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In this work we present the foundations of generalized scalar-tensor theories arising from vector bundle
constructions, and we study the kinematic, dynamical, and cosmological consequences. In particular, over a
pseudo-Riemannian space-time base manifold, we define a fiber structure with two scalar fields. The
resulting space is a 6-dimensional vector bundle endowed with a nonlinear connection. We provide the
form of the geodesics and the Raychaudhuri and general field equations, both in the Palatini and metrical
methods. When applied at a cosmological framework, this novel geometrical structure induces extra terms
in the modified Friedmann equations, leading to the appearance of an effective dark energy sector, as well
as of an interaction of the dark mater sector with the metric. We show that we can obtain the standard
thermal history of the universe, with the sequence of matter and dark-energy epochs, and furthermore the
effective dark-energy equation-of-state parameter can lie in the quintessence or phantom regimes, or exhibit
the phantom-divide crossing.

DOI: 10.1103/PhysRevD.104.064018

I. INTRODUCTION

Modified gravity has attracted a large amount of research
for two reasons and thus motivations. First, at the purely
theoretical level, it improves the renormalizability of
general relativity and hence it may be the first step toward
gravitational quantization [1]. Second, at the phenomeno-
logical, cosmological, level, it is one of the two main ways
that can offer an explanation for the early- and late-time
accelerated phases of the expansion of the universe [2,3].
Hence, it has an advantage comparing to the alternative
way, which is to introduce by hand the inflaton or/and dark
energy sectors while maintaining general relativity as the
underlying gravitational theory [4,5].
Modified gravity theories can be obtained as extensions of

the Einstein-Hilbert Lagrangian through the addition of extra
terms, such as in fðRÞ gravity [6,7], in fðGÞ gravity [8], in

Weyl gravity [9], in Lovelock gravity [10], etc. Additionally,
they can be obtained through the insertion of extra scalar
fields, coupled with curvature invariants, such as in the
general class of scalar-tensor theories [11–14]. However, one
interesting class of modified gravity arises from the consid-
eration of alternative geometries, beyond the Riemannian
framework of general relativity. Thus, one can start from the
equivalent, torsional formulation of gravity and extend it
obtaining fðTÞ gravity [15], fðT; TGÞ gravity [16], etc.
Similarly, one can allow for nonmetricity, obtaining sym-
metric teleparallel gravity [17], fðQÞ gravity [18], etc.
Inspired by the above, one may proceed to the con-

struction of gravitational modifications through a more
radical modification of the underlying geometrical struc-
ture, namely considering Finsler or Finsler-like geometries
[19–41]. In the framework of these generalized metric
structures in a vector bundle, scalar-tensor theories can
naturally appear, and in particular the scalar fields play the
role of fibers or internal variables [42–45].
On the other hand, theoretical and observational cos-

mological evidence have indicated the existence of dark
matter sector [46–56]. Based on observational results, dark
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matter plays a significant role in the evolution of the
universe, especially concerning the growth of structures
[57]. Additionally, since its microphysics is unknown one
could have the interesting case in which dark matter
interacts with dark energy [58], a case that has significant
advantages since it can lead to the alleviation of the
coincidence problem [59] as well as of the H0 tension
[60]. Hence, the investigation of dark sectors in modified
theories of gravity and cosmology is a fundamental subject
for cosmological phenomena.
In the present work we are interested in constructing

Finsler-like geometrical structures,whichwill induce scalar-
tensor theory with two scalars-fibers models. In particular,
we consider a pseudo-Riemannian 4-dimensional space-
time with two fibers and we investigate the properties of F6

space-time, with non-holonomic structures, extracting the
Raychaudhuri and field equations. Finally, we apply these
geometrical generalized scalar-tensor theories on vector
bundle constructions on a cosmological framework, in order
to examine their cosmological implications on the effective
dark energy and dark matter sectors.
The paper is organized as follows. In Sec. II we present

the basic geometrical concepts of the theory, analyzing the
metric decomposition and the appearance of the geometric
dark sectors, investigating also the geodesic structure. In
Sec. III we consider the action on the fiber bundle, we
derive the field equations with both Palatini and metrical
methods, in holonomic and nonholonomic forms, and
finally construct the involved energy-momentum tensor,
incorporating the contributions of the dark matter sector. In
Sec. IV we examine the Raychaudhuri equations in the
context of the F6 bundle geometry. In Sec. V we proceed to
the application on a cosmological framework, showing the
appearance of an effective dark sector that has a purely
geometrical origin and which can lead to a universe
behavior in agreement with observations. Finally, in
Sec. VI we discuss the concluding remarks.

II. SCALAR-TENSOR THEORIES INDUCED
FROM THE VECTOR BUNDLE

In this section we present the basics of the geometrical
framework under consideration [42–45]. Firstly we will
review the basic structure of the Lorentz fiber bundle, then
we will describe the metric splitting and the appearance of
the geometric dark sectors, and finally we will proceed to
the geodesic investigation.

A. Basic structure of the Lorentz scalar
tensor fiber bundle

We consider a 4-dimensional manifoldM equipped with
coordinates xμ, μ ¼ 0;…; 3 and a Lorentzian metric gμνðxÞ
with signature ð−;þ;þ;þÞ on it. Over any open subset of
M we define a fiber structure with two scalar degrees
of freedom ϕð1Þ and ϕð2Þ. The resulting space is a 6

dimensional space-time fiber bundle, F6, over the
pseudo-Riemannian base manifold M, with local
coordinates fUMg ¼ fxμ;ϕag, which trivializes locally
to the product, M × fϕð1Þg × fϕð2Þg. Capital indices
K;L;M;N; Z… span all the range of values of indices
on a fiber bundle’s tangent space. Additionally, a coor-
dinate transformation on the fiber bundle maps the old
coordinates to the new as:

xμ ↦ x0μðxνÞ ð1Þ

ϕaðxÞ ↦ ϕ0aðx0Þ ¼ δabϕ
bðxÞ ð2Þ

where δab is the Kronecker symbol for the corresponding
latin indices a, b which take values in the range fð1Þ; ð2Þg
and the Jacobian matrix ∂x0μ

∂xν is nondegenerate.
In the space at hand, the adapted basis is defined as

fXMg ¼ fδμ; ∂ð1Þ; ∂ð2Þg ð3Þ

where

δμ ¼ ∂μ − Nð1Þ
μ ðxν;ϕaÞ∂ð1Þ − Nð2Þ

μ ðxν;ϕaÞ∂ð2Þ ð4Þ

with ∂μ ≡ ∂
∂xμ and ∂a ≡ ∂

∂ϕa. The fields Na
μðxν;ϕbÞ comprise

a special type of nonlinear connection and it is a funda-
mental structure of the framework under consideration,
since it connects the base manifold’s tangent space with the
one of the fiber. Furthermore, the dual basis is fXMg ¼
fdxμ; δϕð1Þ; δϕð2Þg where δϕa ¼ dϕa þ Na

μðxν;ϕbÞdxμ and
a ¼ 1, 2. Finally, the basis vectors transform as:

δ0μ ¼
∂xν
∂x0μ δν; ∂ 0

a ¼ δba∂b ð5Þ

where summations are implied over the ranges of values of
μ and a.
From its defining relations (3), (4), the noncommutative

nature of the adapted basis can be easily revealed.
Specifically we obtain

½XM; XN � ¼ WL
MNXL ð6Þ

where WL
MN are the structure functions of the adapted

base algebra which obey the Jacobi identity,1

↺M;N;LfXMWR
NL þWR

MSWS
NLg ¼ 0 ð7Þ

As can be directly observed, the nonzero components of the
structure functions are,

1↺M;N;L indicates summation with respect to the cyclic
permutation of the indices M, N, L.
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WL
MN ¼ fW̃a

μν;Wa
μbg ð8Þ

where

W̃a
μν ¼ δνNa

μ − δμNa
ν

Wa
μb ¼ ∂bNa

μ ð9Þ

The metric structure of the fiber bundle is defined as

G ¼ gμνðxÞdxμ ⊗ dxν þ vabðxÞδϕa ⊗ δϕb ð10Þ

Furthermore, the form of the fiber metric is assumed
to be

vabðxÞ ¼ δabϕðxÞ ð11Þ

and transforms as v0abðx0Þ ¼ δcaδ
d
bvcdðxÞ. This particular

choice (11) encodes the mutual independence of the fiber
scalar fields and their equivalent contribution in the internal
space geometry.
The covariant derivative of a base vector XM over E, with

respect to a base vector XN, is in general

DXN
XM ¼ ΓL

MNXL: ð12Þ

A special connection structure is chosen [45], such that
the nonvanishing components of the vector bundle con-
nection are2

ΓL
MN ¼ fLλ

μν; Lc
aν; Cc

μb; Cλ
abg: ð13Þ

The above local connections determine the action of the
covariant derivatives upon the adapted basis of the bundle.
Further details about the geometrical structure of our
consideration is given in the Appendix A.
Alongsidewith the general symmetry propertyΓL½MN�¼0

and under a trivial permutation of the indices, the general
metricity condition

DXM
G ¼ 0 ð14Þ

leads to the result

ΓL
MN ¼ 1

2
GRLðXMGNR þ XNGRM − XRGMNÞ: ð15Þ

As will soon be illustrated, relation (15) does not imply a
Levi-Civita tensor. The nonholonomic nature of the
adapted basis (6) gives rise to torsion contributions [see
relation (21)]. Taking into account the presumed special
connection structure (13) we arrive at the following explicit

expressions for the nonvanishing components of the vector
bundle special, linear connection:

Lμ
νλðxÞ ¼ Γμ

νλðxÞ ð16Þ

Ca
μb ¼ La

bμ ¼ δab
1

2ϕ
∂μϕ ð17Þ

Cμ
ab ¼ −

1

2
δabgμν∂νϕ ð18Þ

where Γμ
νλ is the Levi-Civita connection of the second

kind3

The curvature tensor of a linear connection is defined as

RK
LMN ¼XMΓK

LN −XNΓK
LM þΓR

LNΓK
RM −ΓR

LMΓK
RN

−WR
MNΓK

LR: ð19Þ

In the holonomic base limit, WL
MN ¼ 0, the generalized

curvature tensor (19) reduces to the standard Riemann
tensor.
The torsion tensor of the vector bundle is defined as

T L
MN ¼ 2ΓL½MN� þWL

MN ð20Þ

Since in our case ΓL½MN� ¼ 0, we have

T L
MN ¼ WL

MN ð21Þ

Analogously, we define the generalized Ricci tensor

RMN ≡ GL
KRK

MLN ¼ RL
MLN

¼ XLΓL
MN − XNΓL

ML þ ΓL
MNΓR

LR − ΓL
MRΓR

LN

þ ΓL
MRWR

NL ð22Þ

The last term casts the tensor nonsymmetric as can be
directly seen in (C9).
For the linear connection (16)–(18) we obtain the non-

zero components of the generalized Ricci tensor4

Rμν ¼ Rμν þ RðϕÞ
μν ð23Þ

Rab ¼ −
1

2
□ϕδab þ

1

2
δacð∂λϕÞWc

λb ð24Þ

Raμ ¼ Cν
abW̃b

μν ð25Þ

2Note that the selected connection structure is not the usual
d-connection which preserves by parallelism the horizontal and
vertical distributions [19].

3It is obvious from (8) that the structure functions WL
MN

nullify if all indices are space-time. Therefore, they do not add
torsion if restricted in the base manifold.

4Note that as is obvious from (C9) the generalized Ricci
tensor is nonsymmetric. Despite the fact that Rμa ¼ 0, we see
that Raμ ≠ 0
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where □≡DμDμ, Rμν is the Ricci tensor of Levi-Civita
connection and

RðϕÞ
μν ¼

1

2ϕ2
∂μϕ∂νϕ −

1

ϕ
DμDνϕþ 1

2ϕ
∂μϕWa

νa ð26Þ

the contribution of the pure scalar field.
Multiplying (18) with vab we can express the quantity

∂μϕ in terms of Cμ
ab. Indeed, it is easy to see that

∂μϕ ¼ −ϕvabCμ
ab ¼ −δabCμ

ab ð27Þ

The corresponding scalar curvature is

R ¼ gμνRμν þ vabRab ¼ Rþ RðϕÞ ð28Þ

where R is the Levi-Civita curvature and with the aid
of (27),

RðϕÞ ¼ −
2

ϕ
□ϕ − vab

�
1

2ϕ
∂μϕþWc

μc

�
Cμ

ab ð29Þ

Lastly, the generalized Einstein’s tensor is

EMN ¼ RMN −
1

2
RGMN ð30Þ

The tensor EMN contains extra terms that come from the
introduction of internal variables ϕð1Þ;ϕð2Þ and their deriv-
atives, giving a possible locally anisotropic contribution.

B. The geometrical effects of dark gravitational field

In the previous subsection we presented the underlying
geometrical structure of the scalar-tensor theories that are
induced from the vector bundle. Hence, we can now
proceed to the investigation of their effects on the physical
quantities such as the metric, and in particular of the
appearance of dark sectors.
In order to account for the effects of the geometry of

space-time on dark sectors, we follow the general study
elaborated in [61]. In particular, the metric gμνðxÞ of the
base manifold M is assumed to decompose into an
“ordinary” (O) and a “dark” matter sector (D)

gμνðxÞ ¼ gðOÞ
μνðxÞ þ gðDÞ

μνðxÞ ð31Þ

since from a physical point of view a unified description of
gravity may include the gravitational interaction of both
[62]. In the following, we postulate that the fiber space
remains unaffected by the dark sector.
In analogy with (31), the Levi-Civita connection admits

contributions from the ordinary (O) and dark matter (D)
energy densities alongside a term that arises from their
mutual interaction:

Γμ
νλðxÞ ¼ ΓðOÞμ

νλðxÞ þ ΓðDÞμ
νλðxÞ þ γμνλðxÞ ð32Þ

Substituting (32) in the definition relation Γμ
νλ ¼ gμρΓρνλ,

the interaction part γμνλ can be easily expressed in terms of
the inverse of the total, ordinary and dark matter metrics, as
well as the respective connection parts of the second kind,
namely

γμνλ ¼ ðgμρ − gðOÞμρÞΓðOÞ
ρνλ þ ðgμρ − gðDÞμρÞΓðDÞ

ρνλ ð33Þ

As it is evident from (27) the connection Cμ
ab depends

linearly on the inverse of the space-time metric. Therefore,
it should split in a manner similar to (32), i.e.,

Cμ
abðxÞ ¼ CðOÞμ

abðxÞ þ CðDÞμ
abðxÞ þ cμabðxÞ ð34Þ

where

CðOÞμ
ab ¼ −

1

2
δabgðOÞμν∂νϕ

CðDÞμ
ab ¼ −

1

2
δabgðDÞμν∂νϕ ð35Þ

and

cμab ¼ −
1

2
δabðgμν − gðOÞμν − gðDÞμνÞ∂νϕ ð36Þ

All other connections are not conditioned in such splittings,
since, as can be seen from (17), they are not directly related
to the metric of the base manifold.
In order to make manifest the contributions of the

ordinary, dark matter, scalar and interaction sectors in
the Ricci tensor, let us reformulate the above expressions
in a spirit analogous to [61]. We have,

Rμν ¼ RðOÞ
μν þ RðDÞ

μν þ rμν ð37Þ

where rμν expresses the interactions between ordinary and
dark matter.
In similar lines, we assume an analogous splitting for the

□ operator, namely

□ϕ ¼ ð□ðOÞ þ□
ðDÞ þ□Þϕ ð38Þ

where

□ϕ ¼ gμνDμDνϕ ¼ gμνð∂μ∂νϕ − Γλ
μν∂λϕÞ

□
ðOÞϕ ¼ gðOÞμνð∂μ∂νϕ − ΓðOÞλ

μν∂λϕÞ
□

ðDÞϕ ¼ gðDÞμνð∂μ∂νϕ − ΓðDÞλ
μν∂λϕÞ ð39Þ

Accordingly to (33), the interaction part □ can be
expressed in terms of Christofell symbols and of the
inverse of the total, ordinary and dark matter metrics.
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Considering all the above, we can now write

Rab ¼ RðOÞ
ab þRðDÞ

ab þ rab ð40Þ

where

RðOÞ
ab ¼ −

1

2
δab□

ðOÞϕ −
1

2
δacδ

deWc
μbCðOÞμ

de ð41Þ

RðDÞ
ab ¼ −

1

2
δab□

ðDÞϕ −
1

2
δacδ

deWc
μbCðDÞμ

de

rab ¼ −
1

2
δab□ϕ −

1

2
δacδ

deWc
μbcμde ð42Þ

Analogously with the above, the extra fiber contribution to
the Ricci scalar and the Einstein tensor can be straightfor-
wardly decomposed into ordinary, dark and interaction
sectors.

C. Geodesics

We close this section with an investigation of the
geodesic structure of the theory. In particular, we will
derive the geodesic equations imposing the autoparallel
condition on the vector tangent to the geodesic curve. Let

Y ¼ Yμδμ þ Ya∂a ð43Þ

be the tangent vector. Then from the autoparallel condition
DYY ¼ 0 we obtain the pair of geodesic equations

d2xμ

dτ2
þ Γμ

νλ
dxν

dτ
dxλ

dτ
þ Cμ

ab
δϕa

dτ
δϕb

dτ
¼ 0 ð44Þ

d
dτ

�
δϕa

dτ

�
þ La

bμ
dxμ

dτ
δϕb

dτ
¼ 0 ð45Þ

where

d
dτ

≡ dxμ

dτ
δμ þ

δϕa

dτ
∂a ¼ Y ð46Þ

Multiplying (44) with the mass of a test particle and
inserting (32), we can reveal the kinematic influence of
each of the sectors of our geometrical structure. Indeed we
acquire

m

�
d2xμ

dτ2
þΓðOÞμ

νλ
dxν

dτ
dxλ

dτ

�

¼−mðΓðDÞμ
νλþ γμνλÞ

dxν

dτ
dxλ

dτ
−mCμ

ab
δϕa

dτ
δϕb

dτ
ð47Þ

The three terms that appear on the right hand side of the
above equation account for the deviation from Riemannian
geometry. This deviation reflects the presence of dark
matter and its interaction with the ordinary sector and

reveal the influence of the hidden scalar fields on the
motion of particles. From the point of view of an observer
who does not take into account the existence of these
hidden entities, the three terms on the right are interpreted
as inertial forces.
Substituting (17) and (18), into (44) and (45) we obtain

d2xμ

dτ2
þ Γμ

νλ
dxν

dτ
dxλ

dτ
−
1

2
δab∂μϕ

δϕa

dτ
δϕb

dτ
¼ 0 ð48Þ

d
dτ

�
δϕa

dτ

�
þ 1

ϕ
∂μϕ

dxμ

dτ
δϕa

dτ
¼ 0 ð49Þ

It can be easily verified that (49) has the exact solution

δϕa

dτ
¼ Ca

ϕ
ð50Þ

where Ca are constants of integration. Inserting the above
solution into (48) leads to

d2xμ

dτ2
þ Γμ

νλ
dxν

dτ
dxλ

dτ
−
1

2
∂μϕ

C2

ϕ2
¼ 0 ð51Þ

where C2 ¼ ðCð1ÞÞ2 þ ðCð2ÞÞ2 and Γμ
νλ is given in (32).

Additionally, it is instructive to examine separately the
special case where the geodesics for the Riemannian part is
given by

d2xμ

dτ2
þ Γμ

κλ
dxκ

dτ
dxλ

dτ
¼ 0 ð52Þ

and for the internal structure by

δϕa

dτ
¼ 0 ð53Þ

or equivalently,

dϕa

dτ
¼ −Na

μ
dxμ

dτ
ð54Þ

In our model the form of the geodesics is given by both the
relations (52), (54). The nonlinear connection Na

μ inter-
connects the differential of the internal quantity ϕa with the
velocity of the observer. Such an interconnection can be
interpreted as a manifestation of a condition of parallel-
ism (53).
Lastly, note that considering a specific form for the

nonlinear connection, for instance

Na
μ ¼

AðϕÞ
2ϕ

∂μϕϕ
a ð55Þ

Eq. (54) has the solution
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ϕaðxÞ ¼ ϕa
0ðxÞe−

1
2

R
τ

0
AðϕÞdðlnϕÞ ð56Þ

where ϕa
0ðxÞ ¼ ϕaðxÞjτ¼0.

III. FIELD EQUATIONS

In the previous section we presented the geometric
structure and the kinematic variables of the examined
construction. In the present section we proceed to physics.
In particular, we consider the action on the fiber bundle, we
derive the field equations with both Palatini and metrical
methods, we examine the Raychaudhuri equations, and we
finally construct the involved energy-momentum tensor.
The total action of the theory is

S ¼ SG þ 2κSM

¼
Z
Q
d6U

ffiffiffiffiffiffi
jGj

p
GABRAB þ 2κ

Z
Q
d6U

ffiffiffiffiffiffi
jGj

p
LM ð57Þ

where LMðGMN;ΨiÞ is the matter Lagrangian, Ψi the
various matter fields described collectively, and Q a closed
subspace of F6. For additional details we refer to the
Appendix B.

A. Palatini method

Firstly, we follow the Palatini method in which the
variation is performed independently for the fields GAB and
ΓL
MN (see Appendix B). If we assume a metrical compatible

connection we acquire

RðMNÞ −
1

2
GMNR ¼ κT MN ð58Þ

and

GMNT A
KA þ GMLðT N

LK −T A
LAδ

N
KÞ ¼ 0 ð59Þ

whereT K
MN is the torsion of the connection, given in (20),

and specifically in our case (21). The coupling constant κ in
(58) will be determined in the general relativity (GR) limit
of the theory. As is evident from (8), the only independent
nonzero components of the torsion tensor are the following:

T a
λb ¼ Wa

λb ¼ ∂bNa
λ

T a
λν ¼ W̃a

λν ¼ δνNa
λ − δλNa

ν : ð60Þ

From these expressions, as well as (59) we acquire

Wa
λb ¼ 0 ð61Þ

W̃a
λν ¼ 0; ð62Þ

i.e., we find that all the torsion components vanish. We see
that the Palatini field equations force the connection to

coincide with the Levi-Civita connection, in total agree-
ment with the Levi-Civita theorem. Therefore, if one
wishes to study a nonholonomic structure of the adapted
basis, one has to abandon the Palatini method of variation.
Nevertheless, let us continue the study and analyze the field
equations (58). On the spacetime manifold we have

Eμν þ
1

ϕ
gμν

�
□ϕ −

1

4ϕ
∂λϕ∂λϕ

�
−
1

ϕ
DμDνϕ

þ 1

2ϕ2
∂μϕ∂νϕ ¼ 8πGT μν ð63Þ

while on the fiber

�
−Rþ 1

ϕ
□ϕ −

1

2ϕ2
∂μϕ∂μϕ

�
vab ¼ 16πGT ab ð64Þ

where Eμν is the standard Einstein’s tensor of GR while the
extra terms in (63) come from the spacetime components of
the generalized tensor (30). One can recover the standard
Einstein field equations of GR from (63) in the limit
∂μϕ → 0, in which the coupling constant is determined as
κ ¼ 8πG, with G the Newtonian gravitational constant. We
mention that the energy-momentum tensor corresponding
to the Lagrangian of the matter fields LMðGMN;ΨiÞ is
defined in the standard way. Specifically, we have

T μν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LMÞ
δgμν

ð65Þ

for its space-time components, and

T ab ¼ −
2ffiffiffi
v

p δð ffiffiffi
v

p
LMÞ

δvab
ð66Þ

for its fiber components.
In summary, from relations (63), (64) we deduce that the

field equations include additional terms because of fiber
fields and dark matter considerations.

B. Metrical method

In this subsection we proceed to the extraction of the
field equations following the metrical method. In particular,
we will derive the bundle field equations by varying the
action (57) with only respect to the metric GMN . Doing so,
we obtain (see Appendix B):

EðMNÞ þ ðδLðMδRNÞ − GLRGMNÞðDLWA
RA −WB

LBWC
RCÞ

¼ κT MN ð67Þ

The fields of curvature and torsion must obey the Bianchi
identities (C1), (C2). Specifically, the first identity takes the
form (see Appendix C):
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DAEAN þRA
RWR

NA þ 1

2
RKA

NRWR
AK ¼ 0 ð68Þ

In order to derive a generalization of the continuity
equation we isolate the symmetric part of the tensor
EAN . Employing (C9) we write,

DAEðANÞ þRA
RWR

NA þ 1

2
RKA

NRWR
AK

þ 1

2
DAðWL

RAΓR
LN −WL

RNΓR
LAÞ ¼ 0: ð69Þ

Now, from (67) we see that,

DAEðANÞ þDAHAN ¼ QN ð70Þ

where

HAN ¼ ΔLR
ANðDLWK

RK −WK
LKWS

RSÞ

ΔLR
AN ¼ 1

2
ðGL

AGR
N þ GL

NGR
AÞ − GLRGAN

QN ¼ κDAT AN: ð71Þ

Thus, inserting (69) into (70) we arrive at a final expression
for the dissipation vector, namely

QN ¼ RA
RWR

AN þ 1

2
RAK

NRWR
AK

þ 1

2
DA½WL

RNΓR
LA −WL

RAΓR
LN

þ 2ΔLR
ANðDLWK

RK −WK
LKWS

RSÞ�: ð72Þ

As it is evident from the above expression, the conservation
of energy is restored, namely QN ¼ 0, when the torsions
WL

MN are set to zero.
In terms of the space-time and fiber components the

generalized field equation (67) respectively reads,

EðμνÞ þ ðδλðμδρνÞ − gλρgμνÞðDλWc
ρc −Wd

λdWc
ρcÞ

þ vabgμνCλ
abWc

λc ¼ κT μν ð73Þ

EðabÞ − gλρvabðDλWc
ρc −Wd

λdWc
ρcÞ

þ Cλ
abWc

λc ¼ κT ab ð74Þ

where Eμν and Eab are the spacetime and fiber components
respectively of the generalized Einstein’s tensor (30). These
equations must reproduce general relativity in the appro-
priate limit. We find that for _ϕ → 0 and WK

MN → 0

Eqs. (73) reduce to the Einstein field equations of GR
for the metric gμν, provided that the coupling constant takes
the value κ ¼ 8πG, where G is the Newtonian gravitational
constant. In general, the value of κ depends on the structure

of the geometry. Moreover, in this limit, Eq. (74) gives the
condition:

T
H
¼ T

V
ð75Þ

with

T
H
¼ gμνT μν ¼ T μ

μ

and

T
V
¼ vabT ab ¼ T a

a

i.e., the traces of the spacetime energy momentum T
H
and of

the fiber one T
V
are equal in the GR limit.

From (B8) and assuming that the matter Lagrangian LM
depends on the metric GMN but not on its derivatives we
acquire:

T μν ¼ −2
∂LM

∂gμν þ LMgμν ð76Þ

T ab ¼ −2
∂LM

∂vab þ LMvab ð77Þ

From (75), (76) and (77) we obtain the GR limit condition
for the matter Lagrangian:

vab
∂LM

∂vab ¼ −LM þ gμν
∂LM

∂gμν ð78Þ

In this limit and for a matter fluid with a barotropic equation
of state Pmðρð0ÞÞ and a conserved current Dμðρð0ÞYμÞ ¼ 0,
with ρð0Þ the rest mass energy density, the energy-
momentum tensor reads [63]:

T μν ¼ −ρð0Þ
∂LM

∂ρð0Þ Y
μYν þ

�
LM

∂LM

∂ρð0Þ − ρð0Þ
�
gμν ð79Þ

where the following relation has been used:

dρð0Þ

dgμν
¼ 1

2
ρð0Þðgμν þ YμYνÞ: ð80Þ

Comparison of (79) with (117) gives

∂LM

∂ρð0Þ ¼ −
ρm þ Pm

ρð0Þ
; LM ¼ −ρm: ð81Þ

Finally from (81) and (78) we obtain
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vab
∂LM

∂vab ¼ ρm þ gμν
∂LM

∂ρð0Þ
dρð0Þ

dgμν
⇔

2

ϕ

∂ρm
∂ϕ ¼ ρm

2
þ 3Pm

2
: ð82Þ

This equation determines the dependence of the barotropic
fluid’s energy density ρm on the scalar field ϕ at the
GR limit.

C. Incorporation of dark matter in
energy-momentum tensor

We close this section by discussing the energy-
momentum tensor. The theory at hand allows for two
sources of dark matter. A purely geometrical one, in which
dark matter is attributed to the effective properties of the
bundle structure, and a fluid/particle one in which dark
matter contributes directly to the energy momentum tensor.
Following the geometrical method, we rearrange the

terms of (73), so that only the standard GR Einstein’s tensor
appears on the lhs:

Eμν ¼ κT̃ μν ð83Þ

where

T̃ μν ¼ T μν þ T ðϕÞ
μν ð84Þ

and

T ðϕÞ
μν

¼ −
1

κ
½EϕðμνÞ þ ðδκðμδλνÞ − gκλgμνÞðDκWa

λa −Wb
κbWc

λcÞ
þ vabgμνCλ

abWc
λc�: ð85Þ

Hence, the geometrical properties of our model can be
viewed as additional terms to the energy momentum tensor
and therefore, in the GR framework, interpreted as effective
dark matter.
In addition to this, one can directly include dark matter

contributions to the energy momentum tensor [61],

T μν ¼ T ðOÞ
μν þ T ðDÞ

μν þ τμν ð86Þ

so that (84) becomes

T̃ μν ¼ T ðOÞ
μν þ T ðDÞ

μν þ T ðϕÞ
μν þ τμν: ð87Þ

The above sectorial decomposition of the energy-
momentum tensor induces the corresponding decomposi-
tion of the generalized Einstein’s tensor. From the above
relation we notice that the total form of the energy
momentum tensor T̃ μν includes the fiber contributions as
well as the dark matter sector and its interactions with

ordinary matter. It is possible that a conformal relation
between ordinary and dark matter exists [53].

IV. RAYCHAUDHURI EQUATIONS

It is known that the Raychaudhuri’s equations describe
the evolution of the acceleration of the universe through the
gravitating fluid. Their form depends on the metrical
structure of space, i.e., in spaces with generalized metric
structure and torsion as in a Finsler space-time [44]. The
Raychaudhuri’s equations are produced by the deviation of
nearby geodesics or fluid lines and monitor their evolution.
In our case, they are twofold extended. On the one hand,
with the introduction of the scalars ϕð1Þ, ϕð2Þ and on the
other, with the inclusion of the dark sector.
In order to examine the local behavior of a single,

timelike geodesic among the congruence, let us assume the
tangent vector,

YM ≡
�
dxμ

dτ
;
δϕa

dτ

�
ð88Þ

which satisfies the autoparallel condition along the track of
the geodesic

DYY ¼ 0: ð89Þ

Furthermore, we assume that τ is properly chosen in order
for YM to have a unit norm,5 namely

GMNYMYN ¼ −1: ð90Þ

The 2nd rank tensor

BM
N ¼ DNYM ¼ XNYM þ ΓM

LNYL ð91Þ

measures the failure of the separation vector between
adjacent geodesics to be parallelly transported along the
congruence [64,65]. From the autoparallel condition, we
obtain

YNBMN ¼ 0 ð92Þ

and from (90) we get

DMðYNYNÞ ¼ 0 ⇒ YMBMN ¼ 0: ð93Þ

Additionally, we can separate the space part of the metric,
making use of the projective tensor HMN,

5This assumption is consistent with the definition of the
geodesic parameter, (46). It does not alter the signature of the
Riemannian metric, and forces the extra fiber variables to behave
as space-like components. The fact that the extra degrees of
freedom do not transform covariantly is not incompatible with the
existence of a comoving observer in the bundle F6.
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GMN ¼ HMN − YMYN: ð94Þ

Indeed, it is easy to see that,

HMNYN ¼ 0: ð95Þ

As a 2nd rank tensor, BMN can be decomposed into its
irreducible components, namely its trace, traceless sym-
metric and antisymmetric part. In particular, the trace of the
tensor BMN is called expansion, i.e.,

Θ¼GMLGNRBMNHLR¼BMNHMN ¼BM
M ¼DMYM ð96Þ

and is a measure of the volume change of a sphere of test
particles centered on the geodesic. The symmetric, traceless
part of the same tensor is called shear:

SMN ¼ BðMNÞ −
1

5
ΘHMN ð97Þ

and describes the shape distortion of the test particles from
the initial sphere to an ellipsoid. Lastly, the antisymmetric
part of the tensor is called rotation

ΩMN ¼ B½MN� ð98Þ

and describes the rotation of the initial sphere of test
particles.
Now, the 2nd rank tensor BMN can be written in terms of

its irreducible components as

BMN ¼ 1

5
ΘHMN þ SMN þΩMN ð99Þ

Taking into account (89), the definition of the Riemann
tensor (19) and the fact that

½DL;DN �YM ¼ WR
LNDRYM −RR

MLNYR ð100Þ

we obtain that the covariant derivative of BMN along the
geodesic is

YLDLBMN ¼ WR
LNYLBMR −RR

MLNYLYR

− BL
NBML: ð101Þ

Taking the trace of the above equation we result to

dΘ
dτ

¼ WL
MNYMBN

L −RMNYMYN − BMNBNM: ð102Þ

Written in terms of the irreducible components of BMN , the
above equation provides the extension of the Raychaudhuri
equation on a general space-time vector bundle, namely

dΘ
dτ

¼ WL
MNYMBN

L −RMNYMYN

−
1

5
Θ2 − SMNSMN þΩMNΩMN: ð103Þ

For the specific choice of special connection structure (13)
we acquire

Θ ¼ divY þ d
dτ

½lnð
ffiffiffiffiffiffiffi
−G

p
Þ� ¼ θ þ θðϕÞ ð104Þ

where divY ¼ XMYM, G ¼ ϕ2g is the determinant of the
bundle metric, and

θ ¼ ∇μYμ ¼ ∂μYμ þ d
dτ

½ln ffiffiffiffiffiffi
−g

p � ð105Þ

θðϕÞ ¼ ∂aYa − Na
μ∂aYμ þ d

dτ
ðlnϕÞ: ð106Þ

To the standard expansion θ, a contribution of purely
geometric origin θðϕÞ is added. It is produced by the scalars
ϕðaÞ, the nonlinear connection Na

μ and the fiber components
of the tangent vector Ya. The form and the overall sign of
this contribution (106) is directly related to the kinematics
of the universal evolution and under certain circumstances
it provides a triggering inflation mechanism. Especially, in
the case of an inflaton scalar field, the contribution of the
volume θðϕÞ will be positive and an increase of volume can
appear.
In the same manner we can calculate each of the terms of

(103). For the nonholonomic term we obtain

WL
MNYMBN

L ¼ W̃a
μνYμDaYν

þWa
μbðYμDaYb − YbDaYμÞ: ð107Þ

The generalized tidal term decomposes into its Riemannian
part plus the additional contributions that rise from the
additional geometric structure

RMNYMYN ¼ RμνYμYν þ RðϕÞ
μνYμYν þRabYaYb

þ Cν
abW̃b

μνYaYμ ð108Þ

where

Sμν ¼ σμν þ SðϕÞμν

Sab ¼
1

2
ð∂bYa þ ∂aYb − 2Cμ

abYμÞ −
1

5
ΘHab

Sμa ¼ ð∂aYμ þ δμYa − 2Cb
μaYbÞ −

1

5
ΘHμa ð109Þ

and
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σμν ¼ ∇ðνYμÞ −
1

3
θHμν

SðϕÞμν ¼
1

15
ð2θ − 3θðϕÞÞHμν −

1

2
ðNa

μ∂aYν þ Na
ν∂aYμÞ:

ð110Þ

Finally, we can acquire a similar decompositions for the
generalized rotation too, namely

Ωμν ¼ ωμν þ ΩðϕÞ
μν

Ωab ¼
1

2
ð∂bYa − ∂aYbÞ

Ωμa ¼
1

2
ð∂aYμ − δμYaÞ ð111Þ

where

ωμν ¼ ∇½νYμ�

ΩðϕÞ
μν ¼

1

2
ðNa

μ∂aYν − Na
ν∂aYμÞ: ð112Þ

Assembling all the pieces together we obtain

d
dτ

ðθ þ θðϕÞÞ ¼ −RμνYμYν −
1

3
θ2 − σμνσμν þ ωμνωμν þQ

ð113Þ

with

Q¼ W̃a
μνYμ∂aYνþWa

μbðYμDaYb −YbDaYμÞ

−RðϕÞ
μνYμYν−RabYaYbþ 2

15
θ2−

1

5
½2θθðϕÞ þ ðθðϕÞÞ2�

−SðϕÞμνSðϕÞμν− 2σμνSðϕÞμν −SabSab − 2SμaSμa

þΩðϕÞμνΩðϕÞ
μνþ 2ωμνΩðϕÞ

μν

þΩabΩabþ 2ΩμaΩμa: ð114Þ

As we can see from (113)Q disturbs the rate of the volume
change for a number of reasons. First, because of the
interaction between the volumes θ and θðϕÞ, second due to
the contribution of the scalar fields ϕðaÞ and lastly because
of the presence of the nonlinear connection Na

μ and the
torsion functions W̃a

μν, Wa
μb.

The generalized tidal field (108) includes the standard
Riemann contribution (37) and additional terms which can
affect the evolution of the gravitational fluid for possible
singularities/conjugate points in the universe. It is obvious,
because of extra internal geometrical concepts of fiber-
fields ϕðxÞ, of the nonlinear connection Na

μ in the metrical
structure of our model F6 and of the introduction of the
dark gravitational field. In the framework of our space, F6

and for a given congruence of timelike geodesics, the
expansion Θ, shear Sμν and rotation Ω are described, in a

generalized form, in Eqs (96), (97), (98) which provide us
the generalized type of Raychaudhuri equation (113). The
extra terms affect the variation of the volume during the
evolution of fluid lines (focusing/defocusing) in the accel-
erating expansion of the universe. This is possible due to
the perturbation of the deviation equation of nearby geo-
desics or curves.
In a comoving frame, the term in Eq. (114) involving the

structure functions W̃a
μν vanishes. As we will see later, this

is in agreement with the generalized Friedmann equations
for this model. Specifically, in those equations, in which the
matter fluid is at rest, no such term appears. This is an
important test for the consistency of this model because the
generalized Raychaudhuri equation (113) should not give
additional information on the kinematics of the FRW
comoving frame. It is worthwhile to mention that for a
constant nonlinear connection the above equations can be
drastically simplified.
With the aid of the bundle field equations (67) we

acquire

RMNYMYN

þ ðDMWA
NA −WB

MBWC
NCÞ

�
YMYN −

1

4
GMN

�

¼ κ

�
T MNYMYN þ 1

4
T
�

ð115Þ

where T ¼ T MNGMN . The sign of the generalized tidal
field determines the evolution of the volume of the fluid
lines. It is evident that it does not only depend on the energy
and current density of matter, but also on the structure of
the algebra of the adapted basis.

V. COSMOLOGY WITH NONLINEAR
CONNECTION

In the previous sections we presented the geometric
formalism in which generalized scalar-tensor theories and
dark gravitational sectors are induced from the vector
bundle. In this section we proceed to the explicit cosmo-
logical application of such constructions.
In order to construct a cosmological framework, we need

to extend the standard spatially homogeneous and isotropic
Friedmann-Robertson-Walker (FRW) metric of ordinary
Riemannian geometry and GR on the fiber bundle E. In
particular, we consider the flat case of the former (k ¼ 0),
as the simplest one in GR, and extend it to account for the
additional degrees of freedom of E in the following way:

G ¼ −dt ⊗ dtþ a2ðtÞðdx ⊗ dxþ dy ⊗ dyþ dz ⊗ dzÞ
þ ϕðtÞðδϕð1Þ ⊗ δϕð1Þ þ δϕð2Þ ⊗ δϕð2ÞÞ ð116Þ

We mention here that the observational constraints on the
(almost zero) spatial curvature have been extracted under
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the consideration of the usual FRW metric in Riemannian
geometry, and thus in principle one cannot deduce that the
same feature would necessarily hold in the case of the
present extended geometric structure. Nevertheless, since
in our work we are interested in performing a first
cosmological application, we impose zero spatial curvature.
As one can see, the first line of (116) is the standard
4-dimensional spatially flat FRW metric, while the sec-
ond line arises from the additional structure of the Lorentz
fiber bundle. The additional degrees of freedom of the
metric as well as the anholonomicity of the adapted basis
are expected to enrich the dynamics of space-time, com-
pared to the standard spatially isotropic and flat FRW
cosmology [66]6

Moreover, we consider the matter sector to correspond to
a perfect fluid, with energy-momentum tensor of the form

T μν ¼ ðρm þ PmÞYμYν þ Pmgμν ð117Þ

with ρm is the energy density, Pm the pressure and Yμ the
bulk 4-velocity of the fluid.
We will first study the equations derived from the

metrical method, since the Palatini equations occur as a
special case of the former. For the spacetime (116), and
with the perfect fluid (117), the nondiagonal components of
the field equations (73), (74) give

W̃a
0i
_ϕ ¼ 0;

½Wð1Þ
0ð2Þ þWð2Þ

0ð1Þ� _ϕ ¼ 0

Wa
iaWb

jb ¼ 0 ð118Þ

for i ≠ j, and

Wa
ia

�
_ϕ

4ϕ
−H −Wb

0b

�
¼ 0 ð119Þ

where 0 stands for the coordinate time component, i; j ¼ 1,
2, 3 for the spatial components, a; b ¼ ð1Þ; ð2Þ for the fiber
components, and a dot denotes differentiation with respect
to time: _ϕ ¼ dϕ

dt . Furthermore from (118) and the spatial

isotropy of (116) and assuming that _ϕ ≠ 0, we acquire

Wa
ia ¼ 0 ¼ W̃a

0i

and

Wð1Þ
0ð2Þ ¼ −Wð2Þ

0ð1Þ:

Applying the general field equations (73) and (74) for a
nontrivial nonlinear connection in the case of the metric
(116), and taking into account the above relations, we
finally obtain:

3H2 þ 3H

�
_ϕ

ϕ
−Wþ

�
−Wþ

_ϕ

ϕ
þ

_ϕ2

4ϕ2
¼ 8πGρm ð120Þ

2 _H þ ðWþÞ2 − _Wþ −
_ϕ2

2ϕ2
þH

�
Wþ −

_ϕ

ϕ

�

−
1

2ϕ
ðWþ _ϕ − 2ϕ̈Þ ¼ −8πGðρm þ PmÞ ð121Þ

and

1

ϕ
ðϕ̈þ 3H _ϕÞ −

_ϕ

2ϕ

�
3Wþ þ

_ϕ

ϕ

�
þ 6ð _H þ 2H2Þ

− 6HWþ þ 2ðWþÞ2 − 2 _Wþ ¼ −8πGT
V

ð122Þ

where we have defined

Wþ ¼ Wa
0a: ð123Þ

These are the two modified Friedmann equations and the
scalar-field (Klein-Gordon) equation, for the scenario at
hand. Indeed, as we can see we do obtain generalized
scalar-tensor theories from the specific vector bundle model
that we have constructed. Note, that according to (75) and
(117), in the general relativity limit we have,

T
V
¼ −ρm þ 3Pm

Therefore in the general case we can consider the trace as

T
V
¼ −ρm þ 3Pm þ T̃

where we explicitly see that T̃ is a correction over the
GR limit.

A. Dark energy

Let us now proceed to the investigation of the modified
Friedmann equations (120), (121). Observing their form,
we deduce that we can write them in the standard way,
namely

3H2 ¼ 8πGðρm þ ρeffÞ ð124Þ

2 _H ¼ −8πGðρm þ ρeff þ Pm þ PeffÞ ð125Þ

6To examine whether the symmetries of the standard FRW
solution persist, a careful and meaningful definition of these
symmetries should be given in the current framework of extended
space-time. The most consistent way to do this is by means of Lie
derivatives and extended Killing vectors on the bundle E or by
direct implementation of the method of complete lifts [35]. Using
these tools, we could construct spatially homogeneous and
isotropic cosmological solutions that may even extrapolate the
classification into spatially flat, closed or open. This would be an
interesting topic for a future project.
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having defined an effective dark energy sector with energy
density and pressure respectively as

ρeff ¼
1

8πG

�
_ϕ

ϕ
Wþ −

_ϕ2

4ϕ2
− 3H

�
_ϕ

ϕ
−Wþ

��
ð126Þ

Peff ¼
1

8πG

�
ðWþÞ2 − _Wþ − 2HWþ −

_ϕ2

4ϕ2

þ 1

2ϕ
ð4H _ϕ − 3Wþ _ϕþ 2ϕ̈Þ

�
: ð127Þ

Hence, the effective dark energy sector incorporates all the
extra geometrical information that arises from the vector
bundle construction.
We can define the equation-of-state parameter for the

effective dark-energy sector as

weff ≡ Peff

ρeff
: ð128Þ

According to the definitions (126), (127), we can see that
weff can lie in the quintessence (weff > −1) or in the
phantom (weff < −1) regime, or experience the phantom-
divide crossing during the evolution. The fact that we can
effectively obtain a phantom behavior without imposing by
hand phantom fields, is an advantage of the scenario and
reveals the capabilities of the bundle constructions. Note
that weff can be even exactly equal to −1 if one imposes the
specific condition

_ψ þ 1

2
ψ2 −Hψ −

1

2
Wþψ ¼ _Wþ −W2þ −HWþ ð129Þ

where ψ ≡ _ϕ
ϕ, in which case we obtain a cosmological

constant of effective origin, although our initial action does
not contain an effective cosmological constant.
Finally, using the above definitions we can examine the

validity of the energy conditions:
(i) Weak: ρeff ≥ 0, ρeff þ Peff ≥ 0
(ii) Strong: ρeff þ Peff ≥ 0, ρeff þ 3Peff ≥ 0
(iii) Null: ρeff þ Peff ≥ 0
(iv) Dominant: ρeff ≥ jPeff j
We proceed to the specific investigation the cosmologi-

cal behavior that is induced from the scenario at hand. In
particular, we elaborate the Friedmann equations (124),
(125) numerically, and we use the usual expression for the
redshift 1þ z ¼ 1=a (the present scale factor is set to
a0 ¼ 1) as the independent variable. This expression for the
redshift is justified by two points: First, we consider tra-
jectories of the form (52), (53) which effectively describe
classic GR geodesics, and second the spacetime part
of the metric (116) is identical to the classic spatially flat
FRW metric of GR. Moreover, we introduce the standard
density parameters, namely Ωm ≡ 8πGρm=ð3H2Þ and

Ωeff ≡ΩDE ¼ 8πGρeff=ð3H2Þ, for the matter and effec-
tive dark energy sector respectively. Concerning the ini-
tial conditions we choose them in order to obtain
Ωeffðz ¼ 0Þ≡Ωeff0 ≈ 0.69 and Ωmðz ¼ 0Þ≡ Ωm0 ≈ 0.31
in agreement with observations [67], while for the matter
sector we impose dust equation of state, namely wm ≡
Pm=ρm ¼ 0.
In the upper graph Fig. 1 we present ΩDEðzÞ and ΩmðzÞ

where we observe that we obtain the standard thermal
history of the universe, namely the matter and dark
energy eras. Additionally, in the lower graph Fig. 1 we
depict the effective dark-energy equation-of-state param-
eter weff ≡ wDE, where we can see that in this specific
example the effective dark energy sector experiences the
phantom-divide crossing during the cosmological evolu-
tion. In order to examine in more detail the behavior of
wDE, in Fig. 2 we present its evolution for various small
corrections T̃ . As we can see, we can obtain a rich
behavior, and an effective dark energy sector that can be
quintessencelike, phantomlike, or experience the phantom-
divide crossing. These properties cannot be easily acquired
in the usual scalar-tensor theories, and this reveals the
capabilities of the construction at hand.
Let us examine in more detail the conservation equations

in the scenario at hand. As expected, the energy densities
and pressure appearing in the Friedmann equations (124),
(125) satisfy the continuity equation

_ρm þ _ρeff þ 3Hðρm þ ρeff þ Pm þ PeffÞ ¼ 0: ð130Þ

Using (122) we can rewrite it as

FIG. 1. Upper graph: the evolution of the effective dark energy
density parameter ΩDE (black-solid), as well as of the matter
density parameterΩm (red-dashed), as a function of the redshift z.
Lower graph: The evolution of the corresponding dark-energy
equation-of-state parameter wDE. We have imposed the initial
conditions ΩDEðz ¼ 0Þ≡ ΩDE0 ≈ 0.69 [67].
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_ρm þ 3Hðρm þ PmÞ þ
_ϕ

2ϕ
ðρm þ 3Pm þ T̃ Þ ¼ −

1

8πG
Q0

ð131Þ

where the time component of the dissipation vector (72) is
calculated as

Q0 ¼
1

4ϕ2
½12H2ϕ2 þ 12ϕ2 _H þ 6Hϕð2Wþϕ − _ϕÞ

−3 _ϕ2 þ 4ϕðWþ _ϕþ ϕ̈Þ�Wþ ð132Þ

Note that this equation can also be obtained from the time
component of (71) (all other components of (71) give trivial
equations). The dissipation vector encodes the energy-
momentum tensor potential nonconservation with respect
to the special connection of F6. An interesting observation
is that in the absence of matter, Eqs. (120), (121), and (122)
are independent, contrary to the standard scalar-tensor
models where only two out of the three equations are.
Therefore, in the absence of matter, Eq. (131) implies that
Q0 should vanish, a condition that makes (122) dependent
on (120) and (121), which is then a self-consistency
verification of the scenario.
In the general case the combination of (120) and (121)

does not reproduce (122), exactly due to Q0. However,
observing the form of (131), we deduce that if we define

Q̃≡ −
_ϕ

2ϕ
ðρm þ 3Pm þ T̃ Þ − 1

8πG
Q0 ð133Þ

then (130) and (131) can be rewritten as

_ρm þ 3Hðρm þ PmÞ ¼ Q̃ ð134Þ

_ρeff þ 3Hðρeff þ PeffÞ ¼ −Q̃ ð135Þ

As we can see, Q̃ represents the interaction rate between
matter and effective dark energy sector, which lies at the
basis of the matter nonconservation [68,69]. Therefore, in
the general case the scenario at hand exhibits an interaction
between the matter component and the dark energy sector
that quantifies the novel geometric structure of the vector
bundle. This reveals the capabilities of the model, since
interacting cosmology is known to lead to very rich
phenomenology [59,70–73] and among others it can
alleviate the coincidence problem [59,74] as well as the
H0 tension [60,75]. However, we stress that in the scenario
at hand the interaction between the dark sectors is not
imposed by hand, but it naturally arises from the intrinsic
geometrical structure of the bundle construction. Finally, in
the particular case where Q̃ ¼ 0, we obtain conservation of
matter and effective dark energy sectors, i.e., we obtain the
standard, noninteracting, cosmology.
We close this subsection by examining the special case

where the condition ∂ð1ÞN
ð1Þ
0 ¼ −∂ð2ÞN

ð2Þ
0 is imposed on

the nonlinear connection, which leads to Wþ ¼ 0. This is
also true when Na

0 is constant, which is a solution of the
Palatini field equations. In such a case, the modified
Friedmann equations (120), (121) become

3H2 þ 3H
_ϕ

ϕ
þ

_ϕ2

4ϕ2
¼ 8πGρm ð136Þ

2 _H −
_ϕ2

2ϕ2
−H

_ϕ

ϕ
þ ϕ̈

ϕ
¼ −8πGðρm þ PmÞ ð137Þ

while the Klein-Gordon equation (122) is simplified to

1

ϕ
ðϕ̈þ 3H _ϕÞ−

_ϕ2

2ϕ2
þ 6ð _Hþ 2H2Þ ¼ 8πGðρm − 3Pm − T̃ Þ

ð138Þ

Note that the interaction between matter and effective dark
energy sector is maintained.

B. Cold dark matter

One of the features of the construction at hand is that the
metric of the base manifold can be decomposed into an
ordinary and a dark matter piece according to (31). As a
result, the perfect fluid (117) can be decomposed into
ordinary and cold dark matter (CDM) sectors [61], which
using Eq. (86) leads to

T μν ¼ ðρðOÞ
m þ PðOÞ

m ÞYμYν þ PðOÞ
m ðgðOÞ

μνðxÞ þ gðDÞ
μνðxÞÞ

þ ρðDÞ
m YμYν: ð139Þ

Note that we have assumed that, due to spatial isotropy, the
ordinary matter and CDM fluids are at rest with respect to
the comoving grid, and thus they have the same 4-velocity

FIG. 2. The evolution of the dark-energy equation-of-state
parameter wDE as a function of the redshift z, for various small
corrections T̃ . We have imposed the initial conditions ΩDEðz ¼
0Þ≡ ΩDE0 ≈ 0.69 [67].
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Yμ, and moreover that the CDM fluid is pressureless as

usual (PðDÞ
m ¼ 0). Expression (139) can be decomposed into

ordinary, dark and interaction terms, respectively as

T ðOÞ
μν ¼ ðρðOÞ

m þ PðOÞ
m ÞYμYν þ PðOÞ

m gðOÞ
μνðxÞ ð140Þ

T ðDÞ
μν ¼ ρðDÞ

m YμYν ð141Þ

τμν ¼ PðOÞ
m gðDÞ

μνðxÞ: ð142Þ

In this case, the modified Friedmann equations (124), (125)
take the form

3H2 ¼ 8πG½ρðOÞ
m þ ρðDÞ

m þ ρeff � ð143Þ

2 _H ¼ −8πG½ρðOÞ
m þ ρðDÞ

m þ ρeff þ PðOÞ
m þ Peff �: ð144Þ

Additionally, the continuity equation (131) becomes

_ρðOÞ
m þ _ρðDÞ

m þ 3HðρðOÞ
m þ ρðDÞ

m þ PðOÞ
m Þ

¼ −
_ϕ

2ϕ
ðρðOÞ

m þ ρðDÞ
m þ 3PðOÞ

m þ T̃ Þ − 1

8πG
Q0: ð145Þ

We observe that this relation provides an effective source
term with respect to General Relativity. This term can be
traced to the fiber components of our special connection,
which provide the first term on the right hand side, and to
the dissipation term Q0, hence to the nonconservation of
the energy-momentum tensor with respect to the connec-
tion of F6. Focusing on the CDM sector, assuming that the
dark matter content is close to its GR limit (T̃ ≈ 0), and
considering the special case where Wþ vanishes, which
according to (132) leads to Q0 ¼ 0, Eq. (145) becomes:

_ρðDÞ
m þ 3HρðDÞ

m ¼ −
_ϕ

2ϕ
ρðDÞ
m ð146Þ

Observing Eq. (146), we find a parallelism with models of
CDM creation in GR [53]. In particular, the continuity
equation of CDM in these models reads [69,76–78]:

_ρðDÞ
m þ 3HρðDÞ

m ¼ ΓρðDÞ
m ð147Þ

where Γ is the CDM creation rate. Comparing (146) with
(147), we find that our model provides a dynamics for
CDM creation similar to the aforementioned models,
namely

Γ ¼ −
_ϕ

2ϕ
ð148Þ

From the point of view of an observer who interprets the
creation mechanism in the framework of general relativity

and standard FRW cosmology, it would appear that (146)
violates the conservation of energy-momentum due the
appearance of the source term in the rhs. However, from the
point of view of our construction, the same mechanism can
be seen as a result of energy-momentum conservation with
respect to the special connection of the total space TF6.
Once again we mention that this behavior has not be
imposed by hand, but it arises naturally from the geomet-
rical structure of the bundle construction.

VI. CONCLUDING REMARKS

In this article we studied the gravitational and cosmo-
logical consequences of a, Finsler-like, scalar tensor theory
on a vector bundle F6, which consists of a pseudo-
Riemannian space-time manifold with two scalars in the
role of fibers or internal variables. In this approach, we used
a nonlinear connection form of a nonholonomic bundle
structure. Under this framework, the properties of a
sectorized gravitational field are analyzed for both the
ordinary and dark sectors.
The extra geometrical structure is imprinted in the field

equations (67), Raychaudhuri (103) and FRW equa-
tions (120), (121), (122). Due to the introduction of the
scalar fields ϕð1Þ, ϕð2Þ we obtain extra degrees of freedom
which affect the volume of congruence geodesics, the form
of the accelerating universe and potentially lead to Lorentz
violating and locally anisotropic effects [79–83]. An
interesting topic for the upcoming projects would be to
examine whether the symmetries of usual spatial homo-
geneity and isotropy persist on the vector bundle E.
A careful and meaningful definition of these symmetries
should be given in the current framework and the most
consistent way to achieve this is through the proper
extension of the concepts of Lie derivatives and Killing
vector fields. We remark that the kind of isotropy we are
discussing here differs from the concept of internal space-
time anisotropy encountered in Finsler gravity.
Applying this construction at a cosmological framework,

we showed that the induced generalized scalar-tensor
theory from the bundle structure and the nonlinear con-
nection leads to the appearance of an effective dark energy
sector in the modified Friedmann equations. Hence, we
were able to reproduce the thermal history of the universe,
with the sequence of the matter and dark energy eras, and
we showed that the resulting dark-energy equation-of-state
parameter can lie in the quintessence or phantom regime, or
even exhibit the phantom-divide crossing. Furthermore, we
showed that this novel intrinsic geometrical structure leads
to an effective interaction between the dark matter and the
metric and for the particular case of cold dark matter
the relation (148) was found between the scalar fields and
the CDM creation rate.
There are many things that one should do in order to

further investigate generalized scalar-tensor theories arising
from vector bundle constructions. The first is to study the

SPYROS KONITOPOULOS et al. PHYS. REV. D 104, 064018 (2021)

064018-14



specifically symmetric and black hole solutions, and
examine the differences comparing to general relativity.
The second is to consider specific examples of nonlinear
connections and examine whether they can lead to dis-
tinguishable behavior. Finally, one should investigate in
more detail the cosmological applications, incorporating
data from type Ia supernovae (SNIa), baryon acoustic
oscillations (BAO), cosmic microwave background
(CMB) observations. These interesting and necessary
studies are left for future projects.
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APPENDIX A: CONNECTION AND CURVATURE

One can define a special type of linear connection in this
space, where the following rules hold:

Dδνδμ ¼ Lκ
μνδκ Dδν∂a ¼ Lc

aν∂c ðA1Þ

D∂bδμ ¼ Cc
μb∂c D∂b∂a ¼ Cκ

abδκ ðA2Þ

Differentiation of the inner product DXK
hXM;XNi ¼ 0 and

use of (A1), (A2) leads to the rules:

Dδνdx
κ ¼ −Lκ

μνdxμ Dδνδϕ
c ¼ −Lc

aνδϕ
a ðA3Þ

D∂bdxκ ¼ −Cκ
abδϕ

a D∂bδϕc ¼ −Cc
μbdx

μ ðA4Þ

It is apparent from the above relations thatDδν preserves the
horizontal and vertical distributions, whileD∂b maps one to
the other.
Following the above rules, covariant differentiation

of a vector V ¼ Vμδμ þ Va∂a along a horizontal direction
gives:

DδνV ¼ ðδνVμ þ VκLμ
κνÞδμ þ ðδνVa þ VcLa

cνÞ∂a

¼ DνVμδμ þDνVa∂a ðA5Þ

where we have defined

DνVμ ¼ δνVμ þ VκLμ
κν ðA6Þ

DνVa ¼ δνVa þ VcLa
cν ðA7Þ

Similarly, for the covariant differentiation of V along a
vertical direction we obtain

D∂bV ¼ ½∂bVμ þ VaCμ
ab�δμ þ ½∂bVa þ VμCa

μb�∂a

¼ DbVμδμ þDbVa∂a ðA8Þ

where we have defined

DbVμ ¼ ∂bVμ þ VaCμ
ab ðA9Þ

DbVa ¼ ∂bVa þ VμCa
μb: ðA10Þ

The covariant derivative over the full range of indices in F6

reads:

DXM
V ¼ ½XMVN þ ΓN

LMVL�XN ¼ ðDMVNÞXN ðA11Þ

where

DMVN ¼ XMVN þ ΓN
LMVL: ðA12Þ

Finally, the covariant derivative for a tensor of general rank
is obtained in a similar way.

APPENDIX B: FIELD EQUATIONS

In this Appendix we present the steps which lead to the
field equations, (58), (59), (73) and (74). A Hilbert-like
action with a matter sector on the bundle F6 is

S¼
Z
Q
d6U

ffiffiffiffiffiffi
jGj

p
Rþ2κ

Z
Q
d6U

ffiffiffiffiffiffi
jGj

p
LMðGMN;ΨiÞ ðB1Þ

where LMðGMN;ΨiÞ is the Lagrangian of the matter fields
Ψi, andQ is a closed subspace of F6. Variation of the action
gives

δS ¼
Z
Q
d6U

ffiffiffiffiffiffi
jGj

p �
RMN −

1

2
GMNR

�
δGMN

þ
Z
Q
d6U

ffiffiffiffiffiffi
jGj

p
GMNδRMN

þ 2κ

Z
Q
d6Uδð

ffiffiffiffiffiffi
jGj

p
LMÞ ¼ 0 ðB2Þ

After a straightforward calculation, we acquire
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GMNδRMN¼DK½GMNδΓK
MN−GμνΓK

μbδN
b
ν �

−DN ½GMNδΓK
MK−GMNΓκ

MbδN
b
κ �

þGMNT Z
NKδΓK

MZ

þGμν½δNb
νRμbþδNb

κ ðT κ
AνΓA

μb−Rκ
μνbÞ� ðB3Þ

Applying Stoke’s theorem to the above result and (B2), and
assuming that the boundary terms vanish, leads to the
following relation:

GMNδRMN ¼ T A
KA½GMNδΓK

MN − GμνΓK
μbδN

b
ν �

−T A
NA½GMNδΓK

MK − GMNΓκ
MbδN

b
κ �

þ GMNT Z
NKδΓK

MZ

þ Gμν½δNb
νRμb þ δNb

κ ðT κ
AνΓA

μb −Rκ
μνbÞ�:

ðB4Þ

In the Palatini method, the fields GMN , ΓL
MN and Na

μ are
varied independently from each other, therefore (B2) and
(B4) provide the equations

RðMNÞ −
1

2
GMNR ¼ κT MN ðB5Þ

GMNT A
KA þ GMLðT N

LK −T A
LAδ

N
KÞ ¼ 0 ðB6Þ

and

T A
NAGMNΓκ

Mb − T A
KAGμκΓK

μb

þ GμνðδκνRμb þ T κ
AνΓA

μb −Rκ
μνbÞ ¼ 0 ðB7Þ

where

T MN ¼ −
2ffiffiffiffiffiffijGjp δð ffiffiffiffiffiffijGjp

LMÞ
δGMN ðB8Þ

We remark that the lhs of (B7) vanishes identically for the
choice of connection (15).
Alternatively, we can variate the action by considering all

the fields dependent on the metric GMN . For the specific
connection components given in (15), the nonvanishing
part of Eq. (B4) reads:

GMNδRMN

¼ ðδMA δKB − GMKGABÞðDMT Z
KZ −T L

MLT
Z
KZÞδGAB

ðB9Þ

where we have used Stoke’s theorem twice and eliminated
all the boundary terms. Combining (B2) and (B9) gives
Eqs. (73) and (74).

APPENDIX C: GENERALIZED BIANCHI
IDENTITIES

The Bianchi identities constrain the curvature and torsion
tensors via the relations [84]:

↺A;M;NfDARK
LMN þRK

LARWR
MNg ¼ 0 ðC1Þ

↺A;M;NfDAWL
MN þWK

AMWL
NK þRL

AMNg ¼ 0 ðC2Þ

In our calculations we will use the symmetry

RK
LMN ¼ −RK

LNM ðC3Þ

which is obvious from the defining relation of the Riemann
tensor (19). Manipulating

RKLMN ¼ GKRRR
LMN ðC4Þ

with the aid of (15) and (19), it can be shown that

RKLMN ¼ 1

2
ðXMXLGNK − XMXKGLN − XNXLGMK

þ XNXKGLMÞ þ ΓR
LMΓRNK − ΓR

LNΓRMK

þWR
MNΓLRK ðC5Þ

From the above, it can be seen that generally

RðKLÞMN ¼ 1

2
WR

MNXRGKL ðC6Þ

However, it is obvious from (8) that only the latin upper
index elements of W are nonzero. Since this is index is
contracted with the derivative of the metric with respect to
the fiber variables, RðKLÞMN is always zero. Therefore, we
deduce the antisymmetry ofRKLMN with respect to its first
two indices. i.e.,

RKLMN ¼ −RLKMN ðC7Þ

Again from (C5), and taking advantage of (C6) and (C7),
we prove

↺L;M;NfRKLMN þWR
MNΓKRLg ¼ 0 ðC8Þ

which is equivalent to (C2), and

RKLMN ¼ RMNKL þWR
MNΓLRK −WR

KLΓNRM

Lastly, from the above equation we can derive the sym-
metry properties of the generalized Ricci tensor:

RMN ¼ RNM þWL
RMΓR

LN −WL
RNΓR

LM ðC9Þ
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From the first identity (C1) we have:

GALGM
KðDARK

LMN þDMRK
LNA þDNRK

LAM

þRK
LARWR

MN þRK
LMRWR

NA þRK
LNRWR

AMÞ ¼ 0

and after some algebra we finally obtain

DAEAN þRA
RWR

NA þ 1

2
RKA

NRWR
AK ¼ 0: ðC10Þ
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