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We consider the properties of a static axially symmetric wormhole described by an exact solution of
Einstein’s field equations and investigate how we can distinguish such a hypothetical object from a black
hole. To this aim, we explore the motion of test particles and photons in the equatorial plane of the
wormhole’s space-time and compare it with the particle dynamics in the well-known space-times of
Schwarzschild and Kerr black holes. We show that precise simultaneous measurement of test particle
motion and photon motion may provide the means to distinguish the wormhole geometry from that of a
black hole.
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I. INTRODUCTION

In recent years, there has been great interest in studying
and probing properties of astrophysical black holes due to
the direct detection of gravitational waves from close
binary mergers by the LIGO and Virgo collaborations
[1–7], observation of the first image of the shadow of a
supermassive black hole candidate in the center of elliptic
galaxy M87 by the Event Horizon Telescope Collaboration
[8], and the study of the motion of stars and hot spots
around the supermassive black hole Sagittarius A* (Sgr A*
for short) at the center of the Milky Way galaxy [9,10].
However, the precision of the measurements collected

thus far is still not sufficient to tell whether some other
kinds of objects with more exotic properties may also exist
in the Universe. Wormholes are unquestionably among the
most fascinating theoretical exotic objects that have been
studied [11]. Most of the known wormhole space-times,
starting with the original work by Einstein and Rosen [12]
or the well-known Ellis solution [13] and Morris-Thorne
solution [14], are spherically symmetric (see also [15–18]).

Interestingly, in recent years the possibility that the super-
massive black hole candidates at the center of galaxies may
in fact be such wormholes has been considered by several
authors [19–25]. However, it is not widely known that
axially symmetric wormholes exist as well [26–28].
Static, axially symmetric vacuum solutions of Einstein’s

equations play an important role in our understanding of the
role played by the mass quadrupole moment in astrophysi-
cal compact objects (see [29–35]). The properties of
solutions describing the gravitational field in the exterior
of a static massive object with a quadrupole moment have
been widely studied [36–41]. Among these solutions the
most important one is arguably the Zipoy-Voorhees (ZV)
metric, also known as the γ metric [42,43]. The importance
of the γ metric is indicated by the fact that the line element
is continuously linked to the Schwarzschild line element
through the value of one parameter, γ, describing the
departure from spherical symmetry. For this reason the
properties of the γ metric, in connection with the possibility
of distinguishing the space-time from the Schwarzschild
black hole, have been extensively studied (see [44–53]).
In [54] it was shown that known axially symmetric

vacuum solutions such as the γ metric may be used as the
seed to construct new solutions that describe wormholes.
These wormhole solutions present ring singularities that
can be viewed as the throat of the wormhole. The usual
matching procedures can be employed to replace the ring
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singularities with thin massive rings of negative tension,
thus allowing for geodesics to cross from one asymptotic
region to another.
In this paper we explore the observational properties of

the wormhole solution discussed in [54] by using the γ
metric as the seed and investigate the trajectories of massive
particles and photons in the vicinity of the throat. By
comparing the results with known results for black holes
and the γ metric, we investigate the possibility of distin-
guishing such solutions via astronomical observations.
Motion of particles in the vicinity of massive compact

objects is a well-known tool to probe the properties of the
geometry in the exterior of such compact objects. Particle
dynamics in the space-time of various gravitating compact
objects have been extensively studied in the literature; see,
for example, our recent papers [55–62]. We also refer the
reader to some valuable works devoted to the investigation
of the properties of space-time around various wormhole
solutions [63,64].
The article is organized as follows: In Sec. II we describe

the axially symmetric wormhole space-time obtained in
[54] from the γ metric. Sections III and IVare devoted to the
study of the motion of test particles, photons, and gravi-
tational lensing in the given space-time. Finally in Sec. V
we briefly discuss the implications of the obtained results
for astrophysical compact objects.
Throughout the paper we make use of natural units

setting c ¼ G ¼ 1.

II. WORMHOLE METRIC

The most general line element for a static axially
symmetric, vacuum solution of Einstein’s equations, in
cylindrical coordinates ft; ρ; z;ϕg takes the form [65–67]

ds2 ¼ −e2Udt2 þ e2ðW−UÞðdρ2 þ dz2Þ þ ρ2e−2Udϕ2; ð1Þ

and the field equations for the two unknown metric
functions Uðρ; zÞ and Wðρ; zÞ reduce to

U; ρρþ U;ρ

ρ
þU;zz ¼ 0; ð2Þ

W;ρ ¼ ρðU2
;ρ − U2

;zÞ; W;z ¼ 2ρU;ρU;z; ð3Þ

where we use the notation ∂X=∂x ¼ X;x. Since U does not
depend on ϕ, the first equation is immediately recognized
as a Laplace equation in flat space in cylindrical coordi-
nates. Once a solution of Eq. (2) is given, the remaining
equations are immediately solved. Therefore, there is a one-
to-one correspondence between solutions of the Laplace
equation and static axially symmetric vacuum space-times
and, in principle, all metrics of this class are known.
In particular, the γ metric is obtained from the solutions

of Eqs. (2) and (3) given by

Uðρ; zÞ ¼ γ

2
ln

�
Rþ þ R− −m
Rþ þ R− þm

�
; ð4Þ

Wðρ; zÞ ¼ γ2

2
ln

�ðRþ þ R−Þ2 − 4m2

4RþR−

�
; ð5Þ

with

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz�mÞ2

q
; ð6Þ

and the Schwarzschild metric is recovered in the limit when
γ ¼ 1. By performing the transformation of coordinates

z ¼ r cos θ; ð7Þ

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −m2

p
sin θ; ð8Þ

we can write the γ metric in the form

ds2 ¼ −
�
r −m
rþm

�
γ

dt2 þ
�
r −m
rþm

�
−γ
dl2; ð9Þ

with

dl2 ¼
�
r2 −m2cos2θ

r2 −m2

�
1−γ2

½dr2 þ ðr2 −m2Þdθ2�

þ ðr2 −m2Þsin2θdϕ2: ð10Þ

One can show that for the γ metric a curvature singularity
appears at r ¼ m when γ ≠ 1, which corresponds to the
infinite redshift surface. On the other hand, the radius r ¼ m
corresponds to the event horizon of the Schwarzschild black
hole (BH) when γ ¼ 1. Notice that the radial coordinate r
employed here is not the Schwarzschild-like coordinate rs
that is usually employed in the description of the γ metric.
This can be easily seenby taking γ ¼ 1, whichmust reduce to
the Schwarzschild geometry. From this we see that r is
simply a translation of the Schwarzschild-like coordinate
given by

r ¼ rs −m; ð11Þ
for which the singularity of the γ metric is shifted from rs ¼
2m to r ¼ m.
The procedure to obtain the wormhole space-time start-

ing with the γ metric was already presented in [42,43], and
it involves a rotation of the parameters m and γ in the
complex plane. By applying the transformation

m ¼ iμ; ð12Þ

γ ¼ iσ; ð13Þ

the field equations become complex but, remarkably, the
solutions remain real. In fact, we obtain
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U ¼ σ tan−1
�
r
μ

�
; ð14Þ

W ¼ σ2

2
ln

�
r2 þ μ2cos2θ

r2 þ μ2

�
; ð15Þ

and the space-time metric that describes wormholes is then
given by the line element

ds2 ¼ −e2Udt2 þ e−2U
��

r2 þ μ2cos2θ
r2 þ μ2

�
1þσ2

× ½dr2 þ ðr2 þ μ2Þdθ2� þ ðr2 þ μ2Þsin2θdϕ2

�
: ð16Þ

This is the standard form of the oblate Zipoy-Voorhees
solutions that were already given in [42,43]. The metric in
this form describes a wormhole with two asymptotically
flat regions for r → �∞ which are connected by a throat at
r ¼ 0. Notice that the metric is Ricci flat and the
Kretschmann scalar K ¼ RαβγϵRαβγϵ is given by

K ¼
64μ2σ2e4σtan

−1ðr=μÞðμ2cos2θþr2

μ2þr2 Þ−2σ2A
ðμ2 þ r2Þ2ðμ2 cos 2θ þ μ2 þ 2r2Þ3 ; ð17Þ

where

A ¼ μ4ðσ4 þ 5σ2 þ 1Þ þ 6r4 − 12μσr3

þ 3μ2ð3σ2 þ 2Þr2 − 3μ3σðσ2 þ 3Þr − μ2 cos 2θ

× ½μ2ðσ4 − σ2 þ 1Þ þ 3σ2r2 − 3μσðσ2 − 1Þr�:

One can easily check from the form of the Kretschmann
scalar to see that on the equatorial plane (θ ¼ π=2) the
denominator of the expression tends to zero when r → 0.
Therefore, the space-time possesses a ring singularity at
r ¼ 0 in the equatorial plane. By a standard cut-and-paste
procedure, the ring singularity can be replaced by a massive
thin ring with negative tension that joins the two wormhole
regions [54]. Also, it is easy to notice that the metric in the
form given in Eq. (16) does not reduce to Minkowski
space-time for r → �∞; however, this may be achieved by
making a simple rescaling of the coordinates t and r, and
the geometry is asymptotically flat.
One should point out that the line element (9) can also be

made a wormhole using a cut-and-paste procedure with
another identical line element at the singularity, which must
then be replaced by a matter distribution. However, this is
not as natural a construction as the one obtained in [54],
where the complex rotation of the parameters gives rise to
quadratic equations for the functions involved. Then by
taking the positive and negative roots one sees that these
can be glued continuously at the wormhole’s throat, thus
effectively allowing for the radial coordinate to run from
−∞ to þ∞. This makes clear that the metric functions

obtained by the complex rotation describe two separate
asymptotically flat regions connected by a throat, i.e., a
wormhole, where both portions of the geometry are
obtained from the same symmetry transformation.
From the above one can see that the structure of the

wormhole space-time with line element (16) differs from
that of the γ metric given by the expressions (9) and (10).
This can be made more clear by investigating radial photon
motion in the two space-times. We know that for the γ
metric the singular surface r ¼ m is infinitely redshifted
when γ > 1, while the singularity is naked; i.e., photons
take a finite amount of time to reach any observer when
γ < 1. On the other hand, a similar investigation for the ZV
wormhole shows that the curvature throat at r ¼ m is naked
for any value of σ.

A. Komar integrals

How would distant observers measure the mass of the
ZV wormhole? In order to answer this question we employ
the Komar integrals, which are a standard tool to determine
the mass and the angular momentum as seen by a faraway
observer in a given geometry. These integrals are defined
for stationary and axially symmetric space-times, which
must be asymptotically flat. Then mass and angular
momentum of the gravitating massive object for faraway
observers are given by

M ¼ 1

4π

Z
∂Σ

dr2
ffiffiffiffiffiffiffi
gð2Þ

q
nμχν∇μKν;

J ¼ −
1

8π

Z
∂Σ

dr2
ffiffiffiffiffiffiffi
gð2Þ

q
nμχν∇μRν; ð18Þ

where nμ is a timelike normal unit vector (nμnμ ¼ −1),
while χν is a spacelike normal vector (χμχμ ¼ 1). Also, Kν

is the timelike killing vector associated with time invariance
and Rν is the Killing vector associated with rotation

invariance about the symmetry axis, and
ffiffiffiffiffiffiffi
gð2Þ

p
is the

determinant of the metric on the two-dimensional surface
of constant t and constant r at infinity. Since the space-time
is static, it is clear that one must have J ¼ 0. To evaluateM
we use the normal vectors nμ and χν, which are given by

nμ ¼ ð−e−U; 0; 0; 0Þ; ð19Þ

χμ ¼
�
0; e−U

�
r2 þ μ2cos2θ

r2 þ μ2

�ð1þσ2Þ=2
; 0; 0

�
; ð20Þ

so we get

nμχν∇μKν ¼ μσe2σ tan
−1 ðr=μÞ

μ2 þ r2

�
μ2 cos2 θ þ r2

μ2 þ r2

�−σ2þ1
2

: ð21Þ
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The line element for the surface of constant t and r is

gαβ ¼
μ2 þ r2

e2σtan
−1ðr=μÞ

�
μ2cos2θ þ r2

μ2 þ r2

�
σ2þ1

dθ2

þ sin2θðμ2 þ r2Þe−2σtan−1ðr=μÞdϕ2; ð22Þ

from which we obtain g ¼ detðgαβÞ as

g ¼ sin θ½μ2cos2θ þ r2�
e2σtan

−1ðr=μÞ

�
μ2cos2θ þ r2

μ2 þ r2

�σ2−1
2

: ð23Þ

Therefore, the Komar integral (18) reduces to

M ¼ μσ

4π

Z
2π

0

Z
π

0

sin θdθdϕ ¼ μσ: ð24Þ

This is consistent with the interpretation of the active
gravitational mass of the γ metric (9), which is given
by M ¼ mγ.

III. TEST PARTICLE MOTION

In this section we aim to investigate whether and how a
distant observer that detects a compact object of mass M
would be able to tell if the object is a black hole (Kerr or
Schwarzschild), a deformed exotic compact object (such as
the γ metric) or a wormhole (in this case the axially
symmetric one given by the ZV solution). Toward this aim
we investigate the motion of test particles in the space-time
of the wormhole with the metric given in Eq. (16) and
compare it to the other sources.
To begin with, we consider the comparison with the

Schwarzschild black hole since both are static solutions and
show that the two space-times produce different orbits for
particles. We then compare the obtained results to that in
the Kerr space-time since both space-times have one
parameter in addition to the mass and investigate the
conditions for these two metrics to mimic each other in
terms of particle dynamics. Notice that in making the
comparisons we will need to employ the coordinates used
in the line element (16) instead of the usual Boyer-
Lindquist coordinates.
For the derivation of the equations of motion for test

particles we use the well-known Hamilton-Jacobi equation
that reads

gαβ
∂S
∂xα

∂S
∂xβ ¼ −k; ð25Þ

where S defines the action for the test particle, xα are the
coordinates, and k ¼ m2

p, i.e., the square of the mass of the
test particle. Notice that the equation also holds for
massless particles, i.e., photons, for which k ¼ 0. Since
the metric of the given space-time is independent from the
coordinates t and ϕ, the particle orbiting the wormhole has

two conserved quantities related to time translations and
rotations—namely, the energy E and angular momentum L.
As a consequence the action for the particle can be written
in the following form:

S ¼ −Etþ Lϕþ Sθ þ Sr: ð26Þ
Here Sθ and Sr are functions of r and θ only.
The equation of motion for the test particle then reads

−κ ¼ e2Ucsc2θ
μ2 þ r2

L2 þ e2U

μ2 þ r2

�∂Sθ
dθ

�
2
�
μ2cos2θþ r2

μ2 þ r2

�−σ2−1

þ e2U
�∂Sr
dr

�
2
�
μ2cos2θþ r2

μ2 þ r2

�−σ2−1
− e−2UE2; ð27Þ

where we used the notation E ¼ E=mp and L ¼ L=mp for
the energy and angular momentum of the particle with unit
mass, κ ¼ 1 for massive particles, and κ ¼ 0 for massless
particles.
In the following we will focus on the motion of test

particles on the equatorial plane θ ¼ π=2, thus setting
_θ ¼ 0. Then the equation of motion can be written in the
form _r2 þ VeffðrÞ ¼ 0, where the effective potential Veff is
given by

VeffðrÞ ¼ 1 −
E2

e2σ tan
−1 ðr=μÞ þ L2

e2σ tan
−1 ðr=μÞ

μ2 þ r2
: ð28Þ

The radial behavior of the effective potential is shown in
Fig. 1 for different values of the deviation parameter σ in
comparison with the corresponding cases for the γ metric

FIG. 1. The radial dependence of the effective potential VeffðrÞ
for massive test particles in the equatorial plane of the ZV
wormhole, with given energy E and angular momentum L per
unit mass, for a fixed μ and various values of the deviation
parameter σ (black lines) is compared to the effective potential for
massive test particles in the equatorial plane of the γ metric for a
fixed m and various values of the deformation parameter γ (gray
lines). Notice that the case γ ¼ 1 corresponds to the Schwarzs-
child black hole.
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and Schwarzschild (γ ¼ 1). As expected, at large distances
the behaviors tend to become increasingly similar. At the
same time, the wormhole geometry is significantly different
from the black hole and the γ metric at shorter distances for
every value of the parameter σ. In particular, and unlike the
case of the γ metric, the case of σ ¼ 1 does not reduce to a
known spherically symmetric geometry. This suggests that
from the motion of test particles around a central gravi-
tating object it is, in principle, possible to distinguish the
wormhole from a black hole or a static and axially
symmetric compact object.
We aim now at studying circular orbits, as they are well

suited to approximating the orbits of particles in accretion
disks, and, in particular, we wish to determine the value of
the innermost radius for which stable circular orbits are
allowed. For the trajectory of the particle to be circular, the
conditions _r ¼ ̈r ¼ 0 must be satisfied. These conditions

translate into the corresponding conditions for the effective
potential, namely,

VeffðrÞ ¼ V 0
effðrÞ ¼ 0; ð29Þ

from which one can obtain expressions for the energy and
angular momentum of the test particle on a circular orbit as

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − σμ

r − 2σμ

r
eσ tan

−1ðr=μÞ; ð30Þ

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σμðr2 þ μ2Þ
r − 2σμ

s
e−σ tan

−1ðr=μÞ: ð31Þ

The radial behaviors of the energy and angular momen-
tum of the particles are plotted in Fig. 2. It is clearly seen

FIG. 2. Top row: radial dependence of the energy (left panel) and angular momentum (right panel) for test particles moving on circular
orbits for a fixed gravitational massM ¼ σμ ¼ 1 in the ZV wormhole geometry with various values of σ compared to the Schwarzschild
space-time (solid line). Bottom row: radial dependence of the energy (left panel) and angular momentum (right panel) for test particles
moving on circular orbits in the ZV wormhole geometry compared to the γ metric for fixed values of μ ¼ m and various values of σ and γ
(with γ ¼ 1 corresponding to Schwarzschild). Remember that the usual Schwarzschild radial coordinate is given by rs ¼ rþM;
therefore, the photon sphere for Schwarzschild is given by r ¼ 2M. We notice that the energy of particles on circular orbits is always
larger for the wormhole with respect to the black hole. Correspondingly the angular momentum is always lower for the wormhole with
respect to the black hole.
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that particles on circular orbits have larger energy with
respect to corresponding particles in the Schwarzschild
space-time and that increasing the deviation parameter σ
results in an increase of the energy of the particle at any
given circular orbit. Similarly, test particles or circular
orbits in the equatorial plane of the ZV wormhole have
lower angular momentum with respect to particles orbiting
the Schwarzschild black hole, and an increase of the value
of σ results in a reduction of the angular momentum of the
particle. Also, notice that, as happens for Schwarzschild,
the energy and angular momentum per unit mass of the test
particles on circular orbits diverge in the limit r → 2σμ,
which corresponds to the photon capture radius (remember
that for Schwarzschild the photon capture orbit is given by
rs ¼ 3M, which corresponds to r ¼ 2M).
The minimum of the effective potential for given values

of E and L corresponds to the radius of the stable circular
orbit. Then it is easy to see that circular orbits can exist only
within certain ranges of r and the smallest radius, called
the innermost stable circular orbit (ISCO), is important in
the study of astrophysical sources because it determines the
distance from the central objects where the accretion disks
end. In the case of the ZV wormhole the location of the
ISCO radius depends on the value of the parameter σ. Such
behavior is similar to the case of the Kerr metric, where the
location of the ISCO depends on the angular momentum
parameter a; in the case of Kerr an increase of the rotation
parameter a for a corotating disk makes the ISCO radius
move closer to the black hole. Using the Eqs. (29) to obtain
E and L for a particle in a circular orbit, the condition in
which the particle is at the ISCO is then given by

V 00
effðrÞ ¼ 0;

which gives the quadratic equation

r2 − 6σμrþ ð4σ2 − 1Þμ2 ¼ 0; ð32Þ

from which we find the ISCO radius as

rISCO ¼ 3σμ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5σ2μ2 þ μ2

q
: ð33Þ

It is useful to point out here that when we make an inverse
mapping, i.e., σμ → γm, we obtain the expression for the
ISCO radius for the γ metric that, in our coordinates, reads
rISCO ¼ 3γm�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5γ2m2 −m2

p
. As shown, for example, in

[52] the γ metric has two locations for the marginally stable
circular orbits, which we may call the inner and outer
ISCO. However, for certain values of γ one of these radii is
not physical. For example, when γ ¼ 1 we have rISCO ¼
5m and rISCO ¼ m, so that the first solution gives the ISCO
radius of the Schwarzschild BH while the second one gives
the Schwarzschild horizon. In general for oblate sources
(γ > 1) only the outer ISCO is physical as the inner ISCO is
located below the singularity. On the other hand, for prolate

sources the inner ISCO can become physical. In fact, for
1=

ffiffiffi
5

p
< γ < 1=2 there are two radii at which particles can

circularize, which suggests the occurrence of repulsive
effects in the vicinity of the singularity (see [52] for details).
As in the case of the Kerr space-time, we see that the

location of the ISCO of the ZV wormhole depends on σ.
For the ZV wormhole metric (16) a decrease in the value of
the deviation parameter σ produces an effect similar to the
increase of the rotation parameter a of a Kerr black hole,
i.e., it makes the ISCO radius smaller.
With the use of the three conditions above one may

obtain the dependence of the ISCO from the deviation
parameter as in Eq. (33). This is shown in the left panel of
Fig. 3 in comparison to the case of the Kerr black hole,
where the ISCO depends on the angular momentum
parameter a. We notice that the ranges of radii for the
ZV wormhole for small values of σ are comparable to the
radii allowed for the ISCO in the Kerr geometry with a
corotating disk. Knowing the dependence of the ISCO
radius on the rotation parameter a of the Kerr metric, one
can plot the degeneracy between the rotation parameter a
and the deviation parameter σ of the wormhole such that the
values of the ISCO radii coincide.
However, one needs to take into account the fact that in

general relativity the choice of coordinates is arbitrary and
has no real physical meaning. Therefore, it makes sense to
compare the results for values of scalar quantities related to
the characteristic orbits. For example, in our case one can
choose the distance of the ISCO orbit from the origin,
which is defined as the radius of a circle with the circum-
ference given by

lϕ ¼
Z

2π

0

dsϕ;

where dsϕ ¼ ffiffiffiffiffiffiffigϕϕ
p jr¼rISCOdϕ is the line element for con-

stant r, θ ¼ π=2, and t. Since axially symmetric space-
times do not depend on the angular coordinate ϕ, the ISCO
location becomes

RISCO ¼ lϕ
2π

¼ ffiffiffiffiffiffiffi
gϕϕ

p jr¼rISCO : ð34Þ

With this definition one can compare the properties of the
ZV wormhole and Kerr black hole in a manner that does not
depend on the coordinate choice. The relation between the
location of the ISCOs in the Kerr geometry and the ZV
wormhole is shown in the right panel of Fig. 3. It is
immediately clear that the effect of the deviation parameter
of the ZV wormhole can mimic the spin of the Kerr black
hole producing the same radius for the inner edge of the
accretion disk around an astrophysical compact massive
object.
Therefore, we conclude from the observation of only the

accretion disk around a compact object of known mass M
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that if we are able to determine the value of the ISCO
radius, we may not be able to determine with certainty that
the object must be a Kerr black hole, since there is a value
of σ for which the ZV wormhole would exhibit the same
radius of the ISCO.
To complicate things further, observations cannot mea-

sure the ISCO location directly but instead measure other
properties related to the intensity or spectrum of the light
emitted by the disk. For example, observations can deter-
mine the radiative efficiency of the system at the ISCO [68].
Therefore, it is worth checking to see whether the ZV
wormhole can provide the same radiative efficiency as the
Kerr black hole. The radiative efficiency of the disk around
a massive object is given by the expression

η ¼ 1 − EISCO;

where EISCO is the specific energy of a test particle
determined at the ISCO. One can then follow a similar
procedure as before to determine the energy at the ISCO,
which is clearly independent of the coordinate system. In
Fig. 4 we show the values of the Kerr angular momentum
that produce the same radiative efficiency for the ISCO as
the ZV wormhole with a given value of σ. Notice that the
result does not reproduce the one obtained for the matching
values of the ISCO location in the right panel of Fig. 3. This
suggests that a given value of σ may produce the same
location for the ISCO but different radiative efficiency for
the disk. Therefore, this feature may allow one to distin-
guish the ZV wormhole from a Kerr black hole if one is
able to make independent measurements of the location of
the inner edge of the accretion disk and the radiative
efficiency of the same source. In Fig. 4 we can also see that

the radiative efficiency of a disk surrounding the
Schwarzschild BH, i.e., a ¼ 0, or that of a slowly spinning
Kerr black hole may not be reproduced by the ZV worm-
hole for any value of σ.
For completeness we also compare the ZV wormhole

with the static and axially symmetric geometry of the γ
metric. In Fig. 5 we compare the ISCO radii around the ZV
wormhole and the γ metric. It is interesting to notice that,
unlike in the case of the γ metric, the ISCO radius exists for
all values of σ > 0 and is always larger than the corre-
sponding ISCO radius for the γ metric. Therefore, the
curious situation of a range of values of γ with two separate
regions of allowed stable circular orbits does not occur in
the wormhole geometry.

FIG. 4. Degeneracy plot between the spin of the Kerr BH and
the deviation parameter of the ZV wormhole providing the same
radiative efficiency.

FIG. 3. Comparison between the ISCO in the ZV wormhole space-time and Kerr black hole. Left panel: value of the ISCO radius (in
the rescaled coordinates) as a function of σ for the ZV wormhole (solid line) and a for Kerr (dashed line). Right panel: degeneracy
between the ZV wormhole and the Kerr black hole. The curve shows how the deviation parameter of the ZV wormhole can mimic the
effect of the spin of the Kerr black hole, providing the same ISCO location of test particles, which in turn defines the inner edge of the
accretion disk around the astrophysical compact object. Note that the plot is obtained for sources with the same gravitational massM as
seen by distant observers.
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This degeneracy may also be illustrated from the
definition of the distance of the ISCO from the center
using Eq. (34). In the right panel of Fig. 5 we can see that
the deviation parameter of the ZV wormhole can determine
an ISCO that mimics the corresponding one in the γ metric
for certain values of γ. However, the scenarios given by
certain values of γ < 1, which produce the peculiar cases of
no ISCO radius or two regions of stable circular orbits (see
[52]) cannot be reproduced in the wormhole space-time.
As before, we can check in what range the deviation

parameter of the ZV wormhole can mimic that of the γ
metric for the radiative efficiency of these two sources. In
Fig. 6 we can see that the degeneracy of the radiative

efficiency produces a behavior similar to that displayed in
the case of the ISCO radius. However, it is clear that the
range of values of γ for which the two geometries produce
comparable radiative efficiencies is different, as it starts at
γ ≃ 1.2 in this case, while in the ISCO location case it starts
at γ ≃ 0.6. As in the case of the Kerr BH, we can conclude
that the case in which γ ¼ 1, or, equivalently, the
Schwarzschild case, may not be mimicked by the ZV
wormhole via observations of the radiative efficiency of the
accretion disk.

IV. PHOTON MOTION AND LENSING

We shall now deal with the motion of photons in the
wormhole space-time given by Eq. (16). Again, we use the
Hamilton-Jacobi equation (25), this time for massless
particles, thus setting k ¼ 0. The effective potential for
photons moving on the equatorial plane then becomes

Veff ¼ −
E2

e2σ tan−1ðr=μÞ þ
L2e2σ tan−1ðr=μÞ

μ2 þ r2
: ð35Þ

The radial behavior of VeffðrÞ is shown in Fig. 7 relative
to the Schwarzschild black hole. It is immediately seen that
the two geometries produce very different effective poten-
tials regardless of the value of σ.
Our interest in the motion of photons lies in determining

the photon capture radius rph at which massless particles on
the equatorial plane are circularized. From the geodesic
equation ẍμ þ Γμ

αβ _x
α _xβ ¼ 0 this is obtained by imposing the

conditions ̈r ¼ _r ¼ _θ ¼ 0. In turn this reflects on the
conditions on the effective potential Veff ¼ V 0

eff ¼ 0.
After a straightforward calculations we obtain the photon
capture radius simply as

FIG. 5. Comparison between the ISCO in the ZV wormhole space-time and the γ metric. Left panel: value of the ISCO radius (in the
rescaled coordinates) as a function of σ for the ZV wormhole and γ for the γ metric. Right panel: degeneracy between the parameters σ
and γ, i.e., the values of the two parameters that produce the same value for the ISCO.

FIG. 6. Relation between the deviation parameters of ZV
wormhole and the γ metric providing the same radiative effi-
ciency from the accretion disk surrounding the massive object.
Notice that, as happens in the comparison with the Kerr BH in
Fig. 4, the radiative efficiency of a disk surrounding the
Schwarzschild BH, i.e., γ ¼ 1, may not be reproduced for any
value of σ.
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rph ¼ 2σμ: ð36Þ

Remembering the relation (11) between the radial coor-
dinate used for the ZV wormhole and the Schwarzschild-
like coordinate rs and the gravitational mass of the γ metric,
M ¼ mγ. we see that the photon capture radius is located at
the same position, i.e., rph ¼ 2M, where M ¼ σμ for the
ZV wormhole and M ¼ mγ for the γ metric.
The dependence of the photon capture radius from the

deviation parameter is illustrated in the left panel of Fig. 8
in comparison with the corresponding radius for the Kerr

black hole as a function of a. As in the case of the ISCO
radius, we can construct a definition of the photon capture
radius that describes its distance from the center as

Rph ¼
lϕ
2π

¼ ffiffiffiffiffiffiffi
gϕϕ

p jr¼rPH :

Then we can obtain the degeneracy between a and σ that
provides the same value of Rph as shown in the right panel
of Fig. 8.
We again see that the deviation parameter of the worm-

hole metric is able to mimic the rotation parameter of the
Kerr metric for the case of photon motion. This again leads
to the conclusion that it would not be possible to distinguish
a Kerr black hole from a ZV wormhole from a single
measurement of the photon capture radius. However, the
degeneracy of Rph between σ and a, shown in the right
panel of Fig. 8, differs from that of the ISCO radius and the
radiative efficiency, suggesting that a simultaneous meas-
urement of the ISCO, radiative efficiency, and photon
sphere could allow one to distinguish the two geometries.
While estimations of the radiative efficiency of accretion

disks for supermassive black hole candidates can be
obtained from the emission spectrum of the accretion disk,
precise independent measurements of the ISCO radius and
photon capture radius are not currently available. However,
the imaging of the shadow of the supermassive black hole
candidate at the center of the galaxyM87 suggests that such
kinds of measurements, at least for one object, may become
available in the near future.
The study of the motion of massless particles is also

important for determining the gravitational lensing effects
of the object. This is another way by which an exotic source
such as the ZV wormhole may mimic the appearance of a
black hole. As mentioned, in the coordinates used for the

FIG. 7. The radial dependence of the effective potential VeffðrÞ
for massless particles in the equatorial plane of the ZV wormhole,
with given energy E and angular momentum L, for a fixed μ and
various values of the deviation parameter σ (black lines) is
compared with the corresponding effective potential for the γ
metric for a fixed m and various values of the deformation
parameter γ (gray lines). Notice that the case γ ¼ 1 corresponds
to the Schwarzschild black hole.

FIG. 8. Dependence of the photon capture radius on the parameters a and σ. The degeneracy plot between a and σ for the matching
photon capture radius is shown, and a comparison is made between the photon capture radius rph in the ZV wormhole space-time and the
Kerr black hole. Left panel: value of rph (in the rescaled coordinates) as a function of σ for the ZV wormhole and a for Kerr. Right panel:
degeneracy between the parameters σ and a Kerr, i.e., the values of the two parameters that produce the same value for Rph.
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line element in Eq. (16) it is not immediately clear that the
geometry becomes Minkowski at spatial infinity. This issue
is easily solved by rescaling the radial and time coordinates
as r → ξr and t → t=ξ, with ξ ¼ eσπ=2. From the Hamilton-
Jacobi equation (25) one can then write the equations of
motion for the radial rðτÞ and latitudinal ϕðτÞ components
of the geodesics in the equatorial plane θ ¼ π=2 as

_r2 ¼
�
μ2 þ r2ξ2

r2ξ2

�
σ2þ1

�
E2 −

L2e4σtan
−1ðrξ=μÞ

ξ2ðμ2 þ r2ξ2Þ
�
; ð37Þ

_ϕ ¼ Le2σtan
−1ðrξ=μÞ

μ2 þ r2ξ2
: ð38Þ

The deflection angle ϕ in terms of the radial coordinate r is
then obtained from the integration of dϕ=dr ¼ _ϕ=_r. By
introducing the new variable u ¼ 1=r we get the following
expression for ϕ:

dϕ
du

¼ be2σcot
−1ðμu=ξÞ

ð1þ μ2u2

ξ2
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ μ2u2

ξ2
Þσ2

q
×

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ4ð1þ μ2u2

ξ2
Þ − b2u2e4σcot

−1ðμu=ξÞ
q : ð39Þ

Here b ¼ L=E defines the impact parameter of the
photon. The bending angle of the photon approaching
the central wormhole from infinity and going to infinity can
then be found from the following integration:

δ ¼ 2

Z
1=b

0

be2σcot
−1ðμu=ξÞ

ð1þ μ2u2

ξ2
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ μ2u2

ξ2
Þσ2 ½ξ4ð1þ μ2u2

ξ2
Þ − b2u2e4σcot

−1ðμu=ξÞ�
q du − π: ð40Þ

If one denotes 1=b as u0, then the dependence of the
bending angle from u0 can be plotted based on the
numerical calculations as in Fig. 9.
In Fig. 9 we show the dependence of the bending angle δ

from the inverse of the impact parameter u0 ¼ 1=b for
various values of σ. As u0 → 0 (i.e., b → þ∞) the bending
angle goes to zero, as expected. However, δ is much smaller
for the wormhole case with respect to the Schwarzschild
black hole (γ ¼ 1) and γ metric for all values of σ.
Interestingly, we also notice that the bending angle decreases
for larger values of σ, while for the γ metric the opposite is
true and larger values of γ (corresponding to oblate objects
with a larger quadrupole moment) produce a larger bending

angle. This suggests that a simultaneous observation of
deflection of light rays (i.e., a measurement of δ) and the
spectrum of the accretion disk (i.e., a measurement of the
ISCO radius) could, in principle, determine whether
the central object is a black hole, an exotic compact object
with quadrupole moment, or a ZV wormhole.

V. CONCLUSION

We explored properties of a solution of Einstein’s
equations describing a static and axially symmetric worm-
hole (ZV wormhole) and investigated whether it would be
possible to distinguish this source from a black hole (Kerr)
or a static axially symmetric compact object with quadru-
pole moment (γ metric) via the standard tools of particle
motion on accretion disks and the deflection of light rays.
The solutions considered depend on two parameters that

are related to mass and quadrupole moment for the ZV
wormhole and the γ metric and mass and angular momen-
tum for the Kerr black hole. The study of the motion of
massive test particles in the equatorial plane provides the
value of the innermost stable circular orbits which repre-
sents the inner edge of the accretion disk surrounding the
object. The study of the motion of massless particles in the
equatorial plane provides the radius of the photon capture
orbit, which is related to the image of the shadow of the
object and the deflection angle of light rays coming from
distant sources.
We showed that, for certain ranges of parameters, such as

corotating accretion disks around a Kerr black hole (i.e.,
a > 0) an individual measurement of the ISCO radius or
the radiative efficiency or the photon capture radius or the
deflection angle would not suffice in distinguishing

FIG. 9. The dependence of the photons bending angle on the
inverse of impact parameter u0 for the ZV wormhole (black lines)
for various values of σ is compared to the corresponding angle in
the γ metric for various values of γ.
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between two sources. For example, from the test particle
motion around the wormhole space-time it has been shown
that the deviation parameter σ can mimic the rotation
parameter of the Kerr black hole. However, simultaneous
independent measurements of multiple quantities can, in
principle, break the degeneracy and determine the geometry
surrounding the object.
Of course, the times are not yet mature enough to

practically perform such measurements for astrophysical
sources, as the available data are currently too sparse and
often able to provide only one of the above-mentioned
quantities for each candidate. However, we are reasonably
hopeful that as more data are obtained it will soon be

possible to test the nature of the geometry of compact
gravitational objects and determine whether they are in fact
well described by the Kerr solution.

ACKNOWLEDGMENTS

B. N. acknowledges support from the China Scholarship
Council (CSC) through Grant No. 2018DFH009013. A. A.
is supported by the PIFI fund of the Chinese Academy of
Sciences. This research is supported in part by grants from
the Uzbekistan Ministry for Innovative Development, and
by the Abdus Salam International Centre for Theoretical
Physics through Grant No. OEA-NT-01.

[1] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F.
Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso,
R. X. Adhikari et al., Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. LIGO Scientific and Virgo Collabora-
tions, arXiv:1602.03841.

[3] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F.
Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X.
Adhikari et al., Phys. Rev. Lett. 116, 221101 (2016).

[4] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F.
Acernese, K. Ackley et al. (LIGO Scientific and Virgo
Collaborations), Phys. Rev. Lett. 116, 241102 (2016).

[5] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F.
Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso,
R. X. Adhikari et al., Astrophys. J. Lett. 833, L1 (2016).

[6] B. P. Abbott et al. LIGO Scientific and Virgo Collabora-
tions, Phys. Rev. Lett. 116, 241103 (2016).

[7] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F.
Acernese, K. Ackley, C. Adams, T. Adams et al. (LIGO
Scientific and Virgo Collaborations), Phys. Rev. X 6,
041015 (2016).

[8] K. Akiyama et al. (Event Horizon Telescope Collaboration),
Astrophys. J. 875, L1 (2019).

[9] A. M. Ghez, B. L. Klein, M. Morris, and E. E. Becklin,
Astrophys. J. 509, 678 (1998).

[10] A. Ghez, M. Morris, E. E. Becklin, T. Kremenek, and A.
Tanner, Nature (London) 407, 349 (2000).

[11] M. Visser, Lorentzian Wormholes: From Einstein to Hawk-
ing, AIP Series in Computational and Applied Mathematical
Physics (American Institute of Physics, College Park, MD,
1995).

[12] A. Einstein and N. Rosen, Phys. Rev. 48, 73 (1935).
[13] H. G. Ellis, J. Math. Phys. (N.Y.) 14, 104 (1973).
[14] M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).
[15] M. Visser, Phys. Rev. D 39, 3182 (1989).
[16] E. Poisson and M. Visser, Phys. Rev. D 52, 7318 (1995).
[17] M. Visser, S. Kar, and N. Dadhich, Phys. Rev. Lett. 90,

201102 (2003).
[18] F. S. N. Lobo, Phys. Rev. D 71, 084011 (2005).

[19] D.-C. Dai and D. Stojkovic, Phys. Rev. D 100, 083513
(2019).

[20] Z. Li and C. Bambi, Phys. Rev. D 90, 024071 (2014).
[21] M. Y. Piotrovich, S. V. Krasnikov, S. D. Buliga, and T. M.

Natsvlishvili, Mon. Not. R. Astron. Soc. 498, 3684 (2020).
[22] M. Zhou, A. Cardenas-Avendano, C. Bambi, B. Kleihaus,

and J. Kunz, Phys. Rev. D 94, 024036 (2016).
[23] A. Tripathi, B. Zhou, A. B. Abdikamalov, D. Ayzenberg,

and C. Bambi, Phys. Rev. D 101, 064030 (2020).
[24] C. Bambi, Phys. Rev. D 87, 084039 (2013).
[25] C. Bambi and D. Stojkovic, Universe 7, 136 (2021).
[26] G. Clément, Int. J. Theor. Phys. 23, 335 (1984).
[27] G. Clement, Gen. Relativ. Gravit. 16, 477 (1984).
[28] G. Clément, Gen. Relativ. Gravit. 48, 76 (2016).
[29] H. Quevedo, Fortschr. Phys. 38, 733 (1990).
[30] H. Quevedo and L. Parkes, Gen. Relativ. Gravit. 23, 495

(1991).
[31] J. L. Hernández-Pastora and J. Martín, Gen. Relativ. Gravit.

26, 877 (1994).
[32] L. Herrera, Int. J. Mod. Phys. D 17, 557 (2008).
[33] D. Bini, M. Crosta, F. De Felice, A. Geralico, and A.

Vecchiato, Classical Quantum Gravity 30, 045009 (2013).
[34] N. Gürlebeck, Phys. Rev. Lett. 114, 151102 (2015).
[35] D. Malafarina and S. Sagynbayeva, arXiv:2009.12839.
[36] H. E. J. Curzon, Proc. London Math. Soc. s2-23, 477

(1925).
[37] G. Erez and N. Rosen, Bull. Res. Council Israel (1959),

https://www.osti.gov/biblio/4201189.
[38] A. Armenti, Int. J. Theor. Phys. 16, 813 (1977).
[39] W. Bonnor, Gen. Relativ. Gravit. 24, 551 (1992).
[40] J. L. Hernandez-Pastora and J. Martin, Classical Quantum

Gravity 10, 2581 (1993).
[41] O. Semerk, T. Zellerin, and M. Žáček, Mon. Not. R. Astron.

Soc. 308, 691 (1999).
[42] D. M. Zipoy, J. Math. Phys. (N.Y.) 7, 1137 (1966).
[43] B. H. Voorhees, Phys. Rev. D 2, 2119 (1970).
[44] B. W. Stewart, D. Papadopoulos, L. Witten, R. Berezdivin,

and L. Herrera, Gen. Relativ. Gravit. 14, 97 (1982).

PARTICLE MOTION AROUND A STATIC AXIALLY SYMMETRIC … PHYS. REV. D 104, 064016 (2021)

064016-11

https://doi.org/10.1103/PhysRevLett.116.061102
https://arXiv.org/abs/1602.03841
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.241102
https://doi.org/10.3847/2041-8205/833/1/L1
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.1086/306528
https://doi.org/10.1038/35030032
https://doi.org/10.1103/PhysRev.48.73
https://doi.org/10.1063/1.1666161
https://doi.org/10.1119/1.15620
https://doi.org/10.1103/PhysRevD.39.3182
https://doi.org/10.1103/PhysRevD.52.7318
https://doi.org/10.1103/PhysRevLett.90.201102
https://doi.org/10.1103/PhysRevLett.90.201102
https://doi.org/10.1103/PhysRevD.71.084011
https://doi.org/10.1103/PhysRevD.100.083513
https://doi.org/10.1103/PhysRevD.100.083513
https://doi.org/10.1103/PhysRevD.90.024071
https://doi.org/10.1093/mnras/staa2580
https://doi.org/10.1103/PhysRevD.94.024036
https://doi.org/10.1103/PhysRevD.101.064030
https://doi.org/10.1103/PhysRevD.87.084039
https://doi.org/10.3390/universe7050136
https://doi.org/10.1007/BF02114513
https://doi.org/10.1007/BF00762340
https://doi.org/10.1007/s10714-016-2073-y
https://doi.org/10.1002/prop.2190381002
https://doi.org/10.1007/BF00756613
https://doi.org/10.1007/BF00756613
https://doi.org/10.1007/BF02107146
https://doi.org/10.1007/BF02107146
https://doi.org/10.1142/S0218271808012255
https://doi.org/10.1088/0264-9381/30/4/045009
https://doi.org/10.1103/PhysRevLett.114.151102
https://arXiv.org/abs/2009.12839
https://doi.org/10.1112/plms/s2-23.1.477
https://doi.org/10.1112/plms/s2-23.1.477
https://www.osti.gov/biblio/4201189
https://www.osti.gov/biblio/4201189
https://www.osti.gov/biblio/4201189
https://doi.org/10.1007/BF01807614
https://doi.org/10.1007/BF00760137
https://doi.org/10.1088/0264-9381/10/12/017
https://doi.org/10.1088/0264-9381/10/12/017
https://doi.org/10.1046/j.1365-8711.1999.02748.x
https://doi.org/10.1046/j.1365-8711.1999.02748.x
https://doi.org/10.1063/1.1705005
https://doi.org/10.1103/PhysRevD.2.2119
https://doi.org/10.1007/BF00756201


[45] L. Herrera, G. Magli, and D. Malafarina, Gen. Relativ.
Gravit. 37, 1371 (2005).

[46] D. Papadopoulos, B. Stewart, and L. Witten, Phys. Rev. D
24, 320 (1981).

[47] L. Herrera, F. M. Paiva, and N. O. Santos, Int. J. Mod. Phys.
D 09, 649 (2000).

[48] A. N. Chowdhury, M. Patil, D. Malafarina, and P. S. Joshi,
Phys. Rev. D 85, 104031 (2012).

[49] K. Boshkayev, E. Gasperin, A. C. Gutiérrez-Piñeres, H.
Quevedo, and S. Toktarbay, Phys. Rev. D 93, 024024 (2016).

[50] C. A. Benavides-Gallego, A. Abdujabbarov, D. Malafarina,
B. Ahmedov, and C. Bambi, Phys. Rev. D 99, 044012
(2019).

[51] A. B. Abdikamalov, A. A. Abdujabbarov, D. Ayzenberg, D.
Malafarina, C. Bambi, and B. Ahmedov, Phys. Rev. D 100,
024014 (2019).

[52] B. Toshmatov, D. Malafarina, and N. Dadhich, Phys. Rev. D
100, 044001 (2019).

[53] B. Toshmatov and D. Malafarina, Phys. Rev. D 100, 104052
(2019).

[54] G.W. Gibbons and M. S. Volkov, J. Cosmol. Astropart.
Phys. 05 (2017) 039.

[55] B. Narzilloev, D. Malafarina, A. Abdujabbarov, and C.
Bambi, Eur. Phys. J. C 80, 784 (2020).

[56] B. Narzilloev, A. Abdujabbarov, C. Bambi, and B. Ahme-
dov, Phys. Rev. D 99, 104009 (2019).

[57] B.Narzilloev, J. Rayimbaev, S. Shaymatov,A.Abdujabbarov,
B. Ahmedov, and C. Bambi, Phys. Rev. D 102, 044013
(2020).

[58] B. Narzilloev, J. Rayimbaev, S. Shaymatov, A. Abdujab-
barov, B. Ahmedov, and C. Bambi, Phys. Rev. D 102,
104062 (2020).

[59] B. Narzilloev, J. Rayimbaev, A. Abdujabbarov, and C.
Bambi, Eur. Phys. J. C 80, 1074 (2020).

[60] A. Hakimov, A. Abdujabbarov, and B. Narzilloev, Int. J.
Mod. Phys. A 32, 1750116 (2017).

[61] B. Narzilloev, J. Rayimbaev, A. Abdujabbarov, B.
Ahmedov, and C. Bambi, Eur. Phys. J. C 81, 269 (2021).

[62] S. Shaymatov, B. Narzilloev, A. Abdujabbarov, and C.
Bambi, Phys. Rev. D 103, 124066 (2021).

[63] A. Abdujabbarov, B. Juraev, B. Ahmedov, and Z. Stuchlík,
Astrophys. Space Sci. 361, 226 (2016).

[64] A. A. Abdujabbarov and B. J. Ahmedov, Astrophys. Space
Sci. 321, 225 (2009).

[65] H. Weyl, Ann. Phys. (Berlin) 359, 117 (1917).
[66] H. Weyl, Math. Z. 2, 384 (1918).
[67] H. Weyl, Ann. Phys. (Berlin) 364, 101 (1919).
[68] L. Kong, Z. Li, and C. Bambi, Astrophys. J. 797, 78 (2014).

BAKHTIYOR NARZILLOEV et al. PHYS. REV. D 104, 064016 (2021)

064016-12

https://doi.org/10.1007/s10714-005-0120-1
https://doi.org/10.1007/s10714-005-0120-1
https://doi.org/10.1103/PhysRevD.24.320
https://doi.org/10.1103/PhysRevD.24.320
https://doi.org/10.1142/S021827180000061X
https://doi.org/10.1142/S021827180000061X
https://doi.org/10.1103/PhysRevD.85.104031
https://doi.org/10.1103/PhysRevD.93.024024
https://doi.org/10.1103/PhysRevD.99.044012
https://doi.org/10.1103/PhysRevD.99.044012
https://doi.org/10.1103/PhysRevD.100.024014
https://doi.org/10.1103/PhysRevD.100.024014
https://doi.org/10.1103/PhysRevD.100.044001
https://doi.org/10.1103/PhysRevD.100.044001
https://doi.org/10.1103/PhysRevD.100.104052
https://doi.org/10.1103/PhysRevD.100.104052
https://doi.org/10.1088/1475-7516/2017/05/039
https://doi.org/10.1088/1475-7516/2017/05/039
https://doi.org/10.1140/epjc/s10052-020-8370-3
https://doi.org/10.1103/PhysRevD.99.104009
https://doi.org/10.1103/PhysRevD.102.044013
https://doi.org/10.1103/PhysRevD.102.044013
https://doi.org/10.1103/PhysRevD.102.104062
https://doi.org/10.1103/PhysRevD.102.104062
https://doi.org/10.1140/epjc/s10052-020-08623-2
https://doi.org/10.1142/S0217751X17501160
https://doi.org/10.1142/S0217751X17501160
https://doi.org/10.1140/epjc/s10052-021-09074-z
https://doi.org/10.1103/PhysRevD.103.124066
https://doi.org/10.1007/s10509-016-2818-9
https://doi.org/10.1007/s10509-009-0023-9
https://doi.org/10.1007/s10509-009-0023-9
https://doi.org/10.1002/andp.19173591804
https://doi.org/10.1007/BF01199420
https://doi.org/10.1002/andp.19193641002
https://doi.org/10.1088/0004-637X/797/2/78

