considerably.
Writing down this gauge condition explicitly in terms of
the trace reversed gravitational perturbation, we obtain
∇̄αh̃

α
μ ¼ −2Hh̃0μ. Imposing this condition, finally the wave

equation for h̃ij reads as

− ∂2
0h̃ij þH∂0h̃ij þ e−2Htðδmk∂m∂kh̃ijÞ þ 2H2h̃ij

¼ −16πTij: ð5:5Þ

Note that the wave equation for h̃ij decouples from the
other components of the gravitational perturbation.
Further, expanding out ð□̄h̃00Þ for the background de

Sitter spacetime in the cosmological coordinates and using
the gauge condition Bμ ¼ −2Hh̃0μ, introduced above,
the evolution equation for the time-time component of
the gravitational perturbation h̃00 becomes

− ∂2
0h̃00 þ e−2Htδijð∂i∂jh̃00Þ − 3H∂0h̃00 − 2H2h̃00

− 2H2e−2Htδijh̃ij ¼ −16πT00: ð5:6Þ

Unfortunately, unlike the wave equation for the spatial part
of the gravitational perturbation, the above wave equation
for the h̃00 is a coupled differential equation. However, it is
possible to decouple the spatial and the temporal part of
the gravitational perturbation by introducing a redefined
perturbation variable in favor of h̃00. The first step is to take
the trace of Eq. (5.4) with respect to the flat spatial metric,
which yields

− ∂2
0ðe−2Htδijh̃ijÞ − 3H∂0ðe−2Htδijh̃ijÞ
þ e−2Ht∂k∂kðe−2Htδijh̃ijÞ ¼ −16πe−2HtδijTij: ð5:7Þ

As a next step, we define a new perturbation variable

H̃ ≔ h̃00 þ e−2Htðδijh̃ijÞ: ð5:8Þ

Subsequently, summing up Eq. (5.6) and Eq. (5.7), and
using the definition for the gravitational perturbation H̃
given above, we obtain the following wave equation for H̃

− ∂2
0H̃þ e−2Htδij∂i∂jH̃ − 3H∂0H̃ − 2H2H̃

¼ −16πðT00 þ e−2HtδijTijÞ: ð5:9Þ

It is clear that the above wave equation for H̃ is decoupled,
i.e., it depends on H̃ alone and not on other perturbation
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variables, as desired. Finally, the evolution equation for the
temporal-spatial part of the perturbation (i.e., for h̃0i) takes
the following form

−∂2
0h̃0i þ e−2Htδjk∂j∂kh̃0i −H∂0h̃0i ¼ −16πT0i: ð5:10Þ

Therefore, we have decoupled all the components of the
gravitational perturbation, i.e., the purely spatial part h̃ij,
the spatial-temporal part h̃0i and H̃, a combination of
purely temporal part and spatial part. This provides the
desired wave equations for the gravitational perturbations
around the de Sitter spacetime in cosmological coordinates.
Concluding, as an aside remark, the wave gauge con-

dition ∇̄αh̃
α
μ ¼ −2Hh̃0μ in the cosmological coordinates

becomes

−∂0h̃0μ þ e−2Ht∂jh̃jμ −Hδ0μḡklh̃kl −Hh̃0μ ¼ 0: ð5:11Þ

As it will turn out, it will play an important role in the
subsequent section, where we would like to determine the
corresponding residual gauge and highlight its connection
with the multipole symmetry vector fields.

B. Residual gauge transformations
and multipole symmetries

In section IV, we derived the multipole symmetry vector
field ξμ, see Eq. (4.11), in the cosmological coordinates,
which respect the harmonic gauge condition of the de Sitter
spacetime and preserves the relevant asymptotic fall-off
condition, as in Eq. (4.1). It is instructive to see any
connection between the multipole symmetries and the
residual diffeomorphism vector fields preserving the wave
gauge condition Eq. (5.3)–Eq. (5.11), used in deriving the
wave equations for linear gravitational perturbation in the
cosmological coordinates.
Suppose the wave gauge condition ∇̄αh̃

α
μ ¼ −2Hh̃0μ

is preserved by the diffeomorphism generating vector
field ξμ,5 whose form we would like to determine. First
of all, note that under the transformation, xμ → xμ þ ξμ, the
trace-reversed gravitational perturbation transforms as

δξh̃μν ¼ ∇̄μξν þ ∇̄νξμ − ḡμνð∇̄αξ
αÞ: ð5:12Þ

The covariant derivatives appearing in the above expression
are in the background de Sitter spacetime; expanding these
derivatives in the cosmological coordinate yields

δξh̃μν ¼ ∂μξν þ ∂νξμ − 2Hðδ0νξμ þ δ0μξνÞ þHξ0ḡμν

þ 2Hξ0δ
0
μδ

0
ν − ḡμνḡαβ∂αξβ: ð5:13Þ

Thus, the wave gauge condition ∇̄αh̃
α
μ ¼ −2Hh̃0μ, will also

be modified under the above diffeomorphism. As we want
to preserve it, the vector field ξμ must satisfy the following
differential equation

□̄ξβ þ 4H∂0ξβ þ 2H2ξβ − 2H2ξ0δ
0
β þ 2Hδ0βḡ

μν∂μξν

−
�
2H
a2

�
δ0βδ

ij∂iξj ¼ 0: ð5:14Þ

Using explicitly the metric for the de Sitter spacetime in the
cosmological coordinates, the above differential equation
can be reduced to a partial differential equation

ḡμν∂μ∂νξβ þH∂0ξβ þ 2H2ξβ − 2H2δ0βξ0 − 2Hδ0β∂0ξ0 ¼ 0:

ð5:15Þ

In addition to the above condition on ξμ, we would like to
see if this vector field can also be used to eliminate the h̃0i
and H̃ components of the gravitational perturbation. The
h̃0i component of the gravitational perturbation transforms
under diffeomorphism as

δξh̃0i ¼ ∂0ξi þ ∂iξ0 − 2Hξi: ð5:16Þ

In order to proceed further, we have to take various
derivatives of the residual wave gauge condition. Firstly,
taking the time derivative of the spatial component of the
residual gauge condition in Eq. (5.15), we obtain

ḡμν∂μ∂ν∂0ξi ¼ 2Hḡkl∂k∂lξi −H∂2
0ξi − 2H2∂0ξi: ð5:17Þ

Similarly, taking the spatial derivative of the temporal
component of the residual gauge condition in Eq. (5.15),
we obtain

ḡμν∂μ∂ν∂iξ0 ¼ H∂0∂iξ0: ð5:18Þ

Hence, we obtain the following result for the change in the
spatial-temporal component of the gravitational perturba-
tion under the diffeomorphism

ḡμν∂μ∂νδξh̃0i ¼ ḡμν∂μ∂νð∂0ξi þ ∂iξ0 − 2HξiÞ
¼ 2Hḡkl∂k∂lξi −H∂2

0ξi − 2H2∂0ξi

þH∂0∂iξ0 þ 2HðH∂0ξi þ 2H2ξiÞ
¼ H∂2

0ξi þH∂0∂iξ0 − 2H2∂0ξ
i; ð5:19Þ

where in arriving at the first line we have used the
identities derived in Eq. (5.17) and Eq. (5.18), respectively.
Further, in the second line we have used the result

5As of now, this vector field is completely different from the
multipole symmetry vector in Eq. (4.11). For convenience, we are
using the same symbol to denote the diffeomorphism vector field
in the present context as well.
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ḡkl∂k∂lξi ¼ ∂2
0ξi −H∂0ξi − 2H2ξi, which follows from

Eq. (5.15). Thus, using Eq. (5.16), we finally obtain
the differential equation for the change in the spatial-
temporal component of the gravitational perturbation under
diffeomorphism

ḡμν∂μ∂νðδξh̃0iÞ −H∂0ðδξh̃0iÞ ¼ 0; ð5:20Þ

which is the same as the wave equation satisfied by h̃0i
in the absence of any source; see Eq. (5.10). Hence using
the diffeomorphism vector field ξα, which preserves the
wave gauge condition, we can set h̃0i ¼ 0, outside the
matter source.
Again, under diffeomorphism, the combination H̃ of the

purely temporal and the purely spatial part of the gravi-
tational perturbation, transforms as

δξH̃ ¼ δh̃00 þ ḡijδh̃ij ¼ 4∂0ξ0;

where we have used Eq. (5.12) to compute δh̃00 and ḡijδh̃ij.
Further, using the differential equation satisfied by ξα,
preserving the wave gauge condition, it can also be shown
that δξH̃ satisfies the following differential equation

ḡμν∂μ∂νðδξH̃Þ − 3H∂0ðδξH̃Þ − 2H2δξH̃ ¼ 0; ð5:21Þ

which, upon comparison with Eq. (5.9), turns out to be
identical to the wave equation satisfied by the perturbation
variable H̃ outside the source. Thus, we can also set H̃ ¼ 0
outside the source using the diffeomorphism ξμ, while
preserving the gauge condition.
To summarize, in addition to Eq. (5.15), we also demand

the conditions h̃0i ¼ 0 ¼ H̃ should be preserved under
diffeomorphism ξμ, namely δξH̃ ¼ 0 and δξh̃0i ¼ 0, to obtain

∂0ξ0 ¼ 0; ð5:22aÞ

∂0ξi þ ∂iξ0 − 2Hξi ¼ 0: ð5:22bÞ

These differential equations can be immediately solved,
yielding

ξ0 ¼ −ϵðxÞ; ð5:23aÞ

ξi ¼ e2Ht

�
ζiðxÞ þ

1

2H
ð1 − e−2HtÞ∂iϵðxÞ

�
: ð5:23bÞ

Raising the indices of both the components of the vector
field ξμ, we immediately obtain

ξ0 ¼ ϵðxÞ; ξi ¼ δijζjðxÞ þ
1

2H
ð1 − e−2HtÞδij∂iϵðxÞ:

ð5:24Þ

As one can explicitly verify, this is identical to the multi-
pole symmetry vector derived earlier in the context of
harmonic gauge; see Eq. (4.11). This demonstrates the
internal consistency of our analysis and the relevance of the
multipole symmetry vector field. They do not only obey
the asymptotic fall-off conditions and preserve the har-
monic gauge condition, but they further can be used to
eliminate the time-space component h̃0i and H̃, a suitable
combination of the time-time and space-space component
of the gravitational perturbation around the de Sitter
background in cosmological coordinates.

VI. MULTIPOLE STRUCTURE OF THE
KERR-DE SITTER BLACK HOLE

The formalism for computing the multipole moments of
a compact object in asymptotically de Sitter spacetime
follows closely the method in [37] for asymptotically flat
spacetimes. In this section, we compute the multipole
moments of the Kerr-de Sitter (KdS) black hole spacetime,
which allows us to show explicitly how the mass and spin
multipole moments for the KdS black hole differ from the
Geroch-Hansen moments for the Kerr black hole. We
believe that the explicit expressions for the mass and spin
multipole moments of the KdS black hole are new in the
literature.
The key object to compute the multipole moments is the

Barnich-Brandt charge [45], or equivalently the Abbott-
Deser charge [44]. In four-dimensional General Relativity,
the infinitesimal surface charge δQξ½h; ḡ� associated to the
vector field ξ and the linearized solution hμν around a
background spacetime ḡμν is

δQξ½h; ḡ� ≔
1

8π

Z
S
kξ½h; ḡ�

¼ 1

32π

Z
S

ffiffiffiffiffiffi
−ḡ

p
kμνξ ½h; ḡ�ϵμναβdxα ∧ dxβ; ð6:1Þ

where, the surface charge density kμνξ is given by [45]

kμνξ ½h; ḡ� ≔ ξνð∇̄μh − ∇̄σhμσÞ þ ξσ∇̄νhμσ þ 1

2
h∇̄νξμ

− hρν∇̄ρξ
μ þ 1

2
hσνð∇̄μξσ þ ∇̄σξ

μÞ: ð6:2Þ

In the case of the KdS black hole, the background metric
ḡμν is the metric for the de Sitter spacetime, while hμν is the
linearized solution obtained by varying the parameters of
the KdS black hole. We first provide a brief review of the
KdS black hole spacetime, since it will be extremely useful
for our subsequent computation of the multipole moments
from the charges associated with multipole symmetry
vector fields.
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A. Kerr-de Sitter black hole

The KdS black hole is an exact solution to the Einstein’s
equations with a positive cosmological constant Λ ¼
3H2 > 0 [52,53]. The metric of the KdS black hole
spacetime reads as6

ds2 ¼ −
Δr

ρ2

�
dt −

a
Ξ
sin2 θdϕ

�
2

þ ρ2

Δr
dr2 þ ρ2

Δθ
dθ2

þ Δθ

ρ2
sin2 θ

�
adt −

r2 þ a2

Ξ
dϕ

�
2

; ð6:3Þ

where the functions in the metric components are given by

Δr ¼ ðr2 þ a2Þð1 −H2r2Þ − 2Mr; ð6:4aÞ

Δθ ¼ 1þH2a2 cos2 θ; ð6:4bÞ

ρ2 ¼ r2 þ a2 cos2 θ; ð6:4cÞ

Ξ ¼ 1þ a2H2: ð6:4dÞ

The KdS black hole is described by three parameters: the
mass M, the spin a, and the Hubble constant H. While we
allow the mass M and the spin a to vary, we keep the
Hubble constant H fixed. The de Sitter spacetime (i.e., the
background spacetime) is recovered for M ¼ 0 ¼ a, while
the Kerr black hole is recovered for H ¼ 0.
The KdS black hole spacetime is considered as a

two-parameter family, since as the parameters M and a
change, the metric changes its configuration. The linearized
perturbation hμν, necessary for the computation of the
charges can be considered as tangent to the space of the
metric configurations and computed as δgμν ≔ hμν ¼
ð∂MgμνÞδM þ ð∂agμνÞδa. This sets the stage for our sub-
sequent application of our prescription to the KdS black
hole and hence to compute its mass and spin multipole
moments.

B. Multipole moments of the Kerr-de Sitter
black hole

In what follows, we will show how to compute in
practice the multipole moments of the KdS black hole.
Here are the main steps:
(a) First of all, one starts by decomposing in spherical

harmonics the multipole symmetry vectors in
Eqs. (4.12a)–(4.12c). The vector fields ξ ¼ fKϵ;Lϵg
are named, respectively, the mass and spin multipole
symmetries because they generate the mass and spin

multipole moments of the compact object in the
asymptotically de Sitter spacetimes.7

(b) Then, we choose hμν to be the linearized perturbation
of the KdS metric with ḡμν being the dS background
and compute the surface charge density, using
Eq. (6.2). Integration of the same over a generic
two-sphere, yields the surface charges, according to
Eq. (6.1). One thus gets the ðl; mÞ modes of the
infinitesimal charge δQlm

ξ

(c) The infinitesimal charge mode δQlm
ξ , derived above, is,

in general, a function of t and r. One considers a
t ¼ constant time slice and computes the large radius
expansion of the mode δQlm

ξ . Only its finite part (FP) is
retained, namely only the coefficient of Oðr0Þ is kept.

(d) In the final step, one integrates the FP δQlm
ξ over the

solution parameters, i.e., over the parameters m and a,
to get the multipole moments Mlm

ξ of the solution.
In formulas,

Mlm
ξ ¼ FP

r→∞
t¼constant

Qlm
ξ : ð6:5Þ

1. Spin multipole moments

The first step in the computation of the spin multipole
moments is to recall the symmetry vector associated
with spin multipole symmetry, Lϵ ¼ −r × ∇ϵðxÞ, written
in the same coordinates as that of the KdS metric. We call
Lϵ the spin multipole symmetry since it will generate the
spin multipole moments. The spherical harmonic decom-
position of the spin multipole symmetry vector field is
given by8

Llm ¼ Ll rl−1
�

BYθ
lm∂θ þ

1

sin θ
BYϕ

lm∂ϕ

�
; ð6:6Þ

where the magnetic-type harmonic vector field BYlm is
defined by

BYlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp r × ∇Ylm;

Ylm ¼ ð−1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s
eimϕPlmðθÞ; ð6:7Þ

with PlmðθÞ being the associated Legendre polynomials
and Ylm the spherical harmonics. The normalization factor,
Ll, at this stage of the discussion, is not fixed. However, we
decide to adjust it in such a way that we recover the spin
multipole moments of the Kerr black hole in the limit

6See, e.g., the Λ > 0 counterpart of the metric in [54] and
references therein for a complete account of the Kerr-dS and
Kerr-AdS black hole thermodynamics. Sometimes, the KdS
metric is written with the time rescaled by Ξ; see, e.g., [55].

7We also assume that, in the asymptotic regime, the coor-
dinates of the KdS black hole coincide with that of the
cosmological coordinates.

8We choose the convention that L10 ¼ −∂ϕ.
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H → 0. Such a requirement implies that the normalization
factor takes the following form

Ll ¼
8

ffiffiffi
π

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð2lþ 1Þ
lþ 1

r
ð2l − 1Þ!!
ðlþ 1Þ! : ð6:8Þ

We now use the expression of the surface charge from
Eq. (6.1) and the explicit expression of the spin multipole
symmetry from Eq. (6.6) to compute the spin multipole
moments Sl of the KdS black hole, using Eq. (6.5). It is
important to recall that the charge modeQlm

L is nonvanishing
for l odd andm ¼ 0, and so is the spin multipole moment Sl.
The angular momentum, i.e., the spin dipole moment

l ¼ 1, reads as

S1 ¼
Ma

ð1þ a2H2Þ2 ; ð6:9Þ

in agreement with the known results in the literature
[48,54–56]. Moreover, in the limit H → 0, we recover
the angular momentum of the Kerr black hole.
The higher spin multipole moments are computationally

more involved. We report the exact expressions of the
first spin multipole moments in Appendix B 1. It is more
instructive to compute their expressions for small values of
the Hubble constant,

S3 ¼ −Ma3
�
1 −

28

15
a2H2 þ 25

9
a4H4 þOðH6Þ

�
;

ð6:10aÞ

S5 ¼ þMa5
�
1 −

118

63
a2H2 þ 2891

1053
a4H4 þOðH6Þ

�
;

ð6:10bÞ

S7 ¼ −Ma7
�
1 −

17

9
a2H2 þ 513

187
a4H4 þOðH6Þ

�
;

ð6:10cÞ

S9 ¼ þMa9
�
1 −

314

165
a2H2 þ 3751

1365
a4H4 þOðH6Þ

�
:

ð6:10dÞ

For H → 0, they reproduce the well-known Geroch-
Hansen’s formulas for the spin multipole moments of the
Kerr black hole, namely,

lim
H→0

S2lþ1 ¼ ð−1ÞlMa2lþ1: ð6:11Þ

Thus the spin multipole moments derived here satisfies
the result that all even spin moments are identically zero.

This is because of the reflection symmetry of the KdS
spacetime about the equatorial plane. Note that all the
corrections over and above the multipole moments of the
Kerr black hole are dependent on the dimensionless
combination ðaHÞ, which will be small if we consider
H−1 as the age of our Universe. Thus, the effect of the
cosmological constant on the spin multipole moments are
negligible. We will analyze the situation for the mass
multipole moments in a while.

2. Mass multipole moments

The mass multipole symmetry vector reads as Kϵ ¼
ϵðxÞ∂t þ ð1=2HÞð1 − e−2HtÞ∇ϵðxÞ −Hxi∂i, which admits
a spherical harmonic decomposition of the form

Klm ¼ Klrl
�
Ylm∂t þ

1

r
χrlm∂r þ

1

r2
χθlm∂θ þ

1

r2 sin θ
χϕlm∂ϕ

�
−Hδl1∂r: ð6:12Þ

The spatial vector field χ lm, whose components appear
explicitly in the above expression, is a certain linear
combination of the electric-type vector harmonic, defined
as EYlm ¼ r∇Ylm, and the radial-type vector harmonic,
RYlm ¼ nYlm, such that

χ lm ¼ 1

2H
ð1 − e−2HtÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
EYlm þ lRYlmÞ: ð6:13Þ

After computing the surface charge given in Eq. (6.1),
associated to the mass multipole symmetry, the mass
multipole moments are nonvanishing for l even and
m ¼ 0. Thus the mass multipole moments are denoted
byMl. Moreover, we demand that the normalization factor
Kl in the mass multipole symmetry is such that we recover
the Geroch-Hansen’s mass moments for Kerr black hole.
This implies that

Kl ¼
ffiffiffi
π

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p �
2l=2þ1

Nl=2þ1

� ð2l − 1Þ!!
l!

; ð6:14Þ

and Nl obeys the following recursive relation for l ≥ 2,

Nlþ2 ¼ −2
ð17 − 12lÞNlþ1 þ 10ðl − 2ÞNl

7l − 9
; ð6:15Þ

with initial conditions N1 ¼ 1 and N2 ¼ 4.
Following the strategy outlined above, the mass of the

KdS black hole, i.e., the monopole l ¼ 0 mode takes
the form

M0 ¼
M

1þ a2H2
; ð6:16Þ
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which reproduces the de Sitter analog of the mass for the
Kerr-AdS black hole obtained in [54],9 and gives the correct
expression for the mass of the Kerr black holes for H ¼ 0.
The mass quadrupole, as expected, is time independent and
it is given by

M2 ¼ −
Ma2

1þ a2H2
: ð6:17Þ

The exact expressions of the higher mass multipole
moments can be found in Appendix B 2. For small values
of the Hubble constant, they read as

M4 ¼ þMa4
�
1þ 4

5
Ht −

47a2 þ 44t2

55
H2 þOðH3Þ

�
;

ð6:18aÞ

M6 ¼ −Ma6
�
1þ 6

7
Ht −

7a2 þ 30t2

35
H2 þOðH3Þ

�
;

ð6:18bÞ

M8 ¼ þMa8
�
1þ 8

9
Htþ 9a2 − 152t2

171
H2 þOðH3Þ

�
:

ð6:18cÞ
As evident from the above expressions, for H → 0, we

recover the well-known Geroch-Hansen’s formulas for the
mass multipole moments of the Kerr black hole

lim
H→0

M2l ¼ ð−1ÞlMa2l: ð6:19Þ

Notice that, owing to the reflection symmetry of the KdS
spacetime about the equatorial plane, only the even order
mass moments are nonzero.
We conclude this section with an interesting outcome

from the mass multipole moments computation. While the
H → 0 limit, or the static limit, of M2l gives the Hansen’s
mass moments for the Kerr black hole, there exists another
limit, which may be of interest. It is indeed true that except
for the first two, all the other higher order mass moments are
time dependent and the time variable enters the expressions
via the exponential function e−2Ht, typical of the de Sitter
dynamics; see Appendix B 2. One can therefore perform the
late-time limit, i.e., Ht → ∞. In this case, one has

lim
Ht→∞

M2 ¼ −
Ma2

1þ a2H2
; ð6:20aÞ

lim
Ht→∞

M4 ¼ þ 7

5

Ma4

1þ a2H2
; ð6:20bÞ

lim
Ht→∞

M6 ¼ −
10

7

Ma6

1þ a2H2
; ð6:20cÞ

lim
Ht→∞

M8 ¼ þ 13

9

Ma8

1þ a2H2
: ð6:20dÞ

While the quadrupole mass moment is the same in both
the static and late-time limits, higher-mass multipole
moments differ by a numerical factor. More precisely, they
can be recast as

lim
Ht→∞

M2l ¼
K̃l

2lþ 1

ð−1ÞlMa2l

1þ a2H2
; ð6:21Þ

with K̃l satisfying the recursive relation K̃lþ2 ¼ −2K̃lþ1−
K̃l, with initial conditions K̃1 ¼ −3, K̃2 ¼ 7, K̃3 ¼ −10,
for l ≥ 4. It is straightforward to define a different nor-
malization factor in the mass multipole symmetry [see
Eq. (6.14)], such that Kl → ð2lþ 1ÞKl=K̃l to get rid of the
numerical factor and obtain, in the late-time limit, the
Hansen’s mass moments rescaled by the factor Ξ ¼
1þ a2H2. In the asymptotically flat case, for which
H → 0, the Hansen’s mass moments are recovered.

VII. DISCUSSION AND CONCLUDING REMARKS

We have addressed the problem of computing the
gravitational multipole moments of a compact object, living
in an asymptotically de Sitter spacetime. Since the standard
approaches of computing the gravitational multipole
moments relies heavily on the asymptotic flatness, they
could not be used in computing the moments for asymp-
totically de Sitter spacetimes. We achieved our results by
using the method proposed in [37] to compute the multi-
pole moments by means of Noether charges associated with
specific residual harmonic gauge transformations.
The application of the Noether charge technique to

compute gravitational multipole moments in asymptoti-
cally de Sitter spacetime requires one to implement the
following steps: (a) Expressing the de Sitter spacetime in
harmonic gauge, (b) Finding out the symmetry vector field,
generating residual gauge transformations in the de Sitter
spacetime, expressed in harmonic gauge, and (c) Checking
the consistency of the symmetry vector field with the
corresponding one associated with linear gravitational
perturbations around the de Sitter background. All these
lead to a unique vector field that depends on the spherical
harmonic decomposition of a function ϵðxÞ, satisfying
Laplace’s equation. This vector field can be decomposed
into three parts: (i) Kϵ, generating mass multipole moments,
(ii) Lϵ, generating spin multipole moments, and (iii) Pϵ,
which does not provide any further independent multipole
moments in General Relativity.

9Notice that we could have also rescaled the time coordinate by
Ξ in the KdS metric, see Eq. (6.3), and obtain M0 ¼ M=ð1þ
a2H2Þ2 to match with some earlier results in the literature
[48,55,56]. This is a trivial modification in the computation and
it does not affect the validity of our prescription. Moreover, though
the H → 0 limit is left untouched, any time-dependent rescaling
affects OðHnÞ corrections to the Geroch-Hansen’s mass moments.

CHAKRABORTY, HOQUE, and OLIVERI PHYS. REV. D 104, 064019 (2021)

064019-12



Following this strategy, in Sec. III we provide the
transformation of the de Sitter metric expressed in the
cosmological coordinates to the harmonic coordinates. To
our knowledge, such a transformation of the de Sitter
metric to the harmonic coordinates has not been attempted
before. Having transformed the de Sitter metric to the
harmonic form, we derive the diffeomorphism vector field
respecting the harmonic gauge as well as the asymptotic
fall-off condition Eq. (4.1). The expression for the resulting
multipole symmetries are given in Eq. (4.12a)–(4.12c). In
addition, this vector fields can also be used to eliminate the
nondynamical components of the linear gravitational per-
turbation around the de Sitter background in cosmological
coordinates. Incidentally, we provide an analysis of the
linear gravitational perturbation of the de Sitter spacetime
in the cosmological coordinates and the associated appro-
priate gauge condition, referred to as the wave gauge.
The above formalism allows us to compute the gravi-

tational multipole moments of any compact object in
asymptotically de Sitter spacetime. The charges associated
to the above-mentioned multipole symmetries are the key
objects from which we can extract the multipole moments.
As an example of this procedure, we consider the case of
the Kerr-de Sitter black hole spacetime and following the
prescription outlined in Sec. VI, we compute the mass and
spin multipole moments of the Kerr-de Sitter black hole. It
turns out that the mass (monopole mass moment) and the
angular momentum (dipole spin moment) reproduce earlier
results in the literature. However, the higher order mass and
spin multipole moments for Kerr-de Sitter spacetime do not
exist in the literature, and are discussed in this work for
the first time. It turns out that the spin moments involve
additional corrections over and above the Kerr moments,
depending on the dimensionless combination aH. Since for
the present epoch H ∼ ðage of universeÞ−1, the corrections
depending on various powers of the combination aH are
supposed to be negligible. On the other hand, except for
the quadrupole mass moment, all the higher-order mass
moments are time dependent and depends on various
powers of the combination aH as well as Ht, over and
above the Kerr mass moments. It is assuring that in the
H → 0 limit, we recover the mass and spin moments of the
Kerr spacetime. The higher-order mass moments, though
complicated, in the late time limit (Ht → ∞) takes a very
simple form. Notice that the mass moments of the Kerr-
de Sitter black hole in the late time limit is very much
related to the Kerr mass moments, except for some overall
normalization factor. It is worthwhile to mention that, even
though aH is small, since in the present epoch Ht ∼Oð1Þ,
there can be significant departure of the mass moments
from that of the Kerr black hole. Since these moments
directly affect various gravitational wave observables, e.g.,
the energy emitted by gravitational waves, there can be
some observational consequences, which we wish to
explore in a future work.

Let us finally conclude with some future directions. To
date, the geometrical Geroch-Hansen formalism is appli-
cable only to stationary and asymptotically flat spacetimes.
A few attempts exist in the literature to extend the
formalism to asymptotic nonflat cases (see e.g., [42])
where multipole moments of spacetimes with NUT charges
has been computed. In line with these developments,
it would be interesting to develop a formalism à la
Geroch-Hansen for asymptotically (anti-)de Sitter space-
times. Additionally, a method to compute the multipole
moments for radiating spacetimes, following the approach
of Thorne, is also nonexistent in literature for asymptoti-
cally (anti-)de Sitter spacetimes. A possible extension of
the same to the (anti-)de Sitter spacetimes will prove very
useful for various gravitational-wave related implications.
These will also provide other independent methods, than
the one presented in this work, to compute the multipole
structure of the Kerr-(anti-)de Sitter black hole spacetime.
It is also important to ask, whether the formalism developed
here can be successfully applied to investigate the complex
multipole structure, and its related properties, of neutron
stars and exotic objects, such as boson stars and fuzzball
configurations. Finally, it will be very interesting to
investigate the relation between the multipole symmetries
for asymptotically de Sitter spacetimes and the adiabatic
modes in cosmology; see, e.g., [57–59]. We will come back
to these further applications elsewhere.
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APPENDIX A: DE SITTER IN HARMONIC
COORDINATES

In this Appendix, we provide the explicit coordinate
transformations from static and global coordinates to
harmonic ones for the de Sitter spacetime.

1. From static to harmonic coordinates

The de Sitter spacetime has already been expressed in the
static coordinates ðT; R; θ;ϕÞ in Eq. (2.5)
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ds2 ¼ −ð1 −H2R2ÞdT2 þ dr2

ð1 −H2R2Þ
þ R2ðdθ2 þ sin2 θdϕ2Þ: ðA1Þ

As one can explicitly check, the metric indeed solves the
Einstein’s field equations with a positive cosmological
constant term, Λ≡ 3H2. It is also straightforward to check
that the de Sitter metric in the static coordinates does not
obey the harmonic gauge condition, i.e., ∂μð ffiffiffiffiffiffi−gp

gμνÞ ≠ 0.
In what follows, we will depict an explicit coordinate
transformation taking the de Sitter spacetime from static
coordinates to the harmonic ones.
The strategy to arrive at the harmonic coordinates is to

first introduce the Cartesian coordinates, i.e., consider the
following coordinate transformation

x¼Rcosϕsinθ; y¼Rsinϕsinθ; z¼Rcosθ; ðA2Þ
so that the line element becomes,

ds2 ¼ −ð1 −H2R2ÞdT2 þ
�
δij þ

H2R2

1 −H2R2
ninj

�
dxidxj;

ðA3Þ
where ni ¼ xi=R is the radial unit vector. The second and
the final step consists of a coordinates transformation
xμ → x̄μðxαÞ, such that □gx̄μ ¼ 0, where gμν is the metric
given in Eq. (A3). To achieve the second step, we introduce
a new radial coordinate r̄ ¼ fðRÞ, such that

t̄ ¼ T; x̄ ¼ fðRÞ cosϕ sin θ;

ȳ ¼ fðRÞ sinϕ sin θ; z̄ ¼ fðRÞ cos θ: ðA4Þ
The harmonic gauge condition□gx̄μ ¼ 0, when applied on
the above set of coordinates, yields the following second
order ordinary differential equation for the function fðrÞ

d
dR

�
R2ð1 −H2R2Þ dfðRÞ

dR

�
− 2fðRÞ ¼ 0; ðA5Þ

whose most general solution is

fðRÞ ¼ α

�
1þ 1

H2R2

�

þ β

4

��
1þ 1

H2R2

�
tanh−1ðHRÞ − 1

HR

�
;

α; β ∈ R: ðA6Þ
In order fix the constants of integration α and β, we need to
impose appropriate boundary conditions. We demand the
following condition on the function fðRÞ, namely

fðR ¼ 1=HÞ ¼ 1=H; ðA7Þ
which provides the following expressions for the coeffi-
cients: α ¼ 1=ð2HÞ and β ¼ 0. Thus, in the new system

of coordinate ðt̄; x̄; ȳ; z̄Þ, the de Sitter metric in the static
patch reads

ds2 ¼ −2
ðHr̄ − 1Þ
2Hr̄ − 1

dt̄2 þ 1

2

dr̄2

ðHr̄ − 1Þð2Hr̄ − 1Þ2

þ 1

H2r̄2ð2Hr̄ − 1Þ ðδij − n̄in̄jÞdx̄idx̄j: ðA8Þ

As one can explicitly check that, through a lengthy but
straightforward algebra, the above metric element indeed
satisfies the harmonic gauge condition.

2. From global to harmonic coordinates

Another useful coordinate system for de Sitter spacetime
is the global coordinate system ðτ; χ; θ;ϕÞ with the line
element given by Eq. (2.1)

ds2¼−dτ2þ 1

H2
cosh2ðHτÞ½dχ2þsin2χðdθ2þsin2θdϕ2Þ�:

ðA9Þ

In global coordinates, we obtain
ffiffiffiffiffiffi−gp ¼ ð1=H3Þ

cosh3ðHτÞ sin2 χ sin θ and hence one getsffiffiffiffiffiffi
−g

p
gμν ¼ diagð−H−3 cosh3ðHτÞ sin2 χ sin θ;

H−1 coshðHτÞ sin2 χ sin θ; H−1 coshðHτÞ sin θ;
H−1 coshðHτÞcosecθÞ: ðA10Þ

As one can check, the global coordinate system defined
above does not satisfy the harmonic gauge condition, i.e.,
∂μð ffiffiffiffiffiffi−gp

gμνÞ ≠ 0. Thus, we need to find out a new set of
coordinates which satisfies the harmonic gauge condition
and for that purpose, the following coordinate transforma-
tion becomes useful

τ̄ ¼ fðτÞ; x̄ ¼ gðχÞ sin θ cosϕ;
ȳ ¼ gðχÞ sin θ sinϕ; z̄ ¼ gðχÞ cos θ: ðA11Þ

In order for these coordinates to obey the harmonic gauge
condition, we need them to satisfy the following differential
equation: ð1= ffiffiffiffiffiffi−gp Þ∂αð ffiffiffiffiffiffi−gp

gαβÞ∂βx̄μ ¼ 0, where gαβ is the
metric introduced in Eq. (2.1). From the time component of
the above differential equation, we obtain the following
ordinary differential equation for the function fðτÞ

d2f
dτ2

þ 3H tanhðHτÞ df
dτ

¼ 0: ðA12Þ

The first integral of the above differential equation yields,
ðdf=dτÞ ¼ A sech3ðHτÞ, whose further integration yields

τ̄¼BþA

�
1

H
tan−1

�
tanh

�
Hτ

2

��
þ 1

2H
sechðHτÞtanhðHτÞ

�
:

ðA13Þ
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If we impose the condition τ̄ ¼ 0, when τ ¼ 0, then it
follows that we can set the coefficients such that A ¼ 1 and
B ¼ 0, thereby providing the desired relation between the
harmonic gauge time coordinate τ̄ and the global time
coordinate τ. On the other hand, imposing the harmonic
gauge condition on the coordinate x̄, we obtain the
following differential equation for the function gðχÞ as

d
dχ

�
sin2 χ

dg
dχ

�
− 2g ¼ 0: ðA14Þ

with solution gðχÞ ¼ Acosec2χ þ Bcosec2χfðχ=2Þ−
ð1=4Þ sinð2χÞg. Setting A ¼ 1 and B ¼ 0, we obtain the
following line element for de Sitter spacetime in the global
patch in harmonic coordinate system

ds2 ¼ −cosh6ðHτÞdτ̄2 þ cosh2ðHτÞ
H2r̄3

�
δij

þ
�

4 − 3r̄
4ðr̄ − 1Þ

�
n̄in̄j

�
dx̄idx̄j; ðA15Þ

where r̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̄2 þ ȳ2 þ z̄2

p
and n̄i ¼ ð1=r̄Þx̄i. One can

check that the metric element above indeed satisfies the
harmonic gauge condition. Thus we have found out the set
of coordinates in which even the global patch of the de
Sitter spacetime can be converted to harmonic gauge.

APPENDIX B: MASS AND SPIN MOMENTS OF
KERR-DE SITTER BLACK HOLE

We list the exact analytic expressions of the first mass
and spin multipole moments of the Kerr-de Sitter
black hole. The function Li2ðzÞ, appearing in the spin
multipole moments, is the poly-logarithm function of
order two. It can be represented by the power series
Li2ðzÞ ¼

P∞
k¼1 z

k=k2. The computation has been per-
formed with the use of the Riemannian Geometry and
Tensor Calculus package developed by Sotirios Bonanos
and the Surface Charges package developed by Geoffrey
Compère.

1. Spin multipole moments

Here are the exact expressions of the spin multipole
moments S2lþ1 for l ¼ f1; 2; 3; 4g.

S3 ¼ −Ma3
�
525þ 1038a2H2 þ 601a4H4

96a4H4ð1þ a2H2Þ2

−
ð525þ 373a2H2Þ arctanðaHÞ

96a5H5

−
35i½Li2ðiaHÞ − Li2ð−iaHÞ�

32a3H3

�
; ðB1aÞ

S5 ¼ Ma5
�
72765þ 218295a2H2 þ 219255a4H4 þ 74365a6H6 þ 1664a8H8

1152a8H8ð1þ a2H2Þ2

−
ð8085þ 10780a2H2 þ 3623a4H4Þ arctanðaHÞ

128a9H9
−
385i½Li2ðiaHÞ − Li2ð−iaHÞ�

64a5H5

�
; ðB1bÞ

S7 ¼ −Ma7
�

7

49152a12H12ð1þ a2H2Þ2 ð5521230þ 18758025a2H2 þ 24083631a4H4 þ 13962747a6H6

þ 3105671a8H8 − 8192a10H10 þ 8192a12H12Þ

−
5ð2576574þ 4459455a2H2 þ 2432430a4H4 þ 460013a6H6Þ arctanðaHÞ

16384a13H13
−
225225i½Li2ðiaHÞ − Li2ð−iaHÞ�

8192a7H7

�
;

ðB1cÞ

S9 ¼ Ma9
�

1

17203200a16H16ð1þ a2H2Þ2 ð176849597925þ 683124917475a2H2 þ 1032894122260a4H4

þ 768754011740a6H6 þ 287149590415a8H8 þ 45062550345a10H10 þ 38535168a12H12 − 5505024a14H14

þ 19038208a16H16Þ − 1

98304a17H17
ð1010569131þ 2219289072a2H2 þ 1664466804a4H4

þ 512143632a6H6 þ 66269153a8H8Þ arctanðaHÞ − 969969i½Li2ðiaHÞ − Li2ð−iaHÞ�
8192a9H9

�
; ðB1dÞ
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2. Mass multipole moments

Here are the exact expressions of the mass multipole moments M2l for l ¼ f2; 3; 4g.

M4 ¼ Ma4
�

7=5
1þ a2H2

þ 21

32

e−2Ht

a9H9
½5aHð21þ 11a2H2Þ − 3ð35þ 30a2H2 þ 3a4H4Þ arctanðaHÞ�

�
; ðB2aÞ

M6 ¼ −Ma6
�

10=7
1þ a2H2

−
1287

1280

e−2Ht

a13H13
ð1 − a2H2Þ½−7aHð165þ 170a2H2 þ 33a4H4Þ

þ 5ð231þ 5a2H2ð63þ 21a2H2 þ a4H4ÞÞ arctanðaHÞ�
�
; ðB2bÞ

M8 ¼ Ma8
�

13=9
1þ a2H2

−
2431

28672

e−2Ht

a17H17
ð1 − a2H2 þ a4H4Þ½−aHð225225þ 345345a2H2 þ 147455a4H4 þ 15159a6H6Þ

þ 35ð6435þ 12012a2H2 þ 6930a4H4 þ 1260a6H6 þ 35a8H8Þ arctanðaHÞ�
�
: ðB2cÞ
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