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We reconsider the widely held view that the Mannheim–Kazanas (MK) vacuum solution for a static,
spherically symmetric system in conformal gravity (CG) predicts flat rotation curves, such as those
observed in galaxies, without the need for dark matter. This prediction assumes that test particles have fixed
rest mass and follow timelike geodesics in the MK metric in the vacuum region exterior to a spherically
symmetric representation of the galactic mass distribution. Such geodesics are not conformally invariant,
however, which leads to an apparent discrepancy with the analogous calculation performed in the
conformally equivalent Schwarzschild–de-Sitter (SdS) metric, where the latter does not predict flat rotation
curves. This difference arises since the mass of particles in CG must instead be generated dynamically
through interaction with a scalar field. The energy-momentum of this required scalar field means that, in a
general conformal frame from the equivalence class of CG solutions outside a static, spherically symmetric
matter distribution, the spacetime is not given by the MK vacuum solution. A unique frame does exist,
however, for which the metric retains the MK form, since the scalar field energy-momentum vanishes
despite the field being nonzero and radially dependent. Nonetheless, we show that in both this MK frame
and the Einstein frame, in which the scalar field is constant, massive particles follow timelike geodesics of
the SdS metric, thereby resolving the apparent frame dependence of physical predictions and unambig-
uously yielding rotation curves with no flat region. Moreover, we show that attempts to model rising
rotation curves by fitting the coefficient of the quadratic term in the SdS metric individually for each galaxy
are also precluded, since the scalar field equation of motion introduces an additional constraint relative to
the vacuum case, such that the coefficient of the quadratic term in the SdS metric is most naturally
interpreted as proportional to a global cosmological constant. We also comment briefly on how our analysis
resolves the long-standing uncertainty regarding gravitational lensing in the MK metric.
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I. INTRODUCTION

Conformal gravity (CG) (also known as Weyl gravity
or Weyl-squared gravity) was first proposed in 1921 by
Bach [1], who took Weyl’s idea of a conformally invariant
gravity theory [2], but eliminated Weyl’s additional vector
(gauge) field, to which Einstein had raised some theoretical
objections (see [3], however). Over the past 30 years or so,
CG has attracted considerable interest as an alternative to
general relativity (GR), since it is claimed, most notably by
Mannheim and collaborators, to address several shortcom-
ings of GR [4–6].
From a theoretical perspective, CG differs from GR both

in incorporating the local conformal symmetry that holds
for the strong, weak and electromagnetic interactions and
in being renormalizable [7]. Conversely, whereas GR has
field equations that contain second-order derivatives of
the metric and is thus unitary, CG has fourth-order field

equations and possesses a classical ghost [8]; it is claimed
that one can nonetheless construct a unitary quantum
theory by redefining its Fock space [9,10], although this
suggestion is controversial [11].
It is from a phenomenological viewpoint, however, that

CG has generated the most interest, since it is claimed to
explain various astrophysical and cosmological observa-
tions without the need for dark matter or dark energy.
These analyses rely primarily on several exact solutions
that have been found for systems with sufficient symmetry
[4,12–18]. A number of studies have, however, called into
question many of the claimed advantages of CG over GR,
prompting a reconsideration of their theoretical basis, most
notably in the areas of cosmology, gravitational lensing and
galactic dynamics.
In a cosmological context, for homogeneous and iso-

tropic spacetimes the CG field equations arise solely from
the energy-momentum tensor of matter, which consists
of a perfect fluid approximation both to radiation and to a
Dirac field representing “ordinary” matter, together with a
conformally coupled scalar field [5,13,19]. The resulting
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background cosmological evolution equations are identical
to those of the ΛCDM model derived from GR, except that
the Friedmann equation has a negative effective gravita-
tional constant Geff ¼ −3=ð4πφ2

0Þ, where φ0 is the vacuum
expectation value of the scalar field, so that isotropic
radiation and matter are repulsive, and the cosmological
constant is derived from the scalar field vacuum energy,
which is proportional to φ4

0. This leads to a somewhat
different cosmological model to ΛCDM: the universe is
open, radiation dominates at early times to prevent a big-
bang singularity, matter is always subdominant, and the
scalar field dominates at late times, driving an accelerated
expansion with an effective dark energy density in the
range 0 < ΩΛ;0 < 1 at the current epoch, which is com-
patible with observations. Indeed, it is claimed that the CG
cosmology provides a better fit to cosmological data, such
as luminosity distances from Type IA supernovae and
gamma-ray bursts, and with less fine tuning than the
standard ΛCDM model, all without resort to the dark
sector [19–24]. The study of the growth of cosmological
perturbations in CG is still in its infancy, however, and so
no predictions yet exist for the cosmic microwave back-
ground radiation [6,25,26]. The CG background cosmol-
ogy does, however, already have several shortcomings.
From early on it was found to be incompatible with
nucleosynthesis constraints [27–31], and more recently it
has been shown to deviate significantly from high-redshift
distance moduli data derived from gamma-ray bursts and
quasars, yielding a far poorer fit than ΛCDM, and also
having its own fine-tuning and cosmic coincidence prob-
lems of a similar magnitude to those of ΛCDM [32,33].
The majority of CG phenomenology is, however, based

on the so-called Mannheim–Kazanas (MK) vacuum sol-
ution [4] of the CG field equations for a static, spherically
symmetric spacetime, a solution that was, in fact, first
found by Riegert [12] (note that any vacuum solution of
GR, even including a cosmological constant, is also a
vacuum solution of CG, but the converse is not true).
The MK metric is compatible with solar-system tests of
gravity [34–37], but is claimed to lead to observable
differences from GR on larger scales for the trajectories
of both massless and massive particles.1

Massless particles follow null geodesics, which are
invariant under conformal transformations, and have been
extensively studied for the MK metric, particularly in the
context of gravitational lensing [35–37,40–47]. Nonetheless,
the literature remains inconclusive, with different studies
leading to strongly contradictory conclusions, even regard-
ing basic issues such as the required sign of the linear term in
the MK metric, which is key to much of its phenomenology.

These disagreements arise both from the association of the
mass of the lens with different combinations of the param-
eters in the MK metric and from the choice of the geometric
definition of the deflection angle [48]; the latter is related
to the fact that the MK metric is not asymptotically flat,
which is a complication that also (in part) underlies
the longstanding confusion regarding the contribution of
the cosmological constant to gravitational lensing in the
Schwarzschild–de-Sitter (SdS) metric [49,50], a debate that
has only recently been satisfactorily resolved [51].
CG is most celebrated phenomenologically, however, for

its fitting of flat galaxy rotation curves without the need for
dark matter [52–57]. These fits are based on the trajectories
of massive particles in the MKmetric, with parameter values
that are consistent with solar-system tests, although the
requirement for matching the MK metric onto a static,
spherically symmetric matter source suggests that it may
not be possible to set the parameters in a consistent manner
[58–60]. More troubling, however, is that the galaxy rotation
curve analyses assume simply that massive (test) particles
follow timelike geodesics, which are affected by conformal
transformations, as is well known. Since CG is (by con-
struction) conformally invariant, such transformations should
not change the observable consequences of the theory, unless
the conformal symmetry is broken in some way.
A related issue is that, in any conformally invariant

theory, particle rest masses cannot be fundamental, but
must instead arise dynamically, typically through interac-
tion with a scalar field, the mass of which also cannot
be fundamental, but arises through dynamical symmetry
breaking [61]. Thus, taking inspiration from the Standard
Model of particle physics, the matter action in CG usually
includes a Dirac field to represent ordinary matter, which
has a Yukawa coupling to a (conformal) scalar field with a
quartic self-interaction term [5,62,63]. In this way, one may
incorporate ordinary matter with mass, such as that making
up astrophysical objects such as stars and galaxies, as well
as observers and test particles, in a way that maintains
conformal invariance. Thus, CG is not only compatible
with dynamic mass generation, but requires it and hence
also the presence of the scalar field, without which massive
(test) particles would not be possible. Indeed, as mentioned
above, the scalar field is also central to cosmological
applications of CG.
The requirement of dynamical mass generation through

the presence of a scalar field has two immediate and
profound consequences for the fitting of galaxy rotation
curves with the MK metric [64–66]. First, one cannot
ignore the energy-momentum of the scalar field and so, in
general, the spacetime outside a static, spherically sym-
metric matter distribution in CG is not given by the MK
vacuum solution. Second, the mass of a test particle
depends on the value of the scalar field and hence varies
with spacetime position, in general, so the particle does not
follow a timelike geodesic unless the scalar field has the

1It has been suggested that CG is repulsive in the Newtonian
limit and so fails solar-system tests [38], but it was later claimed
that this conclusion is mistaken and results from a subtlety in
taking the limit in isotropic coordinates [39].
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same constant value everywhere [62]. It is therefore
surprising that these effects are omitted in much of the
CG literature devoted to fitting galaxy rotation curves.
Some of these issues have, however, been discussed

recently in this context. In particular, [66] considered a
special analytical solution of the CG field equations found
in [65] for both the metric and the scalar field in a static,
spherically symmetric system, for which the metric still has
a form equivalent to the MK solution. Since the corre-
sponding scalar field has a radial dependence, however,
massive (test) particles do not follow timelike geodesics, as
discussed above. Indeed, it was shown that on making a
conformal transformation to the Einstein gauge, in which
the scalar field takes a constant value everywhere and so
massive particles do follow timelike geodesics, the result-
ing metric is equivalent merely to the standard SdS form,
which lacks the linear term in the MK metric that is key to
the successful fitting of flat galaxy rotation curves. This
analysis was criticized in [67], however, who pointed out
that the MK metric is conformally equivalent to the SdS
metric, without the need to introduce a scalar field
[1,14,68,69], and that the scalar field in the special solution
investigated in [66] has vanishing energy-momentum,
which was therefore considered to be trivial because it
has no effect on the geometry. It is unclear from [67],
however, whether these criticisms are considered to validate
previous analyses [52–57] using the MK metric to fit flat
galaxy rotation curves.
In this paper, we revisit and extend the analysis in [66]

and address the criticisms made in [67]. In particular, we
discuss how the conformal equivalence of the MK and SdS
metrics, even in the absence of a scalar field, raises
concerns about the use of timelike geodesics of the MK
metric in fitting galaxy rotation curves. Indeed, the fact that
timelike geodesics of the conformally equivalent SdS
metric are well known not to produce flat rotation curves
leads to the suspicion that the prediction in the “MK frame”
may be merely a gauge artefact. Accepting the need
to include a scalar field to facilitate dynamical mass
generation, we confirm that the scalar field in the analytical
solution considered in [66] has vanishing energy-
momentum, as it must in order for the MK “vacuum”
solution for the metric to remain valid. Such so-called
“ghost solutions” for fields are, however, found to exist in
other physical contexts [70–72], and it does not follow that
the scalar field in [66] is dynamically unimportant to
massive particle trajectories. Indeed, we verify that the
conformal transformation required to reach the Einstein
gauge, in which the scalar field is constant everywhere
and so its energy-momentum vanishes trivially, transforms
the metric into the SdS form, after performing a radial
coordinate transformation to recover the usual angular part
of the metric. We also note that this joint conformal and
coordinate transformation is equivalent to that previously
identified in [14,69] as connecting the MK and SdS

metrics, but merely performed in the opposite order.
Moreover, independently of the considerations of [65],
we show that the general form of the conformal trans-
formation used in [66] is picked out uniquely as that which
preserves the structure of any diagonal static, spherically
symmetric metric with a radial coefficient that is (minus)
the reciprocal of its temporal one (of which both the MK
and SdS metrics are examples). We then “close the loop” in
the above considerations, by investigating the motion of a
Dirac particle with a dynamically generated mass in the
presence of a radially dependent scalar field in a static,
spherically symmetric spacetime. Applying this formalism
to the analytical solution considered in [66], we show
directly that the equations of motion in the “MK frame” are
identical to those of timelike geodesics in the SdS metric, as
they must be for conformal invariance to hold. Hence, this
both removes the dependence on conformal frame of the
predicted rotation curves that occurs in the absence of a
scalar field, and unambiguously identifies the timelike
geodesics of the SdS metric as those that are physically
realized, which do not predict flat galaxy rotation curves.
Moreover, we show that the scalar field equation of motion
introduces an additional constraint relative to the vacuum
case, such that the coefficient of the quadratic term in the
SdS metric is most naturally interpreted as proportional to a
global cosmological constant, which thus also undermines
attempts to model rising rotation curves by fitting this
coefficient separately for each galaxy, as has been consid-
ered previously in the context of Weyl–Dirac gravity [73].
More generally, for any of type of galactic rotation curve
usually considered (see, e.g., [74] for a discussion of the
overall family of rotation curves), our analysis implies that
all attempts to use the MK vacuum solution to avoid the
need for dark matter will fail, since the real physical motion
is just that of the conventional SdS metric.2 We also briefly
discuss the consequences of our analysis for null geodesics
in the MK metric, and how it may be used to resolve the
long-standing disagreements in the literature regarding
gravitational lensing in CG.
Thus, in summary, the outline of our argument is as

follows. We assume the physics to be described (every-
where) by the sum of the CG gravitational action (1) and
the matter action (5), which contains a Dirac field ψ to
represent ordinary (fermionic) matter and a scalar (com-
pensator) field φ that enables the mass of ψ to be generated
dynamically, as required by conformal invariance. For a
region with ψ ¼ 0 (apart from test particles and/or observ-
ers) outside a static, spherically symmetric system, the
spacetime geometry is not described by the MK vacuum
metric in a general conformal frame from the equivalence

2This does not mean that conformal gravity itself cannot
produce interesting dynamical effects, but we are concerned here
only with the solution for a true vacuum, in which the scalar field
has a vanishing energy-momentum tensor, and for which the MK
solution can therefore be used.

CONFORMAL GRAVITY DOES NOT PREDICT FLAT GALAXY … PHYS. REV. D 104, 064014 (2021)

064014-3



class of solutions in GC, since the energy-momenum of the
scalar field does not vanish [65]. A unique frame does exist,
however, where the metric retains the MK form (12)–(13),
since the scalar field is given by (18), for which the energy-
momentum tensor vanishes; the scalar field equation of
motion requires that the additional relation (19) must also
hold in this case. In both this MK frame and the Einstein
frame, for which the scalar field is constant and the metric
has the SdS form (15), massive and massless particles
follow the timelike and null geodesics, respectively, of the
SdS metric. This resolves the apparent frame dependence of
physical predictions, unambiguously yields rotation curves
for massive particles with no flat region, and resolves the
long-standing debate regarding gravitational lensing in the
MK metric.
The remainder of this paper is arranged as follows.

In Sec. II, we give a brief outline of conformal gravity,
including a description of its gravitational and matter
actions and the associated equations of motion. We then
consider the MK vacuum solution [4,12] for a static,
spherically symmetric system in Sec. III, and discuss its
conformal equivalence to the SdS metric without reference
to any scalar field [14,67,69]. In Sec. IV, we summarize the
nature of the galaxy rotation curves predicted in the MK
and SdS vacuum solutions, respectively. We then discuss
the necessity to introduce a scalar field to facilitate the
dynamical generation of massive (test) particles in Sec. V,
and describe the special analytical solution of the CG field
equations considered in [65,66] for both the metric and the
scalar field in a static, spherically symmetric system. In
Sec. VI, we describe the conformal transformation of this
solution to the Einstein frame and the resulting rotation
curves, before discussing rotation curves in the MK frame
directly in the presence of a radially varying scalar field in
Sec. VII. We briefly comment on the implications of our
analysis for gravitational lensing in the MK metric in
Sec. VIII, before concluding in Sec. IX.

II. CONFORMAL GRAVITY

Conformal gravity is interpreted geometrically in terms
of a Riemannian spacetime with metric gμν and has the free
gravitational action [1,4,5]

SG ¼ α

Z
d4x

ffiffiffiffiffiffi
−g

p
CρσμνCρσμν; ð1Þ

where α is a dimensionless parameter and Cρσμν is the Weyl
tensor, which may be written in terms of the Riemann (or
curvature) tensor Rρσμν and its contractions3 as

Cρσμν ¼ Rρσμν −
1

2
ðgρμRσν − gρνRσμ − gσμRρν þ gσνRρμÞ

þ 1

6
ðgρμgσν − gρνgσμÞR: ð2Þ

It is straightforward to show that under a conformal (scale)
transformation gμν → g̃μν ¼ e2ρgμν, where ρ ¼ ρðxÞ is an
arbitrary scalar function, the Weyl tensor transforms
covariantly as C̃ρσμν ¼ e−2ρCρσμν, so that the gravitational
action SG in (1) is invariant. Indeed, SG is the unique
conformally invariant action in Riemannian spacetime.
Substituting (2) into (1), one finds that SG may be
written as

SG ¼ α

Z
d4x

ffiffiffiffiffiffi
−g

p �
RρσμνRρσμν − 2RρσRρσ þ 1

3
R2

�
ð3Þ

¼ 2α

Z
d4x

ffiffiffiffiffiffi
−g

p �
RρσRρσ −

1

3
R2

�
þ surface term;

ð4Þ

where in the second line we have made use of the fact
that the Gauss–Bonnet term R2 − 4RρσRρσ þ RρσμνRρσμν

contributes a total derivative in D ≤ 4 dimensions.
The matter action in conformal gravity is usually taken

to be [5]

SM ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
iψ̄γρD

↔

ρψ − μφψ̄ψ

þ 1

2
νð∇ρφÞð∇ρφÞ − λφ4 þ 1

12
νφ2R

�
; ð5Þ

in which the parameters μ, ν and λ are dimensionless
and the numerical factors ensure that SM varies only by a
surface term under a conformal transformation. In this
action, ψ is a Dirac field, which has Weyl weight
w ¼ −3=2, and the covariant derivative in its kinetic term
has the form Dμψ ¼ ð∂μ þ ΓμÞψ , where the fermion spin
connection Γμ ¼ 1

8
ð½γλ; ∂μγλ� − Γλ

νμ½γν; γλ�Þ and the posi-
tion dependent quantities γμ ¼ eaμγa are related to the
standard Dirac matrices γa using the tetrad components eaμ.

With a slight abuse of notation, we define ψ̄γρD
↔

ρψ ≡
ψ̄γρDρψ − ðDρψ̄Þγρψ , where the bidirectional derivative
acts only on the spinor field ψ and its conjugate ψ̄ , and not
on the position-dependent gamma matrices γρ. The (com-
pensator) scalar field φ, with Weyl weight w ¼ −1, has
both a kinetic term and quartic self-interaction term.
The covariant derivative ∇ρ in the former reduces to the
ordinary partial derivative, so the only direct interaction of
φ with the gravitational field is through its nonminimal
(conformal) coupling to the Ricci scalar. Finally, the
Yukawa coupling term between ψ and φ is worthy of
comment, since it allows the Dirac field to acquire a mass

3We adopt the following sign conventions: ðþ;−;−;−Þ metric
signature, Rρ

σμν ¼ 2ð∂ ½μΓρjσjν� þ Γρ
λ½μΓλjσjν�Þ, where the metric

(Christoffel) connection Γρ
λμ ¼ 1

2
gρσð∂λgμσ þ ∂μgλσ − ∂σgλμÞ,

and Rρ
μ ¼ Rρσ

μσ . We also employ natural units c ¼ ℏ ¼ 1
throughout, unless otherwise stated.
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μφ dynamically. In particular, if one adopts the Einstein
gauge φ ¼ φ0 (a constant), the Dirac field has a mass
m ¼ μφ0 that is independent of spacetime position.
It is worth noting that the field φ in the action (5) is a

fundamental scalar field. In some of the more recent CG
literature, however, the scalar field is instead taken to be a
long-range order parameter that arises when a fermion
bilinear associated with the Dirac field ψ takes a nonzero
expectation value φ ¼ h0jψ̄ψ j0i in a spontaneously broken
vacuum j0i filled with negative energy fermion states [56].
In this case, φ does not appear in the fundamental matter
action (5), but an action of an analogous form for φ instead
holds only within each fermion. It is then claimed that each
fermion has its own scalar order parameter, which is
constant outside of the fermion, where both the kinetic
and Ricci scalar terms are absent from the action. Here,
irrespective of the nature of the scalar field, we will confine
our attention to the case where the total matter action has
the form (5) everywhere, as proposed in [5].
The equations of motion for the fields gμν, ψ and φ are

obtained by varying the total action ST ¼ SG þ SM ¼R
d4xðLG þ LMÞ with respect to them. On varying with

respect to gμν one finds that ðTGÞμν þ ðTMÞμν ¼ 0, in which

ðTGÞμν ≡ 2ffiffiffiffiffiffi−gp δLG

δgμν
¼ 4αð2∇ρ∇σ þ RρσÞCμρνσ; ð6Þ

where the operation of the quantity in parentheses on
the Weyl tensor yields the standard expression for the
Bach tensor, which is manifestly symmetric and traceless,
as expected, and scales as e−4ρ under a conformal
transformation (i.e., it has Weyl weight w ¼ −4). It also
clearly contains up to fourth-order derivatives of the metric.
Using (2) and the contracted Bianchi identity
∇ρRρσ

μν − 2∇½μRσ
ν� ¼ 0, it is straightforward to show that

any Einstein spacetime, for which Rμν ¼ βgμν with β a
constant (and is thus a solution of the GR vacuum field
equations including a cosmological constant), is a solution
of the CG vacuum field equations. The converse is not true,
however, since there exist solutions of ðTGÞμν ¼ 0 that are
not Einstein spacetimes, nor conformally equivalent to
them [75–77]. Nonetheless, it is worth noting that imposing
a simple Neumann boundary condition on the metric
selects the vacuum solutions of GR from the wider set
of vacuum solutions of CG, thereby removing ghosts and
rendering CG and GR with a cosmological constant
equivalent in a vacuum [78].
On including matter, its energy-momentum tensor is

given by

ðTMÞμν ≡ 2ffiffiffiffiffiffi−gp δLM

δgμν
¼ ðTψ Þμν þ νðTφÞμν; ð7Þ

where the contributions from the Dirac and scalar fields are,
respectively,

ðTψ Þμν ¼
1

2
iψ̄γðμD

↔

νÞψ − gμν

�
1

2
iψ̄γρD

↔

ρψ − μφψ̄ψ

�
; ð8Þ

ðTφÞμν ¼
1

6
φ2Gμν þ

2

3
ð∇μφÞð∇νφÞ −

1

3
φ∇μ∇νφ

þ gμν

�
1

3
φ□2φ −

1

6
ð∇ρφÞð∇ρφÞ þ λ

ν
φ4

�
; ð9Þ

in which□2≡∇ρ∇ρ andGμν ≡ Rμν − 1
2
gμνR is the Einstein

tensor. One should note that to determine the variational
derivative with respect to gμν of the kinetic term for the
Dirac spinor field ψ in (5), one must first vary with respect
to the tetrad components to obtain taμ ≡ δLM=δeaμ, from
which one then has 2δLM=δgμν ¼ ηabeaðμtbνÞ. It is straight-
forward to show that ðTMÞμν scales as e−4ρ under a
conformal transformation, like ðTGÞμν, and that its trace
vanishes by virtue of the matter equations of motion.
The latter are obtained by varying the action with respect

to the fields ψ and φ, respectively, which yields

iγμDμψ − μφψ ¼ 0; ð10Þ

□
2φ −

1

6
φRþ 4λ

ν
φ3 þ μ

ν
ψ̄ψ ¼ 0: ð11Þ

One sees that (10) is the Dirac equation for a fermion field
with mass m ¼ μφ induced by Yukawa coupling to φ, and
(11) is a Klein–Gordon equation for a massless scalar field
φ with a Dirac source μψ̄ψ=ν and a position-dependent
‘Mexican hat’ potential VðφÞ ¼ − 1

12
Rφ2 þ λ

ν φ
4.

As noted in [66], by rescaling φ one can set the
dimensionless parameter ν ¼ �1 throughout, if desired,
but only the positive value yields the “correct” sign for the
kinetic energy of the compensator scalar field. Moreover, as
mentioned above, one may use the conformal invariance of
the theory to set the scalar field to a constant φ ¼ φ0, which
is usually termed the Einstein gauge.

III. STATIC SPHERICALLY SYMMETRIC
VACUUM SOLUTION

For any static spherically symmetric spacetime, a par-
ticular conformal transformation brings the line-element
into the special form [4]

ds2 ¼ BðrÞdt2 − dr2

BðrÞ − r2ðdθ2 þ sin2 θdϕ2Þ: ð12Þ

As first shown by Riegert [12] and later by Mannheim and
Kazanas [4], on substituting the corresponding metric gμν
into the vacuum CG field equations ðTGÞμν ¼ 0, one finds
that the function BðrÞ may be written as
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BðrÞ ¼ 1 − 3βγ −
βð2 − 3βγÞ

r
þ γr − kr2; ð13Þ

where β, γ and k are integration constants.4 In particular, to
describe the spacetime outside of a central mass M one
identifies the coefficient of the 1=r term in (13) with
−2GM=c2 (reinstating c for the moment), in which case
β ≠ 0, and the MK metric is then in agreement with the
classic solar system tests of GR provided jβγj ≪ 1 [34–37].
As is clear from (13), β and γ have dimensions of length
and inverse length, respectively, so that the product βγ is
dimensionless.5 The constant k has units of ðlengthÞ−2 and
the corresponding quadratic term −kr2 in (13) embeds the
solution in a curved background at large coordinate radius.
We note that Birkhoff’s theorem holds in CG, so that (13) is
the most general spherically symmetric vacuum solution
[12], which thus holds in any region where ðTMÞμν ¼ 0,
including exterior or interior to an arbitrary spherically
symmetric matter distribution.
As expected, (13) includes the Schwarzschild solution

as a special case ðγ ¼ k ¼ 0Þ. Also anticipated, but more
interesting, is that it further includes the Schwarzschild–de-
Sitter (SdS) solution (γ ¼ 0), despite the absence of a
cosmological constant term in (1). As Bach originally
showed [1], however, every static, spherically symmetric
spacetime that is conformally related to the SdS metric is a
solution of the vacuum field equations of CG for such a
system, with the converse being proved some years later by
Buchdahl [68]. Thus, as later verified explicitly [14,67,69],
the MK metric (13) is conformally equivalent to the SdS
solution. In particular, if one redefines the radial coordinate
as r ¼ r0=Ω0ðr0Þ, where

Ω0ðr0Þ ¼ 1 −
γ

2 − 3βγ
r0; ð14Þ

and then makes the conformal transformation g̃0μνðx0Þ ¼
Ω02ðr0Þg0μνðx0Þ, with g0μνðx0Þ ¼ Xρ

μXσ
νgρσðxðx0ÞÞ and Xρ

μ ¼
∂xρ=∂x0μ, one again obtains a line-element in the special
form (12), but expressed in terms of r0 and B̃0ðr0Þ, where

B̃0ðr0Þ ¼ 1 −
βð2 − 3βγÞ

r0
− k0r02; ð15Þ

with k0 ≡ kþ γ2ð1 − βγÞ=ð2 − 3βγÞ2, which has the usual
SdS form that lacks the linear term present in the MK
metric (13). One should note, however, that in addition to
identifying the coefficient of 1=r0 as −2GM=c2, whereM is

the mass of the central object, the constant k0 in the r02 term
may also be system dependent in CG, and need not be
identified as 1

3
Λ, for some global cosmological constant Λ,

which is necessary in GR.

IV. GALAXY ROTATION CURVES
IN A VACUUM

The modelling of galaxy rotation curves in CG is
typically performed without invoking dark matter by using
the MK line-element (12)–(13) in the (assumed) vacuum
region exterior to a spherically symmetric representation of
the galactic matter distribution, and possibly also interior to
a spherically symmetric approximation to the matter dis-
tribution on much larger scales, representing the cluster or
supercluster in which the galaxy resides and potentially
extending to cosmological scales and including the Hubble
flow [52–57]. In the CG literature, a somewhat complicated
approach is taken to the description of the matter distri-
bution interior and exterior to the vacuum region. The
galactic matter distribution is often considered as a collec-
tion of ∼1011 stars, which contribute terms to the metric
coefficient BðrÞ in the vacuum region that are proportional to
a constant, 1=r and r, respectively, whereas the matter
distribution on larger scales contributes a term proportional
to r2 that arises from inhomogeneities, and a further term
proportional to r that is due to theHubble flow. Irrespective of
the origins of these various terms, however, in the (assumed)
vacuum region where the rotation curve is modelled, the line
element must simply be of the general MK form (12)–(13),
owing to Birkhoff’s theorem in CG [12].
The conformal equivalence discussed above between the

MK and SdS metrics then immediately raises some con-
cerns, however, regarding such analyses. In particular, a
key assumption is that a matter test particle (or star) follows
a timelike geodesic in the spacetime geometry defined by
theMK line-element. This leads to the conclusion that, for a
circular orbit of coordinate radius r (in the equatorial plane
θ ¼ π=2), the velocity v of the test particle (as measured by
a stationary observer at that radius) satisfies

v2 ¼ r2

B

�
dϕ
dt

�
2

¼ r
2B

dB
dr

¼ 1

2

βð2 − 3βγÞr−1 þ γr − 2kr2

βð3βγ − 2Þr−1 þ ð1 − 3βγÞ þ γr − kr2
: ð16Þ

When considering a galaxy rotation curve, the weak-
field limit B ≈ 1 holds, so that the three terms in the
numerator of (16) determine its shape [66]. Recalling that
jβγj ≪ 1, the first term in the numerator recovers the
standard Keplerian rotation curve v2 ¼ β=r, whereas the
second term contributes a rising component v2 ¼ 1

2
γr.

Indeed, it is the transition between these two régimes,
which occurs around r2 ∼ 2β=γ, that produces the approx-
imately flat rotation curve that resembles those observed in

4Some of the CG literature, including [66], uses the slightly
different parametrization BðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6β0γ

p
− 2β0=rþ γr − kr2,

where β0 ¼ βð1 − 3
2
βγÞ ≈ β if the condition jβγj ≪ 1 is satisfied.

5On reinstating c, the more physically relevant quantities β=c2

and γc2 have dimensions of inverse acceleration and acceleration,
respectively.
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the outskirts of large spiral galaxies [79]. In this context,
M ∼ 1011 M⊙ and so β ∼ 1014 m (hence β=c2 ∼ 10−3 m−1

s2), and γ has typically been associated with the inverse
Hubble length, such that γ ∼ 10−26 m−1 (hence
γc2 ∼ 10−9 m s−2). Thus, jβγj ∼ 10−12, which amply sat-
isfies the requirement jβγj ≪ 1. With these values of β and
γ, the two contributions to the overall rotation curve are of a
similar magnitude for r ∼ 1020 m or ∼5 kpc, which corre-
sponds roughly to the size of a galaxy. Some refinement
of the model is necessary to accommodate the rising
rotation curves observed in smaller dwarf galaxies, so
more recent analyses assume γðMÞ ¼ γ0ð1þM=M0Þ,
where γ0 ∼ 10−28 m−1 and M0 ∼ 1010 M⊙ [52,53], such
that γ ∼ 10−27 m−1 for M ∼ 1011 M⊙ and the transition
between régimes occurs at r ∼ 15 kpc. Moreover, to model
the flat rotation curves in the outskirts of particularly large
galaxies [6], one requires k > 0 so that the falling quadratic
term −kr2 counters the rising term γr in the numerator
of (13). A reasonable fit is obtained if k ∼ 10−49 m−2 ∼
ð100 MpcÞ−2, where 100 Mpc coincides with the typical
size of structures in the cosmic web; this also serves to
eliminate bound circular orbits beyond the “watershed”
radius r ¼ jγ=2kj ∼ 150 kpc.
In any case, it is clear that the linear term γr in (13) is

crucial for producing flat rotation curves that resemble
those observed in galaxies. It is therefore concerning
that the MK metric is conformally equivalent to the SdS
form (15), for which the linear term is absent. If one again
assumes simply that a matter test particle follows a timelike
geodesic in the spacetime geometry, but now that defined
by the SdS line-element (15), the corresponding circular
velocity ṽ0 of the test particle satisfies

ṽ02 ¼ r0

2B̃0
dB̃0

dr0
¼ 1

2

βð2 − 3βγÞr0−1 − 2k0r02

βð3βγ − 2Þr0−1 þ 1 − k0r02
: ð17Þ

By analogy with the argument given above, B̃0 ≈ 1 in this
astrophysical application, so that the rotation curve is
determined by the two terms in the numerator of (17).
Again assuming jβγj ≪ 1, the first term similarly recovers
the standard Keplerian result ṽ02 ¼ β=r0, and the second
term contributes ṽ02¼−k0r02, where k0≈kþ 1

4
γ2. Moreover,

assuming similar values for β, γ and k as used above, then
k0 ≈ k and the rotation curve falls for all values of r0 until
bound circular orbits are eliminated beyond the new
watershed radius r0 ¼ jβ=kj1=3 ∼ 20 kpc. Thus, in the
“SdS frame,” there is no region with a flat rotation curve,
as expected.6

Since the transformations linking the two metrics (13)
and (15) leave the CG gravitational action (1) invariant,
however, they should not change the observable physical
consequences of the theory, unless conformal invariance is
broken in some way. The ambiguity in the predicted
rotation curves arises from the assumption that a test
particle of fixed rest mass m follows a timelike geodesic,
which is based on the standard postulate in GR that the
worldline extremizes the particle action Sp ¼ −m

R
ds,

where ds is the spacetime interval. This action is unsuitable
in CG, however, since it is not invariant under conformal
transformations [34]. This leads to the suspicion that the
flat rotation curves predicted in the “MK frame” may be
merely a gauge artefact.

V. DYNAMIC GENERATION
OF TEST PARTICLE MASSES

The question then naturally arises as to which of the
rotation curves (16) or (17), if either, is physically realized.
The key to resolving this ambiguity is to recognize that
the (massive) test particle in either scenario represents some
form of “ordinary” matter, typically described by a Dirac
field. Thus, even when using the MK and SdS metrics,
which both satisfy the vacuum field equations of CG, one
must still consider how to introduce matter in the form of a
Dirac field into the theory in a consistent manner, in order
to model correctly the trajectories of massive test particles
in the vacuum region.
As discussed in Sec. II, the appropriate form for the

matter action in CG has the form (5). In particular, to satisfy
conformal invariance, the Dirac field must acquire a mass
dynamically through the Yukawa coupling term μφψ̄ψ ,
which thus necessitates the introduction of a scalar (com-
pensator) field φ that is nonzero everywhere (except
perhaps at infinity). If the Dirac field ψ represents only
the test particle, then one need solve only the coupled
equations of motion of the metric gμν and scalar field φ: the
former is given by ðTGÞμν þ νðTφÞμν ¼ 0 using (6) and (9),
and the latter by (11) with ψ ¼ 0.
The solutions of these equations for a static spherically

symmetric spacetime are investigated in [65]. In general,
the nonzero energy-momentum of the scalar field
means that the metric does not have the MK form.
A special analytical solution is identified, however, for
which the scalar field is everywhere nonzero and finite,
given by

φðrÞ ¼ φ0

�
1þ r

a

�
−1
; ð18Þ

where φ0 and a are finite positive constants, but its
entire energy-momentum tensor nonetheless vanishes
identically, ðTφÞμν ¼ 0 [65–67]. In this case, the metric
then clearly still satisfies the CG vacuum field equations

6The SdS metric has nonetheless been used to model a small
number of spiral galaxies with rotation curves that are rising for
all observed values of r0, by fitting a negative value of k0
separately for each galaxy, albeit in the context of Weyl–Dirac
gravity [73].
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ðTGÞμν ¼ 0 and so can be written in the form of the MK
line-element (12)–(13), in which case a ¼ ð2 − 3βγÞ=γ
in (18). One should also note that the scalar field equation
of motion (11), with ψ ¼ 0, introduces an additional
constraint relative to the vacuum case, which imposes
the following relationship between the integration constants
in the MK metric:

kþ γ2ð1 − βγÞ
ð2 − 3βγÞ2 ¼ −2λφ2

0: ð19Þ

Thus, the constant a in (18) is expressible wholly in terms
of the coefficients in the MK metric (12), and the overall
normalization φ0 in (18) may also be expressed in terms of
these coefficients and the constant λ appearing the scalar
field potential energy term in (5). Consequently, one is not
free to assume different values for the constants a and φ0,
as is done in some of the CG literature, where it is assumed
that the φ field in which a test particle (star) moves is
somehow generated by the test particle itself, rather than
being an “ambient” field that permeates the vacuum
region [55].
For metrics of the special form (12), one may show

that (18) is the most general static, spherically symmetric
form for φ that is a so-called “ghost solution,” i.e., a
nonzero matter field configuration that solves the equa-
tions of motion but has vanishing energy-momentum.7

Thus, if the line-element has the general MK form
(12)–(13), the energy-momentum tensor (9) of the scalar
field vanishes if and only if φðrÞ has the form (18). In
particular, it does not vanish for a constant scalar field
φðrÞ ¼ φ0. Hence, irrespective of the assumed physical
nature of the scalar field, provided the matter action has the
form (5), φ cannot have a constant value if the spacetime
geometry is described by the general MK metric, since this
combination is prohibited by the vacuum field equations.
If one sets φðrÞ ¼ φ0, the scalar field energy-momentum
tensor vanishes only if Gμν þ 6λφ2

0gμν ¼ 0, so that the only
vacuum metric allowed has the SdS form (15) with
k0 ¼ −2λφ2

0. These considerations cast doubt on much of
the CG literature devoted to the fitting of galaxy rotation
curves [52–57].
As we discuss in the next section, the form (18) is

determined directly by the required form of the trans-
formation to the Einstein gauge φðrÞ ¼ φ0 for metrics
of the special form (12). Since the scalar field energy-
momentum vanishes straightforwardly in the Einstein
gauge, one may view the form (18) as merely an artefact
of solving the equations of motion in a gauge in which the
metric is assumed to have the special form (12).

In any case, the immediate consequence of (18) is that a
(fermionic) test particle has a dynamically induced mass
m ¼ μφ that varies with coordinate radius and hence it does
not follow a timelike geodesic, which violates the key
assumption made in deriving the rotation curve (16) in the
MK frame.

VI. GALAXY ROTATION CURVES
IN THE EINSTEIN FRAME

Rather than including the effect of the radially depen-
dent scalar field on the massive test particle trajectory
directly in the MK frame, we first consider the approach
used in [66], where one takes advantage of the conformal
invariance of the theory and performs a conformal trans-
formation to the Einstein frame, in which the scalar field
has the constant value φ0 and so the test particle has the
same mass m ¼ μφ0 everywhere and hence does follow a
timelike geodesic.
Instead of considering the MK metric directly, however,

it is more informative to illustrate a conformal trans-
formation to the Einstein gauge for a general static,
spherically symmetric metric of the form

ds2 ¼ AðrÞdt2 − dr2

BðrÞ − r2ðdθ2 þ sin2 θdϕ2Þ; ð20Þ

which clearly coincides with the special form (12) when
AðrÞ ¼ BðrÞ; we also consider a general form for φðrÞ.
Since φ has Weyl weight w¼−1, under a (radial) con-
formal transformation one has φðrÞ → φ̃ðrÞ ¼ φðrÞ=ΩðrÞ,
and so the required conformal transformation to achieve
φ̃ðrÞ ¼ φ0 is simply ΩðrÞ ¼ φðrÞ=φ0, and the metric
becomes g̃μνðxÞ ¼ Ω2ðrÞgμνðxÞ. To bring the angular part
of the metric back into the standard form in (20), but
expressed in terms of a new radial coordinate r0, one
must then perform the (radial) coordinate transformation
r0 ¼ rΩðrÞ to obtain g̃0μνðx0Þ ¼ Xρ

μXσ
νg̃ρσðxðx0ÞÞ. In so

doing, one finds that the resulting line-element again has
the form (20), but expressed in terms of the new radial
coordinate r0 and the metric functions

Ã0ðr0Þ ¼ Ω2ðrðr0ÞÞAðrðr0ÞÞ; B̃0ðr0Þ ¼ f2ðrðr0ÞÞBðrðr0ÞÞ;
ð21Þ

where we have defined the function fðrÞ≡ 1þ r d lnΩðrÞ
dr .

Thus, as one might expect, even if (20) has the special form
(12) in which AðrÞ ¼ BðrÞ, this form is not preserved
in general by these transformations. Indeed, this is
achieved only if f2ðrÞ ¼ Ω2ðrÞ, which is readily solved
on demanding that ΩðrÞ is finite everywhere to obtain
ΩðrÞ ¼ φðrÞ=φ0, where φðrÞ is given by (18) with a
arbitrary. Thus, independently of the considerations in
[65], the general form (18) for the scalar field is picked

7It is worth noting that other ghost solutions exist, for example
for the Dirac field in both Einstein–Weyl and Einstein–Cartan
gravity for certain systems [70–72].
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out uniquely as that for which the corresponding (finite)
conformal transformation to the Einstein frame preserves
the special form (12) of the metric. Equally, starting from a
metric of the special form (12), if φðrÞ does not have the
form (18), where a may be arbitrary, then the resulting
transformed line-element in the Einstein frame does not
also have this special form.
Adopting the form (18) for the scalar field and applying

the above approach to the MK metric, for which BðrÞ is
given by (13) and a ¼ ð2 − 3βγÞ=γ, the required conformal
transformation to the Einstein gauge is simply

ΩðrÞ ¼
�
1þ γ

2 − 3βγ
r
�

−1
; ð22Þ

and one finds that B̃0ðr0Þ is again given precisely by the SdS
form (15). As might be expected by comparing the forms of
the conformal transformations (14) and (22), the coordinate
r0 has the same form as that originally used in [14,67,69] to
obtain (15), which is given by r0 ¼ rð1þ γ

2−3βγ rÞ−1. Note
that this tends to the finite value r0 → ð2 − 3βγÞ=γ as
r → ∞. Indeed, the only difference in the two approaches
is that the conformal and (radial) coordinate transforma-
tions are performed in opposite orders.
In any case, since a test particle has a constant mass in

the Einstein gauge, and thus follows a timelike geodesic,
one thus identifies (17) as the rotation curve that is
physically realized. Moreover, one should note from (15)
and (19) that one now requires k0 ¼ −2λφ2

0 in (17). If one
assumes that φ0 in (18) may be system dependent, then
there remains the possibility that exists in the vacuum case
of attempting to model some (typically rising) rotation
curves by fitting for k0 separately for each galaxy, as in [73].
Such an assumption seems questionable when viewed in
the Einstein gauge, however, where φ0 is more naturally
interpreted as a system-independent quantity that leads to a
‘global’ cosmological constant Λ ¼ −6λφ2

0. In this case,
one may therefore no longer fit for k0 separately for each
galaxy, or at all if one considers Λ to be fixed by
cosmological observations. It is also worth noting that,
to obtain a positive cosmological constantΛ, one must have
λ < 0, which thus requires a negative scalar field vacuum
energy λφ4

0, at least with the usual sign conventions adopted
in the matter action (5).

VII. GALAXY ROTATION CURVES
IN THE MK FRAME

We now close the loop in our considerations by instead
including the effect of a radially dependent scalar field on
massive particle trajectories directly in the MK frame. In
the interests of generality, however, we will first present our
results for an arbitrary static, spherically symmetric metric
of the special form (12) and an arbitrary radial scalar field

φðrÞ, before explicitly considering the case of the MK
metric (13) and the scalar field configuration (18).8

We begin by again assuming that a matter test particle is
represented by a Dirac field, and construct an appropriate
action from which its equation of motion can be derived.
The construction of the action for a spin-1=2 point particle
and the subsequent transition to the full classical approxi-
mation in which the particle spin is then neglected is
discussed in [81]. In the presence of a Yukawa coupling to a
scalar compensator field, this yields

Sp ¼ −
Z

dζ

�
paua −

1

2
eðpapa − μ2φ2Þ

�
; ð23Þ

where the dynamical variables are the tetrad components of
the particle 4-momentum paðζÞ ¼ eaμpμðζÞ and 4-velocity
uaðζÞ ¼ eaμdxμðζÞ=dζ, and the einbein eðζÞ along the
worldline xμðζÞ, which is parametrized by ζ.
As also shown in [81], in order that uaua ¼ uμuμ ¼ 1

for a massive particle, the einbein must take the form
e ¼ 1=ðμφÞ. In this case, the Weyl weights of the quantities
appearing in (23) are wðpaÞ ¼ −1, wðuaÞ ¼ 0, wðeÞ ¼ 1,
wðζÞ ¼ 1 andwðφÞ ¼ −1, so that the action is indeed scale-
invariant. On varying the action with respect to the
dynamical variables pa, xμ and e, one finds that the particle
equation of motion may then be written in the coordinate
frame as

uν∇νuμ ¼ ðgμν − uμuνÞ∂ν lnφ: ð24Þ

Thus, as expected, it is only when φ is constant that the
particle follows a timelike geodesic. It is worth noting
that one may also arrive at the equation of motion (24) in a
more heuristic manner by simply positing the action of a
particle with position-dependent mass mðxÞ ¼ μφðxÞ to be
Sp ¼ −

R
mðxÞds ¼ −μ

R
φðxÞds, which is a straightfor-

ward generalization of the usual particle action assumed
in GR [34], and identifying the parameters ζ and s
(although we shall draw a distinction between ζ and proper
time below).
Assuming a static, spherically symmetric system with

φ ¼ φðrÞ and a line-element in the special form (12), one
finds that for a massive particle worldline xμðζÞ in
the equatorial plane θ ¼ π=2, the t- and ϕ-equations of
motion are

8It is, in fact, straightforward to perform the calculation for a
metric of the general form (20) and an arbitrary radial scalar field
φðrÞ, but we present here only the results for AðrÞ ¼ BðrÞ for the
sake of brevity. We discuss the wider implications of the gauge
choice AðrÞ ¼ BðrÞ in [80], and in particular describe the manner
in which it distorts the scaling properties of variables, thereby
making it extremely difficult to identify intrinsic φ-independent
quantities that may be used for performing all calculations,
including the derivation of the geodesic equations.
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BΩ
dt
dζ

¼ k; r2Ω
dϕ
dζ

¼ h; ð25Þ

where k and h are constants, and we may replace the
r-equation of motion with the much simpler first integral
uμuμ ¼ 1, which reads

B
�
dt
dζ

�
2

− B−1
�
dr
dζ

�
2

− r2
�
dϕ
dζ

�
2

¼ 1; ð26Þ

where ΩðrÞ≡ φðrÞ=φ0 and the constants k and h are
defined such that one recovers the familiar timelike
geodesic equations in GR for an affine parameter ζ if
φðrÞ ¼ φ0 and so Ω ¼ 1.
As discussed in [3], however, the parameter ζ cannot be

interpreted as the proper time of the particle, since it has
Weyl weight wðζÞ ¼ 1 and so it is not invariant under
conformal transformations. Rather, the proper time interval
measured by some (atomic) clock moving with the particle
is instead given by dτ ∝ φdζ, which is correctly invariant
under conformal transformations. Without loss of general-
ity, one may choose the constant of proportionality such
that dτ ¼ ðφ=φ0Þdζ ¼ Ωdζ, and so dτ and dζ coincide if
φðrÞ ¼ φ0. Thus, when expressed in terms of the proper
time τ of the particle, and denoting d=dτ by an overdot, the
equations of motion (25)–(26) become

BΩ2_t¼ k; r2Ω2 _ϕ¼h; B_t2 −B−1 _r2 − r2 _ϕ2 ¼ Ω−2:

ð27Þ

On substituting the first two equations into the third, one
straightforwardly obtains the energy equation for massive
particle trajectories,

_r2Ω4 þ
�
Ω2 þh2

r2

�
B ¼ k2: ð28Þ

Then substituting _r ¼ _ϕdr=dϕ ¼ ðh=r2Ω2Þdr=dϕ, defin-
ing the reciprocal radial variable u≡ 1=r and differentiat-
ing with respect to ϕ, one obtains the shape (or orbit)
equation for massive particle trajectories,

d2u
dϕ2

þ 1

2

d
du

��
u2 þ Ω̂2

h2

�
B̂

�
¼ 0; ð29Þ

where we have defined the functions B̂ðuÞ≡ Bð1=uÞ
and Ω̂ðuÞ≡ Ωð1=uÞ. As expected, if Ω ¼ 1 the equa-
tions (27)–(29) reduce to the familiar equations for a
timelike geodesic in the equatorial plane θ ¼ π=2 of a
static, spherically symmetric system with line-element of
the special form (12) [82].
We now specialize to the case where the scalar field φðrÞ

has the form (18), with a arbitrary, for which ðrΩ _Þ ¼ _rΩ2. In
this case, on defining the new radial coordinate r0 ¼ rΩðrÞ

and metric function B̃0ðr0Þ ¼ Bðrðr0ÞÞΩ2ðrðr0ÞÞ, a dramatic
simplification takes place whereby the equations of motion
(27) become

B̃0_t¼k; r02 _ϕ¼h; B̃0_t2− B̃0−1 _r02−r02 _ϕ2¼1; ð30Þ

and the energy and shape equations (28) and (29), respec-
tively, have the forms

_r02 þ
�
1þh2

r02

�
B̃0 ¼ k2; ð31Þ

d2u0

dϕ2
þ 1

2

d
du0

��
u02 þ 1

h2

�
B̂0
�
¼ 0; ð32Þ

where u0 ¼ 1=r0 and B̂0ðu0Þ ¼ B̃0ð1=u0Þ. These equations
have precisely the same form in terms of the particle proper
time as the equations for a timelike geodesic in the equatorial
plane θ ¼ π=2 of a static, spherically symmetric spacetime
with line-element of the special form (12), but in terms of the
radial variable r0 and the metric function B̃0ðr0Þ.
Specialising further to the case where BðrÞ has the

MK form (13) and a ¼ ð2 − 3βγÞ=γ, so that ΩðrÞ is given
by (22), we know from Sec. VI that B̃0ðr0Þ, as defined
above, has the SdS form (15) with k0 ¼ −2λφ2

0. Thus, by
explicitly taking into account the presence of the radially
dependent scalar field in the MK frame, we have arrived
directly at the same conclusion that we reached previously
in Sec. VI by transforming to the Einstein frame, namely
that in terms of the radial coordinate r0 it is the rotation
curve (17) that is physically realized, which does not have
the flat region observed in galaxies. This thereby elimi-
nates, as it must, the ambiguity discussed in Sec. IV, where
the physical predictions appeared to depend on the con-
formal frame in which the calculation was performed.

VIII. GRAVITATIONAL LENSING

As discussed in Sec. I, the literature concerning gravi-
tational lensing in the MK metric remains inconclusive,
with considerable disagreement between different studies
[35–37,40–47]. It is uncontroversial, however, that null
geodesics are unaffected by conformal transformations.
Thus, on performing a joint conformal and (radial) coor-
dinate transformation, such as those considered above, if
r ¼ rðϕÞ is the original orbit equation for a massless
particle in the equatorial plane θ ¼ π=2, then it is trans-
formed simply into r0 ¼ r0ðrðϕÞÞ. Although this, of course,
leads to local changes in the trajectory, it has been
suggested previously that the global behavior is unaffected
and, in particular, that the range of ϕ in the orbit equation
remains unchanged, and hence so too does the scattering
angle or deflection [83]. This is valid, however, only if
r0 → r as r → ∞, which does not hold for the trans-
formation from the MK frame to the Einstein frame
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discussed in Sec. VI, for which r0 → ð2 − 3βγÞ=γ as
r → ∞. Consequently, the scattering angle or deflection
will, in general, differ between the two frames. This does
not correspond to any physical difference, however, but is
merely a consequence of the fact that r0 is finite as r → ∞
for the two radial coordinates used.9

Indeed, it is instructive in this context to revisit the
calculation of particle trajectories in the MK frame, but for
the case of massless particles. As discussed in [81], one
may deduce the motion of photons by directly considering
the dynamics of the electromagnetic field in the gravita-
tional background, but one may also arrive at the same
conclusions by reconsidering the particle action (23), which
is immediately applicable to massless fermions (such as a
neutrino) by setting μ ¼ 0. In this case, one finds that
uμuμ ¼ 0 irrespective of the form of the einbein e, which
one is therefore free to choose in the most convenient
manner. Here we take e ¼ 1=φ, so that the weight of each
variable in the action matches that in the massive case
discussed in Sec. VII.
One then finds that the equation of motion (24) is

replaced by uν∇νuμ ¼ −uμuν∂ν lnφ, but this nonetheless
leaves the t- and ϕ-equations of motion (25) unchanged and
the first integral (26) differs only in that the right-hand side
is zero. Once again, one cannot use ζ to parametrize
the particle trajectory since it has Weyl weight wðζÞ ¼ 1
and so is not invariant under conformal transformations.
As previously, the appropriate invariant measure is
dτ ¼ ðφ=φ0Þdζ ¼ Ωdζ, although τ cannot be interpreted
as a proper time in this case, since the worldline is null.10

Following through an analogous calculation to that per-
formed in Sec. VII, one finds that the energy and shape
equations corresponding to (31) and (32) are

_r02 þh2

r02
B̃0 ¼ k2; ð33Þ

d2u0

dϕ2
þ 1

2

d
du0

ðu02B̂0Þ ¼ 0; ð34Þ

which have the same form as the equations in terms of
an affine parameter for a null geodesic in the equatorial
plane θ ¼ π=2 of a spacetime with line-element of the
special form (12), but in terms of the new radial coordinate
r0 ¼ 1=u0 ¼ rΩðrÞ and B̃0ðr0Þ ¼ Bðrðr0ÞÞΩ2ðrðr0ÞÞ.
As in Sec. VII, if one now specializes to the case where

the original metric function BðrÞ has the MK form (13) and
a ¼ ð2 − 3βγÞ=γ, so that ΩðrÞ is given by (22), then the
function B̃0ðr0Þ has the SdS form (15) with k0 ¼ −2λφ2

0.

Thus, in terms of the radial coordinate r0, the trajectories of
massless particles in the MK frame follow null geodesics of
the SdS metric. This therefore resolves the uncertainty in
the literature regarding gravitational lensing in the MK
frame, since the SdS metric lacks the linear term that has
prompted so much debate in the CG literature, and the
consequences of the quadratic cosmological constant term
have recently been properly determined [51]. Hence,
one may arrive at unambiguous predictions for gravita-
tional lensing that can then be easily recast in terms of
the original radial coordinate r used in the MK form for
BðrÞ in (13), if desired.
Finally, as shown in Sec. VI, we note again here that

one may only reach another metric having the special form
(12) from the MK metric by a (finite) conformal trans-
formation (and subsequent radial coordinate transforma-
tion) ifΩðrÞ ¼ φðrÞ=φ0, where φðrÞ is given by (18) with a
arbitrary. This provides some insight into previous work
seeking to use gauge transformations in CG to make matter
attractive to null geodesics in the MK metric irrespective
of the sign of its linear term [67,83]. In particular, setting
a ¼ 1=γ in (18) and performing a joint conformal and
(radial) coordinate transformation as outlined in Sec. VI,
one finds on neglecting any products of β and/or γ that
B̃0ðr0Þ ≈ 1– 2β=r0 − γr0 − kr02, which has the same form as
the MK metric function (13) at this level of approximation,
but with the sign of the linear term reversed. Nonetheless,
this result must be treated with some caution, since one
finds that the exact expression for B̃0ðr0Þ, without making
any such approximations, does not have the same form
as (13) with merely a linear term of opposite sign.

IX. CONCLUSIONS

We have revisited the most celebrated phenomenological
consequence of CG, namely that the MK vacuum solution
for a static, spherically symmetric system predicts flat
galaxy rotation curves, without the need for dark matter
[4,52–57]. This prediction is based on the assumption that
massive (test) particles have fixed rest masses and follow
timelike geodesics in the MK metric. The conformal
equivalence of the MK and SdS metrics raises concerns,
however, that this prediction may be a gauge artefact, since
performing a similar analysis in the SdS metric yields
rotation curves without any flat region, as is well known.
Since CG is (by construction) invariant to such trans-
formations, they should not change the observable conse-
quences of the theory, unless the conformal symmetry is
broken in some way, either dynamically or by imposing
boundary conditions. Indeed, if boundary conditions are
involved, interesting physics can arise quite generally
from differences between solutions that are gauge trans-
formations of each other, an obvious example being the
Aharanov–Bohm effect [84]. Moreover, some care must
clearly be taken regarding boundary conditions at infinity
for both the MK and SdS metric, since neither is

9For the same reason, the scattering angle or deflection of
massive particle trajectories will also differ between the MK and
Einstein frames, even after taking into account the effect of the
scalar field.

10For arbitrary e, the invariant interval is proportional to
φ2edζ.
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asymptotically flat, although the presence of both a con-
stant term differing from unity and a linear term in the MK
metric exacerbates this difficulty relative to the SdS metric.
It is therefore interesting that imposing a simple Neumann
boundary condition on the metric selects the vacuum
solutions of GR with a cosmological constant from the
wider set of vacuum solutions of CG [78], and hence selects
the SdS metric rather than the MK metric for static,
spherically symmetric systems.
If the conformal symmetry is unbroken, however, the

key to resolving the question of which rotation curves are
physically realized is to recognize that massive (test)
particles constitute some form of ordinary matter, typically
represented by a Dirac field, which must generate its mass
dynamically through interaction with a scalar field. The
consequent necessity for a scalar field that is nonzero
everywhere means that, in general, the spacetime outside a
static, spherically symmetric matter source in CG is not
described by the MK vacuum solution, as demonstrated
in [65]. Nonetheless, a special solution is identified in [65]
for which the metric retains the MK form, since the scalar
field energy-momentum vanishes, despite the field being
nonzero everywhere. Indeed, such ghost solutions are
found in other physical contexts [70–72].
Despite having no effect on the geometry, ghost sol-

utions can have important dynamical effects, and so are not
trivial, as claimed in [67]. This is especially true for the
scalar field in the special solution obtained in [65], since it
facilitates dynamical mass generation through its interac-
tion with the Dirac field that represents ordinary matter.
Since the scalar field is radially dependent in the MK frame,
so too are the masses of test particles, which therefore do
not follow timelike geodesics. In particular, on making a
conformal transformation to the Einstein gauge, in which
the scalar field takes a constant value everywhere and so
massive particles do follow timelike geodesics, the result-
ing metric is equivalent merely to the standard SdS form,
which lacks the linear term in the MK metric that is key to
the successful fitting of flat galaxy rotation curves [66].
Moreover, by considering directly the motion of a Dirac
particle in the presence of a nonuniform scalar field, we
further show that massive particles in the MK frame also
follow timelike geodesics of the SdS metric, as they must

for conformal invariance to hold. This therefore resolves
the apparent dependence of the physical predictions on the
frame in which the calculation is performed. More impor-
tantly, this unambiguously identifies the rotation curves of
the SdS metric, rather than the MK metric, as those that are
physically realized, which have no flat region and hence do
not fit observations of galaxies. We further show that the
scalar field equation of motion introduces an additional
constraint relative to the vacuum case, such that the
coefficient of the quadratic term in the SdS metric is
interpreted most naturally as proportional to a global
cosmological constant; this therefore also precludes the
modeling of rising rotation curves by fitting this coefficient
separately for each galaxy, as performed in [73], albeit in
the context of Weyl–Dirac gravity.
In addition, independently of the considerations of [65],

we show that the general form of the conformal trans-
formation linking MK and Einstein frames is picked out
uniquely as that which preserves the general form of any
diagonal static, spherically symmetric metric of the
form (12), namely with a radial coefficient that is (minus)
the reciprocal of its temporal one.
Finally, we briefly discussed the consequences of our

analysis for the study of gravitational lensing in the MK
metric, which has caused considerable confusion in the
literature, with many analyses producing contradictory
results [35–37,40–47]. One may straightforwardly resolve
these disagreements by instead performing calculations in
the SdS frame, for which previous uncertainties regarding
the effects of the cosmological constant term have now
been clarified [51]. One can then perform a conformal
transformation and accompanying radial coordinate trans-
formation to the MK frame, if desired. We also comment on
the limited validity of previous work seeking to make
matter attractive to null geodesics in the MK metric,
irrespective of the sign of the linear term, by an appropriate
choice of conformal gauge [67,83].
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