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Assuming that the vacuum energy-momentum tensor is not exceptionally large, we consider 4D
evaporating black holes with spherical symmetry and evaluate the proper distance ΔL between the timelike
apparent horizon and the surface of the collapsing matter after it has entered the apparent horizon. We show
that ΔL can never be larger thanOðn3=2lpÞ when the black hole has evaporated to 1=n of its initial mass, as
long as n ≪ a2=3=l2=3

p (where a is the Schwarzschild radius and lp is the Planck length). For example, the
distance between the matter and the apparent horizon must be Planckian at the Page time.
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I. INTRODUCTION

It has been noted [1] that, if the information paradox of
black holes is resolved by converting all information of the
collapsing matter into Hawking radiation, there must be
high-energy events around the horizon (such as a firewall
[2,3]). However, if the collapsing matter is already far
inside the horizon, even a firewall around the horizon is still
not enough unless there are nonlocal interactions at work.
The question we want to answer in this paper is the

following: how far is the collapsing matter under the
apparent horizon when the black hole evaporates to a
certain fraction of its initial mass, say, one half at the
Page time?
For four-dimensional (4D) spherically symmetric evapo-

rating black holes, we consider a generic class of vacuum
energy-momentum tensor without exceptionally large
components. (The conventional model of black holes
[4–6] is included.) The backreaction of the vacuum
energy-momentum tensor to the near-horizon geometry
is taken into consideration in the semiclassical Einstein
equation. The general solution for the near-horizon geom-
etry is consistent with related works on the conventional
model (see, e.g., Ref. [7]). The light-cone coordinates
ðu; vÞ are used so that the causal structure is more manifest.
We prove that, due to a robust exponential form of the

redshift factor inside the apparent horizon, the proper
distance ΔL between the apparent horizon and the col-
lapsing matter (after it has fallen inside the apparent

horizon) is never larger than n3=2lp when the black hole
is 1=n of its initial mass. This estimate is valid until the
black-hole mass is an extremely small fraction 1=n ∼
Oðl2=3

p =a2=3Þ of its initial mass.1 This conclusion reveals
an important feature about the geometry under the apparent
horizon. In line with Refs. [9,10], our result questions the
validity of an effective theory with a cutoff scale Λ lower
than the Planck mass Mp.

II. ASSUMPTIONS

We start by listing all of our assumptions.
(1) Macroscopic evaporating black hole

The Schwarzschild radius aðtÞ≡ 2GNMðtÞ is
much larger than the Planck length lp ≡ ffiffiffiffiffiffiffiffiffiffi

ℏGN
p

:

aðtÞ ≫ lp: ð2:1Þ

The time-evolution equation for aðtÞ is

j _aj ∼Oðl2
p=a2Þ; ð2:2Þ

for the time t of a fiducial observer far from the black
hole, so that the time for the black hole to evaporate
to a fraction (< 1=2) of its initial mass is Oða3=l2

pÞ.
(2) Spherical symmetry

The most general spherically symmetric 4D met-
ric is
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1For the vacuum energy-momentum tensor defined by a two-
dimensional massless scalar field [4], the Planck-scale proper
distance between the apparent horizon and collapsing matter was
already studied in Ref. [8].
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ds2 ¼ −Cðu; vÞdudvþ r2ðu; vÞdΩ2; ð2:3Þ

where u and v are the outgoing and ingoing light-
cone coordinates, rðu; vÞ is the areal radius, and dΩ2

is the metric of a unit 2-sphere.
(3) Semiclassical Einstein equation

The semiclassical Einstein equation

Gμν ¼ κhTμνi ð2:4Þ

holds since we will focus only on spacetime regions
where the curvature is small. Here, κ ≡ 8πGN and
hTμνi is the expectation value of the quantum
energy-momentum tensor for a given quantum state.
Since hTμνi in vacuum is proportional to the Planck
constant ℏ, the quantum correction to the Einstein
equation is proportional to Oðl2

pÞ.
(4) Schwarzschild approximation

The near-horizon geometry is expected to deviate
from the classical solution due to quantum correc-
tions, but it should be smoothly connected to the
classical metric at large distances. Within a time
Δt ∼OðaÞ [see Eq. (2.2)] in a neighborhood where

r − a ≫ O
�
l2
p

a

�
; ð2:5Þ

the spacetime geometry is well approximated by a
Schwarzschild solution:

C ¼ 1 −
a
r
; −∂ur ¼ ∂vr ¼

1

2

�
1 −

a
r

�
: ð2:6Þ

Here we have used the Eddington light-cone coor-
dinates ðu; vÞ.

(5) Bounds on the energy-momentum tensor
The vacuum energy-momentum tensor is assumed

to satisfy

hTμ
μi≲O

�
1

κa2

�
; hTθ

θi≲O
�

1

κa2

�
ð2:7Þ

in the near-horizon region. These bounds are much
weaker than the condition of an uneventful horizon
for the conventional model [4–6]. This quantum
effect is important for the apparent horizon.

(6) Apparent horizon
We assume that the apparent horizon exists.2 (See

Fig. 1 and note its difference from the event horizon,
which is irrelevant to our discussion below.) Due to the
ingoing negative energy of the vacuum fluctuation,

the outer trapping horizon is timelike as it emerges
outside the collapsing matter [9,10,16–19].

The quantum correction introduces a difference bet-
ween the areal radii of the apparent horizon and the
Schwarzschild radius as

rðu; vahðuÞÞ − aðuÞ ∼Oðl2
p=aÞ: ð2:8Þ

Here, aðuÞ is the u-dependent Schwarzschild radius which
decreases with time as Eq. (2.2), and we use uahðvÞ and
vahðuÞ to denote the u and v coordinates of the apparent
horizon for given v and u, respectively.
Our assumption on the energy-momentum tensor (2.7)

is weaker than (but certainly compatible with) what is
assumed in the literature for black holes with apparent
horizons, for which the energy-momentum tensor would
be further constrained by the regularity condition at the
apparent horizon [9,10]. Here, we consider the most
general energy-momentum tensor for the conclusion of
the paper.

III. SOLVING SEMICLASSICAL EINSTEIN
EQUATIONS

The semiclassical Einstein equation was solved in the
near-horizon region in Ref. [8] with the assumption that
the vacuum energy-momentum tensor is given by that in
Ref. [4]. Here we generalize the result to any vacuum
energy-momentum tensor satisfying Eq. (2.7).

A. Near-horizon region

We use the phrase “near-horizon region” to refer to the
region outside the collapsing matter [with the areal radius
RsðuÞ] but close to or inside the apparent horizon; see
Fig. 1. In view of Eqs. (2.5) and (2.7), we choose the outer
boundary of the near-horizon region to be

rðu; vÞ − aðuÞ ¼ Nl2
p

aðuÞ ð3:1Þ

for an arbitrarily large number N satisfying a2=l2
p ≫

N ≫ 1. It follows from Eqs. (2.6) and (3.1) that the
conformal factor in the metric (2.3) around the outer
boundary of the near-horizon region is

Cðu; vÞ ∼Oðl2
p=a2Þ: ð3:2Þ

As we will see in the next subsection, this condition is valid
anywhere in the near-horizon region.
The trajectory of the outer boundary (3.1) of the near-

horizon region (see Fig. 2) can be parametrized by either
u or v. Using u as the parameter, the v coordinate on the
trajectory is denoted by voutðuÞ. Equation (3.1) is satisfied
with v ¼ voutðuÞ. Conversely, using v as the parameter, its
u coordinate is denoted by uoutðvÞ. Clearly, uout and vout are

2The appearance of the apparent horizon has been viewed as a
definition of black holes [11–13]. Note that we are now
considering a different situation from that in Refs. [14,15].
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the inverse functions of each other: uoutðvoutðuÞÞ ¼ u
and voutðuoutðvÞÞ ¼ v.
We focus our attention on a range of u ∈ ðu0; u1Þ, where

u0 is the moment when the apparent horizon emerges. We
emphasize that in the near-horizon region, the ranges of u
and v are both ∼Oða3=l2

pÞ, covering a huge space in terms
of the ðu; vÞ coordinates.
The Schwarzschild radius aðuÞ is monotonically

decreasing due to Hawking radiation. The maximal and
minimal values of aðuÞ from u ¼ u0 to u1 are given by

amax ¼ aðu0Þ and amin ¼ aðu1Þ: ð3:3Þ
The ratio of the initial and final masses is denoted by

n≡ amax

amin
: ð3:4Þ

Note that, for a point ðu; vÞ inside the apparent horizon,
where the position of the apparent horizon for a given
value of u or v is specified as ðu; vahðuÞÞ or ðuahðvÞ; vÞ,
respectively [see Eq. (2.8)], we have

v < vahðuÞ < voutðuÞ; u > uahðvÞ > uoutðvÞ ð3:5Þ
(see Fig. 2). These inequalities hold because the apparent
horizon is timelike, as a result of the negative quantum
vacuum energy flow.

B. Solution of Cðu;vÞ
We solve Cðu; vÞ here from the semiclassical Einstein

equation (2.4) in the near-horizon region, with the boun-
dary condition that it agrees with the Schwarzschild
approximation.
Consider a particular combination of the semiclassical

Einstein equations

(a) (b) (c)

FIG. 1. (a) Penrose diagram for the conventional model. The apparent horizon (blue curve) is timelike outside the collapsing matter
(thick green strip) at the speed of light. We focus on the spacetime (between the green dash lines) not long before the apparent horizon
emerges, and before the black hole completely evaporates, from the viewpoint of a distant observer. The event horizon (red dash line) is
irrelevant. (b) The singularity at r ¼ 0 is replaced by a Planckian region (red blob) in the UV theory. The region between the green dash
lines remains the same. (c) The region of interest (between the green dash lines) excerpted from panels (a) and (b). The “near-horizon
region” defined in Sec. III A is the (blue shaded) region bounded by the following three curves: (1) the outer surface of the collapsing
matter (thick green strip) from A to B, (2) the outgoing null curve (dashed green line) from B to C, and (3) a curve outside but close to the
timelike apparent horizon in vacuum from C to A. We will study the proper length ΔL of a monotonic radial curve connecting an
arbitrary point on the surface of the collapsing matter between A and B and another arbitrary point on the apparent horizon between A
and C. An example of such a curve (double arrowhead) is shown.

FIG. 2. The apparent horizon (solid blue) and the outer
boundary of the near-horizon region (dash blue) have their u,
v coordinates given by uahðvÞ, vahðuÞ and uoutðvÞ, voutðuÞ,
respectively. The coordinates ðu; vÞ of a point inside the apparent
horizon satisfy Eq. (3.5).
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Gμ
μ − 6Gθ

θ ¼ κðhTμ
μi − 6hTθ

θiÞ: ð3:6Þ

It is equivalent to

∂u∂vΣðu; vÞ ¼
Cðu; vÞ
4r2ðu; vÞ þ

κCðu; vÞ
8

ðhTμ
μi − 6hTθ

θiÞ;

ð3:7Þ

where Σðu; vÞ is defined via

Cðu; vÞ≡ eΣðu;vÞ

rðu; vÞ : ð3:8Þ

For r − a ∼ l2
p=a, the naive order of magnitude of the

left-hand side of Eq. (3.7) isOð1=a2Þ, and that of the right-
hand side is Oðl2

p=a4Þ because of Eqs. (2.7) and (3.2).
Hence, the leading-order approximation of Eq. (3.7) is

∂u∂vΣ ≃ 0: ð3:9Þ

It is solved by

Σðu; vÞ ≃ BðuÞ þ B̄ðvÞ ð3:10Þ

for arbitrary functions BðuÞ and B̄ðvÞ. To determine BðuÞ
and B̄ðvÞ, we impose the boundary condition that Cðu; vÞ
matches with the Schwarzschild metric (2.6) around the
outer boundary of the near-horizon region (see Fig. 3).
According to Eq. (3.10), over an infinitesimal variation

from u to ðuþ duÞ along a constant-v curve, the corre-
sponding change in Σðu; vÞ is du∂uBðuÞ. Since the quantity
du∂uΣðu; vÞ is independent of v, we take v ¼ voutðuÞ,
where the Schwarzschild solution is a good approximation,
so that Σ ≃ ðv − uÞ=ð2aÞ − 1þ logðaÞ [see Eq. (A6) and
Fig. 3]. We find

du∂uBðuÞ ≃ du∂uΣðu; vÞ ≃ du∂uΣ0ðu; v0Þjv0¼voutðuÞ

≃ −
du

2aðuÞ : ð3:11Þ

Here we have used Eq. (A6) with a time-dependent
Schwarzschild radius aðuÞ and neglected contributions
from ∂uaðuÞ as higher-order terms. Since the procedure
above can be repeated for each infinitesimal segment
du for the same v, the equation above is immediately
solved by

BðuÞ ≃ Bðu�Þ −
Z

u

u�

du0

2aðu0Þ ð3:12Þ

for an arbitrary reference point ðu�; v�Þ inside the near-
horizon region. The function aðuÞ can be interpreted as the
u-dependent Schwarzschild radius for an infinitesimal slice
from u to uþ du at the outer boundary of the near-horizon
region (see Fig. 3).
Similarly, we have

B̄ðvÞ ≃ B̄ðv�Þ þ
Z

v

v�

dv0

2āðv0Þ ð3:13Þ

for some function āðvÞ, which is the v-dependent
Schwarzschild radius for an infinitesimal slice from v to
vþ dv at the outer boundary. (For the static solution,
a single slice of the spacetime is enough to determine
the Schwarzschild radius. Treating a small slice of
the dynamical solution as a static one would determine
different Schwarzschild radii for slices of fixed u vs
fixed v.3)
According to Eqs. (3.12) and (3.13), the zeroth-order

approximation of Σðu; vÞ is

Σðu; vÞ ≃ Σðu�; v�Þ −
Z

v�

v

dv0

2āðv0Þ −
Z

u

u�

du0

2aðu0Þ : ð3:14Þ

As a result, we obtain

Cðu; vÞ ≃ Cðu�; v�Þ
rðu�; v�Þ
rðu; vÞ exp

×

�
−
Z

u

u�

du0

2aðu0Þ −
Z

v�

v

dv0

2āðv0Þ
�
: ð3:15Þ

Going through the derivation of this solution, one can
check that this formula can be applied to any two points
ðu; vÞ and ðu�; v�Þ in the near-horizon region.

FIG. 3. The dashed blue curve represents the outer boundary
of the near-horizon region. Along the constant-v curve, the
u dependence of Σ must agree with that of Σ0 around the
boundary (3.1).

3We can evaluate how different the two radii are by construct-
ing the function rðu; vÞ with a more specific condition of the
energy-momentum tensor. See Appendix B of Ref. [20].
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We shall adopt the convention of choosing ðu�; v�Þ to be
on the outer boundary of the near-horizon region. To match
with the Schwarzschild solution, we have from Eq. (3.2)

Cðu�; v�Þ ∼Oðl2
p=a2ðu�ÞÞ: ð3:16Þ

In view of Eqs. (3.5) and (3.15), Cðu; vÞ becomes expo-
nentially smaller as we go deeper inside the near-horizon
region. As we will see below, this is the crucial property
of the near-horizon geometry that prevents the distance
between the collapsing matter and the apparent horizon

from becoming macroscopic until the very late stage of the
evaporation. (The precise condition will be given below.)

C. First-order quantum correction

Since the large range of both u and v is Oða3=l2
pÞ, the

approximation (3.9) might break down after integrating
over u or v. Here we show that the approximation is valid
over this large range of u and v.
The first-order quantum correction to Σðu; vÞ due to

the right-hand side of Eq. (3.7) can be computed perturba-
tively as

ΔΣðu; vÞ ≃
Z

u

u�
du0

Z
v

v�
dv0

�
1

4r2ðu0; v0Þ þ
κ

8
ðhTμ

μi þ 2hTθ
θiÞ

�
Cðu0; v0Þ

≲
�

1

4r2min

þ K
8a2min

�
Cðu�; v�Þ

rmax

rmin

Z
u

u�
du0

Z
v

v�
dv0e−

v�−v0
2amaxe−

u0−u�
2amax ≲

�
a2min

r2min

þ K
2

�
a2max

a2min

rmax

rmin
Cðu�; v�Þ; ð3:17Þ

where we have used Eq. (3.5) in the last step, and rmax and
rmin denote the maximal and minimal values of rðu; vÞ in
the near-horizon region, respectively. We have also used the
condition that

jhTμ
μi þ 2hTθ

θij ≤
K
κa2

ð3:18Þ

holds any time [here K is of Oð1Þ], according to our
assumption (2.7).
The ratios rmax=rmin and amin=rmin appearing in

Eq. (3.17) can be estimated without an explicit functional
form of rðu; vÞ. First, Eqs. (2.8) and (3.1) say that both

rðu; vahðuÞÞ and rðu; voutðuÞÞ approximately equal the
Schwarzschild radius aðuÞ up to Oðl2

p=aÞ corrections.
This is one of the two principles that govern the basic
features of the function rðu; vÞ. The other principle is
simply the conditions ∂vrðu; vÞ < 0 and ∂urðu; vÞ < 0,
which hold by definition of the trapped region. Therefore,
rðu; vÞ decreases with u for a fixed v. More precisely,
rðu; vÞ on each constant-v curve decreases slower with u
for smaller values of v because of the larger redshift factor
at smaller values of the v-coordinate. Thus, in the near-
horizon region the areal radius becomes the maximum on
each constant-v curve at the outer boundary. At the same
time, rðu; vÞ decreases with v for a fixed u. The minimum
of the areal radius on each constant-u curve is that on the
apparent horizon.
With the discussion above, we can draw Fig. 4 as a point-

by-point image of Fig. 1(c) via the coordinate transforma-
tion from ðu; vÞ to ðr; vÞ. It should be clear that we can
approximate rmax and rmin, respectively, as the maximum
and minimum Schwarzschild radii amax ¼ aðu0Þ and
amin ¼ aðu1Þ. Hence, we have the relations

rmax

rmin
≃
amax

amin
;

amin

rmin
≃ 1: ð3:19Þ

We thus conclude from Eqs. (3.17), (3.16), and (3.19)
that

ΔΣ≲O
�
n3l2

p

a2�

�
; ð3:20Þ

where n is defined in Eq. (3.4).
In the definition of Σðu; vÞ [Eq. (3.8)], when we write the

leading solution (3.15) as Cð0Þ, the correction ΔΣ appears

FIG. 4. Schematic diagrams of rðu; vÞ vs v. For discrete values
of u, including u0 and u1, rðu; vÞ is plotted as a function of v
(green curves) for given values of u. These constant-u curves
almost coincide inside the collapsing matter (thick green strip), as
well as in the flat spacetime inside the matter shell (on the left of
the green strip). Outside the collapsing matter, the local minima
of the rðu; vÞ curves at different u [where ∂vrðu; vÞ ¼ 0] are
located on the apparent horizon rðuahðvÞ; vÞ (blue curve). The
near-horizon region is shown as the blue shaded area.
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as C ¼ Cð0ÞeΔΣ ≈ Cð0Þð1þ ΔΣÞ. Therefore, the condition
for C to be dominated by Cð0Þ is

C − Cð0Þ

Cð0Þ ≈ ΔΣ ≪ 1: ð3:21Þ

Thus, Eq. (3.20) means that whenever

n ≪
a2=3

l2=3
p

ð3:22Þ

holds, the zeroth-order result (3.15) is good.

IV. DISTANCE IN THE
NEAR-HORIZON REGION

We define new (Kruskal-like) coordinates (see Fig. 5) as

U≡ T − X ¼ −2amaxe
− u−u�
2amax ∈ ð−2amax; 0Þ; ð4:1Þ

V ≡ T þ X ¼ 2amaxe
− v�−v
2amax ∈ ð0; 2amaxÞ; ð4:2Þ

where the range is deduced from the inequalities (3.5).
The proper length along a spacelike curve C restricted to the
u − v plane4 is

ΔL ¼
Z
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Cðu; vÞdudv

p
≤ C1=2ðu�; v�Þ

r1=2ðu�; v�Þ
r1=2ðu; vÞ

Z
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−e−

u−u�
2amaxe−

v�−v
2amaxdudv

q
≤ C1=2ðu�; v�Þ

r1=2max

r1=2min

Z
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−dUdV

p

≃ C1=2ðu�; v�Þ
a1=2max

a1=2min

Z
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dX2 − dT2

p
≤ C1=2ðu�; v�Þ

a1=2max

a1=2min

Z
C
dX ≤ 2

a3=2max

a1=2min

C1=2ðu�; v�Þ ∼Oðn3=2lpÞ; ð4:3Þ

where we have used Eqs. (3.15), (3.16), and (3.19) and the
definition n≡ amax=amin.
Via a similar calculation, the proper time for a

timelike curve is also at most of the same order of
magnitude.
This result means that any proper distance in the radial

direction inside the near-horizon region is bounded from
above by n3=2lp. In particular, this conclusion applies to
the proper distance between the apparent horizon and the
surface of the collapsing matter, since both are in the near-
horizon region.
At first glance, this result might seem purely classical

because the zeroth-order solution Cðu; vÞ [Eq. (3.15)] has
been obtained from Eq. (3.9), which includes no quantum
correction. However, we have arrived at Eq. (4.3) by using
the inequalities (3.5), which is a consequence of the

negative vacuum energy. Hence, this result actually relies
on the quantum effect.
At the Page time (n ¼ 2), the distance between the

collapsing matter and the apparent horizon is at most lp.
When 99% of the black hole has evaporated, the distance is
at most 100 times the Planck length.5

A peculiar feature of our estimate of the upper bound
ΔL for the proper distance in the near-horizon region is
that ΔL does not depend on both of the initial and final
masses, but only on their ratio.6 As a result, the upper
bound ΔL is the same for black holes that could be
dramatically different in size, as long as they have

FIG. 5. The near-horizon region (the blue shaded region in
Fig. 1) is mapped to a subspace of theU − V plane via Eqs. (4.1)
and (4.2). The distance between any two points in the near-
horizon region is shorter than the distance between their
images in this diamond. Corresponding to U ∈ ð−2amax; 0Þ
and V ∈ ð0; 2amaxÞ, we have X ∈ ð0; 2amaxÞ and T ∈ ð−amax;
amaxÞ. Within this space, the curve with maximal proper distance
is the X axis at T ¼ 0, and the curve with the maximal proper
time is the T axis at X ¼ amax.

4Each point in the u − v plane represents a 2-sphere in 4D. The
curve C is restricted to the radial and temporal directions to define
the distance between two concentric 2-spheres.

5Interestingly, another self-consistent model [14,15], in which
there isnotrappedregion,providesasimilarresult.Collapsingmatter
is justabove theSchwarzschild radiusbyaPlanckiandistance. In this
sense, the conventional model studied in the present paper might
eventually be closely related to such a model.

6It is also independent of other details, such as when the near-
horizon region appears and how long it takes the black hole to
evaporate to 1=n of its initial mass.
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evaporated to the same portion of their initial mass. This is
actually a coincidence in the sense that, if we repeat the
calculation above for a higher spacetime dimension
D > 4, the estimate ΔL would no longer have this
property. Instead, one has [21]

C≃C�e−ðD−3Þðu−u�þv�−vÞ=2a� ; C�∼OðlD−2
p =aD−2� Þ;

ð4:4Þ

so that the upper bound on the distance is now

ΔL ∼ a�C
1=2
� ∼ lðD−2Þ=2

p =aðD−4Þ=2
� : ð4:5Þ

Hence, ΔL’s independence of a� (or M�) is only a
coincidence for 4D black holes.
To summarize, we have shown that, after the collapsing

matter enters the apparent horizon and before the black
hole’s mass is reduced to 1=n of its initial mass, the proper
distance ΔL between the surface of the collapsing matter
and the timelike apparent horizon is bounded from above
by ΔL ≤ n3=2lp. This bound holds for all paths along
which dθ ¼ dϕ ¼ 0 as long as n ≪ a2=3=l2=3

p . This result
is very interesting because it shows that, from the view-
point of a low-energy effective theory below the Planckian
scale, it is strictly speaking indistinguishable whether the
matter has entered the apparent horizon in this regime.
Our result is in agreement with Refs. [9,10], which
investigated the implications of the violation of the null
energy condition in the near-horizon geometry, and
questioned the validity of the low-energy effective theory
in the near-horizon regime. Furthermore, we expect to
derive from this result further implications for the infor-
mation paradox [20].
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APPENDIX: SCHWARZSCHILD
APPROXIMATION

As long as a ≫ lp, the Schwarzschild solution with a
time-independent Schwarzschild radius a should be a good

approximation within a time scale ≲OðaÞ at a place well
outside the Schwarzschild radius where7

r − a≳ Nl2
p

a
ðA1Þ

with a sufficiently large (but finite) N (e.g., N ∼ 10000).
We consider the small neighborhood outside the

apparent horizon8

r − a ∈
�
Nl2

p

2a
;
Nl2

p

a

�
ðA2Þ

and a period of time ½t0; t0 þ Δt�, where Δt ∼OðaÞ.
We demand that N is sufficiently large so that the
Schwarzschild approximation is good, but not too large
(a

2

l2
p
≫ N) so that ðr − aÞ=a ≪ 1. The metric in the

region (A2) can be approximated as the usual
Schwarzschild metric with a constant radius a ¼ aðt0Þ:

ds2 ¼ −
�
1 −

a
rðu; vÞ

�
dudvþ r2ðu; vÞdΩ2; ðA3Þ

where the areal radius rðu; vÞ is related to the tortoise
coordinate r� via

r� ≡ v − u
2

¼ rðu; vÞ þ a log

�
rðu; vÞ

a
− 1

�

≃ aþ a log

�
rðu; vÞ − a

a

�
: ðA4Þ

In the neighborhood (A2), the Schwarzschild metric (A3)
becomes approximately

ds2 ≃ −C0ðu; vÞdudvþ a2dΩ2; where

C0ðu; vÞ≡ a
r
e
v−u−2a

2a : ðA5Þ

In the neighborhood (A2), the metric (A3) means Cðu; vÞ∼
Oðl2

p=a2Þ. Then, Σ0, which is defined by Eq. (3.8), is

Σ0ðu; vÞ ≃
v − u
2a

− 1þ logðaÞ: ðA6Þ

7Strictly speaking, r − a≳ Nl2
p=a is satisfied both outside and

inside the apparent horizon. We refer to the region outside the
Schwarzschild radius here.

8The choice of the domain ðNl2p
2a ; Nl2p

a Þ is arbitrary, as long as it
covers a neighborhood of Eq. (A1) where the Schwarzschild
approximation is good.
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