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The multipole moments of stationary axially symmetric vacuum or electrovacuum spacetimes can be
expressed in terms of the power series expansion coefficients of the Ernst potential on the axis. In this paper
we present a simpler, more efficient calculation of the multipole moments, applying methods introduced by
Bäckdahl and Herberthson. For the nonvacuum electromagnetic case, our results for the octupole and
higher moments differ from the results already published in the literature. The reason for this difference is
that we correct an earlier unnoticed mistake in the power series solution of the Ernst equations. We also
apply the presented method to directly calculate the multipole moments of a five-parameter charged
magnetized generalization of the Kerr and Tomimatsu-Sato exact solutions.
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I. INTRODUCTION

The purpose of this paper is the presentation of an
improved, more efficient method for the calculation of the
multipole moments of stationary axially symmetric space-
times, when the moments are expressed in terms of the
power series expansion coefficients of the Ernst potential
on the symmetry axis. For the case when electromagnetic
fields are also allowed, we give the correct expressions
for the octupole and higher moments, correcting a mistake
in the literature. As an application of the method, we
calculate the multipole moments of a charged magnetized
generalization of the Kerr and Tomimatsu-Sato solutions.
Multipole moment tensors for asymptotically flat static

vacuum spacetimes were introduced in 1970 by Geroch, in
a coordinate system independent way [1]. The generaliza-
tion of the definition for stationary spacetimes has been
given by Hansen [2]. In the stationary case there are two
sets of multipole tensors, the mass moments and the
angular momentum (or mass-current) moments, which
can be unified into a set of complex valued quantities.
Alternative but equivalent definitions in terms of specific
coordinate systems have been proposed by Thorne [3,4],
and also by Simon and Beig [5]. A good review of early
results on the topic can be found in [6].
The concrete physical applications of multipole

moments in general relativity have been pioneered by
the work of Fintan D. Ryan [7]. The gravitational radiation
emitted by a compact object orbiting around a much larger
central object can be used to determine the multipole
moments of the central body. In case of extreme-mass-
ratio inspirals, one is expected to be able to determine the

first few gravitational multipole moments by the proposed
space-based gravitational wave detector LISA [8–11].
Since the multipole moments of the Kerr black hole are
uniquely determined by the mass and the angular momen-
tum, this should provide a practical way of testing the no-
hair theorem [12–14]. The multipole moments of so-called
bumpy black holes and the gravitational radiation of test
bodies orbiting around them have been studied in [15–17].
We expect that astrophysical observations will provide a
way in the near future to test general relativity in the strong
field regime [18–20]. In addition to gravitational waves, the
observation of large compact objects and their multipole
moments may be achieved by other methods, such as
measuring the motion of stars or pulsars around them, study
of accretion disks, or the observation black hole shadows
by the event horizon telescope [21–24].
Further, highly relativistic physical systems where multi-

pole moments are important are neutron stars. In that case,
the observation of the spacetime structure outside the star is
expected to give information about the equation of state of
the matter in the interior [25,26]. The innermost stable
circular orbit marks the inner edge of accretion disks. Its
properties, in terms of the multipole moments, has been
calculated in [27–29]. It is possible to find certain universal
relations between the multipole moments of a neutron star,
establishing a no-hair property for these objects. The three-
hair relations determine the higher multipole moments by
the mass, angular momentum, and quadrupole moment,
in an approximately equation of state independent way
[30–32]. Exact solutions for the vacuum exterior region
have played important role in the establishment of these
universal relations [33–39].
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Multipole moments can also be defined in various
alternative gravitational theories. The motion of compact
bodies around massive black holes has been studied in
dynamical Chern-Simons gravity, applying a generalization
of Thorne’s moments [40]. The universality properties of
black holes and neutron stars have been investigated in the
case of dilatonic Einstein-Gauss-Bonet theory [41,42]. In
case of scalar-tensor theory of gravity, an additional set of
real moments is associated to the massless scalar field
[43,44]. Universal relations between multipole moments of
scalarized neutron stars have been considered in [45].
Multipole moments for an arbitrary theory of gravity have
been defined in terms of canonical Noether charges in [46].
Six sets of real multipole moment tensors are expected to
arise in a generic theory, in contrast to the two sets in
vacuum general relativity [46].
The above physical applications have been made pos-

sible by strict mathematical results establishing the theory
of multipole moments for the nonlinear Einstein equations
in the stationary case. Multipole moments are defined for
any asymptotically flat stationary spacetime, and if two
vacuum spacetimes have the same multipole moments, then
they agree at least in a neighborhood of conformal infinity
[47–50].
Most astrophysically relevant nonradiating spacetimes

are expected to be axially symmetric. In the axisymmetric
case the multipole moment tensor of order n can be
represented by a single scalar moment, called Pn by
Hansen [2]. These scalar moments can be expressed in
terms of the power series expansion coefficients of the
Ernst potential on the symmetry axis [51]. An algorithm for
this calculation has been published in 1989 by Fodor,
Hoenselaers, and Perjés [52]. Since the calculation of the
Ernst potential on the axis is relatively easy, the results
presented in [52] became a standard tool for obtaining the
multipole moments. The method has been applied not only
for exact solutions, but also for gravitational radiation [7],
innermost circular orbits [27], and neutron stars [31].
Multipole moments of a rigidly rotating disk of dust have
been calculated in [53]. If the axistationary spacetime is
reflection symmetric with respect to the equatorial plane,
then for even n the moments Pn are real, while for odd n
they are purely imaginary [54,55].
Further important developments on the mathematical

theory of gravitational multipole moments in the vacuum
case can be found in a series of papers published by
Bäckdahl and Herberthson [56–61]. A major aim in their
considerations is the proof of a long-standing conjecture by
Geroch [1]. This conjecture claims that if one chooses any
set of multipole moments that satisfy some appropriate
convergence conditions, then there always exists a space-
time having precisely those moments. This has been proven
first for the static axially symmetric case [56,57], and then
for stationary axially symmetric spacetimes [58,59]. The
stationary case without the assumption of axisymmetry has

been considered in [60], with a proof of the necessary part
of the conjecture. Finally, a proof for the general static case
has been given in [61].
Bäckdahl and Herberthson also introduce some very

useful tools that make the calculation of multipole moments
considerably simpler. They define a complex null vector
field, which makes the operation of taking the symmetric
and trace-free part of tensors simple and trivial. They also
introduce the concept of the leading order part of functions,
which allows the use of functions depending on only one
variable instead of two. As far as we know, these tools have
not been used yet for the calculation of multipole moments
of exact solutions, apart from the Kerr case. In this paper
we will recalculate the results given in [52], where the
moments are given in terms of the Ernst potential on the
axis, using the methods of Bäckdahl and Herberthson. We
will also look at the electromagnetic generalization of this
procedure.
Multipole moments for stationary Einstein-Maxwell

fields have been defined by Simon [62]. In this case there
are two sets of complex multipole moment tensors, and
there are also two complex Ernst potentials. Conditions on
equatorial symmetry or antisymmetry for stationary axi-
symmetric electrovacuum spacetimes have been discussed
in [63,64].
For the axially symmetric electrovacuum case, the

procedure for calculating the multipoles in terms of the
axis coefficients of the Ernst potentials have been published
first by Hoenselaers and Perjés [65]. Unfortunately, there
have been two mistakes in that paper, which also affected
the end results for the multipole moments. The first mistake
has been found and corrected by Sotiriou and Apostolatos
[66]. However, a second mistake was pointed out by Perjés
one year earlier in a conference proceedings article [67],
without giving the resulting change in the multipole
moments. Unfortunately, this remained unnoticed in all
subsequent papers. The article [66] still contains expres-
sions for the moments which are incorrect in the electro-
vacuum case. In the present paper we again calculate the
moments, now using a simpler, more efficient method
based on the results of Bäckdahl and Herberthson. We give
the correct expressions for the scalar gravitational multipole
moments Pn and electromagnetic moments Qn up to order
n ¼ 6. Long expressions for higher order moments (even
up to n ¼ 18) can be easily obtained by theMathematica or
Maple files provided as Supplemental Material [68].
Denoting the expansion coefficients along the axis of the

gravitational and electromagnetic Ernst potentials by mn
and qn, respectively, for the first three moments we obtain
the expected result:

Pn ¼ mn; Qn ¼ qn for n ¼ 0; 1; 2: ð1Þ

For the vacuum case it is known that P3 ¼ m3, but if there
are electromagnetic fields, then we obtain that generally, for
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the octupole moments P3 ≠ m3 andQ3 ≠ q3. This is a clear
difference from earlier results published in [65,66], where
the differences started only from n ¼ 4. Actually, the
mistake, realized first in [67], has not been in the calcu-
lation of the moments, which is the same procedure for the
vacuum and electrovacuum case, but in the power series
solution of the Ernst equations.
We find it important to publish the correct expressions

for the power series solution and for the moments in the
electromagnetic case, since these results have been used in
several subsequent papers. The most important application
is the calculation of the gravitational waves emitted by a
small body orbiting around a massive compact object [69].
The incorrect expressions for the power series solution of
the field equations have been reprinted in some papers
[28,70,71], unaware of the mistake pointed out in [67].
Fixing the error may be useful, since in the not too far
future, astrophysical observations may become precise
enough to make the octupole moment a measurable
quantity. Another application of the results in [65,66] is
the characterization of new exact solutions in an invariant
way by multipole moments. More than a dozen papers
present the values of octupole or even higher moments for
electrovacuum solutions, which are necessarily affected by
our corrections, and we list just a few here [33,72–77].
In the last section of the paper we apply the earlier

discussed methods for the calculation of the multipole
moments of a five-parameter exact solution presented in
[35], which is a charged magnetized generalization of both
the Kerr and the δ ¼ 2 Tomimatsu-Sato solutions. The
solution is general enough to describe both subextreme and
hyperextreme configurations, and the expressions that we
obtain for the multipole moments are valid for both cases.
We print the moments up to order n ¼ 5, but we provide
algebraic manipulation software code as Supplemental
Material [68], to allow higher order calculations. We stress
that this metric is not a useless exact solution without
physical applications. The five real parameters correspond
to the mass, angular momentum, quadrupole moment,
charge, and magnetic dipole moment of the solution,
and by appropriate choice of the parameters these can be
set to any required values.
The structure of the paper is the following. In Sec. II we

first present the field equations for general stationary
spacetimes when electromagnetic fields are present, and
review the definition of multipole moments. In Sec. III we
specialize to axially symmetric solutions, and present the
theory needed for the definition of the scalar multipole
moments using Weyl coordinates. Here we also discuss
those tools and methods introduced by Bäckdahl and
Herberthson which are useful for the calculation of the
moments of exact solutions. In Sec. IV we calculate the
gravitational and electromagnetic multipole moments in
terms of the expansion coefficients of the Ernst potentials
on the axis. By listing the results, we correct a mistake that

remained unnoticed in the literature for quite many years.
Finally, in Sec. V we directly apply the Bäckdahl-
Herberthson method to calculate the multipole moments
of an exact solution, which is general enough to approxi-
mate well the exterior region of rotating neutron stars
[34,35,78].

II. STATIONARY ELECTROVACUUM
SPACETIMES

A. Ernst equations

Since we consider stationary spacetimes, we use tenso-
rial quantities defined on the three-manifold M of the
trajectories of the timelike Killing vector ξμ [79]. Denoting
the spacetime metric by gμν, and the norm of the Killing
vector by f ¼ −ξμξμ > 0, on the trajectories of ξμ we
define the rescaled induced metric as hμν ¼ fgμν þ ξμξν.
For the three-dimensional tensors we use Latin indices,
which are raised and lowered by the metric hab. The
derivative operator belonging to hab is denoted by ∇a.
Using a coordinate system adapted to the timelike Killing
vector, the spacetime metric can be written as

ds2 ¼ −fðdtþ ωadxaÞ2 þ
1

f
habdxadxb; ð2Þ

where f, ωa, and hab are independent of t. For stationary
electromagnetic fields the complex electromagnetic Ernst
potential Φ can be defined in terms of the four-dimensional
vector potential Aμ ¼ ðAt; AaÞ as [62,80]

Φ ¼ At þ iA0; ð3Þ

where the real scalar A0 is determined by

∇aA0 ¼ fϵabcð∇bAc þ ωb∇cAtÞ; ð4Þ

ϵabc ¼
ffiffiffi
h

p
εabc is the three-dimensional Levi-Civita tensor,

and the spatial indices of Aμ have been raised by hab.
For the electromagnetic case the complex Ernst potential is
defined as [62,80]

E ¼ f þ iχ −ΦΦ̄; ð5Þ

where

∇aχ ¼ f2ϵabc∇bωc þ iðΦ̄∇aΦ −Φ∇aΦ̄Þ; ð6Þ

and the overline denotes complex conjugation.
As alternatives for E and Φ, we introduce the complex

potentials

ξ ¼ 1 − E
1þ E

; q ¼ 2Φ
1þ E

: ð7Þ
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Then the Einstein and Maxwell equations are equivalent to
the following equations [80–82]:

ΘΔξ ¼ 2ðξ̄∇aξ − q̄∇aqÞ∇aξ; ð8Þ

ΘΔq ¼ 2ðξ̄∇aξ − q̄∇aqÞ∇aq; ð9Þ

Θ2Rab ¼ 2Reð∇aξ∇bξ̄ −∇aq∇bq̄þ sas̄bÞ; ð10Þ

where Δ ¼ ∇a∇a is the Laplacian, Rab is the Ricci tensor
belonging to three-dimensional metric hab, and

Θ ¼ ξξ̄ − qq̄ − 1; ð11Þ

sa ¼ ξ∇aq − q∇aξ: ð12Þ

B. Asymptotic flatness

According to the definition of Penrose and Geroch
[1,83], a three-dimensional manifold M with positive
definite metric hab is asymptotically flat if the following
conditions hold:
(1) There exists a manifold M̃ with metric h̃ã b̃ and a

diffeomorphism ψ∶M → M̃nΛ, where Λ is a single
point in M̃, such that ψ is a conformal isometry with
conformal factor Ω, i.e., h̃ã b̃ ¼ Ω2ðψ�hÞã b̃.1

(2) The function Ω can be extended as a C2 scalar to the
point Λ corresponding to spatial infinity, such that

ΩjΛ ¼ 0; ∇̃ãΩjΛ ¼ 0; ∇̃ã∇̃b̃ΩjΛ ¼ 2h̃ã b̃jΛ;
ð13Þ

where ∇̃ã is the derivative operator on M̃ belonging
to h̃ã b̃.

We use a tilde on the coordinate indices to indicate that
these are tensors on M̃, and the coordinate system used on
that manifold is generally different from the mapped
version of the original coordinates on M.

C. Multipole moments

Let us choose a scalar field ϕ on M and assume that
ϕ̃ ¼ Ω−1=2ϕ can be smoothly extended to the point Λ. We
define a set of tensor fields recursively [1,2,62],

Pð0Þ ¼ ϕ̃; ð14Þ

Pð1Þ
ã ¼ ∇̃ãPð0Þ; ð15Þ

Pðnþ1Þ
ã1…ãnþ1

¼ C
�
∇̃ãnþ1

PðnÞ
ã1…ãn

−
1

2
nð2n − 1ÞR̃ã1ã2P

ðn−1Þ
ã3…ãnþ1

�
;

ð16Þ

where R̃ã b̃ is the Ricci tensor belonging to h̃ã b̃, and C
denotes the operation of taking the symmetric trace-free
part. For details on how to perform the operation C see, e.g.,
[3,84] or the Appendix of [52]. The multipole moment
tensors are defined as the values of these tensor fields at
infinity,

MðnÞ
ã1…ãn

¼ PðnÞ
ã1…ãn

jΛ: ð17Þ

The choice ϕ ¼ ξ gives the gravitational moment tensors

PðnÞ
ã1…ãn

≡MðnÞ
ã1…ãn

, while the choice ϕ ¼ q yields the

electromagnetic moments QðnÞ
ã1…ãn

≡MðnÞ
ã1…ãn

. The real

and imaginary parts of PðnÞ
ã1…ãn

are the mass and angular

momentum moments, respectively, while QðnÞ
ã1…ãn

provides
the electric and magnetic moments. The imaginary parts of

PðnÞ
ã1…ãn

are called current or mass-current moments in
papers related to gravitational radiation [3,7,69], and this
became the standard in recent literature.

III. AXISYMMETRIC ELECTROVACUUM

A. Spacetime metric

In the axially symmetric case, specializing in (2), we
write the metric into the Weyl-Lewis-Papapetrou form,

ds2 ¼−fðdt−ωdφÞ2þ 1

f
½e2γðdρ2þ dz2Þþ ρ2dφ2�; ð18Þ

where f, ω, and γ are functions of the coordinates ρ and z.
In terms of the spatial coordinates xa ¼ ðρ; z;φÞ the metric
on M is

hab ¼

0
B@

e2γ 0 0

0 e2γ 0

0 0 ρ2

1
CA: ð19Þ

The only nonvanishing component of ωa in (2) is now
ωφ ≡ −ω. At the rotation axis ρ ¼ 0 is necessarily γ ¼ 0,
because of the absence of conical singularity.
In axistationary spacetimes the vector potential has only

two components, At and Aφ, which depend on the coor-
dinates ρ and z. The potential Φ is defined by (3), and
Eq. (4) for A0 can be written as [85]

∂ρA0 ¼ f
ρ
ð∂zAφþω∂zAtÞ; ∂zA0 ¼−

f
ρ
ð∂ρAφþω∂ρAtÞ:

ð20Þ

1This can be alternatively written as ðψ�h̃Þã b̃ ¼ Ω2hã b̃, as an
equation on M. The important point is that the factor Ω2

multiplies the physical metric hã b̃, in order to allow the
unphysical metric be regular at Λ.
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The Ernst potential E is defined by (5), where now (6) takes
the form

∂ρχ ¼ −
1

ρ
f2∂zωþ iðΦ̄∂ρΦ −Φ∂ρΦ̄Þ;

∂zχ ¼ 1

ρ
f2∂ρωþ iðΦ̄∂zΦ −Φ∂zΦ̄Þ: ð21Þ

For arbitrary axially symmetric functions f and g

Δf ¼ e−2γ
�
∂2
ρf þ 1

ρ
∂ρf þ ∂2

zf

�
: ð22Þ

∇af∇ag ¼ e−2γð∂ρf∂ρgþ ∂zf∂zgÞ: ð23Þ

This shows that the factor e−2γ drops out from the Ernst
equations, (8) and (9), giving a coupled system of equations
for ξ and q. The components of the Ricci tensor in Eq. (10)
are now

Rab ¼

0
B@

−∂2
ργ þ 1

ρ ∂ργ − ∂2
zγ

1
ρ ∂zγ 0

1
ρ ∂zγ −∂2

ργ − 1
ρ ∂ργ − ∂2

zγ 0

0 0 0

1
CA:

ð24Þ

B. Asymptotic coordinates

In order to describe the region near infinity, on the
manifold M we introduce the coordinates

ρ̃ ¼ ρ

r2
; z̃ ¼ z

r2
; ð25Þ

where r2 ¼ ρ2 þ z2. In terms of the coordinates x̃ã ¼
ðρ̃; z̃;φÞ the three-dimensional metric becomes

hã b̃ ¼
1

r̃4

0
B@

e2γ 0 0

0 e2γ 0

0 0 ρ̃2

1
CA; ð26Þ

where r̃2 ¼ ρ̃2 þ z̃2 ¼ r−2. The field equations, (8)–(10),
are still valid in this coordinate system, where now

Δf ¼ r̃4e−2γ
�
∂2
ρ̃f þ 1

ρ̃
∂ ρ̃f þ ∂2

z̃f −
2ρ̃

r̃2
∂ ρ̃f −

2z̃
r̃2

∂ z̃f

�
;

ð27Þ

∇ãf∇ãg ¼ r̃4e−2γð∂ ρ̃f∂ ρ̃gþ ∂ z̃f∂ z̃gÞ: ð28Þ

The nonvanishing components of the Ricci tensor are

Rρ̃ ρ̃ ¼ −∂2
ρ̃γ þ

1

ρ̃
∂ ρ̃γ − ∂2

z̃γ −
2ρ̃

r̃2
∂ ρ̃γ þ

2z̃
r̃2

∂ z̃γ; ð29Þ

Rz̃ z̃ ¼ −∂2
ρ̃γ −

1

ρ̃
∂ ρ̃γ − ∂2

z̃γ þ
2ρ̃

r̃2
∂ ρ̃γ −

2z̃
r̃2

∂ z̃γ; ð30Þ

Rρ̃ z̃ ¼
1

ρ̃
∂ z̃γ −

2z̃
r̃2

∂ ρ̃γ −
2ρ̃

r̃2
∂ z̃γ: ð31Þ

Since ∂ ρ̃r̃ ¼ ρ̃
r̃ and ∂ z̃r̃ ¼ z̃

r̃ the Laplacian (27) can also be
written as

Δf ¼ r̃5e−2γ
�
∂2
ρ̃

f
r̃
þ 1

ρ̃
∂ ρ̃

f
r̃
þ ∂2

z̃
f
r̃

�
: ð32Þ

C. Conformal mapping

We use a specific conformal factor Ω ¼ r̃2 to define the
metric h̃ã b̃ ¼ Ω2hã b̃. Using the x̃ã ¼ ðρ̃; z̃;φÞ coordinates
this metric has the form

h̃ã b̃ ¼

0
B@

e2γ 0 0

0 e2γ 0

0 0 ρ̃2

1
CA; ð33Þ

which obviously can be smoothly extended to the point
ρ̃ ¼ z̃ ¼ 0, so it is a metric on M̃. This point, denoted byΛ,
corresponds to spatial conformal infinity. Since on the axis
γ ¼ 0, the choice Ω ¼ r̃2 obviously satisfies the conditions
of asymptotic flatness given in (13).
The metric in (33) has the same structure as in (19).

Hence, the Laplacian Δ̃f and the product ∇̃ãf∇̃ãg belong-
ing to this new metric have the same form as in (22) and
(23), respectively, in terms of the tilded coordinates. We
define the rescaled potentials as

ξ̃ ¼ Ω−1=2ξ ¼ ξ

r̃
; q̃ ¼ Ω−1=2q ¼ q

r̃
: ð34Þ

We introduce the operators D̃ã defined in [65,66], such
that

D̃ρ̃ξ̃¼ z̃∂ ρ̃ξ̃− ρ̃∂ z̃ξ̃; D̃z̃ξ̃¼ ρ̃∂ ρ̃ξ̃þ z̃∂ z̃ξ̃þ ξ̃; D̃φξ̃¼ 0;

ð35Þ

D̃ρ̃q̃¼ z̃∂ ρ̃q̃− ρ̃∂ z̃q̃; D̃z̃q̃¼ ρ̃∂ ρ̃q̃þ z̃∂ z̃q̃þ q̃; D̃φξ̃¼ 0:

ð36Þ

Using (28) and (32), the Ernst equations, (8) and (9), can be
written formally into the same structure as earlier,

ΘΔ̃ ξ̃ ¼ 2ð ¯̃ξD̃ãξ̃ − ¯̃qD̃ãq̃ÞD̃ãξ̃; ð37Þ
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ΘΔ̃ q̃ ¼ 2ð ¯̃ξD̃ãξ̃ − ¯̃qD̃ãq̃ÞD̃ãq̃; ð38Þ

where Θ ¼ r̃2ξ̃ ¯̃ξ−r̃2q̃ ¯̃q−1, and the indices are raised and
lowered using the metric h̃ã b̃. These equations can be used
to solve for ξ̃ and q̃ even if γ is not known yet.
The Ricci tensor R̃ã b̃ belonging to the new unphysical

metric h̃ã b̃ has the same form as in (24),

R̃ã b̃ ¼

0
B@

−∂2
ρ̃γ þ 1

ρ̃ ∂ ρ̃γ − ∂2
z̃γ

1
ρ ∂ z̃γ 0

1
ρ̃ ∂ z̃γ −∂2

ρ̃γ − 1
ρ̃ ∂ ρ̃γ − ∂2

z̃γ 0

0 0 0

1
CA:

ð39Þ

However, the Einstein equation (10) is only valid for the
physical metric hã b̃, with Ricci tensor components given in
(29)–(31). From the linear combination of the equations
containing Rρ̃ ρ̃ þ Rz̃ z̃, we can express ∂2

ρ̃γ þ ∂2
z̃γ in terms

of ξ and q. Similarly, using the equations containing Rρ̃ ρ̃ −
Rz̃ z̃ and Rρ̃ z̃ we can solve for the first derivatives ∂ ρ̃γ and
∂ z̃γ. Although the resulting expressions are rather long in
terms of ξ̃ and q̃, using the operator D̃ã given in (35)–(36)
and defining

s̃ã ¼ r̃ðξ̃D̃ãq̃ − q̃D̃ãξ̃Þ ð40Þ

as in [66], the field equation containing the Ricci tensor can
be written into the form

Θ2R̃ã b̃ ¼ 2ReðD̃ãξ̃D̃b̃
¯̃ξ − D̃ãq̃D̃b̃

¯̃qþ s̃ã ¯̃sb̃Þ; ð41Þ

which has formally the same structure as the original
equation (10). We note that in [65] the factor r̃ was missed
in the definition (40) of s̃ã, which caused some errors in the
final expressions of the multipole moments.

D. Multipole moments

In the axially symmetric case each MðnÞ
ã1…ãn

multipole
moment tensor is necessarily proportional to the tensor
Cðnã1…nãnÞ, where nã is the unit vector at Λ parallel to the
rotational axis [1,2]. Since this has been claimed without
proof in the literature, we provide a proof in Appendix. It
follows that each moment tensor is determined by a single
scalar, i.e.,

MðnÞ
ã1…ãn

¼ M̂nCðnã1…nãnÞjΛ ð42Þ

for some constants M̂n. Since at the point Λ necessarily
γ ¼ 0, the components of the vector are nã ¼ ð0; 1; 0Þ and
nã ¼ ð0; 1; 0Þ. The scalar moments for axial symmetry are
defined as [2]

Mn ¼
1

n!
MðnÞ

ã1…ãn
nã1…nãn jΛ ≡ 1

n!
MðnÞ

z̃…z̃: ð43Þ

In particular, the scalar gravitational moments are

Pn ¼ PðnÞ
z̃…z̃=n!, and the scalar electromagnetic moments

are Qn ¼ QðnÞ
z̃…z̃=n!. The mass and electric charge of the

system has to be real, and given by P0 ≡M and Q0 ≡Q,
respectively. Setting a center of mass reference system, the
gravitational dipole moment is pure imaginary, and gives
the angular momentum of the configuration by P1 ¼ iJ.
It can be shown that (see, e.g., Appendix of [52])

nã1…nãnCðnã1…nãnÞjΛ ¼ n!
ð2n − 1Þ!! ¼

2nðn!Þ2
ð2nÞ! : ð44Þ

Hence, by substituting (42) into (43) we obtain that

Mn ¼
1

ð2n − 1Þ!! M̂n ¼
2nn!
ð2nÞ! M̂n: ð45Þ

Some authors define the scalar moments as M̂n instead of
Mn [58,59].
In the general stationary case, the transformation formula

for the multipole moments under a change of the conformal
factor Ω̃ ¼ ω̃Ω has been obtained by Beig in [86]. For axial
symmetry, the scalar multipole moments transform as [87]

M̃n ¼
Xn
k¼0

�
n
k

��
−
1

2
ð∂ z̃ω̃ÞΛ

�
n−k

Mk: ð46Þ

This transformation depends only on the single number
ð∂ z̃ω̃ÞΛ, which corresponds to a translation of the configu-
ration along the axis direction.

E. Complex null vector

Using the coordinates x̃ã ¼ ðρ̃; z̃;φÞ, Bäckdahl and
Herberthson [58,59] define the complex vector

η ¼ ∂
∂z̃ − i

∂
∂ρ̃ ; ð47Þ

which has the components ηã ¼ ð−i; 1; 0Þ. From the metric
form (33) it is easy to see that it is a null vector,
h̃ã b̃η

ãηb̃ ¼ 0. For the covariant derivative in the direction
η we use the notation ∇̃η ¼ ηã∇̃ã. The following important
property can be checked by direct calculation:

∇̃ηη
ã ¼ 2ηã∂ηγ: ð48Þ

If we multiply the recursion definition (16) at all indices
by ηãi, we obviously do not have to symmetrize.
Furthermore, since ηãi is a null vector, the terms that must
be added to make the tensor trace-free do not contribute
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either. The use of the complex null vector ηã completely
eliminates the problem of taking the symmetric trace-free
part. Introducing

fn ¼ ηã1…ηãnPðnÞ
ã1…ãn

; ð49Þ

the first term on the right-hand side of (16) can be written as

ηã1…ηãnþ1∇̃ãnþ1
PðnÞ

ã1…ãn
¼ ∇̃ηfn − PðnÞ

ã1…ãn
∇̃ηðηã1…ηãnÞ

¼ ∂ηfn − 2nfn∂ηγ; ð50Þ

where (48) has been used to get the second line. This way,
(14)–(16) provide the recursion formula for fn, which has
been given first in [58],

f0 ¼ ϕ̃; ð51Þ

f1 ¼ ∂ηf0; ð52Þ

fnþ1 ¼ ∂ηfn − 2nfn∂ηγ −
1

2
nð2n − 1Þηãηb̃R̃ã b̃fn−1: ð53Þ

We note that our function γ has been denoted by β in
[58,59]. In those papers there is also a further conformal
transformation, specified by a function κ. Our choice (33)
of the three-metric corresponds to κ ¼ β there.
Multiplying (42) at all indices by ηãi, since ηãnã ¼ 1, we

get M̂n ¼ fnjΛ. From (45) it can be seen that the scalar
moments can be obtained by calculating the values of the
functions fn at conformal infinity,

Mn ¼
1

ð2n − 1Þ!! fnjΛ ¼ 2nn!
ð2nÞ! fnjΛ: ð54Þ

Using the form (39) of the Ricci tensor, it is easy to see
that

ηãηb̃R̃ã b̃ ¼ −
2i
ρ
∂ηγ: ð55Þ

On the other hand, from (41) we obtain

Θ2ηãηb̃R̃ã b̃ ¼ 2ηãηb̃ðD̃ãξ̃D̃b̃
¯̃ξ − D̃ãq̃D̃b̃

¯̃qþ s̃ã ¯̃sb̃Þ: ð56Þ

F. Leading order function

Since the tensors PðnÞ
ã1…ãn

are symmetric in their indices,
they have, in general, ðnþ 1Þðnþ 2Þ=2 independent com-

ponents. Adding trace terms, the quantities SðnÞã for 0 ≤
ã ≤ n have been introduced in [52], which decreased the
necessary components to nþ 1. The introduction of the
functions fn in [58] reduces the number of components to

one at each order n, which significantly simplifies the
calculation of the moments.
A further big simplification arises from the fact that all

derivatives are taken in the η direction. Hence, for each fn
we can define an associated function that depends only on a
single variable instead of two. In order to make use of this
idea, the concept of leading order functions has been
introduced in [58,59]. The naming comes from the leading
order terms of Legendre polynomials used initially for the
static case in [56,57].
Let us assume that f is a complex valued axially

symmetric analytic function of the coordinates ðx̃ ¼
ρ̃ cosϕ; ỹ ¼ ρ̃ sinϕ; z̃Þ in a neighborhood of Λ, the point
corresponding to conformal infinity. [We note that f is a
general function here, not related to the norm of the Killing
vector in (2)]. In this paper we only use analyticity in the
“real” sense, for functions that depend on real variables and
are locally given by convergent power series.
We can also consider f as an analytic function fðρ̃; z̃Þ on

the plane R2, satisfying fð−ρ̃; z̃Þ ¼ fðρ̃; z̃Þ. The power
series expansion of f can be written as

fðρ̃; z̃Þ ¼
X∞
k¼0

X∞
l¼0

aklρ̃kz̃l ¼
X∞
N¼0

XN
k¼0

ak;N−kρ̃
kz̃N−k; ð57Þ

where akl are complex constants. Consider then the
function g, depending on two real variables ϑ and ζ,
defined by

gðϑ; ζÞ ¼
X∞
N¼0

XN
k¼0

ð−iÞkak;N−kϑ
kζN−k; ð58Þ

where akl are the same as in Eq. (57). The function g can be
considered as a transformed version of f under z̃ → ζ and
ρ̃ → −iϑ. Notice that if f converges for ρ̃2 þ z̃2 < r20, then
g converges for ϑ2 þ ζ2 < r20. Moreover, this map defines a
bijection between g and f. Now, we can define the leading
order part of f as the function fLðζÞ ¼ gðζ; ζÞ, which
depends only on a single real variable. From (58) it follows
that

fLðζÞ ¼
X∞
N¼0

ãNζN; ãN ¼
XN
k¼0

ð−iÞkak;N−k; ð59Þ

which obviously converges for ζ
ffiffiffi
2

p
< r0, showing that

fLðζÞ is real analytic. In other words, although fðρ̃; z̃Þ is
not complex analytic as a function depending on the
complex variables ρ̃ and z̃, effectively we just substitute
z̃ ¼ ζ and ρ̃ ¼ −iζ to obtain

fLðζÞ ¼ fð−iζ; ζÞ: ð60Þ

(Note that we do not claim or use that any of f, g, or fL are
analytic functions of the complex variables ρ̃þ iz̃
or ρ̃ − iz̃.)
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It can be easily checked that for any function f

ð∇̃ηfÞLðζÞ ¼ fL0ðζÞ; ð61Þ
where the prime denotes differentiation with respect to ζ.
We do not write out the argument (ζ) of the leading order
parts from now on.
If f represents an axially symmetric function on the

spacetime which is regular on the axis, then fð−ρ̃; z̃Þ ¼
fðρ̃; z̃Þ and akl ¼ 0 for odd k. For this type of function,
complex conjugation has the property ðfÞL ¼ ðfLÞ. In this
case we also have

ð∇̃ηfÞL ¼ ð∇̃ηfÞL; fL0 ¼ f̄L0: ð62Þ
This also shows that the leading order part of regular real
functions is real, in particular, γL and γL0 are real.
The leading order part of sums, products or quotients of

functions is equal to the sum, product or quotient of the
leading order parts, respectively. Introducing the notation

R̃L ¼ ðηãηb̃R̃ã b̃ÞL; ð63Þ
from (55) we get

γL0 ¼
ζ

2
R̃L: ð64Þ

This shows that R̃L also has to be real. Since the leading

order part of r̃2 is zero, and Θ ¼ r̃2ξ̃ ¯̃ξ−r̃2q̃ ¯̃q−1, it follows
that ΘL ¼ −1. In order to calculate the leading order part of
(56) we can first check that

ðηãD̃ãfÞL ¼ 2ζfL0 þ fL ¼ 2
ffiffiffi
ζ

p
ð

ffiffiffi
ζ

p
fLÞ0: ð65Þ

Furthermore, since there is a factor r̃ in the definition (40)
of s̃ã, it follows that ðηãs̃ãÞL ¼ 0. Hence, the leading order
part of (56) can be written as

R̃L ¼ 2j2ζξ̃L0 þ ξ̃Lj2 − 2j2ζq̃L0 þ q̃Lj2: ð66Þ
As we have seen in (54), the multipole moments are

given by the values of the functions fn at the point Λ.
To simplify the appearance of the expressions we introduce
the notation

yn ¼ ðfnÞL; ð67Þ
where yn are functions of ζ. Then the scalar moments for
the axially symmetric case can be calculated as

Mn ¼
1

ð2n − 1Þ!! yn
����
ζ¼0

¼ 2nn!
ð2nÞ! yn

����
ζ¼0

: ð68Þ

From (51)–(53) we get the recursive definition of yn [58],

y0 ¼ ϕ̃L; ð69Þ

y1 ¼ y00; ð70Þ

ynþ1 ¼ yn0 − 2nynγL0 −
1

2
nð2n − 1ÞR̃Lyn−1: ð71Þ

If ξ̃ and q̃ is known, then ξ̃L and q̃L corresponding to ϕ̃L can
be calculated easily by (59) or (60). Then R̃L is given by
(66) and γL0 by (64). Using (68), the gravitational moments
Pn ≡Mn are obtained from the choice ϕ̃ ¼ ξ̃, and the
electromagnetic moments Qn ≡Mn from ϕ̃ ¼ q̃.

IV. EXPANSION AND MULTIPOLE MOMENTS

A. Expansion along the axis

The conformally rescaled potentials ξ̃ and q̃ have been
defined in (34). If the value of these potentials on the
rotation axis is known, then the Ernst equations determine
them on the whole space. Because of the asymptotic
flatness, the functions ξ̃ and q̃ must be smooth at the point
Λ. Hence, we specify their axis values by the series
expansion coefficients mn and qn,

ξ̃ ¼
X∞
n¼0

mnz̃n; q̃ ¼
X∞
n¼0

qnz̃n: ð72Þ

According to (25), on the axis z̃ ¼ 1=z, where z is the
axial coordinate in (18). Since we use the conformal factor
Ω ¼ r̃2, and along the axis r̃ ¼ jz̃j ¼ 1=jzj, it follows that
the expansions of the original Ernst potentials on the
axis are

ξ ¼ 1

jzj
X∞
n¼0

mn

zn
; q ¼ 1

jzj
X∞
n¼0

qn
zn

: ð73Þ

We note that this definition of the coefficients mn and qn
is not as coordinate system specific as it may appear at first
sight. In (73) the coordinate z acts as a parametrization
along the line representing the symmetry axis, and its value
is unimportant elsewhere. This parametrization satisfies
habð ∂∂zÞað ∂∂zÞb ¼ 1 on the axis where γ ¼ 0, and hab is given
by (19). Generally, it is easy to find such parametrization
even if the metric is not given in the Weyl-Lewis-
Papapetrou form.
However, a freedom of constant shift remains in z.

Setting z ¼ ẑ − z0, where z0 is a constant, the potentials
can be also expanded in terms of ẑ,

ξ ¼ 1

jẑj
X∞
n¼0

m̂n

ẑn
; q ¼ 1

jẑj
X∞
n¼0

q̂n
ẑn

; ð74Þ

where

m̂n ¼
Xn
k¼0

�
n
k

�
zn−k0 mk; q̂n ¼

Xn
k¼0

�
n
k

�
zn−k0 qk: ð75Þ
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This shows that the coefficients mn and qn transform in the
same way as the scalar multipole moments in (46). In order
to make mn and qn unique, we use this transformation to
make the real part of the gravitational dipole moment m1

zero, choosing a center of mass system.

B. Expansion of the Ernst equations

We look for the solution of the Ernst equations, (37) and
(38), in the power series form

ξ̃ ¼
X∞
k¼0
l¼0

aklρ̃kz̃l; q̃ ¼
X∞
k¼0
l¼0

bklρ̃kz̃l: ð76Þ

The potentials ξ̃ and q̃ have to be smooth and regular on the
rotation axis, which implies that the expansion contains
only even powers of ρ̃. Hence, for odd k necessarily
akl ¼ bkl ¼ 0. Obviously, a0l ¼ ml and b0l ¼ ql. We
intend to calculate the coefficients akl and bkl in terms
of the expansion coefficients ml and ql.
Since there has been a mistake in the equations for akl

and bkl published in the literature, we give a more detailed
presentation here. Expanding out Eq. (37), we keep the
linear terms on the left-hand side, and on the other side in
curly brackets we group those terms together which have
the same behavior in powers of ρ̃ and z̃,

ξ̃;ρ̃ ρ̃ þ
1

ρ̃
ξ̃;ρ̃ þ ξ̃;z̃ z̃ ¼ fðξ̃ ¯̃ξ−q̃ ¯̃qÞðρ̃2ξ̃;ρ̃ ρ̃ þ ρ̃ξ̃;ρ̃ þ z̃2ξ̃;z̃ z̃Þ

þ 2ρ̃ z̃ ξ̃;z̃ð ¯̃ξξ̃;ρ̃ − ¯̃qq̃;ρ̃Þ þ 2ρ̃ z̃ ξ̃;ρ̃ð ¯̃ξξ̃;z̃ − ¯̃qq̃;z̃Þ
− 2ðρ̃ξ̃;ρ̃ þ z̃ξ̃;z̃ þ ξ̃Þ½ ¯̃ξðρ̃ξ̃;ρ̃ þ z̃ξ̃;z̃ þ ξ̃Þ − ¯̃qðρ̃q̃;ρ̃ þ z̃q̃;z̃ þ q̃Þ�g

þ
�
z̃2ðξ̃ ¯̃ξ−q̃ ¯̃qÞ

�
ξ̃;ρ̃ ρ̃ þ

1

ρ̃
ξ̃;ρ̃

�
− 2z̃2ξ̃;ρ̃ð ¯̃ξξ̃;ρ̃ − ¯̃qq̃;ρ̃Þ

	

þ fρ̃2ðξ̃ ¯̃ξ−q̃ ¯̃qÞξ̃;z̃ z̃ − 2ρ̃2ξ̃;z̃ð ¯̃ξξ̃;z̃ − ¯̃qq̃;z̃Þg: ð77Þ

Substituting the expansions of ξ̃ and q̃, the right-hand side is a sum of terms

ðaklāmn − bklb̄mnÞapqfðp2 þ q2 − 2pk − 2ql − 2p − 3q − 2k − 2l − 2Þρ̃kþmþpz̃lþnþq

þ pðp − 2kÞρ̃kþmþp−2z̃lþnþqþ2 þ qðq − 1 − 2lÞρ̃kþmþpþ2z̃lþnþq−2g ð78Þ

for all k, l, m, n, p, q non-negative integers. The three kinds of terms correspond to the three curly brackets in (77). The
integer q here is obviously different from the Ernst potential q in (73); however, we keep this notation to make comparisons
with earlier papers easier. Equating the ρ̃rz̃s terms for non-negative integers r and s, we obtain the recursion relation for the
components of ξ̃,

ðrþ 2Þ2arþ2;s ¼ −ðsþ 2Þðsþ 1Þar;sþ2 þ
X

kþmþp¼r
lþnþq¼s

ðaklāmn − bklb̄mnÞ

× ½apqðp2 þ q2 − 2p − 3q − 2k − 2l − 2pk − 2ql − 2Þ
þ apþ2;q−2ðpþ 2Þðpþ 2 − 2kÞ þ ap−2;qþ2ðqþ 2Þðqþ 1 − 2lÞ�: ð79Þ

Equation (38) can be obtained from (37) by exchanging ξ̃ and q̃, followed by reversing the signature of the cubic terms
(including those coming from multiplication with Θ). The recursion for the components of q̃ can be written as

ðrþ 2Þ2brþ2;s ¼ −ðsþ 2Þðsþ 1Þbr;sþ2 þ
X

kþmþp¼r
lþnþq¼s

ðaklāmn − bklb̄mnÞ

× ½bpqðp2 þ q2 − 2p − 3q − 2k − 2l − 2pk − 2ql − 2Þ
þ bpþ2;q−2ðpþ 2Þðpþ 2 − 2kÞ þ bp−2;qþ2ðqþ 2Þðqþ 1 − 2lÞ�: ð80Þ
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In papers [65,66] in the third line of the equations
corresponding to (79) and (80) we can find −4p − 5q
instead of the correct −2p − 3q − 2k − 2l terms. The
mistake has been corrected in the proceedings paper
[67], but this remained unnoticed in all subsequent papers.
For the purely gravitational case, when bkl ¼ 0, the two
expressions are equivalent because of the symmetry of the
aklapq product. This shows that the corresponding expres-
sion in [52] is still correct. Calculating ars and brs up to
some order in rþ s, forming ξ̃ and q̃, then substituting back
to (37) and (38), we have checked that the equations are

satisfied up to order rþ s − 2. The same procedure with the
originally published recursion formula fails, showing that
the two expressions are clearly not equivalent. As we will
see, the values of the multipole moments Pn and Qn
expressed in terms of ml and ql will also be influenced.
The sums in (79) and (80) are essentially sums for four

integer variables instead of six, since two integers are
determined by the given value of s and r. We have to be
careful with the start of the summations in p and q, because
of the shift by�2 of the indices in the second and third term
of (78). A natural way to calculate the sums in (79) is

ðrþ 2Þ2arþ2;s ¼ −ðsþ 2Þðsþ 1Þar;sþ2

þ
Xr

p¼0
even

Xs
q¼0

Xr−p
k¼0
even

Xs−q
l¼0

ðaklāmn − bklb̄mnÞ

× apqðp2 þ q2 − 2p − 3q − 2k − 2l − 2pk − 2ql − 2Þ

þ
Xr

p¼−2
even

Xs
q¼2

Xr−p
k¼0
even

Xs−q
l¼0

ðaklāmn − bklb̄mnÞapþ2;q−2ðpþ 2Þðpþ 2 − 2kÞ

þ
Xr

p¼2
even

Xs
q¼−2

Xr−p
k¼0
even

Xs−q
l¼0

ðaklāmn − bklb̄mnÞap−2;qþ2ðqþ 2Þðqþ 1 − 2lÞ; ð81Þ

and similarly for (80). In each term we have to substitute
m ¼ r − p − k and n ¼ s − q − l. Obviously, r can be
assumed to be even, and we have to include only even
values of p and k in the sums. Because of the pþ 2 factor,
it would not be really necessary to include the terms with
p ¼ −2 in the second sum. However, the third sum would
give an incorrect value if we started the summation from
q ¼ 0, since the terms corresponding to q ¼ −1 and
nonzero l are nonvanishing.
Our aim with (79) and (80) is to express all akl and bkl

coefficients in terms of a0l ¼ ml and b0l ¼ ql. While the two
linear terms contain coefficients with kþ l ¼ rþ sþ 2,
the cubic summation terms only have coefficients with
kþ l ≤ rþ s. Denoting rþ s ¼ N, we can proceed by
increasing the order in N one by one. First, for N ¼ 0 we
calculate a20, then for N ¼ 1 we get a21. Continuing with
N ¼ 2, first for r ¼ 0wegeta22 and then for r ¼ 2weobtain
a40. Proceeding further in this way, parallel for both akl and
bkl, we can express the new coefficients by those that have
been already calculated earlier. As Supplemental Material
[68], we attach a Mathematica and an equivalent Maple file
(named “moments-general”), where we implement this sol-
ution procedure, and validate it by substituting back into the
Ernst equations.

C. Expressions for the scalar moments

Using (57) and (59), the expansion of the leading order
functions can be calculated as

ξ̃L ¼
X∞
N¼0

ãNζN; ãN ¼
XN
k¼0
even

ak;N−kð−1Þk=2; ð82Þ

q̃L ¼
X∞
N¼0

b̃NζN; b̃N ¼
XN
k¼0
even

bk;N−kð−1Þk=2: ð83Þ

In order to calculate the multipole moments up to order
Nmax, we need to obtain first the values of akl and bkl up to
order kþ l ¼ Nmax. Then by (82) and (83) we can get the
leading order parts ξ̃L and q̃L, also up to order Nmax in ζ.
After this, R̃L can be calculated by (66), and γL0 by (64).
Since they will be used only from the second multipole
moment, it is enough to calculate them up to order
Nmax − 2. Then we can use the recursive formula, (69)–
(71), to calculate the functions yn. For the electromagnetic
case we need to calculate two sets of moments, and hence
two sets of yn functions for n ≤ Nmax. The gravitational
moments Pn ≡Mn are obtained by choosing ϕ̃ ¼ ξ̃, and
the electromagnetic moments Qn ≡Mn by setting ϕ̃ ¼ q̃.
Each yn has to be calculated up to order Nmax − n in the
variable ζ. The two sets of scalar moments can be obtained
by taking the values at ζ ¼ 0, according to (68).
In order to make the final expressions for the multipole

moments simpler, we use the following notations intro-
duced in [52,65,66]:
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Mij ¼ mimj −mi−1mjþ1; Sij ¼ miqj −mi−1qjþ1; ð84Þ

Qij ¼ qiqj − qi−1qjþ1; Hij ¼ qimj − qi−1mjþ1; ð85Þ

for i > j ≥ 0 integers. For the first seven gravitational moments we obtain the results

P0 ¼ m0; ð86Þ

P1 ¼ m1; ð87Þ

P2 ¼ m2; ð88Þ

P3 ¼ m3 þ
1

5
q̄0S10; ð89Þ

P4 ¼ m4 −
1

7
m̄0M20 þ

3

35
q̄1S10 þ

1

7
q̄0ð3S20 − 2H20Þ; ð90Þ

P5 ¼ m5 −
1

21
m̄1M20 −

1

3
m̄0M30 þ

1

21
q̄2S10 þ

1

21
q̄1ð4S20 − 3H20Þ

þ 1

21
q̄0ðq̄0q0S10 − m̄0m0S10 þ 14S30 þ 13S21 − 7H30Þ; ð91Þ

P6 ¼ m6 −
5

231
m̄2M20 −

4

33
m̄1M30 þ

1

33
m̄2

0m0M20 −
1

33
m̄0ð18M40 þ 8M31Þ

þ 1

33
q̄3S10 þ

1

231
q̄2ð25S20 − 20H20Þ þ

2

231
q̄1ð35S30 þ 37S21 − 21H30Þ

−
1

1155
ð37q̄1m̄0 þ 13q̄0m̄1Þm0S10 þ

1

33
q̄20ð5q0S20 − 4m0Q20 þ 3q1S10Þ

þ 10

231
q̄1q̄0q0S10 þ

2

33
q̄0m̄0ð2m0H20 − 3q0M20 − 2m1S10Þ

þ 1

33
q̄0ð30S40 þ 32S31 − 24H31 − 12H40Þ: ð92Þ

The electromagnetic moments are

Q0 ¼ q0; ð93Þ

Q1 ¼ q1; ð94Þ

Q2 ¼ q2; ð95Þ

Q3 ¼ q3 −
1

5
m̄0H10; ð96Þ

Q4 ¼ q4 þ
1

7
q̄0Q20 −

3

35
m̄1H10 −

1

7
m̄0ð3H20 − 2S20Þ;

ð97Þ

Q5 ¼ q5 þ
1

21
q̄1Q20 þ

1

3
q̄0Q30 −

1

21
m̄2H10 −

1

21
m̄1ð4H20 − 3S20Þ

þ 1

21
m̄0ðm̄0m0H10 − q̄0q0H10 − 14H30 − 13H21 þ 7S30Þ; ð98Þ
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Q6 ¼ q6 þ
5

231
q̄2Q20 þ

4

33
q̄1Q30 þ

1

33
q̄20q0Q20 þ

1

33
q̄0ð18Q40 þ 8Q31Þ

−
1

33
m̄3H10 −

1

231
m̄2ð25H20 − 20S20Þ −

2

231
m̄1ð35H30 þ 37H21 − 21S30Þ

−
1

1155
ð37m̄1q̄0 þ 13m̄0q̄1Þq0H10 þ

1

33
m̄2

0ð5m0H20 − 4q0M20 þ 3m1H10Þ

þ 10

231
m̄1m̄0m0H10 þ

2

33
m̄0q̄0ð2q0S20 − 3m0Q20 − 2q1H10Þ

−
1

33
m̄0ð30H40 þ 32H31 − 24S31 − 12S40Þ: ð99Þ

These expressions can be checked and higher order results
can be obtained by the Mathematica or Maple file (named
“moments-general”) attached as Supplemental Material
[68].
For n ≥ 3 the expressions for Pn and Qn are clearly

different from the results published earlier in the literature
[65,66]. The reason for the difference from the more recent
result is the application of the proper version of Eqs. (79)
and (80). If in our calculations we use the incorrect version
of (79) and (80), then we obtain exactly the expressions
published for the multipole moments in [66], which makes
us confident in the correctness of our results.
The most striking difference from the earlier results is

that in the correct expressions generally P3 ≠ m3 and Q3 ≠
q3 in the electromagnetic case. Although the multipole
moments shown above have been calculated by the simpler
method using the leading order functions, we have checked

that the earlier method using the quantities SðnÞã introduced
in [52] lead to identical results.
The structure of the expressions for Pn and Qn are very

similar. In fact, it is easy to obtain the result for Qn by
taking the expression for Pn and make the exchangesmn ↔
qn and m̄n ↔ −q̄n, with a minus sign in the conjugated
quantities. This also implies that we have to exchange
Mij ↔ Qij and Sij ↔ Hij. This property follows from an
analogous formal symmetry of the Ernst equations, (8) and
(9), for the exchanges ξ ↔ q and ξ̄ ↔ −q̄.

V. MULTIPOLE MOMENTS
OF EXACT SOLUTIONS

In this last section of the paper we will consider a five-
parameter stationary axially symmetric exact solution
published in 2000 by Manko et al. [35]. These are part
of a wider class of two-soliton [33] and N-soliton solutions
[88], having the special property that they can be written in
terms of prolate or oblate spheroidal coordinates. As special
cases, this five-parameter solution includes the Kerr-
Newman and the charged δ ¼ 2 Tomimatsu-Sato solutions.
The Tomimatsu-Sato solutions [89,90] are families of

stationary axially symmetric vacuum solutions labeled by a
positive integer parameter δ. The δ ¼ 1 family corresponds

to the Kerr solution. The electrically charged generaliza-
tions have been constructed by Ernst [91] and Yamazaki
[92]. A further generalization of the δ ¼ 2 solution by
adding a magnetic dipole parameter has been published by
Manko et al. in 1998 [72,93]. This solution has been
generalized further in [35] by adding a fifth parameter,
allowing the specification of the quadrupole moment and
the inclusion of the Kerr-Newman solution. The results for
the moments of the δ ¼ 2, 3, 4 vacuum Tomimatsu-Sato
solutions have been presented up to order P12 in [87].
The five-parameter solution of Manko et al. [35] has

important physical applications. This solution and its direct
generalizations have been used for the description of the
exterior region of neutron stars [29,38,78,94,95], black holes
[96,97], and has been cited in several reviews [25,98,99].

A. Prolate and oblate spheroidal coordinates

The metric functions of the Tomimatsu-Sato solutions
and their generalizations have been presented in [35,89,90]
using prolate spheroidal coordinates x and y, which are
related to the Weyl-Lewis-Papapetrou coordinates in
(18) by

ρ ¼ κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
; z ¼ κxy; ð100Þ

where κ is a positive constant. The range of the coordinates
is x > 1 and 1 ≥ y ≥ −1. A simple form of the inverse
relation is [100]

x ¼ rþ þ r−
2κ

; y ¼ rþ − r−
2κ

; r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz� κÞ2

q
:

ð101Þ
The metric in the prolate spheroidal case is

ds2 ¼ −fðdt − ωdφÞ2

þ κ2

f

�
e2γðx2 − y2Þ

�
dx2

x2 − 1
þ dy2

1 − y2

�

þ ðx2 − 1Þð1 − y2Þdφ2

�
: ð102Þ
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The value of the constant κ is fixed by the freely
specifiable parameters of the solution. If the angular
momentum, charge, or dipole moment is large enough,
the solution may become hyperextreme, and κ2 turns out to
be negative. It has been already realized by Tomimatsu and
Sato in [90] that the hyperextreme extension of their
solutions can be obtained by the complex transformation
κ → −iκ, x → ix. The same is true for the electromagnetic
generalizations. This corresponds to using oblate spheroi-
dal coordinates

ρ ¼ κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
; z ¼ κxy ð103Þ

with real κ > 0. The spacetime metric is then

ds2 ¼ −fðdt − ωdφÞ2

þ κ2

f

�
e2γðx2 þ y2Þ

�
dx2

x2 þ 1
þ dy2

1 − y2

�

þ ðx2 þ 1Þð1 − y2Þdφ2

�
: ð104Þ

Hyperextreme Tomimatsu-Sato solutions have been
already discussed in [101–104]. Although hyperextreme
solutions always contain naked singularities, these solu-
tions can still describe well the exterior region of rotating
bodies. Actually, it is known that the exterior region of
relatively small mass rotating objects often correspond to
hyperextreme spacetimes. Defining the angular momentum
per unit mass as a ¼ J

M, in the absence of electromagnetic
fields the configuration is hyperextreme if a

M > 1. For
example, for the Earth a

M ≈ 740, and for a vinyl LP record
spinning on a turntable a

M ≈ 1018 [105,106]. The exterior
region of a rotating disk of dust can also be hyperextreme
[107,108]. For main sequence stars, a

M may be as large as
100, which has to decrease to a

M ≪ 1 if they evolve into
neutron stars [109]. The a

M ratio can also be as large as 500
for the bulge of spiral galaxies [110].

B. Five-parameter solution

The solution introduced by Manko et al. [35] depends on
five parameters: m, q̂, a, μ, and b. We use a hat on the
constant q to distinguish it from the potential in (7). In the
absence of NUT (Newman, Unti and Tamburino) charges
and magnetic monopoles, m and q̂ are real and correspond
to the mass and electric charge, respectively. By shifting
to a center of mass system, the mass dipole moment can be
made zero. Then the parameter a is real and gives
the angular momentum per unit mass of the solution.
The parameters μ and b are related, but not equal, to the
magnetic dipole moment and mass-quadrupole moment.
We define the constants c and ν by

c ¼ a − b; μ ¼ q̂ν; ð105Þ

and will use them at most places instead of a and μ in the
following. To simplify the equations, Manko et al. have
introduced the following combinations of the constants:

δ ¼ q̂2ν2 −m2b2

m2 − c2 − q̂2
; d ¼ 1

4
ðm2 − c2 − q̂2Þ: ð106Þ

The parameters b, μ, and consequently c ¼ a − b may be
complex, but the solution in x, y spheroidal coordinates
only exists if the combination dþ δ is real. If dþ δ > 0 is
real, then the solution is subextreme, and the spacetime
metric is described by (102). In the hyperextreme case dþ
δ < 0 is real, and the metric is given by (104). In both cases,
we have a solution of the Einstein equations if

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdþ δj

p
: ð107Þ

The complex Ernst potentials are given in [35] by the
expressions

E ¼ A − 2mB
Aþ 2mB

; Φ ¼ 2C
Aþ 2mB

; ð108Þ

where in the subextreme case

A ¼ 4½ðκ2x2 − δy2Þ2 − d2 − iκ3xycðx2 − 1Þ�
− ð1− y2Þ½cðd− δÞ−m2bþ q̂2ν�½cðy2 þ 1Þ þ 4iκxy�;

ð109Þ
B¼ κx½2κ2ðx2− 1Þþ ðbcþ 2δÞð1− y2Þ�

þ iy½2κ2bðx2 −1Þ− ðκ2c−m2bþ q̂2ν−2aδÞð1− y2Þ�;
ð110Þ

C ¼ 2κ2q̂ðx2 − 1Þðκxþ iνyÞ
þ q̂ð1 − y2Þfκxð2δþ νcÞ − iy½cðd − δÞ −m2b

þ q̂2ν − 2νδ�g: ð111Þ

The expressions for A, B, and C in the hyperextreme case
can be obtained by the substitution κ → −iκ, x → ix.

C. Axis expansion

Along the upper part of the rotation axis y ¼ 1, and the
axial Weyl coordinate can be given there by z ¼ κx. The
factor κ ensures that z is a parametrization satisfying
habð ∂∂zÞað ∂∂zÞb ¼ 1, as required in Sec. IVA. The complex
potentials ξ and q are defined according to (7). To shorten
the resulting expressions we introduce one more notation
for the following combination of the constants:

v ¼ d − δ: ð112Þ

For both the subextreme and the hyperextreme cases, on the
upper part of the axis we obtain
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ξ ¼ mðzþ ibÞ
z2 − iczþ v

; q ¼ q̂ðzþ iνÞ
z2 − iczþ v

: ð113Þ

According to (73), the first few expansion coefficients turn
out to be

m0 ¼ m; ð114Þ

m1 ¼ imðcþ bÞ; ð115Þ

m2 ¼ −mðc2 þ vþ bcÞ; ð116Þ

m3 ¼ −im½c3 þ 2cvþ bðc2 þ vÞ�; ð117Þ

m4 ¼ m½c4 þ 3c2vþ v2 þ bðc3 þ 2cvÞ�; ð118Þ

m5 ¼ im½c5 þ 4c3vþ 3cv2 þ bðc4 þ 3c2vþ v2Þ�; ð119Þ

and

q0 ¼ q̂; ð120Þ

q1 ¼ iq̂ðcþ νÞ; ð121Þ

q2 ¼ −q̂ðc2 þ vþ νcÞ; ð122Þ

q3 ¼ −iq̂½c3 þ 2cvþ νðc2 þ vÞ�; ð123Þ

q4 ¼ q̂½c4 þ 3c2vþ v2 þ νðc3 þ 2cvÞ�; ð124Þ

q5 ¼ iq̂½c5 þ 4c3vþ 3cv2 þ νðc4 þ 3c2vþ v2Þ�: ð125Þ

It is possible to give the general expression for the
coefficients. Defining

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4v

p
; fk ¼

ik

2kþ1s
½ðcþ sÞkþ1 − ðc − sÞkþ1�;

ð126Þ

for all k ≥ 0 integers we have

mk ¼ mðfk þ ibfk−1Þ; qk ¼ q̂ðfk þ iνfk−1Þ: ð127Þ

D. Lower order moments

At this stage we can use the general expressions, (86)–
(99), to calculate the multipole moments Pn and Qn up to
order 6. Clearly Pn ¼ mn andQn ¼ qn only for n ¼ 0; 1; 2.
It can be seen that for the five-parameter solution generally
P3 ≠ m3 and Q3 ≠ q3, since S10 ¼ −H10 ¼ imq̂ðb − νÞ.
From the general expression of multipole moments, it
follows that the magnetic dipole moment is

md ¼ −iP1 ¼ q̂ða − bþ νÞ, and the mass-quadrupole
moment is P2 ¼ −mðd − δþ a2 − abÞ.
According to the results worked out in the papers

[54,55,63,64], if the solution is reflection symmetric with
respect to the equatorial plane, then mn is real for even n,
and purely imaginary for odd n. The behavior of the
constants qn is either the same as that of mn, or just the
opposite, qn is purely imaginary for even n, and real for odd
n. Assuming that q̂ is nonzero, the expression of the
magnetic dipole moment shows that ν − b must be real
for reflection symmetry. Using (106), the quadrupole
moment can be written into the alternative form
P2 ¼ m

2
ðm2 þ a2 − q̂2 − b2 − 2κ2Þ. From this it follows

that reflection symmetry is possible only if b is either real
or pure imaginary.
The multipole moments of the Kerr-Newman metric have

been already presented in [66] as Pn ¼ mn ¼ mðiaÞn and
Qn ¼ qn ¼ q̂ðiaÞn. From the expression (121) for q1 it
follows that the five-parameter solution can reduce to the
Kerr-Newman metric only if ν ¼ b. Furthermore, comparing
with the quadrupole moment m2 it follows that the solution
becomes the Kerr-Newman metric only if b2 ¼ a2 þ
q̂2 −m2. This shows that for the subextreme Kerr-Newman
solution the parameters b ¼ ν are purely imaginary.
Setting b ¼ 0, we obtain the charged magnetized gen-

eralization of the δ ¼ 2 Tomimatsu-Sato solution published
in [72,93]. The original vacuum δ ¼ 2 Tomimatsu-Sato
solution can be obtained by setting b ¼ 0, q̂ ¼ 0, and
μ ¼ 0. The two parameters in the vacuum Tomimatsu-Sato
solution, satisfying p2

v þ q2v ¼ 1, are related to the con-
stants in the five-parameter solution by qv ¼ a=m.
Furthermore, κ ¼ mpv=2.
Instead of giving here the expressions for the first few

multipole moments applying (86)–(99), we continue by a
direct calculation of the multipole moments, using a
generalization of the method used in [2,58] to calculate
the moments of the Kerr metric. That way we obtain a fast
and efficient method by which one can obtain the multipole
moments of the five-parameter solution up to any desired
order by a relatively simple algorithm. Since the expansion
coefficients mn and qn have the same form for the
subextreme and the hyperextreme cases, it follows that
the multipole moments are also the same for the two cases.
For this reason it is sufficient to consider the subextreme
case in the following.

E. Conformal mapping

The first step is the introduction of asymptotic coor-
dinates x̂â ¼ ðR; θ;ϕÞ by

x ¼ 1

κR
þ κR

4
ð128Þ

and y ¼ cos θ. In this case R ¼ 0 corresponds to conformal
infinity Λ, and the nonzero components of the metric are
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hRR ¼ e2γ

16R4
½16þ κ4R4 − 8κ2R2 cosð2θÞ�; ð129Þ

hθθ ¼
e2γ

16R2
½16þ κ4R4 − 8κ2R2 cosð2θÞ�; ð130Þ

hϕϕ ¼ 1

16R2
ð4 − κ2R2Þ2 sin2 θ: ð131Þ

It follows that an appropriate choice of conformal factor is

Ω ¼ 4R2

4 − κ2R2
: ð132Þ

Introducing cylindrical coordinates x̃ã ¼ ðρ̃; z̃;ϕÞ by

R2 ¼ ρ̃2 þ z̃2; cos θ ¼ z̃
R
; ð133Þ

the metric takes the familiar form

h̃ã b̃ ¼

0
B@

e2γ̃ 0 0

0 e2γ̃ 0

0 0 ρ̃2

1
CA; ð134Þ

where

e2γ̃ ¼ e2γ
�
1þ 16κ2ρ̃2

½4 − κ2ðρ̃2 þ z̃2Þ�2
	
: ð135Þ

Comparing with (33), it might be surprising at first sight
that a transformed version of the function γ appears in the
metric. The reason for this is that the coordinates ρ̃ and z̃ are
clearly different now from the Weyl coordinates used
in (25).
The metric function γ for the five-parameter solution is

given in [35] as

e2γ ¼ E
16κ8ðx2 − y2Þ4 ; ð136Þ

where

E ¼ f4½κ2ðx2 − 1Þ þ δð1 − y2Þ�2
þ c½cðd − δÞ −m2bþ q̂2ν�ð1 − y2Þ2g2
− 16κ2ðx2 − 1Þð1 − y2Þfc½κ2ðx2 − y2Þ þ 2δy2�
þ ðm2b − q̂2νÞy2g2: ð137Þ

F. Calculation of the multipole moments

We intend to calculate the necessary leading order
functions and use the recursive formulas, (69)–(71) to
calculate the multipole moments. We calculate the Ernst
potentials ξ and q using their definition (7), from the

complex potentials E and Φ given by (108)–(111). Here we
need to substitute x from (128) and y ¼ z̃=R, where
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̃2 þ z̃2

p
. Since we will take the leading order

part, and since RL ¼ 0, for the coordinate x we can
substitute the simpler expression x ¼ 1=ðκRÞ without
influencing the final result. According to (60), the leading
order part of a function can be obtained by substituting
z̃ ¼ ζ and ρ̃ ¼ −iζ.
In order to start the recursion (69)–(71), for the gravi-

tational moments we need to calculate the leading order
part of ξ̃ ¼ Ω−1=2ξ, and for the electromagnetic moments
we need the leading order part of q̃ ¼ Ω−1=2q. Here we
have to use the conformal factor given in (132). However,
since we will take the leading order part, we can drop the
κ2R2 term from the denominator of Ω, and simply use
Ω ¼ R2 instead. The result for the leading order part of the
conformally transformed complex potentials turns out to be

ξ̃L ¼ α

β
; q̃L ¼ λ

β
; ð138Þ

where

α ¼ 2m½2þ ð2i − cζÞbζ − 2δζ2 þ iζ3ðw − 2bδÞ�; ð139Þ

β ¼ wðcζ þ 4iÞζ3 − 4icζ þ 4ð1 − δζ2Þ2; ð140Þ
λ ¼ 2q̂½2þ ð2i − cζÞνζ − 2δζ2 þ iζ3ðw − 2νδÞ�; ð141Þ
and

w ¼ vcþ q̂2ν −m2b; v ¼ d − δ: ð142Þ

Since the leading order part of (135) is simply
e2γ̃L ¼ e2γLð1 − κ2ζ2Þ, using (136) and (137) we obtain

e2γ̃L ¼ 16ðcζ − wζ3Þ2 þ ðcwζ4 þ 4ð1 − δζ2Þ2Þ2
16½1 − ð2δþ vÞζ2�3 : ð143Þ

We are now ready to define the functions yn according to
(69)–(71). For the gravitational moments we need to take
y0 ¼ ξ̃L, and for the electromagnetic moments y0 ¼ q̃L.
The function y1 can be obtained by taking the ζ derivative
of y0, i.e., y1 ¼ y00. For the further yn functions we need to
replace γ by γ̃ in (71),

ynþ1 ¼ yn0 − 2nynγ̃L0 −
1

2
nð2n − 1ÞR̃Lyn−1: ð144Þ

The ζ derivative of γ̃L can be obtained from (143). Since it
only depends on the structure of the three-metric, Eq. (64)
is valid now in terms of γ̃, giving R̃L ¼ 2

ζ γ̃L0. The multipole
moments can be obtained by taking the values of the yn
functions at ζ ¼ 0, according to (68).
We present the results for the first few scalar moments by

writing out the terms that must be added to the axis
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coefficients mn and qn. These coefficients can be easily
calculated for general n according to (127), and their values
up to n ¼ 5 are listed in (114)–(125). For the first six scalar
multipole moments we obtain

P0 ¼ m0; ð145Þ

P1 ¼ m1; ð146Þ

P2 ¼ m2; ð147Þ

P3 ¼ m3 þ
imq̂2

5
ðb − νÞ; ð148Þ

P4 ¼ m4 −
m3

7
ðb2 þ bc − vÞ

−
mq̂2

35
ð7cb − 12cν − 8bνþ 5vþ 3ν2Þ; ð149Þ

P5¼m5þ
im
21

fq̂2ðq̂2−m2Þðb−νÞþm2ðb−6cÞðb2þbc−vÞ
þ q̂2½c2ð11ν−5bÞ−6cvþcνð8b−3νÞ
þvð10ν−9bÞ−bν2�g; ð150Þ

and

Q0 ¼ q0; ð151Þ

Q1 ¼ q1; ð152Þ

Q2 ¼ q2; ð153Þ

Q3 ¼ q3 −
iq̂m2

5
ðν − bÞ; ð154Þ

Q4 ¼ q4 þ
q̂3

7
ðν2 þ νc − vÞ

þ q̂m2

35
ð7cν − 12cb − 8νbþ 5vþ 3b2Þ ð155Þ

Q5¼q5þ
iq̂
21

fm2ðm2− q̂2Þðν−bÞ− q̂2ðν−6cÞðν2þνc−vÞ
−m2½c2ð11b−5νÞ−6cvþcbð8ν−3bÞ
þvð10b−9νÞ−νb2�g: ð156Þ

We have checked that we obtain the same results by
substituting (114)–(125) into the general expressions
(86)–(99) for the multipole moments, which strongly
supports the correctness of our calculations.
Since the variable v is not independent from the con-

stants m, q̂, b, ν, and c, the expressions for Pn and Qn can
be written in various equivalent forms. Using v ¼ d − δ and
(106) we can get

vðm2 − c2 − q̂2Þ − 1

4
ðm2 − c2 − q̂2Þ2 −m2b2 þ q̂2ν2 ¼ 0:

ð157Þ

In the above expressions we have used this to eliminate
terms containing c2v.
If one is interested in the moments up to orderN, then for

efficiency it is advisable to take first the power series
expansion at ζ ¼ 0 of the functions ξ̃L, q̃L up to order N,
and apply only then the recursion formula (144). As
Supplemental Material [68], we provide a Mathematica
and an equivalentMaple file (named “five-par-sol”), which
can be used for the calculation of the moments of the five-
parameter solution up to higher orders.
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APPENDIX: INVARIANT SYMMETRIC
TRACELESS TENSORS IN THE AXIS

In this Appendix we present a simple construction type
proof for the statement that in the axially symmetric case

each MðnÞ
ã1…ãn

multipole moment tensor is necessarily
proportional to the tensor Cðnã1…nãnÞ, where nã is the
unit vector parallel to the rotational axis. This result made it
possible for Hansen [2] to define the scalar momentsMn by
Eq. (43). The claim in [2], that the only tensors invariant
under the action of the axial Killing vector are outer
products of the metric and the axis vector, is correct, but
only if one considers tensors that are symmetric in their
indices.

The only properties of the multipole tensorsMðnÞ
ã1…ãn

that
we use is that they are rotation invariant, traceless, and
symmetric in their indices. After the conformal mapping,
using the coordinates x̃ã ¼ ðρ̃; z̃;φÞ, the unphysical metric
h̃ã b̃ takes the form (33), where on the axis, and hence also
at the point Λ necessarily γ ¼ 0. The Killing vector field
that induces rotation around the axis has the components
ξã ¼ ð0; 0; 1Þ. Using the associated Cartesian coordinates
xâ ¼ ðx̃; ỹ; z̃Þ defined by x̃ ¼ ρ̃ cosϕ and ỹ ¼ ρ̃ sinϕ, the
Killing vector has the components ξâ ¼ ð−ỹ; x̃; 0Þ. If a
tensor is invariant under rotation, then it must have zero Lie
derivative along the vector field ξâ, using the Cartesian
coordinate system which is regular on the axis.
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Weonly consider tensors at the pointΛ, where themetric is
h̃â b̂ ¼ diagð1; 1; 1Þ. We investigate tensors that are symmet-
ric in their n lower indices, and introduce the notation

MðnÞ
x̃…x̃|ffl{zffl}

a

ỹ…ỹ|ffl{zffl}
b

z̃…z̃|ffl{zffl}
n−a−b

¼ SðnÞa;b: ðA1Þ

Expressing theLie derivative using the standard expression in
terms of partial derivatives, since on the axis ξâ vanishes, only
the terms proportional to the derivatives of the Killing vector
remain. The partial derivative tensor of ξb̂ has only two
nonzero components,

∂ âξ
b̂ ¼ δx̃âδ

b̂
ỹ − δỹâδ

b̂
x̃ : ðA2Þ

Using this, it is easy to show that the Lie derivative of a
symmetric tensor at Λ can be calculated as

LξS
ðnÞ
a;b ¼ aSðnÞa−1;bþ1 − bSðnÞaþ1;b−1 ≡ 0: ðA3Þ

This is onlyvalid fora ≥ 1,b ≥ 1, but because of the factorsa
and b it also turns out to be correct for a ¼ 0 orb ¼ 0 as well,
when only one term remains. Assuming the vanishing of the

Lie derivative, from this immediately follows that SðnÞ1;b ¼ 0

and SðnÞa;1 ¼ 0 for any a and b. Using the relation (A3)multiple

times we can see that SðnÞa;b ¼ 0 when either a or b is an odd
number. It also follows that the nonzero components, which
have even a and b, are uniquely determined by the num-

bers SðnÞ0;b.
The trace-free condition at Λ can be written as

SðnÞa;b þ SðnÞaþ2;b þ SðnÞa;bþ2 ¼ 0: ðA4Þ

Using this together with (A3), it is easy to see that all

nonzero components of SðnÞa;b are proportional to S
ðnÞ
0;0 . Hence,

rotationally invariant symmetric trace-free tensors at Λ are
uniquely determined by a single parameter. Since the
symmetric trace-free part of the exterior products of the
axis vector nã is obviously nonvanishing, the tensor

Cðnã1…nãnÞ is necessarily proportional to MðnÞ
ã1…ãn

.
We note that if we relax the condition of symmetry in the

indices, there are more general invariant tensors. For
example for two indices, the two-form dx̃ ∧ dỹ is clearly
rotationally invariant.
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