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In this work we present the foundations of generalized scalar-tensor theories arising from vector bundle
constructions, and we study the kinematic, dynamical, and cosmological consequences. In particular, over a
pseudo-Riemannian space-time base manifold, we define a fiber structure with two scalar fields. The
resulting space is a 6-dimensional vector bundle endowed with a nonlinear connection. We provide the
form of the geodesics and the Raychaudhuri and general field equations, both in the Palatini and metrical
methods. When applied at a cosmological framework, this novel geometrical structure induces extra terms
in the modified Friedmann equations, leading to the appearance of an effective dark energy sector, as well
as of an interaction of the dark mater sector with the metric. We show that we can obtain the standard
thermal history of the universe, with the sequence of matter and dark-energy epochs, and furthermore the
effective dark-energy equation-of-state parameter can lie in the quintessence or phantom regimes, or exhibit

the phantom-divide crossing.
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I. INTRODUCTION

Modified gravity has attracted a large amount of research
for two reasons and thus motivations. First, at the purely
theoretical level, it improves the renormalizability of
general relativity and hence it may be the first step toward
gravitational quantization [1]. Second, at the phenomeno-
logical, cosmological, level, it is one of the two main ways
that can offer an explanation for the early- and late-time
accelerated phases of the expansion of the universe [2,3].
Hence, it has an advantage comparing to the alternative
way, which is to introduce by hand the inflaton or/and dark
energy sectors while maintaining general relativity as the
underlying gravitational theory [4,5].

Modified gravity theories can be obtained as extensions of
the Einstein-Hilbert Lagrangian through the addition of extra
terms, such as in f(R) gravity [6,7], in f(G) gravity [8], in
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Weyl gravity [9], in Lovelock gravity [10], etc. Additionally,
they can be obtained through the insertion of extra scalar
fields, coupled with curvature invariants, such as in the
general class of scalar-tensor theories [ 11-14]. However, one
interesting class of modified gravity arises from the consid-
eration of alternative geometries, beyond the Riemannian
framework of general relativity. Thus, one can start from the
equivalent, torsional formulation of gravity and extend it
obtaining f(T) gravity [15], f(T,Ts) gravity [16], etc.
Similarly, one can allow for nonmetricity, obtaining sym-
metric teleparallel gravity [17], f(Q) gravity [18], etc.

Inspired by the above, one may proceed to the con-
struction of gravitational modifications through a more
radical modification of the underlying geometrical struc-
ture, namely considering Finsler or Finsler-like geometries
[19-41]. In the framework of these generalized metric
structures in a vector bundle, scalar-tensor theories can
naturally appear, and in particular the scalar fields play the
role of fibers or internal variables [42—45].

On the other hand, theoretical and observational cos-
mological evidence have indicated the existence of dark
matter sector [46—-56]. Based on observational results, dark

© 2021 American Physical Society
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matter plays a significant role in the evolution of the
universe, especially concerning the growth of structures
[57]. Additionally, since its microphysics is unknown one
could have the interesting case in which dark matter
interacts with dark energy [58], a case that has significant
advantages since it can lead to the alleviation of the
coincidence problem [59] as well as of the H( tension
[60]. Hence, the investigation of dark sectors in modified
theories of gravity and cosmology is a fundamental subject
for cosmological phenomena.

In the present work we are interested in constructing
Finsler-like geometrical structures, which will induce scalar-
tensor theory with two scalars-fibers models. In particular,
we consider a pseudo-Riemannian 4-dimensional space-
time with two fibers and we investigate the properties of F°
space-time, with non-holonomic structures, extracting the
Raychaudhuri and field equations. Finally, we apply these
geometrical generalized scalar-tensor theories on vector
bundle constructions on a cosmological framework, in order
to examine their cosmological implications on the effective
dark energy and dark matter sectors.

The paper is organized as follows. In Sec. II we present
the basic geometrical concepts of the theory, analyzing the
metric decomposition and the appearance of the geometric
dark sectors, investigating also the geodesic structure. In
Sec. III we consider the action on the fiber bundle, we
derive the field equations with both Palatini and metrical
methods, in holonomic and nonholonomic forms, and
finally construct the involved energy-momentum tensor,
incorporating the contributions of the dark matter sector. In
Sec. IV we examine the Raychaudhuri equations in the
context of the F° bundle geometry. In Sec. V we proceed to
the application on a cosmological framework, showing the
appearance of an effective dark sector that has a purely
geometrical origin and which can lead to a universe
behavior in agreement with observations. Finally, in
Sec. VI we discuss the concluding remarks.

II. SCALAR-TENSOR THEORIES INDUCED
FROM THE VECTOR BUNDLE

In this section we present the basics of the geometrical
framework under consideration [42-45]. Firstly we will
review the basic structure of the Lorentz fiber bundle, then
we will describe the metric splitting and the appearance of
the geometric dark sectors, and finally we will proceed to
the geodesic investigation.

A. Basic structure of the Lorentz scalar
tensor fiber bundle

We consider a 4-dimensional manifold M equipped with
coordinates x*, u = 0, ..., 3 and a Lorentzian metric gﬂy(x)
with signature (—, +, +, +) on it. Over any open subset of
M we define a fiber structure with two scalar degrees
of freedom ¢! and ¢@. The resulting space is a 6

dimensional space-time fiber bundle, F 6 over the
pseudo-Riemannian base manifold M, with local
coordinates {UM} = {x*, ¢*}, which trivializes locally
to the product, M x {¢pV} x {¢*}. Capital indices
K,L,M,N,Z... span all the range of values of indices
on a fiber bundle’s tangent space. Additionally, a coor-
dinate transformation on the fiber bundle maps the old
coordinates to the new as:

X X (xY) (1)

¢ (x) > ¢(x') = 530" (x) (2)

where 67 is the Kronecker symbol for the corresponding
latin indices a, b which take values in the range {(1), (2)}
and the Jacobian matrix %ﬁf is nondegenerate.

In the space at hand, the adapted basis is defined as

{Xut ={6,.001). 9} (3)

where
" 1 H ’ (1) H ’ (2)

with 9, =52 and 9, = 3%(,. The fields N¢(x, ¢”) comprise
a special type of nonlinear connection and it is a funda-
mental structure of the framework under consideration,
since it connects the base manifold’s tangent space with the
one of the fiber. Furthermore, the dual basis is {X"} =
{dx*, 5V, 5>} where 6¢¢ = dp® + N%(x*, ¢”)dx* and
a =1, 2. Finally, the basis vectors transform as:

ox¥
% =

9 = 8,0, (5)
where summations are implied over the ranges of values of
1 and a.

From its defining relations (3), (4), the noncommutative
nature of the adapted basis can be easily revealed.
Specifically we obtain

[XM’XN] = WLMNXL (6)

where WE ;N are the structure functions of the adapted
base algebra which obey the Jacobi identity,1

Oun s {XuWEinL + WRysWiy} =0 (7)

As can be directly observed, the nonzero components of the
structure functions are,

IOM’N.L indicates summation with respect to the cyclic
permutation of the indices M, N, L.
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WLMN = {Wu/lw Wayb} (8)

where

we,, = 8,N% —5,N¢
W = OpNj ©)

The metric structure of the fiber bundle is defined as
G = g, (x)dx* @ dx* + v, (x)50° @ 54" (10)

Furthermore, the form of the fiber metric is assumed
to be

Dab<x) = 5ab¢(x) (11)

and transforms as v/, (x') = 856¢v.4(x). This particular
choice (11) encodes the mutual independence of the fiber
scalar fields and their equivalent contribution in the internal
space geometry.

The covariant derivative of a base vector X, over E, with
respect to a base vector Xy, is in general

DXNXM :rLMNXL. (12)

A special connection structure is chosen [45], such that
the nonvanishing components of the vector bundle con-
nection are

I‘ILMN = {Lllyw L¢,, CCﬂb’ C}Lah}' (13)

The above local connections determine the action of the
covariant derivatives upon the adapted basis of the bundle.
Further details about the geometrical structure of our
consideration is given in the Appendix A.

Alongside with the general symmetry property I'* mn =0
and under a trivial permutation of the indices, the general
metricity condition

Dy,G =0 (14)

leads to the result

1
ey = EQRL (XmGnr + XnGru — XgrGun)- (15)

As will soon be illustrated, relation (15) does not imply a
Levi-Civita tensor. The nonholonomic nature of the
adapted basis (6) gives rise to torsion contributions [see
relation (21)]. Taking into account the presumed special
connection structure (13) we arrive at the following explicit

Note that the selected connection structure is not the usual
d-connection which preserves by parallelism the horizontal and
vertical distributions [19].

expressions for the nonvanishing components of the vector
bundle special, linear connection:

L (x) =T, (x) (16)
1
Caﬂb - Lab/t - 52%8”¢ (17)
1
Clap = _Eéabgﬂbavq5 (18)

where %, is the Levi-Civita connection of the second
kind®

The curvature tensor of a linear connection is defined as

RE pn = X U¥ oy = XNTK 1y + TR DK iy = TR T iy

- WENTK L. (19)

In the holonomic base limit, YWt un = 0, the generalized

curvature tensor (19) reduces to the standard Riemann

tensor.
The torsion tensor of the vector bundle is defined as

Ty = 20 ) + Whny (20)
Since in our case I' mn) = 0, we have
Ty = W (21)
Analogously, we define the generalized Ricci tensor
Run = G kR*yrv = R urn

= XLFLMN - XNFLML + rLMNFRLR - l-‘LMRFRLN

+TE Wy (22)

The last term casts the tensor nonsymmetric as can be
directly seen in (C9).

For the linear connection (16)—(18) we obtain the non-
zero components of the generalized Ricci tensor”

Rﬂll = R/,w =+ R(¢);w (23)

1 1
Rap = — 3 Updap + 55“(8%) Wb (24)

Raﬂ = Cvab Wb;w (25)

’It is obvious from (8) that the structure functions WE MN
nullify if all indices are space-time. Therefore, they do not add
torsion if restricted in the base manifold.

*Note that as is obvious from (C9) the generalized Ricci
tensor is nonsymmetric. Despite the fact that R, = 0, we see
that R, # 0
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where 0= D"D,, R,
connection and

is the Ricci tensor of Levi-Civita

RP,, = ¢2 Oup0up —
the contribution of the pure scalar field.

Multiplying (18) with »®” we can express the quantity
"¢ in terms of C*,. Indeed, it is easy to see that

Dy +—— 8M¢W“w (26)

¢” 2¢

Pp = v CF yy = =67 CH, (27)

The corresponding scalar curvature is

R = ¢"Ryu + "Ry, = R+ R (28)
where R is the Levi-Civita curvature and with the aid
of (27),

R(¢>:_%D¢_vah<¢aﬂ¢+w >C”u;, (29)

Lastly, the generalized Einstein’s tensor is

1
Eun = Ry — ERgMN (30)

The tensor £,y contains extra terms that come from the

introduction of internal variables ¢(!), ¢ and their deriv-
atives, giving a possible locally anisotropic contribution.

B. The geometrical effects of dark gravitational field

In the previous subsection we presented the underlying
geometrical structure of the scalar-tensor theories that are
induced from the vector bundle. Hence, we can now
proceed to the investigation of their effects on the physical
quantities such as the metric, and in particular of the
appearance of dark sectors.

In order to account for the effects of the geometry of
space-time on dark sectors, we follow the general study
elaborated in [61]. In particular, the metric g,,(x) of the
base manifold M is assumed to decompose into an
“ordinary” (0) and a “dark” matter sector (D)

(x) + g (x) (31)

since from a physical point of view a unified description of
gravity may include the gravitational interaction of both
[62]. In the following, we postulate that the fiber space
remains unaffected by the dark sector.

In analogy with (31), the Levi-Civita connection admits
contributions from the ordinary (O) and dark matter (D)
energy densities alongside a term that arises from their
mutual interaction:

9u(x) =99,

FMM(X) = F(O)ﬂvl(x> + F<D)ﬂvﬁ(x) + 7”w1(x) (32)
Substituting (32) in the definition relation I'*,;, = ¢*T’,;,
the interaction part y#,,; can be easily expressed in terms of
the inverse of the total, ordinary and dark matter metrics, as
well as the respective connection parts of the second kind,
namely
7 = (g7 = g0+ (¢ = gPr)r®) ;0 (33)
As it is evident from (27) the connection C*,, depends
linearly on the inverse of the space-time metric. Therefore,
it should split in a manner similar to (32), i.e.,

Cﬂab(x) = C<0>ﬂ

ab (.X') + C(D)ﬂab(x) + Cﬂab (X) (34)

where

1
C(D)”ab = _Eaabg I./¢ (35)

and

1
Cﬂah = _Eéah (g/w - g(O)/w - g<D)MD)aD¢ (36)

All other connections are not conditioned in such splittings,
since, as can be seen from (17), they are not directly related
to the metric of the base manifold.

In order to make manifest the contributions of the
ordinary, dark matter, scalar and interaction sectors in
the Ricci tensor, let us reformulate the above expressions
in a spirit analogous to [61]. We have,

where r,,, expresses the interactions between ordinary and
dark matter.

In similar lines, we assume an analogous splitting for the
[] operator, namely

O¢ = (0@ + 0P + 0O)¢ (38)
where
D¢ = g#UD/lDI./¢ = gﬂp(ayauqﬁ - Fl;wa/lql))
0)¢ = g(o)ﬂy(aﬂau¢ - F(O)/l/wallqﬁ)
D)¢ = g(D)W(auau¢ - F(D)Auua/lqﬁ) (39)

Accordingly to (33), the interaction part [1 can be
expressed in terms of Christofell symbols and of the
inverse of the total, ordinary and dark matter metrics.
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Considering all the above, we can now write

Rab = R(O)ah + R(D>ab + Ty (40)

where

1

1
R(O>uh = 5 6ub|:|(0)¢ - E 6a56d6 WCuh C(O)ﬂde (41)

1
R(D)ab = 5ab|:|( )¢ - _6a05de WC/,tbC(D)ﬂd

1

2

1
Tap = 2 bD¢ _5m5dewc bc” (42)
Analogously with the above, the extra fiber contribution to
the Ricci scalar and the Einstein tensor can be straightfor-
wardly decomposed into ordinary, dark and interaction
sectors.

C. Geodesics

We close this section with an investigation of the
geodesic structure of the theory. In particular, we will
derive the geodesic equations imposing the autoparallel
condition on the vector tangent to the geodesic curve. Let

Y = Y45, + Y90, (43)

be the tangent vector. Then from the autoparallel condition
DyY = 0 we obtain the pair of geodesic equations

d>x* dx* dx* o 6¢b
—_— 1+ =0 44
a2 T b dr dr (44)
d (6¢° dx* 5¢p°
— LYy, ——=0 45
d1<d1'>+ M de dr (45)
where
d dx* ¢
—_—=— —0,=Y 46
dt dr " do ¢ (46)

Multiplying (44) with the mass of a test particle and
inserting (32), we can reveal the kinematic influence of
each of the sectors of our geometrical structure. Indeed we
acquire

d?xH dx? dx*

- arOp 77
m<d72+ “dr dr)
dx? dx
dr dr

= _m(F(D)ﬂM + yﬂwl)

— 47

The three terms that appear on the right hand side of the
above equation account for the deviation from Riemannian
geometry. This deviation reflects the presence of dark
matter and its interaction with the ordinary sector and

reveal the influence of the hidden scalar fields on the
motion of particles. From the point of view of an observer
who does not take into account the existence of these
hidden entities, the three terms on the right are interpreted
as inertial forces.

Substituting (17) and (18), into (44) and (45) we obtain

dzx”+ u dx’ dx* 1
dr? “dr dr 2%

5 dx* 5¢p°
dT ( > ¢ ﬂ¢ =0 (49)

o¢° 545”
dr dr

e =0 (48)

dr dt
It can be easily verified that (49) has the exact solution

sp* _ C*
dr ¢

(50)

where C* are constants of integration. Inserting the above
solution into (48) leads to

2
d=x* dx di__ o (51)

a2 T T2 ¢2

where C? = (CV)2 + (C?)? and T*,, is given in (32).

Additionally, it is instructive to examine separately the
special case where the geodesics for the Riemannian part is
given by

d>x* dx* dx*
— = 52
dr? T dr dr (52)
and for the internal structure by
o
yr 0 (53)
or equivalently,
d¢* L axt
= Vg 34)

In our model the form of the geodesics is given by both the
relations (52), (54). The nonlinear connection Nj; inter-
connects the differential of the internal quantity ¢* with the
velocity of the observer. Such an interconnection can be
interpreted as a manifestation of a condition of parallel-
ism (53).

Lastly, note that considering a specific form for the
nonlinear connection, for instance

Alg)
Ni=",

Eq. (54) has the solution

0" (55)
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$(x) = gi(x)e o AP (56)
where ¢§(x) = ¢*(x)|,—o-

III. FIELD EQUATIONS

In the previous section we presented the geometric
structure and the kinematic variables of the examined
construction. In the present section we proceed to physics.
In particular, we consider the action on the fiber bundle, we
derive the field equations with both Palatini and metrical
methods, we examine the Raychaudhuri equations, and we
finally construct the involved energy-momentum tensor.

The total action of the theory is

S =S¢ + 2kSy

:/déU\/@gABRAB—f—bc/cPU\/@ﬁM (57)
o 9]

where L£,,(GMN W) is the matter Lagrangian, ¥’ the
various matter fields described collectively, and Q a closed
subspace of FS. For additional details we refer to the
Appendix B.

A. Palatini method

Firstly, we follow the Palatini method in which the
variation is performed independently for the fields G, and
%, (see Appendix B). If we assume a metrical compatible
connection we acquire

1
R(MN) - EgMNR =T yn (58)
and
GMNTAga + GME(TN k= TA1a88) =0 (59)

where 7K, is the torsion of the connection, given in (20),
and specifically in our case (21). The coupling constant x in
(58) will be determined in the general relativity (GR) limit
of the theory. As is evident from (8), the only independent
nonzero components of the torsion tensor are the following:

ga&b = Wa/lb = abNZ
yaiu = Wa/lb = 5IJN,‘11 - 5/1Nﬁ (60)

From these expressions, as well as (59) we acquire
Wa/lb = 0 (61)
Wa/w - 0, (62)

i.e., we find that all the torsion components vanish. We see
that the Palatini field equations force the connection to

coincide with the Levi-Civita connection, in total agree-
ment with the Levi-Civita theorem. Therefore, if one
wishes to study a nonholonomic structure of the adapted
basis, one has to abandon the Palatini method of variation.
Nevertheless, let us continue the study and analyze the field
equations (58). On the spacetime manifold we have

1 1

1
B+ 5 9 {Dd) 39 8*«158@] o DuP?
n 2%28”4;6”415 = 82GT,, (63)
while on the fiber
1 1
(<R + 506 = 5120,00°0 v = 165GT (64

where E,, is the standard Einstein’s tensor of GR while the
extra terms in (63) come from the spacetime components of
the generalized tensor (30). One can recover the standard
Einstein field equations of GR from (63) in the limit
0,¢ — 0, in which the coupling constant is determined as
k = 872G, with G the Newtonian gravitational constant. We
mention that the energy-momentum tensor corresponding
to the Lagrangian of the matter fields L, (GMN,¥") is
defined in the standard way. Specifically, we have

2 6(./=gL
T/w = _7(7.91/”1) (65)
V=9 o
for its space-time components, and
26
20l .

\/5 Svb

for its fiber components.

In summary, from relations (63), (64) we deduce that the
field equations include additional terms because of fiber
fields and dark matter considerations.

B. Metrical method

In this subsection we proceed to the extraction of the
field equations following the metrical method. In particular,
we will derive the bundle field equations by varying the
action (57) with only respect to the metric GMV. Doing so,
we obtain (see Appendix B):

Emny + (85 % n) = GRGun ) (DLW g = WE s WEkc)
= KTMN (67)
The fields of curvature and torsion must obey the Bianchi

identities (C1), (C2). Specifically, the first identity takes the
form (see Appendix C):
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1
DAE N + RARWER v + ERKANRWRAK =0 (68)

In order to derive a generalization of the continuity
equation we isolate the symmetric part of the tensor
Ean- Employing (C9) we write,

DAE uny + RARWE A + %RKANRWRAK
+ %DA(WLRAFRLN — WEenIFr4) = 0. (69)
Now, from (67) we see that,
DAE(AN) + D*H,y = Oy (70)
where
Hpy = ALRAN(DLWKRK — WK LWks)
ARy = (gLAgRN + G NGRA) = GGy
Oy = kDT py. (71)

Thus, inserting (69) into (70) we arrive at a final expression
for the dissipation vector, namely

1
Oy = RARWE 1y + ERAKNRWRAK

1
+ EDA IWVERNTR g = WERa DRy
+ 2A5R (DIWVE R = WE kWS Rs ). (72)

As it is evident from the above expression, the conservation
of energy is restored, namely Qy = 0, when the torsions
WE v are set to zero.

In terms of the space-time and fiber components the
generalized field equation (67) respectively reads,

5( ) (5/1 5/) gjll)g;w D/IW - WdidWCpc)
+ vabg;wclabW e — KT;w (73)

- ¢pvab(DAWC/)c - WdlldWc/)c)
+ C&abwclc = KTab (74)

where £, and £, are the spacetime and fiber components
respectively of the generalized Einstein’s tensor (30). These
equations must reproduce general relativity in the appro-
priate limit. We find that for ¢ — 0 and WX, —0
Egs. (73) reduce to the Einstein field equations of GR
for the metric g,,, provided that the coupling constant takes
the value k = 872G, where G is the Newtonian gravitational
constant. In general, the value of x depends on the structure

of the geometry. Moreover, in this limit, Eq. (74) gives the
condition:

H \4
T=T (75)

with

and
1%
T =0T, =T,

H
i.e., the traces of the spacetime energy momentum 7 and of

14
the fiber one 7 are equal in the GR limit.

From (B8) and assuming that the matter Lagrangian £,
depends on the metric G,y but not on its derivatives we
acquire:

9Ly
T;w = ag” + [’Mg;w (76)
Tu=-2 gﬁM + LyVap (77)

From (75), (76) and (77) we obtain the GR limit condition
for the matter Lagrangian:

b 8£M
R

ALy,
9™

==Ly +9" (78)

In this limit and for a matter fluid with a barotropic equation
of state P,,(p\”)) and a conserved current D, (pV)Y*) = 0,
with p(© the rest mass energy density, the energy-

momentum tensor reads [63]:

o) OLu

Ly
v v _ (0 v
TH &0( ) YRYY + (EM 0 p )Q# (79)

where the following relation has been used:

dp® 1

ag* ~2"

(g +Y,Y,). (80)

Comparison of (79) with (117) gives

8[-"M Pm T Pm
ap(o) = - p(o) 5 ‘CM = Pm- (81)

Finally from (81) and (78) we obtain
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ab 3£M _ aw 3£M dp(O) =
g~ P op0 dg
20pm  pm | 3Py

This equation determines the dependence of the barotropic
fluid’s energy density p,, on the scalar field ¢ at the
GR limit.

C. Incorporation of dark matter in
energy-momentum tensor

We close this section by discussing the energy-
momentum tensor. The theory at hand allows for two
sources of dark matter. A purely geometrical one, in which
dark matter is attributed to the effective properties of the
bundle structure, and a fluid/particle one in which dark
matter contributes directly to the energy momentum tensor.

Following the geometrical method, we rearrange the
terms of (73), so that only the standard GR Einstein’s tensor
appears on the lhs:

E, =«T, (83)
where
Tw=T,+T?, (84)
and
T()

1 .
= _; [E¢(/41/) + (5’((”6,%) - g’dgﬂv)(DKWaia - WbeWLAc)
+ Uabgﬂuclabwclc‘}' (85)

Hence, the geometrical properties of our model can be
viewed as additional terms to the energy momentum tensor
and therefore, in the GR framework, interpreted as effective
dark matter.

In addition to this, one can directly include dark matter
contributions to the energy momentum tensor [61],

T,=T9,+T?P +1, (86)
so that (84) becomes
T,=T9,+T®, +TP, +1,.  (87)

The above sectorial decomposition of the energy-
momentum tensor induces the corresponding decomposi-
tion of the generalized Einstein’s tensor. From the above
relation we notice that the total form of the energy
momentum tensor ’j'ﬂ,, includes the fiber contributions as
well as the dark matter sector and its interactions with

ordinary matter. It is possible that a conformal relation
between ordinary and dark matter exists [53].

IV. RAYCHAUDHURI EQUATIONS

It is known that the Raychaudhuri’s equations describe
the evolution of the acceleration of the universe through the
gravitating fluid. Their form depends on the metrical
structure of space, i.e., in spaces with generalized metric
structure and torsion as in a Finsler space-time [44]. The
Raychaudhuri’s equations are produced by the deviation of
nearby geodesics or fluid lines and monitor their evolution.
In our case, they are twofold extended. On the one hand,
with the introduction of the scalars ¢!, ¢®) and on the
other, with the inclusion of the dark sector.

In order to examine the local behavior of a single,
timelike geodesic among the congruence, let us assume the
tangent vector,

dx* 5
YME(;T,C‘;’T) (88)

which satisfies the autoparallel condition along the track of
the geodesic

DyY = 0. (89)

Furthermore, we assume that 7 is properly chosen in order
for Y™ to have a unit norm,’ namely

The 2nd rank tensor
BMN:DNYM:XNYM+FMLNYL (91)

measures the failure of the separation vector between
adjacent geodesics to be parallelly transported along the
congruence [64,65]. From the autoparallel condition, we
obtain

YNBMN - 0 (92)
and from (90) we get

Additionally, we can separate the space part of the metric,
making use of the projective tensor H,,y,

>This assumption is consistent with the definition of the
geodesic parameter, (46). It does not alter the signature of the
Riemannian metric, and forces the extra fiber variables to behave
as space-like components. The fact that the extra degrees of
freedom do not transform covariantly is not incompatible with the
existence of a comoving observer in the bundle F°.
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Iun = Hyn = YuYy. (94)
Indeed, it is easy to see that,

As a 2nd rank tensor, 5,y can be decomposed into its
irreducible components, namely its trace, traceless sym-
metric and antisymmetric part. In particular, the trace of the
tensor 3,y is called expansion, i.e.,

O =G"GVRByNH g =B"NHyy =By =Dy Y™ (96)

and is a measure of the volume change of a sphere of test
particles centered on the geodesic. The symmetric, traceless
part of the same tensor is called shear:

1
Sun = Bun) — §®HMN (97)

and describes the shape distortion of the test particles from
the initial sphere to an ellipsoid. Lastly, the antisymmetric
part of the tensor is called rotation

Qun = B (98)

and describes the rotation of the initial sphere of test
particles.

Now, the 2nd rank tensor BB,y can be written in terms of
its irreducible components as

1
Byy = §®HMN + Sy + Qun (99)

Taking into account (89), the definition of the Riemann
tensor (19) and the fact that

Dy, DYy = WER NDRY yy — RN Yk (100)

we obtain that the covariant derivative of B,y along the
geodesic is

YLDLBMN = WRLNYLBMR - 7zRMLNYLYR

— By By (101)

Taking the trace of the above equation we result to

@ _

d == WLMNYMBNL - RMNYMYN - BMNBNM. (102)
T

Written in terms of the irreducible components of B,,y, the
above equation provides the extension of the Raychaudhuri
equation on a general space-time vector bundle, namely

doe
E - WLMNYMBNL - RMNYMYN

1
~ 502 = SMVS )y + QIO (103)

For the specific choice of special connection structure (13)
we acquire

@:dWY+%ﬁmv—@y:9+m@ (104)

where divY = X,,Y™ G = ¢?g is the determinant of the
bundle metric, and

d
6=V, " =0,y +[Iny/=g (105)

gw:@w—wmw+§mw- (106)
T

To the standard expansion 6, a contribution of purely
geometric origin 0%) is added. It is produced by the scalars
¢'@), the nonlinear connection N' 4 and the fiber components
of the tangent vector Y“. The form and the overall sign of
this contribution (106) is directly related to the kinematics
of the universal evolution and under certain circumstances
it provides a triggering inflation mechanism. Especially, in
the case of an inflaton scalar field, the contribution of the
volume 0'?) will be positive and an increase of volume can
appear.

In the same manner we can calculate each of the terms of
(103). For the nonholonomic term we obtain

WLMNYMBNL — WQMDYMDaYD

+ W4, (Y*D,Y* —Y’D,Y*). (107)

The generalized tidal term decomposes into its Riemannian

part plus the additional contributions that rise from the
additional geometric structure

RunYMYN =R, Y*Y* + RW) Y'Y’ + R, YY"

+ CY WP, Y Y™ (108)
where
S =0y + S(‘/’)W
Sap = %(8bya +0,Y, =2C",Y,) - éGHab
Syu = (0, + 8,V = 2C", ¥,) = OH,, (109)

and
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1
U,uv = V(DYM) - §9H,w
1 I ,
s, = s (20 - 30)\H,, — 3 (N99,Y, + N29,Y,).

(110)

Finally, we can acquire a similar decompositions for the
generalized rotation too, namely

QIW =Wy, + Q(‘/’)’w

1
Qab = 5 (abYa - 8aYb)

1
Q,, :E(aay -8,Y,) (111)
where
@ = VY
1
QP = 5 (Ni0,Y, = N{O,Y,). (112)

Assembling all the pieces together we obtain

d 1
- (04 09) = —R, YY" — 592 —0"0,, + " w,, + 2
(113)
with
=W, Y'Y + W, (Y'D,Y,—Y,D,Y")
2 1
—RP),YFYY =R, YUY + Ea2 -3 2009 + (69))?]
— 5w gd)  —20mS) — gabs,, —25Mas,,
4 Q(¢)MVQ(¢)W 4 Qwﬂvg(rﬁ)w
+QQ,, +20Q,,. (114)

As we can see from (113) 2 disturbs the rate of the volume
change for a number of reasons. First, because of the
interaction between the volumes 6 and %), second due to
the contribution of the scalar fields ¢@ and lastly because
of the presence of the nonlinear connection Nj; and the
torsion functions W“W, W .

The generalized tidal field (108) includes the standard
Riemann contribution (37) and additional terms which can
affect the evolution of the gravitational fluid for possible
singularities/conjugate points in the universe. It is obvious,
because of extra internal geometrical concepts of fiber-
fields ¢(x), of the nonlinear connection N in the metrical
structure of our model F® and of the introduction of the
dark gravitational field. In the framework of our space, F°
and for a given congruence of timelike geodesics, the
expansion ©, shear S,,,, and rotation Q are described, in a

generalized form, in Egs (96), (97), (98) which provide us
the generalized type of Raychaudhuri equation (113). The
extra terms affect the variation of the volume during the
evolution of fluid lines (focusing/defocusing) in the accel-
erating expansion of the universe. This is possible due to
the perturbation of the deviation equation of nearby geo-
desics or curves.

In a comoving frame, the term in Eq. (114) involving the
structure functions W* " vanishes. As we will see later, this
is in agreement with the generalized Friedmann equations
for this model. Specifically, in those equations, in which the
matter fluid is at rest, no such term appears. This is an
important test for the consistency of this model because the
generalized Raychaudhuri equation (113) should not give
additional information on the kinematics of the FRW
comoving frame. It is worthwhile to mention that for a
constant nonlinear connection the above equations can be
drastically simplified.

With the aid of the bundle field equations (67) we
acquire

RynYM YN

1
+ (DWW ya = WPusWEie) (YMYN - ZQMN)

where 7 = T ,yGM"N. The sign of the generalized tidal
field determines the evolution of the volume of the fluid
lines. It is evident that it does not only depend on the energy

and current density of matter, but also on the structure of
the algebra of the adapted basis.

V. COSMOLOGY WITH NONLINEAR
CONNECTION

In the previous sections we presented the geometric
formalism in which generalized scalar-tensor theories and
dark gravitational sectors are induced from the vector
bundle. In this section we proceed to the explicit cosmo-
logical application of such constructions.

In order to construct a cosmological framework, we need
to extend the standard spatially homogeneous and isotropic
Friedmann-Robertson-Walker (FRW) metric of ordinary
Riemannian geometry and GR on the fiber bundle E. In
particular, we consider the flat case of the former (k = 0),
as the simplest one in GR, and extend it to account for the
additional degrees of freedom of E in the following way:

G =-dt ®dr+ a*(t)(dx @ dx + dy ® dy + dz ® dz)
+ (1) (69V @ 5V + 5p¥ @ 5¢?) (116)

We mention here that the observational constraints on the
(almost zero) spatial curvature have been extracted under
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the consideration of the usual FRW metric in Riemannian
geometry, and thus in principle one cannot deduce that the
same feature would necessarily hold in the case of the
present extended geometric structure. Nevertheless, since
in our work we are interested in performing a first
cosmological application, we impose zero spatial curvature.
As one can see, the first line of (116) is the standard
4-dimensional spatially flat FRW metric, while the sec-
ond line arises from the additional structure of the Lorentz
fiber bundle. The additional degrees of freedom of the
metric as well as the anholonomicity of the adapted basis
are expected to enrich the dynamics of space-time, com-
pared to the standard spatially isotropic and flat FRW
cosmology [66]°

Moreover, we consider the matter sector to correspond to
a perfect fluid, with energy-momentum tensor of the form
with p,, is the energy density, P,, the pressure and Y* the
bulk 4-velocity of the fluid.

We will first study the equations derived from the
metrical method, since the Palatini equations occur as a
special case of the former. For the spacetime (116), and
with the perfect fluid (117), the nondiagonal components of
the field equations (73), (74) give

WaOig.b - O?
(Wl + W(Z)O(l)]és =0
wa, Wb, =0 (118)
for i # j, and
. (9
Wia<4¢—H—W”0,, =0 (119)

where 0 stands for the coordinate time component, i, j = 1,
2, 3 for the spatial components, a, b = (1), (2) for the fiber
components, and a dot denotes differentiation with respect

to time: ¢ = %. Furthermore from (118) and the spatial
isotropy of (116) and assuming that ¢ # 0, we acquire

W, =0=Wg

°To examine whether the symmetries of the standard FRW
solution persist, a careful and meaningful definition of these
symmetries should be given in the current framework of extended
space-time. The most consistent way to do this is by means of Lie
derivatives and extended Killing vectors on the bundle E or by
direct implementation of the method of complete lifts [35]. Using
these tools, we could construct spatially homogeneous and
isotropic cosmological solutions that may even extrapolate the
classification into spatially flat, closed or open. This would be an
interesting topic for a future project.

and
W(l)o(z) — —W<2)0(1>.

Applying the general field equations (73) and (74) for a
nontrivial nonlinear connection in the case of the metric
(116), and taking into account the above relations, we
finally obtain:

¢ ¢ P
3H? +3H (5 - W+> -W, ot Py 87Gp,,  (120)
- .
2H+ (W, )2 -W, —%+H<W+ —%)
1 . ..
~29 (Wi —2¢) = —82G(p,, + Pp) (121)
and
%(Eﬁ +3Hp) - % <3W+ + g) + 6(H + 2H?)
—6HW, +2(W,)? —2W, = _82GT (122)
where we have defined
W, = W,. (123)

These are the two modified Friedmann equations and the
scalar-field (Klein-Gordon) equation, for the scenario at
hand. Indeed, as we can see we do obtain generalized
scalar-tensor theories from the specific vector bundle model
that we have constructed. Note, that according to (75) and
(117), in the general relativity limit we have,

\%4
T:_pm+3Pm

Therefore in the general case we can consider the trace as

4 -
T=-p,+3P,+7T

where we explicitly see that 7 is a correction over the
GR limit.

A. Dark energy
Let us now proceed to the investigation of the modified
Friedmann equations (120), (121). Observing their form,
we deduce that we can write them in the standard way,
namely

3H? = 82G(p,, + per) (124)

2H = —SﬂG(pm + Petr + Pm =+ Peff) (125)
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having defined an effective dark energy sector with energy
density and pressure respectively as

1 g ¢ ¢
Peff—%bw+—4772—3fl<$—w+>] (126)

¢2
497

1

Per = o= [(W+>2 - W, —2HW, -

+ 2% (4Hp —3W . ¢ + 2(7))} : (127)
Hence, the effective dark energy sector incorporates all the
extra geometrical information that arises from the vector
bundle construction.

We can define the equation-of-state parameter for the
effective dark-energy sector as

P eff

Peft

(128)

Weft =

According to the definitions (126), (127), we can see that
wer can lie in the quintessence (W > —1) or in the
phantom (w.; < —1) regime, or experience the phantom-
divide crossing during the evolution. The fact that we can
effectively obtain a phantom behavior without imposing by
hand phantom fields, is an advantage of the scenario and
reveals the capabilities of the bundle constructions. Note
that wg can be even exactly equal to —1 if one imposes the
specific condition

1 1 .
ity = Hy =Wy =W, — W2 —HW,  (129)
where y E%, in which case we obtain a cosmological

constant of effective origin, although our initial action does
not contain an effective cosmological constant.

Finally, using the above definitions we can examine the
validity of the energy conditions:

(1) Weak: pegp 2 0, pegr + Pegr 2 0

(i) Strong: pegr + Pegr 2 0, pegr + 3Pegp 2 0

(iii) Null: pegr 4 Pegr > 0

(iv) Dominant: peg > |Pegl

We proceed to the specific investigation the cosmologi-
cal behavior that is induced from the scenario at hand. In
particular, we elaborate the Friedmann equations (124),
(125) numerically, and we use the usual expression for the
redshift 1 4+ z = 1/a (the present scale factor is set to
ag = 1) as the independent variable. This expression for the
redshift is justified by two points: First, we consider tra-
jectories of the form (52), (53) which effectively describe
classic GR geodesics, and second the spacetime part
of the metric (116) is identical to the classic spatially flat
FRW metric of GR. Moreover, we introduce the standard
density parameters, namely €, =8zGp,,/(3H*) and

Q.ir = Qpp = 87Gpei/(3H?), for the matter and effec-
tive dark energy sector respectively. Concerning the ini-
tial conditions we choose them in order to obtain
Qui(z=0) = Qo # 0.69 and Q,,(z =0)=Q,,, ~0.31
in agreement with observations [67], while for the matter
sector we impose dust equation of state, namely w,, =
P/pm = 0.

In the upper graph Fig. 1 we present Qpp(z) and Q,,(z)
where we observe that we obtain the standard thermal
history of the universe, namely the matter and dark
energy eras. Additionally, in the lower graph Fig. 1 we
depict the effective dark-energy equation-of-state param-
eter weg = wpg, Where we can see that in this specific
example the effective dark energy sector experiences the
phantom-divide crossing during the cosmological evolu-
tion. In order to examine in more detail the behavior of
wpg, in Fig. 2 we present its evolution for various small
corrections 7. As we can see, we can obtain a rich
behavior, and an effective dark energy sector that can be
quintessencelike, phantomlike, or experience the phantom-
divide crossing. These properties cannot be easily acquired
in the usual scalar-tensor theories, and this reveals the
capabilities of the construction at hand.

Let us examine in more detail the conservation equations
in the scenario at hand. As expected, the energy densities
and pressure appearing in the Friedmann equations (124),
(125) satisfy the continuity equation

Pm + Peit + 3H(pyy + pee + Py + Pegr) = 0. (130)

Using (122) we can rewrite it as

FIG. 1. Upper graph: the evolution of the effective dark energy
density parameter Qpg (black-solid), as well as of the matter
density parameter Q,, (red-dashed), as a function of the redshift z.
Lower graph: The evolution of the corresponding dark-energy
equation-of-state parameter wpg. We have imposed the initial
conditions Qpg(z = 0) = Qpgy ~ 0.69 [67].
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FIG. 2. The evolution of the dark-energy equation-of-state
parameter wpg as a function of the redshift z, for various small

corrections 7. We have imposed the initial conditions Qpe(z =
0) = Qpgy ~ 0.69 [67].

. ) - 1
3H P — 3P T)=—-——=
pm+ (pm+ m)+2¢ (pm+ m+ ) SJTGQO

(131)

where the time component of the dissipation vector (72) is
calculated as

Qp = 4;}2 [12H2* 4+ 12¢*H + 6HP(2W . p — )
—3¢° + 4p(W_p + )W, (132)
Note that this equation can also be obtained from the time
component of (71) (all other components of (71) give trivial
equations). The dissipation vector encodes the energy-
momentum tensor potential nonconservation with respect
to the special connection of F°. An interesting observation
is that in the absence of matter, Egs. (120), (121), and (122)
are independent, contrary to the standard scalar-tensor
models where only two out of the three equations are.
Therefore, in the absence of matter, Eq. (131) implies that
Q, should vanish, a condition that makes (122) dependent
on (120) and (121), which is then a self-consistency
verification of the scenario.
In the general case the combination of (120) and (121)
does not reproduce (122), exactly due to Q,. However,
observing the form of (131), we deduce that if we define

Qz-%(pm—fﬂPm—irT)—%Qo (133)

then (130) and (131) can be rewritten as
pm +3H(p, +P,) =0 (134)
Pete + 3H (st + Pegr) = —0 (135)

As we can see, Q represents the interaction rate between
matter and effective dark energy sector, which lies at the
basis of the matter nonconservation [68,69]. Therefore, in
the general case the scenario at hand exhibits an interaction
between the matter component and the dark energy sector
that quantifies the novel geometric structure of the vector
bundle. This reveals the capabilities of the model, since
interacting cosmology is known to lead to very rich
phenomenology [59,70-73] and among others it can
alleviate the coincidence problem [59,74] as well as the
H, tension [60,75]. However, we stress that in the scenario
at hand the interaction between the dark sectors is not
imposed by hand, but it naturally arises from the intrinsic
geometrical structure of the bundle construction. Finally, in
the particular case where Q = (), we obtain conservation of
matter and effective dark energy sectors, i.e., we obtain the
standard, noninteracting, cosmology.

We close this subsection by examinin(% the special case
where the condition 6(1>N(()1> = —8(2)N0) is imposed on
the nonlinear connection, which leads to W, = 0. This is
also true when N is constant, which is a solution of the
Palatini field equations. In such a case, the modified
Friedmann equations (120), (121) become

3H2+3Hé+£= 8xGp (136)
¢ 497 "
N
2H—-——-H—+—=-8zG P 137
while the Klein-Gordon equation (122) is simplified to
1. P . ) .
5((/) +3H¢) —g—ﬁ— 6(H +2H*) =8zG(p,,—3P,,—T)

(138)

Note that the interaction between matter and effective dark
energy sector is maintained.

B. Cold dark matter

One of the features of the construction at hand is that the
metric of the base manifold can be decomposed into an
ordinary and a dark matter piece according to (31). As a
result, the perfect fluid (117) can be decomposed into
ordinary and cold dark matter (CDM) sectors [61], which
using Eq. (86) leads to

T = (W) + POV, Y, + P (g9, (x) + ¢, (x))

+ oYY, (139)
Note that we have assumed that, due to spatial isotropy, the
ordinary matter and CDM fluids are at rest with respect to
the comoving grid, and thus they have the same 4-velocity
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Y#, and moreover that the CDM fluid is pressureless as

usual (PE,? ) = 0). Expression (139) can be decomposed into
ordinary, dark and interaction terms, respectively as

(0)

7O, =P\ + Py, Y, + P¢0 (x)  (140)
T®), = o) Y,Y, (141)
2, = Py g, (x). (142)

In this case, the modified Friedmann equations (124), (125)
take the form

3H? = 877.'GL0£;10> +pi + Peit] (143)

2H = —87rG[p;(nO) +ﬂ5nD) + Petr + P + Py].  (144)

Additionally, the continuity equation (131) becomes

PO 4 P+ 3H (N + o) + PO

¢, 0 | (D 0) | 7 1
— 7 () (L PO LTV - —0, (14
2¢(/) +pm 3Py +T) ac 20 (145)

We observe that this relation provides an effective source
term with respect to General Relativity. This term can be
traced to the fiber components of our special connection,
which provide the first term on the right hand side, and to
the dissipation term Q,, hence to the nonconservation of
the energy-momentum tensor with respect to the connec-
tion of F°. Focusing on the CDM sector, assuming that the
dark matter content is close to its GR limit (7 ~ 0), and
considering the special case where W, vanishes, which
according to (132) leads to Q, = 0, Eq. (145) becomes:

e ( ) ( ) / ( )
3H = ——
Pm + Pm Pm

(146)
Observing Eq. (146), we find a parallelism with models of
CDM creation in GR [53]. In particular, the continuity
equation of CDM in these models reads [69,76-78]:
i+ 3Hpl) =Tply) (147)
where I" is the CDM creation rate. Comparing (146) with
(147), we find that our model provides a dynamics for

CDM creation similar to the aforementioned models,
namely

9
2

From the point of view of an observer who interprets the
creation mechanism in the framework of general relativity

r= (148)

and standard FRW cosmology, it would appear that (146)
violates the conservation of energy-momentum due the
appearance of the source term in the rhs. However, from the
point of view of our construction, the same mechanism can
be seen as a result of energy-momentum conservation with
respect to the special connection of the total space TF®°.
Once again we mention that this behavior has not be
imposed by hand, but it arises naturally from the geomet-
rical structure of the bundle construction.

VI. CONCLUDING REMARKS

In this article we studied the gravitational and cosmo-
logical consequences of a, Finsler-like, scalar tensor theory
on a vector bundle F°, which consists of a pseudo-
Riemannian space-time manifold with two scalars in the
role of fibers or internal variables. In this approach, we used
a nonlinear connection form of a nonholonomic bundle
structure. Under this framework, the properties of a
sectorized gravitational field are analyzed for both the
ordinary and dark sectors.

The extra geometrical structure is imprinted in the field
equations (67), Raychaudhuri (103) and FRW equa-
tions (120), (121), (122). Due to the introduction of the
scalar fields ¢!, ¢(>) we obtain extra degrees of freedom
which affect the volume of congruence geodesics, the form
of the accelerating universe and potentially lead to Lorentz
violating and locally anisotropic effects [79-83]. An
interesting topic for the upcoming projects would be to
examine whether the symmetries of usual spatial homo-
geneity and isotropy persist on the vector bundle E.
A careful and meaningful definition of these symmetries
should be given in the current framework and the most
consistent way to achieve this is through the proper
extension of the concepts of Lie derivatives and Killing
vector fields. We remark that the kind of isotropy we are
discussing here differs from the concept of internal space-
time anisotropy encountered in Finsler gravity.

Applying this construction at a cosmological framework,
we showed that the induced generalized scalar-tensor
theory from the bundle structure and the nonlinear con-
nection leads to the appearance of an effective dark energy
sector in the modified Friedmann equations. Hence, we
were able to reproduce the thermal history of the universe,
with the sequence of the matter and dark energy eras, and
we showed that the resulting dark-energy equation-of-state
parameter can lie in the quintessence or phantom regime, or
even exhibit the phantom-divide crossing. Furthermore, we
showed that this novel intrinsic geometrical structure leads
to an effective interaction between the dark matter and the
metric and for the particular case of cold dark matter
the relation (148) was found between the scalar fields and
the CDM creation rate.

There are many things that one should do in order to
further investigate generalized scalar-tensor theories arising
from vector bundle constructions. The first is to study the

064018-14



DARK GRAVITATIONAL SECTORS ON A GENERALIZED ...

PHYS. REV. D 104, 064018 (2021)

specifically symmetric and black hole solutions, and
examine the differences comparing to general relativity.
The second is to consider specific examples of nonlinear
connections and examine whether they can lead to dis-
tinguishable behavior. Finally, one should investigate in
more detail the cosmological applications, incorporating
data from type Ia supernovae (SNIa), baryon acoustic
oscillations (BAO), cosmic microwave background
(CMB) observations. These interesting and necessary
studies are left for future projects.

ACKNOWLEDGMENTS

The authors would like to thank the unknown referee for
his/her valuable comments and remarks. This research is
co-financed by Greece and the European Union (European
Social Fund-ESF) through the Operational Programme
“Human Resources Development, Education and
Lifelong Learning” in the context of the project
“Strengthening Human Resources Research Potential via
Doctorate Research” (MIS-5000432), implemented by the
State Scholarships Foundation (IKY). This article is based
upon work from COST Action CA18108 “Quantum
Gravity Phenomenology in the multi-messenger approach”,
supported by COST (European Cooperation in Science and
Technology).

APPENDIX A: CONNECTION AND CURVATURE

One can define a special type of linear connection in this
space, where the following rules hold:
D 6, = L}, 6

Déuaa = Lccwac (Al)

Dy,8, = Coy0.  Dp,d. = C5u0, (A2)
Differentiation of the inner product Dy, (X", Xy) = 0 and
use of (A1), (A2) leads to the rules:

Dy dx* = —L%,dx*

D; 6¢¢ = —Lg, 00"  (A3)

Dy, dx* = —Cy, 69 Dy, 6¢¢ = —Cj,dx" (A4)
Itis apparent from the above relations that D preserves the
horizontal and vertical distributions, while D5, maps one to
the other.

Following the above rules, covariant differentiation
of a vector V = V¥, + V“0, along a horizontal direction
gives:

Dy V = (8,V* + VELEL)S, + (8,V4 + V°LE,)d,
= D,V*§, + D, V0, (A5)

where we have defined

D, V¥ = §,V* + VKL, (A6)

D,V =§,V4 + VLS, (A7)

Similarly, for the covariant differentiation of V along a
vertical direction we obtain

Dy, V = [0,V¥ + VCh,16, + [0,V + V”Czb]aa

= D,V*§, + D,V“0, (A8)
where we have defined

D,VF = 0,V¥ +VeCh, (A9)

D,Ve =0,V* + ViCy,. (A10)

The covariant derivative over the full range of indices in F©
reads:

Dx,V = Xy VN + TV yVEXy = (DyVV)Xy (A1)
where

Finally, the covariant derivative for a tensor of general rank
is obtained in a similar way.

APPENDIX B: FIELD EQUATIONS

In this Appendix we present the steps which lead to the
field equations, (58), (59), (73) and (74). A Hilbert-like
action with a matter sector on the bundle F© is

S:/d6U\/@R+2K/ d°U/|GILy(GMN. W) (B1)
o 9

where £),(GMN, W) is the Lagrangian of the matter fields
Wi and Q is a closed subspace of F®. Variation of the action
gives

55 — / d6U |g| <RMN - %gMNR> 5QMN
0
+ / d*U/|GIGMN SRy
Q

+2;</ dUS(\/|G|Ly) =0
9]

After a straightforward calculation, we acquire
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GMN SRy = D [GMNSTK, —GTE SN
— Dy [GMNoT = GYNT,,, 6NY]
+G"MN T2\ kST,

+g* [5Nll/77?’ﬂb +5Nllz(yKAyFﬁb _R;ub)] (B3)

Applying Stoke’s theorem to the above result and (B2), and
assuming that the boundary terms vanish, leads to the
following relation:

GNSRyy = TAkalGMN Ty — ”DF,Ifb‘SN H
— TANAIGMNSTK - — QMNFKM}ﬁN,}(’]
+GMN 7 ST
+ GBNY Ry, + SN T 4, T, — RS, ).
(B4)
In the Palatini method, the fields GM", T'};y and N¢ are

varied independently from each other, therefore (B2) and
(B4) provide the equations

1
Rmny — EgMNR = &7 yn (BS)
GMINTAgn + GME(TN g — TA140%) =0 (B6)
and
yANAgMNFI}i/[ b= TAKAgﬂKFIIfh

+ G (&R, + T T8, = RE,,) =0 (B7)

where

2 6(\/|G|L

| g‘ 5gMN
We remark that the lhs of (B7) vanishes identically for the
choice of connection (15).

Alternatively, we can variate the action by considering all
the fields dependent on the metric GMV. For the specific
connection components given in (15), the nonvanishing
part of Eq. (B4) reads:

gMN (SRMN
= (8Y o8 — G"XGup) (DT k7 — T mr T#k2)8G*8
(B9)
where we have used Stoke’s theorem twice and eliminated

all the boundary terms. Combining (B2) and (B9) gives
Egs. (73) and (74).

APPENDIX C: GENERALIZED BIANCHI
IDENTITIES

The Bianchi identities constrain the curvature and torsion
tensors via the relations [84]:

Oamn{DaRE pyy + RELagWEyn} =0 (C1)

Oamn{DaWE iy + WKy WE vk + REaun} =0 (C2)
In our calculations we will use the symmetry
RE v = =R Lym

(C3)

which is obvious from the defining relation of the Riemann
tensor (19). Manipulating

RKLMN = gKRRRLMN (C4)

with the aid of (15) and (19), it can be shown that

1
RKLMN - i(XMXLgNK - XMXKgLN - XNXLgMK

+ XnXkGrum) + TR Tk — TR v ru

+ WEunT Lrk (Cs5)
From the above, it can be seen that generally
1R
RkLymn = EW mNXRrOxkL (Co)

However, it is obvious from (8) that only the latin upper
index elements of W are nonzero. Since this is index is
contracted with the derivative of the metric with respect to
the fiber variables, R k1) is always zero. Therefore, we

deduce the antisymmetry of R,y With respect to its first
two indices. 1.e.,

(€7)

RKLMN = _RLKMN

Again from (C5), and taking advantage of (C6) and (C7),
we prove
Ormn{Rirun + WrunTkre} =0 (C8)

which is equivalent to (C2), and
Rirmy = Runkr + WRunTrx = Wk Cnru

Lastly, from the above equation we can derive the sym-
metry properties of the generalized Ricci tensor:

RMN = RNM + WLRMFRLN - WLRNFRLM (C9)
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From the first identity (C1) we have:

GAEGM g (DARX Ly + Dy RE va + DR Lam
FRELARWRun + RE g WRya + RELveWRan) =0

and after some algebra we finally obtain

1
DALy + RARWER yu + ERKANRWRAK =0. (C10)
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