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In this work, we explore the existence of traversable wormhole solutions supported by double
gravitational layer thin shells and satisfying the null energy condition (NEC) throughout the whole
spacetime, in a quadratic-linear form of the generalized hybrid metric-Palatini gravity. We start by showing
that for a particular quadratic-linear form of the action, the junction conditions on the continuity of the Ricci
scalar R and the Palatini Ricci scalarR of the theory can be discarded without the appearance of undefined
distribution terms in the field equations. As a consequence, a double gravitational layer thin shell arises at
the separation hypersurface. We then outline a general method to find traversable wormhole solutions
satisfying the NEC at the throat and provide an example. Finally, we use the previously derived junction
conditions to match the interior wormhole solution to an exterior vacuum and asymptotic flat solution, thus
obtaining a full traversable wormhole solution supported by a double gravitational layer thin shell and
satisfying the NEC. Unlike the wormhole solutions previously obtained in the scalar-tensor representation
of this theory, which were scarce and required fine-tuning, the solutions obtained through this method are
numerous and exist for a wide variety of metrics and actions.
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I. INTRODUCTION

Wormholes are topological objects connecting two
spacetime manifolds. Within general relativity (GR), exact
solutions describing these objects were found connecting
two different asymptotic flat spacetimes [1–4] or two
different asymptotically de Sitter (dS) or anti–de Sitter
(AdS) regions [5]. An essential feature of a wormhole
spacetime is a throat satisfying the so-called flaring-out
condition. In the context of GR, this feature implies the
violation of the null energy condition (NEC), which states
that Tabkakb ≥ 0, where Tab is the matter stress-energy
tensor and ka is an arbitrary null vector. When such a
violation happens, matter is denoted as exotic matter.
In the context of modified theories of gravity, wormhole

solutions have also been obtained [6–16]; see also [17] for a
review. It has been shown that in this context nonexotic
matter can sustain the wormhole throat open, and it is the
higher-order curvature terms, which may be interpreted as a
gravitational fluid, that support these nonstandardwormhole
geometries. More precisely, it was shown explicitly that in
fðRÞ gravity wormhole throats can be constructed without
recurring to exotic matter [18], as well as nonminimal
couplings [19,20], and more generic modified theories of
gravity with extra fundamental fields [21]. The same kind
of solutions were also found in Einstein-Gauss-Bonnet
gravity [22–24], Brans-Dicke gravity [25], brane-world

scenarios [26], and the recently proposed hybrid metric-
Palatini gravity [27].
Indeed, a promising approach to modified gravity con-

sists in having a hybrid metric-Palatini gravitational theory
[28], which consists of adding to the Einstein-Hilbert action
R a new term fðRÞ, where R is a curvature scalar defined
in terms of an independent connection and f is an arbitrary
function of R. In this approach, the metric and affine
connection are regarded as independent degrees of free-
dom. In this theory, besides wormhole solutions, solar
system tests and cosmological solutions have been ana-
lyzed [29–34]; see also [35] for a review. The generalized
hybrid metric-Palatini gravity arises as a natural generali-
zation of the Rþ fðRÞ theory and consists of considering
an action fðR;RÞ dependent on a general function of both
the metric and Palatini curvature scalars [36]. This class of
theories have been shown to provide viable cosmological
models [37–39], to reproduce the cosmological metasta-
bility of astrophysical black holes [40], the weak-field
regime of the theory was also explored [41,42], as well as
solutions for thick branes with internal structure [43] and
cosmic-string-like objects [44].
In the vast majority of the wormhole literature refer-

enced, although the higher-order curvature terms can be
used to force the NEC to be satisfied at the throat of the
wormhole, the same condition is violated elsewhere, and
thus not the entire spacetime is free of exotic matter.
A remarkable exception is the case of the generalized
hybrid metric-Palatini gravity where it has been shown that*joaoluis92@gmail.com

PHYSICAL REVIEW D 104, 064002 (2021)

2470-0010=2021=104(6)=064002(11) 064002-1 © 2021 American Physical Society

https://orcid.org/0000-0003-4148-7372
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.064002&domain=pdf&date_stamp=2021-09-02
https://doi.org/10.1103/PhysRevD.104.064002
https://doi.org/10.1103/PhysRevD.104.064002
https://doi.org/10.1103/PhysRevD.104.064002
https://doi.org/10.1103/PhysRevD.104.064002


traversable wormhole solutions satisfying the NEC for the
whole spacetime can be obtained [45]. These solutions are
supported by a thin shell and matched to an exterior
asymptotically AdS via the use of the theory’s junction
conditions. However, these solutions carry an important
drawback: fine-tuning is required for the solution to satisfy
both the NEC and the system of junction conditions, due to
the complexity of the latter.
The junction conditions in GR [46–50] imply, for a

smooth matching between two spacetimes, that the induced
metric and the extrinsic curvature must be continuous
across the separation hypersurface. These conditions have
been used to derive new solutions for the Einstein field
equations, such as constant density stars with an exterior
Schwarzschild, the Oppenheimer-Snyder stellar collapse
[51], and the matching between Friedmann-Lemaître-
Robertson-Walker spacetimes with Vaidya, and, conse-
quently, Schwarzschild, exteriors [52]. The matching
between two spacetimes can still be done if the extrinsic
curvature is discontinuous across the separation hypersur-
face but implies the existence of a thin shell at the junction
radius [48,53,54]. Thermodynamic properties of these
shells were introduced [55] and the respective entropy
was explored in a wide variety of situations, e.g., as rotating
shells [56,57] and electrically charged shells [58,59].
Collisions of spacetimes with two shells have also been
studied with numerical methods [60], as well as stable
generalizations of the Schwarzschild stiff fluid star with
compactness arbitrarily close to that of a black hole [61].
In the context of modified theories of gravity, each

theory will present its own set of junction conditions, which
must be derived from the respective field equations and the
equations of motion of the extra fields, if any. In particular,
the junction conditions have been deduced for fðRÞ
theories of gravity with [62] and without torsion [63,64],
extensions of the fðR; Þ theory, e.g., the fðR; TÞ gravity
[65], scalar-tensor theories [66,67], and also Gauss-Bonnet
gravity [68].
Similarly to what happens in fðRÞ gravity and fðR; TÞ

gravity, in the generalized hybrid metric-Palatini gravity the
system of junction conditions can be simplified for par-
ticular forms of the function f [63,65]. As a consequence,
new structures called gravitational double layers appear at
the matching hypersurface [69,70]. The objective of this
paper is to consider a particular form of the function
fðR;RÞ for which the system of junction conditions
simplifies and obtain solutions for traversable wormholes
supported by double-layer thin shells that not only satisfy
the NEC for the whole spacetime but also drop the
requirement for fine-tuning.
This paper is organized as follows: in Sec. II we

introduce the quadratic form of the generalized hybrid
metric-Palatini gravity theory and derive its junction con-
ditions, in Sec. III we derive solutions for traversable
wormholes satisfying the NEC at the throat in this theory, in

Sec. IV we perform a matching of the wormhole solution
with an exterior vacuum solution with the help of a double-
layer thin shell at the separation hypersurface, and finally in
Sec. V we draw our conclusions.

II. THE GENERALIZED HYBRID
METRIC-PALATINI GRAVITY

A. Action and field equations

The generalized hybrid metric-Palatini gravity is
described by an action of the form

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p
fðR;RÞd4xþ

Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x; ð1Þ

where κ2 ≡ 8πG=c4, where G is the gravitational constant
and c is the speed of light, Ω is the spacetime manifold on
which we define a set of coordinates xa, g is the determinant
of the metric gab, fðR;RÞ is an arbitrary function of the
Ricci scalar R ¼ gabRab, where Rab is the Ricci tensor, and
the Palatini scalar curvatureR ¼ gabRab, whereRab is the
Palatini Ricci scalar written in terms of an independent
connection Γ̂c

ab as

Rab ¼ ∂cΓ̂c
ab − ∂bΓ̂c

ac þ Γ̂c
cdΓ̂d

ab − Γ̂c
adΓ̂d

cb ð2Þ

and Lm is the matter Lagrangian considered minimally
coupled to the metric gab. In the following, we shall
consider a geometrized system of units in such a way that
G ¼ c ¼ 1 and the constant κ2 reduces to κ2 ¼ 8π.
Equation (2) depends on two independent variables,
namely the metric gab and the independent connection
Γ̂c
ab, and thus one can derive two equations of motion.
Varying Eq. (2) with respect to the metric gab yields the

modified field equations

∂f
∂RRab þ

∂f
∂RRab −

1

2
gabfðR;RÞ

− ð∇a∇b − gab□Þ ∂f∂R ¼ 8πTab; ð3Þ

where ∇a is the covariant derivative and □ ¼ ∇a∇a the
d’Alembert operator, both written in terms of the Levi-
Civita connection Γc

ab of the metric gab, and Tab is the
stress-energy tensor defined in the usual manner as

Tab ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δðgabÞ : ð4Þ

Let us now analyze the variation of Eq. (2) with respect
to the independent connection Γ̂c

ab, which provides the
relation

∇̂c

� ffiffiffiffiffiffi
−g

p ∂f
∂R gab

�
¼ 0; ð5Þ
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where ∇̂a is the covariant derivative written in terms of the
independent connection Γ̂c

ab. Noting that
ffiffiffiffiffiffi−gp

is a scalar

density of weight 1, and thus ∇̂a
ffiffiffiffiffiffi−gp ¼ 0, Eq. (5) implies

the existence of another metric tensor hab ¼ ð∂f=∂RÞgab
conformally related to the metric gab with conformal factor
∂f=∂R, for which the independent connection Γ̂c

ab is the
Levi-Civita connection, i.e.,

Γ̂a
bc ¼

1

2
hadð∂bhdc þ ∂chbd − ∂dhbcÞ; ð6Þ

where ∂a denotes partial derivatives. This conformal
relation between gab and hab implies that the two Ricci
tensors Rab and Rab, assumed a priori as independent, are
actually related to each other via the expression

Rab ¼ Rab −
1

fR

�
∇a∇b þ

1

2
gab□

�
fR

þ 3

2f2R
∂afR∂bfR; ð7Þ

where the subscripts R and R denote derivatives with
respect to the same variables. Equations (5) and (7) are
equivalent, and thus we shall consider only the latter for
simplicity.

B. Junction conditions

1. Notation and assumptions

Let Σ be a hypersurface that separates the spacetime V
into two regions, Vþ and V−. Let us consider that the metric
gþab, expressed in coordinates x

aþ, is the metric in region Vþ

and the metric g−ab, expressed in coordinates xa−, is the
metric in region V−, where the Latin indices run from 0 to
3. Let us assume that a set of coordinates yα can be defined
in both sides of Σ, where Greek indices run from 0 to 2. The
projection vectors from the four-dimensional regions V� to
the three-dimensional hypersurface Σ are eaα ¼ ∂xa=∂yα.
We define na to be the unit normal vector on Σ pointing in
the direction from V− to Vþ. Let l denote the proper
distance or time along the geodesics perpendicular to Σ and
choose l to be zero at Σ, negative in the region V−, and
positive in the region Vþ. The displacement from Σ along
the geodesics parametrized by l is dxa ¼ nadl, and
na ¼ ϵ∂al, where ϵ is either 1 or −1 when na is a spacelike
or timelike vector, respectively, i.e., nana ¼ ϵ.
We will be working using distribution functions. For any

quantity X, we define X ¼ XþΘðlÞ þ X−Θð−lÞ, where the
indices � indicate that the quantity X� is the value of the
quantity X in the region V� and ΘðlÞ is the Heaviside
distribution function, with δðlÞ ¼ ∂lΘðlÞ the Dirac distri-
bution function. We also denote ½X� ¼ XþjΣ − X−jΣ as the
jump of X across Σ, which implies by definition that
½na� ¼ ½eaα� ¼ 0.

2. Constraints on the form of f ðR;RÞ
To match the interior spacetime V− to the exterior

spacetime Vþ, we need to use the junction conditions of
the generalized hybrid metric-Palatini gravity. These con-
ditions were derived for a general form of the function
fðR;RÞ and already used to obtain wormhole solutions in
Ref. [45]. Defining the induced metric at Σ as hαβ ¼
eaαebβgab and the extrinsic curvature Kαβ ¼ eaαebβ∇anb, the
junction conditions for a matching between the two space-
times with a thin shell of perfect fluid at the separation
hypersurface Σ can be generically written in the form

½hαβ� ¼ 0; ð8Þ

½K� ¼ 0; ð9Þ

½R� ¼ 0; ð10Þ

½R� ¼ 0; ð11Þ

fRRna½∂aR� þ fRRna½∂aR� ¼ 0; ð12Þ

ϵδβαnc½∂cR�
�
fRR−

f2RR
fRR

�
− ðfRþfRÞϵ½Kβ

α� ¼ 8πSβα; ð13Þ

where K ¼ Kα
α is the trace of the extrinsic curvature and S

β
α

is the stress-energy tensor of the thin shell arising at the
separation hypersurface Σ. The conditions in Eqs. (10) and
(11) are imposed to avoid the presence of productsΘðlÞδðlÞ
in the field equations in Eq. (3), which are undefined in the
distribution formalism. In the following, we pursue an
alternative way of avoiding these problematic products by
constraining the function fðR;RÞ instead.
Let us start by defining properly the metric gab through-

out the spacetime using the distribution formalism. The
metric gab takes the form

gab ¼ gabþΘðlÞ þ gab−Θð−lÞ: ð14Þ

The Ricci tensor Rab and the Ricci scalar R associated with
this metric in the distribution formalism, upon imposition
of Eqs. (8) and (9), become

Rab ¼ Rþ
abΘðlÞ þ R−

abΘð−lÞ − ϵ½Kab�δðlÞ; ð15Þ

R ¼ RþΘðlÞ þ R−Θð−lÞ; ð16Þ

respectively, where we have used Eq. (9). Taking the first-
order partial derivatives of the Ricci scalar ∂aR leads to
∂aR ¼ ∂aRþΘðlÞ þ ∂aR−Θð−lÞ þ ϵ½R�naδðlÞ and a simi-
lar expression for the partial derivatives of R. In the
definition of the Palatini Ricci scalar in Eq. (7) it is evident
that, due to the existence of terms ∂afR∂bfR, there will be
terms depending on products of the form ∂aR∂bR and
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∂aR∂bR. These products will lead to terms proportional to
ΘðlÞδðlÞ, which are undefined in the distribution formal-
ism, or δðlÞ2, which are singular. Thus, for the Palatini Ricci
tensor to be properly defined in the distribution formalism,
it is thus necessary to eliminate these terms from Eq. (7).
For a general form of the function fðR;RÞ, the presence of
these terms is avoided by imposing Eqs. (10) and (11) as
junction conditions, thus canceling all proportionality in
δðlÞ and solving the problem. However, an alternative
solution for this problem is to impose that fR is a constant;
i.e., the function fðR;RÞ is linear in R. Consequently,
∂afR ¼ 0 and these products are effectively removed from
Eq. (7). The function fðR;RÞ thus becomes

fðR;RÞ ¼ gðRÞ þ γR; ð17Þ

where gðRÞ is a well-behaved function of the Ricci scalar R
and γ is a constant. On the other hand, due to the existence
of differential terms of the form ∇a∇bfR and □fR in the
field equations in Eq. (3), the same products of the form
∂aR∂bRwill also arise from these terms, thus leading to the
same problems related to undefined ΘðlÞδðlÞ or singular
δðlÞ2 terms. Again, one can avoid the presence of these
terms without imposing Eqs. (10) and (11) by considering
instead that fRR is constant; i.e., the function fðR;RÞ is
quadratic in R. Consequently, ∇a∇bfR ¼ fRR∇a∇bR, and
thus the problematic products are effectively removed from
the field equations. The function fðR;RÞ can be written
in the form

fðR;RÞ ¼ R − 2Λþ αR2 þ γR; ð18Þ

where the parameters Λ and α are constants. Inserting
this form of the function fðR;RÞ into Eq. (7), all the
differential terms in fR cancel, we obtain Rab ¼ Rab, and
consequently we have R¼R. Furthermore, we have
fR¼1þ2αR, which implies that ∂afR ¼ 2α∂aR and
∇a∇bfR ¼ 2α∇a∇bR. Under these considerations, the
modified field equations given in Eq. (3) simplify to

Rabð1þ γ þ 2αRÞ − 2αð∇a∇b − gab□ÞR

−
1

2
gab½Rð1þ γ þ αRÞ − 2Λ� ¼ 8πTab: ð19Þ

Notice also that for the particular form of fðR;RÞ in
Eq. (18), since fR ¼ γ is a constant, then the partial
derivatives fRR and fRR also vanish and the junction
condition in Eq. (12) is automatically satisfied.
Let us point a few considerations about the parameters α,

γ and Λ. As we stand in a particular case where R ¼ R, the
coefficient of R in the function f is effectively 1þ γ. As we
want to preserve the positivity of the Einstein-Hilbert term
in the action, this imposes that γ > −1. Also, although there
are no constraints on the sign of the quadratic term, it has
been shown that a positive α provides fruitful results in

cosmology, more specifically in models for inflation [71].
One such case is the Starobinski model α ¼ 1=m2, wherem
is a constant with units of mass. We will thus focus on
models with α > 0. Finally, as it is defined, Λ plays the role
of a cosmological constant and it controls the asymptotics
of the solution, which will be de Sitter (if Λ > 0),
anti–de Sitter (if Λ < 0), or Minkowski (if Λ ¼ 0).
Since for this particular form of the function fðR;RÞ in

Eq. (18) the Ricci scalar R and the Palatini Ricci scalar R
coincide, because the conformal factor fR ¼ γ is a con-
stant, one should clarify the role of the Palatini term in the
analysis and emphasize what are the differences between
this situation and a purely fðRÞ model. Notice that if one
replaces R by R in Eq. (18) to obtain a function fðR;RÞ
that depends solely in R, the conformal factor fR vanishes
and the two metrics gab and hab coincide. In our situation,
even though R and R are forced to be the same by Eq. (7),
the explicit dependence of fðR;RÞ inR guarantees that the
conformal factor fR ¼ γ is nonzero and the metrics gab and
hab differ. Furthermore, one could argue that a redefinition
of the parameters of the form ᾱ ¼ α=ð1þ γÞ and Λ̄ ¼
Λ=ð1þ γÞ and a factorization of (1þ γ) from the action
would lead to an fðR;RÞ ¼ fðRÞ function that produces
the same field equations as Eq. (18). While this is true if the
matter Lagrangian Lm vanishes, the same does not hold if
Tab ≠ 0, as it would also require a redefinition of the stress-
energy tensor as T̄ab ¼ Tab=ð1þ γÞ, and the distribution of
matter would only be the same if γ ¼ 0. Thus, the Palatini
term in Eq. (18) effectively controls the influence of the
matter distribution in gravity: as one increases the value of
γ, less matter is needed to produce the same gravitational
effects.
Finally, we note that the generalized hybrid metric-

Palatini gravity can often be written in terms of a dynami-
cally equivalent scalar-tensor representation, which can be
deduced through the definition of auxiliary fields in the
action in Eq. (2). However, the particular form of the
function fðR;RÞ deduced in Eq. (18) does not have an
equivalent scalar-tensor representation; see the Appendix
for more details. Thus, it is sufficient to pursue this analysis
in the geometrical representation of the theory.

3. Double-layer thin shells

In the previous section, we have deduced a particular
form of the function fðR;RÞ that simplifies the set of
junction conditions. This quadratic form of the function
fðR;RÞ is provided in Eq. (18). Let us now analyze the
consequences of considering this form of the function.
The Ricci tensor and Ricci scalar have the forms

provided in Eqs. (15) and (16), respectively. Let us now
analyze the second-order derivative terms of the Ricci
scalar R in the field equations in Eq. (19), i.e., the terms
∇a∇bR and □R. To do so, let us take a double covariant
derivative of R which becomes
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∇a∇bR ¼ ð∇2RÞab þ ϵ∇að½R�δðlÞnbÞ; ð20Þ

ð∇2RÞab ¼ ∇a∇bRþΘðlÞ þ∇a∇bR−Θð−lÞ
þ ϵδðlÞna½∂bR�: ð21Þ

These results imply that the junction conditions ½R� ¼ 0
and ½R� ¼ 0 can be discarded in the particular case of
Eq. (18) but, as a consequence, extra terms will arise in the
stress-energy tensor Sab of the thin shell.
The second term in the right-hand side of Eq. (20) is also

familiar from the fðRÞ gravity case. Following [63], we
verify that this term can be rewritten in the form

∇að½R�δðlÞnbÞ ¼ δðlÞðKab − ϵKnanb þ nbhca∇cÞ½R�
þ Δab; ð22Þ

where Δab is a new distribution function defined by

Z
Ω
ΔabYabd4x ¼ −ϵ

Z
Σ
½R�nanbnc∇cYabd3x; ð23Þ

for some test function Yab. Inserting this result into Eq. (20)
and using Eq. (21) we obtain

∇a∇bR ¼ ∇a∇bRþΘðlÞ þ∇a∇bR−Θð−lÞ þ ϵΔab

þ ϵδðlÞ½ϵnanbnc½∇cR� þ 2nðahcbÞ∇c½R�
þ ½R�ðKab − ϵKnanbÞ�: ð24Þ

Consequently, contracting with gab, we obtain

□R¼□RþΘðlÞþ□R−Θð−lÞþ ϵΔþ ϵδðlÞnc½∇cR�; ð25Þ

where we defined Δ ¼ Δa
a and we have used nana ¼ ϵ,

ϵ2 ¼ 1, and nahca ¼ 0. Inserting the results in Eqs. (24) and
(25) into the field equations given in Eq. (19), considering
the distribution of Rab given by Eq. (15), and keeping only
the singular terms, we verify that the stress-energy tensor
becomes in this case

Tab ¼ Tþ
abΘðlÞ þ T−

abΘð−lÞ
þ δðlÞðSab þ SðanbÞ þ SnanbÞ þ sabðlÞ; ð26Þ

where Sab is the usual stress-energy tensor of the thin shell,
Sa is the external flux momentum whose normal compo-
nent measures the normal energy flux across Σ and the
spatial components measure the tangential stresses, S
measures the external normal pressure or tension supported
on Σ, and sab is the double-layer stress-energy tensor
distribution. These variables are given in terms of the
geometrical quantities as

8πSab ¼ −ϵ½Kab�ð1þ γÞ
þ 2ϵαðhabnc½∇cR� − RΣ½Kab� − KΣ

ab½R�Þ; ð27Þ

8πSa ¼ −2ϵαhca∇c½R�; ð28Þ

8πS ¼ 2ϵαK½R�; ð29Þ

8πsabðlÞ ¼ 2ϵαΩabðlÞ: ð30Þ

Here, RΣ and KΣ
ab are the Ricci scalar and the extrinsic

curvature of the hypersurface where the thin shell lives. As
these two variables are, in general, discontinuous, one
defines RΣ ¼ ðRþ þ R−Þ=2 and KΣ

ab ¼ ðKþ
ab þ K−

abÞ=2,
following Ref. [69]. In Eq. (30), ΩabðlÞ≡ gΣabΔ − Δab
and the double-layer stress-energy distribution becomesZ

Ω
8πsabYabd4x ¼ −

Z
Σ
2ϵα½R�habnc∇cYabd3x: ð31Þ

As expected, every extra term that arises in this formal-
ism has a dependence on [R], and the usual results for the
general case can be recovered by setting ½R� ¼ 0. These
gravitational double layers have been studied in the scope
of fðRÞ gravity for the particular case of timelike hyper-
surfaces [69] and our results can be matched to the ones
obtained in fðRÞ by setting γ ¼ 1 and ϵ ¼ 1.
As for the double-layer stress-energy tensor distribution

sab in Eq. (31), it has been noted to have resemblances
to classical dipole distributions, with a dipole strength
8πPab ¼ 2α½R�hab [70], here arising mainly due to the
existence of a nonzero jump in the curvature. In GR, thin
shell spacetimes with ½R� ≠ 0 are also acceptable, but
Eqs. (28)–(30) do not manifest, since α ¼ 0 for GR. The
dipole distribution term in Eq. (30) is a novelty and so far
unique to the quadratic term of fðRÞ extensions of gravity.
However, there is still no physical interpretation for why a
dipole distribution should arise in gravity. In spite of
this, Eq. (30) is still a crucial piece in assuring that the
stress-energy tensor distribution is divergence free, i.e.,
∇aTab ¼ 0 [63].

III. WORMHOLE ANSATZ AND SOLUTIONS

A. General considerations on wormhole spacetimes

The general metric that describes a static and spherically
symmetric wormhole spacetime in the usual spherical
coordinates ðt; r; θ;ϕÞ is given by the line element

ds2 ¼ −eζðrÞdt2 þ
�
1 −

bðrÞ
r

�
−1
dr2 þ r2dΩ2; ð32Þ

where ζðrÞ is the redshift function, bðrÞ is the shape
function, and dΩ2 ¼ dθ2 þ sin2 θdϕ2 is the solid angle
surface element. These two metric functions are not
arbitrary. In this work, we are interested in traversable
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wormhole solutions. For a wormhole spacetime to be
traversable, its metric functions must fulfill two conditions.
First, the wormhole spacetime must not present any
horizons, so as to allow a traveler to move arbitrarily close
to the wormhole throat at r ¼ r0 without being prevented to
escape the interior region. To fulfill this requirement, the
redshift function should be finite throughout the whole
spacetime, i.e., jζðrÞj < ∞. The second condition is a
fundamental geometric condition in wormhole physics at
the wormhole throat that guarantees its traversability. The
so-called flaring-out condition is translated into two boun-
dary conditions for the shape function given by

bðr0Þ ¼ r0; b0ðr0Þ < 1: ð33Þ

Two broad families of redshift and shape functions that
satisfy the requirements for wormhole traversability are

ζðrÞ ¼ ζ0

�
r0
r

�
p

ð34Þ

and

bðrÞ ¼ r0

�
r0
r

�
q
; ð35Þ

where ζ0 is a dimensionless constant, r0 is the radius of the
wormhole throat, and p and q are constant exponents.
Let us now turn to the matter sector. We assume that

matter is described by an anisotropic perfect fluid; i.e., the
stress-energy tensor can be written as

Tb
a ¼ diagð−ρ; pr; pt; ptÞ; ð36Þ

where ρ ¼ ρðrÞ is the energy density, pr ¼ prðrÞ is the
radial pressure, and pt ¼ ptðrÞ is the transverse pressure,
all assumed to depend only in the radial coordinate as to
preserve the spherical symmetry and staticity of the
spacetime. Furthermore, we are interested in matter that
satisfies the NEC. For the NEC to be satisfied, ρ, pr and pt
must satisfy the following inequalities:

ρþ pr > 0; ρþ pt > 0: ð37Þ

Within general relativity, the flaring-out condition
[Eq. (33)] and the NEC [Eq. (37)] are incompatible.
Indeed, Eq. (33) is effectively a condition on the
Einstein tensor Gab, which is directly related to the
stress-energy tensor Tab via the Einstein field equations
Gab ¼ 8πTab, resulting in a condition for the latter as
Tabkakb < 0, for any null vector ka, which is equivalent to
a violation of Eq. (37) in the particular case of an
anisotropic perfect fluid. In modified gravity, the modified
field equations can be rewritten in the form Gab ¼ 8πTeff

ab ,
where Teff

ab is the effective stress-energy tensor that includes

not only the matter Tab but also the higher-order curvature
terms from Eq. (19). In this context, it is the effective stress-
energy tensor that must fulfill the condition Teff

abk
akb < 0,

and thus it is possible, in principle, that Eq. (37) is verified
as long as the extra higher-order curvature terms compen-
sate the positive matter contributions.

B. Wormhole solutions satisfying the NEC
at the throat

The general strategy to obtain wormhole solutions is as
follows. We take the field equations given in Eq. (19), we
select a metric of the form provided in Eq. (32) with redshift
and shape functions defined as in Eqs. (34) and (35),
respectively, and we use the stress-energy tensor of an
anisotropic perfect fluid as shown in Eq. (36). Given the
spherical symmetry of the problem, there will be three
independent field equations, which we do not write explic-
itly due to their lengthy character. These three equations are
then solved to the three independent unknowns, ρ,pr andpt.
Having obtained the solutions for the matter fields, one
computes the left-hand side of the NEC in Eq. (37) and
verifies if this condition is satisfied at the throat r ¼ r0.
Different wormhole models can be tested by varying the
exponents p and q and constants r0 and ζ0, as well as
different actions by varying the parameters α, γ and Λ.
As an example, let us consider a model with redshift and

shape functions inversely proportional to the radius r, i.e.,
p ¼ q ¼ 1, let us consider that Λ ¼ 0 to preserve asymp-
totic flatness, and let us consider the throat to be at the
Schwarzschild radius r0 ¼ 2M. Following the procedure
outlined in the previous paragraph, one verifies that there
are many different combinations of the parameters α, γ, and
ζ0 for which the NEC is satisfied at the throat. In Fig. 1, we
plot one such solution. One verifies that the NEC given in
Eq. (37) is satisfied at the throat of the wormhole r ¼ r0,
but it is eventually violated at larger values of r. For this
solution to satisfy the NEC throughout the whole space-
time, one needs to perform a matching with an exterior

FIG. 1. Plot of ρþ pr (solid red line) and ρþ pt (dashed blue
line) for α ¼ 0.15=M2, γ ¼ 10, Λ ¼ 0, ζ0 ¼ −60, and r0 ¼ 2M,
where M is a constant with units of mass. The NEC given in
Eq. (37) is satisfied at the throat r ¼ r0 but violated elsewhere.
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vacuum solution in the region where the NEC is still
satisfied. We now turn to this.

IV. MATCHING WITH AN EXTERIOR
VACUUM SOLUTION

A. Selecting an exterior solution

In this section, we want to select an exterior solution to
be matched with an interior wormhole solution derived
within the framework outlined in Sec. III B. As we want the
exterior solution to satisfy the NEC, the simplest way of
doing so is to consider a vacuum exterior solution, i.e., with
Tab ¼ 0. For simplicity, we also want to preserve asymp-
totic flatness, and thus we impose Λ ¼ 0. Inserting these
assumptions into Eq. (19), one verifies that any solution in
GR with Rab ¼ 0 (and consequently R ¼ 0) will also be a
solution of the modified field equations. As the solutions
computed for wormhole interiors in Sec. III B are spheri-
cally symmetric, we shall take the exterior vacuum solution
to be a Schwarzschild spacetime; i.e., the line element in
standard spherical coordinates is

ds2 ¼ −
�
1 −

2M
r

�
eζedt2 þ

�
1 −

2M
r

�
−1
dr2

þ r2dΩ2; ð38Þ

where M is a constant that represents the mass of the
interior object and ζe is a constant introduced for later
convenience. This constant ζe guarantees that the time
coordinate of both the interior wormhole and the exterior
vacuum solutions is the same upon matching.

B. Matching the wormhole interior
to the vacuum exterior

Let us now apply the junction conditions derived in
Sec. II B to match the interior wormhole solution described
by the line element in Eq. (32) with redshift and shape
functions given by Eqs. (34) and (35), respectively, to the
exterior vacuum solution described by the line element
in Eq. (38).
The first junction condition, i.e., Eq. (8), is used to set a

value for the constant ζe. As this condition imposes the
continuity of the metric gab across the hypersurface Σ,
using Eqs. (32) and (38) we obtain a relationship between
ζe and ζ0 as

eζ0ð
r0
rΣ
Þp ¼

�
1 −

2M
rΣ

�
eζe ; ð39Þ

where rΣ is the radius at which the matching between the
two metrics is performed, which will be set by the second
junction condition.
Let us now turn to the second junction condition, i.e.,

Eq. (9). This junction condition consists of a constraint to
the radius rΣ at which the matching must be done. For the

two metrics in Eqs. (32) and (38), the junction condition
½K� ¼ 0 takes the form

2rΣ−3M

r2Σ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

rΣ

q ¼ 1

2rΣ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
r0
rΣ

�
qþ1

s �
4−pζ0

�
r0
rΣ

�
p
�
: ð40Þ

For each particular combination of parameters p, q, and ζ0,
Eq. (39) must be solved for rΣ and the matching between
the two metrics must be performed at r ¼ rΣ. One can now
insert the value of rΣ into Eq. (39) and, for each combi-
nation of parameters, obtain the corresponding value of ζe.
In this work, we are interested in isotropic perfect-fluid

thin shells. In the perfect-fluid situation, the surface energy
density σ and the tangential pressure p of the thin shell can
be obtained from the stress-energy tensor Sβα ¼ Saceaαecγhβγ

which takes the diagonal form

Sβα ¼ diagðσ; ps; psÞ: ð41Þ

Using Eq. (27), the surface energy density σ and the
transverse pressure ps of the thin shell are thus given by

σ ¼ ϵ

8π
½½K0

0�ð1þ γ þ 2αRΣÞ þ 2αðK0ðΣÞ
0 ½R� − nc½∇cR�Þ�;

ð42Þ

ps ¼
ϵ

8π

�
1

2
½K0

0�ð1þ γþ2αRΣÞþαðK0ðΣÞ
0 ½R�þ2nc½∇cR�Þ

�
;

ð43Þ

wherewe haveused the fact that, since ½K� ¼ 0 holds, then in
spherically symmetric spacetimes and spherical coordinates
we have ½K0

0� ¼ −2½Kθ
θ� ¼ −2½Kϕ

ϕ�. Finally, using Eqs. (42)
and (43), one computes the relationship σ þ p. For the NEC
to be satisfied at the thin shell, it is required that σ þ p > 0.
We have now all the necessary tools to perform thematching
and obtain the full wormhole solution.
As an example, let us take the solution previously

obtained in Sec. III B and plotted in Fig. 1. Using
Eq. (40) with p ¼ 1, q ¼ 1, and ζ0 ¼ −60 we obtain
rΣ ¼ 2.02346M. Then, inserting this result into Eq. (39),
we obtain ζe ¼ −54.847. Finally, using Eqs. (42) and (43)
we obtain 8πðσ þ pÞ ¼ 0.996129=M. This solution fea-
tures combinations ρþ pr and ρþ pt positive in the whole
range of r between r0 and rΣ, a vanishing Tab for r > rΣ,
and also σ þ p > 0 at the shell, and thus it consists of a
solution that satisfies the NEC throughout the whole
spacetime. Following the same methodology, a wide variety
of other solutions satisfying these requirements can be
obtained with different combinations of parameters.
Regarding the extra terms on the stress-energy tensor

arising from ½R� ≠ 0, i.e., Sa, S and sab, since [R] is a
function of r only due to the spherical symmetry of the
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problem, then the only nonzero component of ∇c½R� is the
radial component. As the induced metric projects tensors
into a hypersurface of constant radius, the contraction
hca∇c½R� in Eq. (28) vanishes and one obtains Sa ¼ 0. On
the other hand, the scalar S can be computed directly from
Eq. (29), from which one obtains 8πS ¼ 1.5145=M. The
double-layer distribution sabðlÞ is defined as in Eq. (30) and
requires some test function to be computed explicitly. In
particular, since we are interested in spacetimes that satisfy
the NEC, and thus we have to verify that Tabkakb ≥ 0 for
some null vector ka, a particularly interesting test function
Yab to study in Eq. (31) is Yab ¼ kakb. Given that the
spacetime is spherically symmetric and that Σ is a hyper-
surface of constant radius, one can always find a coordinate
transformation in such a way that the metric on Σ reduces to
a Minkowski spacetime. Considering thus a general null
vector of the form ka ¼ ð−1; a; b=r; c=ðr sin θÞÞ, where
the constants a, b, and c satisfy the relationship
a2 þ b2 þ c2 ¼ 1, one verifies that the factor nc∇cðkakbÞ
vanishes for any a, b and c, and thus the integral on the rhs
of Eq. (31) vanishes and the double gravitational layer does
not contribute to the NEC.

V. CONCLUSIONS

In this work, we have derived asymptotically flat
traversable wormhole solutions satisfying the NEC
throughout the whole spacetime in a quadratic form of
the generalized hybrid metric-Palatini gravity in the geo-
metrical representation. The wormhole solutions consist of
an interior wormhole solution with a nonexotic perfect fluid
near the throat, an exterior Schwarzschild solution, and a
double gravitational layer thin shell at the separation
hypersurface between the interior and exterior solution.
We have shown that the general set of junction con-

ditions previously derived in [45] can be simplified for
particular forms of the function fðR;RÞ. More precisely, if
one selects a function f that is quadratic in R and linear in
R, the junction conditions ½R� ¼ 0 and ½R� cease to be
mandatory. As a consequence, extra terms arise in the
stress-energy tensor Sab of the thin shell, thus giving rise to
a double-layer thin-shell distribution at the junction
hypersurface.
Unlike in the previously published general case for

which the derivation of traversable wormhole spacetimes
satisfying the NEC required fine-tuning [45], in this
situation the simplified set of junction conditions implies
fewer restrictions on the solutions, and thus the method
outlined in this work allows one to easily obtain numerous
solutions and for a wide variety of parameters. A particu-
larly interesting advantage is that asymptotic flatness can be
preserved in this situation, unlike the general case where the
validity of the NEC could only be guaranteed for asymp-
totically AdS spacetimes.
Although there is still no clear physical interpretation for

the double-layer stress-energy tensor distribution, in this

work we have explicitly computed the integral of this
distribution over the entire spacetime for a particular test
function given by Yab ¼ kakb, where ka is a null vector.
This choice of the test function was motivated by the NEC
Tabkakb ≥ 0, since the double-layer stress-energy tensor
distribution appears naturally as an extra term in the stress-
energy tensor Tab. Given that the hypersurface Σ is a
hypersurface of constant radius, we have obtained that this
integral vanishes and thus the double-layer stress-energy
tensor does not contribute to the NEC. This result seems to
apply to any static and spherically symmetric spacetime.
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Lemos for the discussion and suggestions. J. L. R. was
supported by the European Regional Development Fund
and the program Mobilitas Pluss (MOBJD647).

APPENDIX: QUADRATIC GENERALIZED
HYBRID METRIC-PALATINI GRAVITY IN
THE SCALAR-TENSOR REPRESENTATION

The generalized hybrid metric-Palatini gravity, similarly
to the fðRÞ theories of gravity, can be rewritten in terms of a
dynamically equivalent scalar-tensor theory via the defi-
nition of auxiliary scalar fields. This scalar-tensor repre-
sentation of the theory was used e.g., in the context of
cosmological solutions [37] and traversable wormholes
[45]. Thus, the particular case of quadratic gravity should
also be studied in this representation to emphasize the
equivalence of the two formalisms. However, the particular
form of the function f associated with this example does
not belong to the domain of functions for which the scalar-
tensor representation is defined, as we show in the
following.
Let us start by rewriting the action in Eq. (1) with two

auxiliary fields α and β, respectively, in the following form:

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p �
fðα; βÞ þ ∂f

∂α ðR − αÞ þ ∂f
∂β ðR − βÞ

�
d4x

þ Sm: ðA1Þ

This action is a function of three independent variables,
namely the metric gab and the two auxiliary fields α and β.
Taking the variations of this action with respect to the fields
α and β yields the two equations

∂2f
∂α2 ðR − αÞ þ ∂2f

∂α∂β ðR − βÞ ¼ 0; ðA2Þ

∂2f
∂β∂α ðR − αÞ þ ∂2f

∂β2 ðR − βÞ ¼ 0: ðA3Þ

These two coupled equations can be rewritten in a matrix
form Mx ¼ 0 as
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Mx ¼
" ∂2f

∂α2
∂2f
∂α∂β

∂2f
∂β∂α

∂2f
∂β2

#�
R − α

R − β

�
¼ 0: ðA4Þ

The solution for Eq. (A4) is unique if and only if the
determinant of M does not vanish, i.e., detM ≠ 0. This
condition yields the relation

∂2f
∂α2

∂2f
∂β2 ≠

� ∂2f
∂α∂β

�
2

: ðA5Þ

If the condition above is not satisfied, then the solution of
Eq. (A4) is not unique and the scalar-tensor representation
for such a function f is not well defined, and thus the
equivalence between the two representations is not guar-
anteed. This happens because for these particular cases the

definitions of the scalar fields as functions of R and R are
not invertible.
The form of the function f for which we could drop

the junction conditions ½R� ¼ 0 and ½R� ¼ 0 is given in
Eq. (18). For this function, we have fRR ¼ 0 and fRR ¼ 0.
This implies that the determinant of the matrix M
vanishes, as

det

�
fRR fRR
fRR fRR

�
¼ fRRfRR − f2RR ¼ 0; ðA6Þ

and thus this form of the function f does not have an
equivalent counterpart in the scalar-tensor representation.
Therefore, there are no particular cases of the scalar-tensor
representation for which some of the junction conditions
could be discarded.

[1] M. S. Morris and K. S. Thorne, Wormholes in spacetime and
their use for interstellar travel: A tool for teaching general
relativity, Am. J. Phys. 56, 395 (1988).

[2] M. Visser, Lorentzian Wormholes: From Einstein to
Hawking (Springer-Verlag, New York, 1996).

[3] M. Visser, Traversable wormholes from surgically modified
Schwarzschild spacetimes, Nucl. Phys. B328, 203 (1989).

[4] M. Visser, Traversable wormholes: Some simple examples,
Phys. Rev. D 39, 3182 (1989).

[5] J. P. S. Lemos, F. S. N. Lobo, and S. Q. Oliveira, Morris-
Thorne wormholes with a cosmological constant, Phys.
Rev. D 68, 064004 (2003).

[6] A. G. Agnese and M. La Camera, Wormholes in the
Brans-Dicke theory of gravitation, Phys. Rev. D 51, 2011
(1995).

[7] K. K. Nandi, B. Bhattacharjee, S. M. K. Alam, and J. Evans,
Brans-Dicke wormholes in the Jordan and Einstein frames,
Phys. Rev. D 57, 823 (1998).

[8] K. A. Bronnikov and S.W. Kim, Possible wormholes in a
brane world, Phys. Rev. D 67, 064027 (2003).

[9] M. La Camera, Wormhole solutions in the Randall-Sundrum
scenario, Phys. Lett. B 573, 27 (2003).

[10] F. S. N. Lobo, Exotic solutions in general relativity:
Traversable wormholes and warp drive spacetimes, in
Classical and Quantum Gravity Research, edited by
M. N. Christiansen and T. K. Rasmussen (Nova Science,
Hauppauge, NY, 2008), p. 1 [arXiv:0710.4474].

[11] R. Garattini and F. S. N. Lobo, Self sustained phantom
wormholes in semi-classical gravity, Classical Quant. Grav.
24, 2401 (2007).

[12] F. S. N. Lobo, General class of wormhole geometries in
conformal Weyl gravity, Classical Quant. Grav. 25, 175006
(2008).

[13] R. Garattini and F. S. N. Lobo, Self-sustained traversable
wormholes in noncommutative geometry, Phys. Lett. B 671,
146 (2009).

[14] F. S. N. Lobo and M. A. Oliveira, General class of
vacuum Brans-Dicke wormholes, Phys. Rev. D 81,
067501 (2010).

[15] R. Garattini and F. S. N. Lobo, Self-sustained wormholes in
modified dispersion relations, Phys. Rev. D 85, 024043
(2012).

[16] R. Myrzakulov, L. Sebastiani, S. Vagnozzi, and S. Zerbini,
Static spherically symmetric solutions in mimetic gravity:
Rotation curves & wormholes, Classical Quant. Grav. 33,
125005 (2016).

[17] Wormholes, Warp Drives and Energy Conditions, Funda-
mental Theories of Physics Vol. 189, edited by F. S. N. Lobo
(Springer International, New York, 2017).

[18] F. S. N. Lobo and M. A. Oliveira, Wormhole geometries in f
(R) modified theories of gravity, Phys. Rev. D 80, 104012
(2009).

[19] N. M. Garcia and F. S. N. Lobo, Wormhole geometries
supported by a nonminimal curvature-matter coupling,
Phys. Rev. D 82, 104018 (2010).

[20] N. Montelongo Garcia and F. S. N. Lobo, Nonminimal
curvature-matter coupled wormholes with matter satisfying
the null energy condition, Classical Quant. Grav. 28, 085018
(2011).

[21] T. Harko, F. S. N. Lobo, M. K. Mak, and S. V. Sushkov,
Modified-gravity wormholes without exotic matter, Phys.
Rev. D 87, 067504 (2013).

[22] B. Bhawal and S. Kar, Lorentzian wormholes in Einstein-
Gauss-Bonnet theory, Phys. Rev. D 46, 2464 (1992).

[23] G. Dotti, J. Oliva, and R. Troncoso, Exact solutions for the
Einstein-Gauss-Bonnet theory in five dimensions: Black
holes, wormholes and spacetime horns, Phys. Rev. D 76,
064038 (2007).

[24] M. R. Mehdizadeh, M. Kord Zangeneh, and F. S. N. Lobo,
Einstein-Gauss-Bonnet traversable wormholes satisfying
the weak energy condition, Phys. Rev. D 91, 084004
(2015).

DOUBLE GRAVITATIONAL LAYER TRAVERSABLE WORMHOLES … PHYS. REV. D 104, 064002 (2021)

064002-9

https://doi.org/10.1119/1.15620
https://doi.org/10.1016/0550-3213(89)90100-4
https://doi.org/10.1103/PhysRevD.39.3182
https://doi.org/10.1103/PhysRevD.68.064004
https://doi.org/10.1103/PhysRevD.68.064004
https://doi.org/10.1103/PhysRevD.51.2011
https://doi.org/10.1103/PhysRevD.51.2011
https://doi.org/10.1103/PhysRevD.57.823
https://doi.org/10.1103/PhysRevD.67.064027
https://doi.org/10.1016/j.physletb.2003.08.042
https://arXiv.org/abs/0710.4474
https://doi.org/10.1088/0264-9381/24/9/016
https://doi.org/10.1088/0264-9381/24/9/016
https://doi.org/10.1088/0264-9381/25/17/175006
https://doi.org/10.1088/0264-9381/25/17/175006
https://doi.org/10.1016/j.physletb.2008.11.064
https://doi.org/10.1016/j.physletb.2008.11.064
https://doi.org/10.1103/PhysRevD.81.067501
https://doi.org/10.1103/PhysRevD.81.067501
https://doi.org/10.1103/PhysRevD.85.024043
https://doi.org/10.1103/PhysRevD.85.024043
https://doi.org/1088/0264-9381/33/12/125005
https://doi.org/1088/0264-9381/33/12/125005
https://doi.org/10.1103/PhysRevD.80.104012
https://doi.org/10.1103/PhysRevD.80.104012
https://doi.org/10.1103/PhysRevD.82.104018
https://doi.org/10.1088/0264-9381/28/8/085018
https://doi.org/10.1088/0264-9381/28/8/085018
https://doi.org/10.1103/PhysRevD.87.067504
https://doi.org/10.1103/PhysRevD.87.067504
https://doi.org/10.1103/PhysRevD.46.2464
https://doi.org/10.1103/PhysRevD.76.064038
https://doi.org/10.1103/PhysRevD.76.064038
https://doi.org/10.1103/PhysRevD.91.084004
https://doi.org/10.1103/PhysRevD.91.084004


[25] L. A. Anchordoqui, S. E. Perez Bergliaffa, and D. F. Torres,
Brans-Dicke wormholes in nonvacuum spacetime, Phys.
Rev. D 55, 5226 (1997).

[26] F. S. N. Lobo, A general class of braneworld wormholes,
Phys. Rev. D 75, 064027 (2007).

[27] S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and
G. J. Olmo, Wormholes supported by hybrid metric-Palatini
gravity, Phys. Rev. D 86, 127504 (2012).

[28] T. Harko, T. S. Koivisto, F. S. N. Lobo, and G. J. Olmo,
Metric-Palatini gravity unifying local constraints and
late-time cosmic acceleration, Phys. Rev. D 85, 084016
(2012).

[29] S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo,
and G. J. Olmo, Cosmology of hybrid metric-Palatini fðXÞ-
gravity, J. Cosmol. Astropart. Phys. 04 (2013) 011.

[30] S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and
G. J. Olmo, The virial theorem and the dark matter problem
in hybrid metric-Palatini gravity, J. Cosmol. Astropart.
Phys. 07 (2013) 024.

[31] S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and
G. J. Olmo, Galactic rotation curves in hybrid metric-
Palatini gravity, Astropart. Phys. 50–52, 65 (2013).

[32] S. Capozziello, T. Harko, F. S. N. Lobo, and G. J. Olmo,
Hybrid modified gravity unifying local tests, galactic
dynamics and late-time cosmic acceleration, Int. J. Mod.
Phys. D 22, 1342006 (2013).

[33] S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, and
G. J. Olmo, Hybrid metric-Palatini gravity, Universe 1, 199
(2015).

[34] A. Edery, and Y. Nakayama, Palatini formulation of pure R2

gravity yields Einstein gravity with no massless scalar,
Phys. Rev. D 99, 124018 (2019).

[35] T. Harko and F. S. N. Lobo, Extensions of fðRÞ Gravity:
Curvature-Matter Couplings and Hybrid Metric-Palatini
Gravity, Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 2018).

[36] N. Tamanini and C. G. Boehmer, Generalized hybrid metric-
Palatini gravity, Phys. Rev. D 87, 084031 (2013).

[37] J. L. Rosa, S. Carloni, J. P. S. Lemos, and F. S. N. Lobo,
Cosmological solutions in generalized hybrid metric-
Palatini gravity, Phys. Rev. D 95, 124035 (2017).

[38] J. L. Rosa, S. Carloni, and J. P. S. Lemos, Cosmological
phase space of generalized hybrid metric-Palatini theories of
gravity, Phys. Rev. D 101, 104056 (2020).

[39] J. L. Rosa, F. S. N. Lobo, and D. Rubiera-Garcia, Sudden
singularities in generalized hybrid metric-Palatini cosmol-
ogies, J. Cosmol. Astropart. Phys. 07 (2021) 009.

[40] J. L. Rosa, J. P. S. Lemos, and F. S. N. Lobo, Stability of
Kerr black holes in generalized hybrid metric-Palatini
gravity, Phys. Rev. D 101, 044055 (2020).

[41] F. Bombacigno, F. Moretti, and G. Montani, Scalar modes in
extended hybrid metric-Palatini gravity: Weak field phe-
nomenology, Phys. Rev. D 100, 124036 (2019).

[42] J. L. Rosa, F. S. N. Lobo, and G. J. Olmo, Weak-field regime
of the generalized hybrid metric-Palatini gravity, arXiv:
2104.10890.

[43] J. L. Rosa, D. A. Ferreira, D. Bazeia, and F. S. N. Lobo,
Thick brane structures in generalized hybrid metric-Palatini
gravity, Eur. Phys. J. C 81, 20 (2021).

[44] J. L. Rosa, T. Harko, F. S. N. Lobo, and H. M. R. da Silva,
Cosmic strings in generalized hybrid metric-Palatini gravity,
arXiv:2104.12126.

[45] J. L. Rosa, J. P. S. Lemos, and F. S. N. Lobo, Wormholes in
generalized hybrid metric-Palatini gravity obeying the
matter null energy condition everywhere, Phys. Rev. D
98, 064054 (2018).

[46] G. Darmois, Les equations de la gravitation Einsteinienne,
Memorial des Sciences Mathematiques 25, 565 (1927),
http://www.numdam.org/item/MSM_1927__25__1_0/.
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