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First-order velocity memory effect from compact binary coalescing sources
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It has long been known that gravitational waves from compact binary coalescing sources are responsible
for a first-order displacement memory effect experienced by a pair of freely falling test masses. This
constant displacement is sourced from the nonvanishing final gravitational-wave strain present in the
wave’s after zone, often referred to as the nonlinear memory effect, and is of the same order of magnitude as
the strain from the outgoing quadrupole radiation. Hence, this prediction of general relativity is verifiable
experimentally by measurement of the final relative separation between test masses that comprise
gravitational-wave detectors. In a separate context, independent calculations have demonstrated that exact,
sandwich, plane-wave spacetimes exhibit a velocity memory effect; a nonzero relative velocity, gained by a
pair of test masses in free fall, after the passage of a gravitational wave. In this paper, we find that in
addition to the known constant displacement memory effect test masses experience, a velocity memory
effect at leading order arises due to the nonlinear nature of gravitational waves from compact binary
sources. We discuss the magnitude of the first-order velocity memory effect in the context of observing

gravitational-wave radiation from super massive binary black hole mergers in LISA.
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I. INTRODUCTION

Since 2015, gravitational waves from dozens of compact
binary coalescence (CBC) sources have been detected by
the LIGO and Virgo experiments [1,2]. CBC sources are
astrophysical pairs of compact objects, such as black holes,
white dwarfs, or neutron stars, that emit gravitational-wave
radiation as they merge together from orbiting under the
pull of each other’s gravity. Observation of such high-
energy astrophysical events now allows physicists to test
the rich predictions of the theory of general relativity using
gravitational-wave strain data [3—11].

One of the curious predictions of the full nonlinear
theory of general relativity is memory effects—physically
observable phenomenon that leave the final state of
gravitational-wave detectors ever so slightly altered with
respect to their initial undisturbed state. Memory effects are
of interest to those who study general relativity because
they are found to have direct ties to asymptotic symmetry
and soft graviton theorems [12-14], as well as the black
hole information paradox [15]. Calculations of memory
effects using asymptotically flat spacetimes, for example
using the Bondi-Metzner—Sachs formulation [16,17], have
been carried out in [13,18-21]. Tests of gravitational-wave
memory effects from astrophysical sources have been
conducted using gravitational-wave strain data from the
LIGO and Virgo detectors in [7,9-11], from the Parkes
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Pulsar Timing Array [22], and from NANOGrav [23,24].
Signal to noise ratios of the memory effect from a
population of super massive binary black hole mergers
have been computed with respect to the LISA detector’s
strain spectral sensitivity in [25,26]. In addition, memory
effects are not unique to gravitational-wave radiation, since
electromagnetic pulses can also produce memory effects
[27-30], as can even neutrino bursts [31,32].

Memory effects can be thought of as belonging to two
categories [33]; null memory arises when radiation or
massless particles escape from a system to null infinity,'
and ordinary memory arises when there is a final recoil of
the system relative to its initial center of mass frame.” In
this paper, in so far as we follow [36,38], we focus on the
null memory contribution sourced from the gravitational-
wave energy flux (nonlinear memory) in CBC sources,
although we also refer to sandwich-plane gravitational
waves for demonstrative purposes.

Depending upon the circumstances of the gravitational-
wave detector, memory effects may manifest as a relative
change in displacement or as a relative change in velocity
between a pair of freely falling test masses. In particular, in

'Null memory which arises from nongravitational sources is
sometimes referred to as linear memory [34], since the effect is
linear in the stress tensor of the matter fields. We reserve the term
nonlinear memory [35] for the effects of a flux of gravitational
waves to null infinity, since the flux is quadratic in (derivatives of)
the strain from a gravitational-wave source.

2[34—37] have sometimes referred to this as linear memory, but
we do not choose that language.

© 2021 American Physical Society
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certain interesting detection situations, asymptotic memory
effects from physical sources induce first-order displace-
ment or velocity memory effects in remotely situated
detectors [35,39—41]. In this paper, and in the language
of [42], we compute the subleading velocity memory effect
as it arises from gravitational-wave radiation from compact
binary sources. As Harte indicates in [43], a first-order
velocity memory effect which is not subleading, would not
arise from compact binary sources. For purposes of brevity,
we omit the subleading qualifier in the further discussion.

The displacement memory effect is the phenomenon by
which test masses in free fall, and initially at rest, suffer a
permanent relative displacement after the passage of a
gravitational wave. One of the first examples of displace-
ment memory was in the case of astrophysical events that
emit ordinary memory, such as a flyby event between two
compact binary objects [39]. It was later shown by [35] that
the nonlinear memory from compact binary sources also
induces a first-order relative displacement in test masses
far away.

The velocity memory effect presents itself as a nonzero
difference in the relative velocity between two neighboring
geodesics, after a gravitational-wave passes through their
space. To calculate the magnitude of this relative velocity,
we solve the equations of motion for test particles under
general initial conditions, in a particularly useful coordinate
system, and study the relative motion between a pair of test
masses during the gravitational wave’s after zone.

Ground-based detectors, such as LIGO and Virgo, are
composed of a network of test masses that are suspended by
pendulums. These test masses effectively respond freely to
the strain induced by the passage of gravitational waves
traveling perpendicularly to the plane of the detector, and
move predominantly along the directions of the detector
arms. This motion is only partially free, as it is constrained
to move on an arc via its point of suspension. In principle, a
velocity memory effect in these ground-based detectors
would be limited by the suspension’s constraint, so to fully
consider the effects one would need to examine a coupled
system. In practice, controls at work within the functioning

TABLE 1.

detector will counteract any velocity memory effect long
before the constraining pendulum effect does so.

By contrast, LISA [44] is a future space-based gravita-
tional-wave detector comprised of three freely-falling test
masses, housed in individual spacecrafts, forming an equi-
lateral triangle with arm length L, = 2.5 x 10° meters.
LISA will observe low-frequency gravitational waves, of
which super massive binary black hole mergers are the most
promising sources [45], for a maximum observation duration
of ten years.

In the case where test masses are not initially at rest with
respect to each other, such as would be expected to occur
with the LISA detector [44], we find that, as a direct
generalization of the work of Christodoulou [35], a velocity
memory effect that is O(h) also occurs for gravitational-
wave radiation from compact binary sources. This first-
order velocity memory effect is sourced by the nonlinear
memory effect from compact binaries, results in a change in
the relative velocity between freely-falling test masses, and
has received little attention to date. There are other velocity
memory effects which have received some attention in the
literature [14,40,41,46-54]. These velocity memory effects
can arise in several distinct situations, and their order in the
gravitational-wave strain is dependent on factors such as
test-mass initial conditions and the support of the strain
profile, as detailed in the contents of Table I. The results
presented in this paper are consistent with discussion on the
first-order velocity memory effect in [39-41,50], the
second-order treatment in [49], and the numerical results
of [46].

The contents of this paper are outlined as follows: In the
next section, we derive the polarizations for the nonlinear
memory strain far away from a CBC source. Next, we
motivate a plane wave spacetime that is useful for calcu-
lating velocity memory effects. We then integrate the
equations of motion for a pair of test masses under the
influence of a polarized gravitational wave in our chosen
plane wave spacetime. In Sec. III, we discuss the lessons
learned from calculating the velocity memory effect for a
generalized sandwich wave pulse profile. In Sec. IV, we

In this table, we summarize at what order terms in the velocity memory effect arise based on assumptions about the

gravitational-wave strain’s support and initial conditions of the test masses. These results can be seen directly in the form our velocity
equation Eq. (18) is written. The first column corresponds to the initial conditions. It is implicit that there are third and higher-order
terms in all cases. For simplicity we include just the velocity gained in the x direction and a linearly-polarized wave, i, = 0. We use the
notation B[f(x)] which means the function f(x) has bounded support. If the B is crossed out denoted as B[f(x)], it means this function
does not have bounded support. It is also implied if a function f(x) has bounded support, than so do it’s derivatives. The case of the
Christodoulou displacement memory effect is referred to in the CBC case.

Initial conditions B [A] (sandwich wave)

Bh], B[] (CBC case)

Bli], B[A]

x(uy) #0,v9=0
.x(uo) # 07 Vo # 0
x(ug) = 0,v9 #0

O + Oth) — tx(uo) [ hXdu,
O(1) + Ot + O(h?)
O(1) + O] + O(h?)

OHT + O] + O(h?),
O(1) =3 (hy %) + O(h?)
O(1) + O(h) + O(h?)

Oft) + 5 (hx) + O(?),
O(1) =3 (hyx) + 3 (hix) + O(h?)
O(1) + O(h) + O(h?)
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estimate the magnitude of the first-order velocity memory
effect from a typical CBC source amenable to detection by
LISA. The Appendix is structured as follows: Section A
contains the full derivation of the nonlinear memory strain
and Sec. B provides the coordinate transformations
between various plane wave spacetimes.

II. FRAMEWORK

Before we present the results of the velocity memory
effect from sandwich waves in Sec. III and the first-order
velocity memory effect from compact binary sources in
Sec. IV, we give a summary of the framework for
calculating memory effects from general gravitational-
wave strain profiles. In Sec. I A, we derive the plus and
cross polarizations of the nonlinear memory strain in a
transverse-traceless (TT) gauge, by projecting onto a sur-
face normal to the direction of propagation at the location
of the detector. In Sec. II B, we discuss a family of plane
wave spacetime candidates and choose an ideal basis to
perform our velocity memory effect calculation. In
Sec. IIC we integrate the equations of motion in our
chosen coordinate system and discuss the general charac-
teristics of velocity memory effects. At the end of this
section, we derive useful memory formulas for calculating
the velocity memory effect given a time-dependent gravi-
tational-wave profile.

A. Nonlinear memory strain from CBC sources

The complete derivation of the nonlinear memory
strain’s polarizations is given in Appendix A, but we
include a brief summary of it below. We use a convenient
choice of orientation between the source and detector
frames as outlined in [36-38,55]. Given an anisotropic
gravitational-wave energy flux dE/dtdQ, we can calculate
the nonlinear, hereditary, memory strain at a fixed distance
R away from a CBC source, as experienced by an observer
located at 0%, ¢* in the source’s spherical coordinate
system. In a generic linearized gauge, the memory tensor
is given in [36,38,55,56],

/ !
/
/ [g drdQ L - n”N,] . ()

We use spherical angular coordinates &', ¢', defined in the
source’s Cartesian coordinate frame (x’, y’, z’). The angular
integral is taken over the solid angle dQ' = sin(6')d6#'d¢’ on
the sphere of radius R centered on the source. Above,
n'(@', ¢') is defined as the general unit radial vector directed
from the source to dQ' with components 7' =
(cos ¢’ sin@,sin @ sin¢g’,cos@). The observer’s angular
position is encoded in N(6*, ¢*), defined as the unit line
of sight vector drawn from the source to the observer with

components; N = (cos ¢* sin 8%, sin 8" sin ¢p*, cos 0*).

hij(t, Q%)

To separate the time information from the angular
information in the memory’s integrand above, we decom-
pose the gravitational waves on the surface of radius R
using a spin-weighted spherical-harmonic basis of spin
weight minus two, with time-dependent coefficients. For
the simple case of an equal-mass, nonspinning, binary
black hole merger, the dominant contribution to the out-
going gravitational-wave energy flux can be well approxi-
mated by just the quadrupole the (I = 2, m = |2|) modes.
Relative to a frame at the detector and aligned with that
centered on the source, we can encode the information in
the gravitational-wave radiation, transverse to its direction
of propagation, with a simple separation of the strain into
+, X polarizations. With this specification, and after
computing the angular integrals, the cross-polarization
contribution vanishes. The plus polarization of the non-
linear memory strain as a function of time and the binary’s
inclination angle, defined as the angle between the source’s
angular momentum vector and the line-of-sight to the
observer, is

1 R L
(1) = g sina(17+ cos) [ fi(0Par. )

Note: the final gravitational-wave strain that arrives at the
detector far away from a CBC source can be described as a
linear combination of spherical-harmonic strain modes, of
which the (I =2, m = 0) mode contains the largest con-
tribution of the nonlinear memory signal [11,37,56,57].
Schematically we can think of the total detected plus
polarization strain as comprised of two distinct pieces by
hY(1) ~ W (1) + hPe™(z). In Sec. IV we use the memory
contribution of Eq. (2) to calculate the first-order velocity
memory effect experienced by a pair of freely falling test
masses.

In the process of obtaining Eq. (2) we projected the
memory tensor h;; onto a transverse-traceless basis to
decompose the strain into individual polarizations AT™
and A¥°™. In his Living Review article [58], Blanchet
outlines a generic way of developing the transverse-trace-
less projection of an outgoing wave onto the surface of a
sphere centered on the source. However, as with the polar
coordinates themselves, this projection has the potential to
break down when the observer lies along the coordinate
axis, so a projection onto the R? Cartesian plane, tangent to
the sphere, may sometimes be more appropriate. This
Cartesian projection will be used to discuss the TT gauge
below and also enables a more general discussion of plane-
fronted waves, for which exact solutions are known in
general relativity [59-62] and have been widely studied
[14,49,51,52,54,63-65], even in connection with gravita-
tional-wave memory effects [11,13,25,26,37,48,55,56,
66-68]. In the next subsection, we introduce additional
background on plane-wave spacetimes before calculating

064001-3



ATUL K. DIVAKARLA and BERNARD F. WHITING

PHYS. REV. D 104, 064001 (2021)

the geodesics of particles as a function of the gravitational-
wave strain profile.

B. Plane wave spacetimes

We review the plane wave spacetime formalism in the
context of calculating the velocity memory effect for a
general set of gravitational-wave polarizations. We discuss
the drawbacks associated with calculating memory effects
in the commonly used transverse-traceless gauge. After we
define a suitable set of coordinates to calculate the velocity
memory effect, we use the memory-effect formulas derived
at the end of Sec. II C to study the second-order effects from
sandwich waves in Sec. III and evaluate the first-order
effects for gravitational waves from CBCs in Sec. IV.

We first validate the plane-wave approximation for the
detection scenario of gravitational-wave radiation from
super massive binary black hole mergers in LISA.
Consider the scenario of a gravitational-wave detector with
arm length L, at a fixed distance R away from a compact
binary source, observing a gravitational wave of wave-
length Agw. Then, to first order in the path length differ-
ence, A~L?/2R, induced by the curvature of the
gravitational wave front, we require A < Agw. Such a
condition ensures that the spherical wave can be considered
flat over the arm length of the detector and the gravitational-
wave phase is uniform throughout. With an estimate of the
typical distance to a super massive binary black hole merger
set to R = 1 gigaparsec and given a minimal gravitational
wavelength of ~3 x 10° meters for LISA, we require our
detector arm length to be L < 10'7 meters, for the plane-
wave approximation to be valid at the location of the
observation. For the proposed arm length of LISA [44], this
condition is well satisfied.

Finding a useful plane-wave spacetime to carry out the
physical predictions of general relativity is a little tricky, as
history has shown, with the infamous plane-wave space-
time dispute between [69,59], later considered by Richard
Feynman who coined this problem as the “sticky bead
problem” in the famous Chapel Hill conference of 1957
[70]. Examples of plane-wave spacetimes appropriate for
our discussion are given in the Baldwin-Jeffery-Rosen
(BJR) coordinate system [60,69] (in transverse-traceless
gauge), and Brinkmann [61] coordinate system (a locally
Lorentz gauge [71,72]). The coordinate transformations
between these spacetimes are summarized in Fig. 3 of
Appendix B.

1. Transverse-traceless gauge

For those grounded in general relativity the familiar
linearized TT gauge is a frequent choice when studying
the influence of weak, polarized gravitational waves on the
proper separation of test particles. In this gauge, the gravi-
tational plane wave must be weak, such that O(h) < 1. A
(local) line element in the TT gauge (X, y,Z,7), with the

temporal profile of the metric perturbation defined as h(7 +
Z/c) having two polarizations +, x, with the wave front
parallel to the X-y plane and traveling in the —Z direction is

ds* = di* + (1 + h,)dx* + (1 — h,)dy?
+ 2h, dxdy + dz°. (3)

Although familiar, the TT gauge is not an ideal choice of
coordinates to study the dynamics of test particles arising
from the velocity memory effect. The momentum in the x-y
planeis explicitly conserved; if a particle begins at rest, then it
remains at rest even after the wave has passed by. This feature
of the TT gauge impedes our ability to study the velocity
memory effect, for which we expect the final velocity, after
the wave has passed by, to be nonzero even for particles
initially at rest.

We note in passing that the TT gauge arises as a
particular example of the more general Baldwin-Jeffery-
Rosen coordinates (see [49] for discussion) which have
sometimes been used for examining exact plane wave
solutions. However, the BJR coordinates are known to
be singular, hence, we will not pursue them further here.
Instead, we consider a spacetime in which the coordinates
of freely falling test masses are time dependent, non-
singular, and allow for a change in the final momentum
after a gravitational wave passes by.

2. Locally Lorentz frame

We now consider a gauge based on a locally Lorentz
frame (7, %, 9, 2). This local Lorentz frame can be thought
of as a proper reference frame of an observer located at the
origin, such that the metric tensor must have two defining
properties; at the spatial origin (%' = 0), the metric tensor
reduces to the flat Minkowski spacetime (local) and the first
derivatives of the metric tensor also vanish (Lorentz) at the
origin. The line element in this coordinate system, under
the influence of a plane gravitational wave h(7+ 2/c),
exactly equivalent to h(7 + zZ/c) (see Fig. 3 in Appendix B
for details) is

@ . . LAPA
ds? = (—l +F) AdP? + d3* + dy2 + (1 +F> dz?
o
+ L aia, (4)
C

where we define the gravitational-wave potential in terms
of the polarization strains as

(i +2/c,%,9) =5h (=9 +h.25,  (5)

where a dot represents a derivative with respect to the
argument of h. This locally Lorentz coordinate choice is
better equipped to study the dynamical response of test
masses to gravitational plane waves since the relative
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separation between a pair of test particles will just be the
difference in their positional coordinates as pointed out in
the discussion of [71]. In addition, the momentum in the
horizontal X — § plane is not explicitly conserved since the
line element explicitly depends on the X, $ coordinates.
This property has an interesting feature; if particles begin at
rest before the gravitational wave, then they may not
necessarily be at rest after the wave has passed by.

The X — ¥ equations of motion in the local Lorentz frame
are

% (e 4+2)%1

2o 2 1 (hik + hy3). (6)
>y (' +7)?1, ..
P R a (=h.3 + h.%), (7)

where 7 is an affine parameter and a prime denotes a
derivative with respect to 7. In what follows we will choose
\/iu =17 as an affine parameter with u defined as
V2u =14 2%/c, see path C of Fig. 3 for details. Then,
since (7 +%'/c) =+2u' =7, it follows that (c?’ +
2)2/c? =1 and, more generally, d/dr = (1/v/2)d/du.
In addition, we consider a particle confined to the z =0
plane, in which case d/du = v/2d/dt and d/dv = d/di.
Then, under the influence of a linearly plus polarized
gravitational wave, the acceleration in the X direction is

d’xs  1d°h, (1
£ = ——fz( )z, (8)
a2 di

After integration by parts, for a general initial velocity, the
velocity that test masses experience is

1. 1 .
vy = O(1) +5hy& =S hk + O(2). 9)

The O(1) term comes from the initial velocity of a test
mass. Here is another advantageous feature of a locally
Lorentz frame; a constant nonzero gravitational-wave strain
value in a wave’s after zone [such as the nonlinear memory
component in Eq. (2)] contributes at first order to the total
velocity of a test particle at a particular time, given a
nonzero initial velocity. Such a feature is important to the
physical case of the test masses that comprise a gravita-
tional-wave detector such as LISA, since they are never
truly at rest to begin with, and are constantly influenced by
extraneous sources of motion such as tidal forces, stray
electrostatic fields, and thermal excitation. [44]. For the
remainder of the paper, and to be consistent with the work
of [14,46], we calculate the velocity memory effect in a
local Lorentz frame, specifically using the Brinkmann
coordinates.

3. Brinkmann coordinates

We have found that in a locally Lorentz frame, the
velocity memory effect is expected to naturally present
itself during the wave’s after zone under general conditions.
We introduce Brinkmann coordinates, for which the metric
is an exact solution to the full nonlinear Einstein field
equations, and illustrate how this set of coordinates is
equivalent to a local Lorentz frame. For simplicity, we
choose our transverse spatial axes x, y to be aligned with
the two polarizations of the gravitational wave. The
Brinkmann coordinates (x, y, u, v) are global, harmonic,
and describe a gravitational plane wave where the line
element is

dSz = 5ijdxidxj + 2C2dl/£dv + Kij(u)xixjduz. (10)

The pulse profiles A (u), A, (u) are free functions encoded
in K ij via

Ky()xis) = A, ()2 =) + Aoy, (1)

where Kij, a trace-free 2 x 2 matrix with independent
pulse-polarization profiles, satisfies the two-dimensional
wave equation as (J(K;(u)x'x/) = 0. The timelike variable
u is an affine parameter. The trivial coordinate trans-
formation between the Brinkmann coordinates and a
locally Lorentz Cartesian frame is described by the path
C in Fig. 3. The potentials between the two coordinate
systems are related by @ (7 +2/c, %, 9) = K;;(u)x'x/ with
A(u) = h(u(t+2/c)).

(Note: although the individual momenta in the spatially
transverse x- and y-directions are not conserved, the
equation for conservation of total momentum can be used
to solve for v(u) along a particle’s trajectory, implying that
the v(u) coordinate does not give an independent equation
of motion.) Since momentum conservation does not hold
strictly in the transverse plane, we can expect inherent
divergences in the positions of test particles when the final
positions of test masses are taken to extremes, such as
u — oo. However, this is true even in the A(u) =0 V u
Newtonian case, for particles initially moving with some
constant relative velocity. We recognize the existence of
these noncoordinate singularities, or physical “divergen-
ces”, when using the Brinkmann coordinates [65] and stress
that these divergences are to be physically expected.
However, to avoid explicitly encountering such divergences
in our calculations, we integrate our equations of motion
over a real and finite domain of u, such as [ug, us], in
Sec. III. Here, u, will always be fixed to occur before the
initial arrival of a given gravitational wave of interest, and
uy (not necessarily fixed) will typically occur some time
later, after the passage of the wave.

The equations of motion in the Brinkmann coordinates
effectively reduce to a classical (time-dependent spring
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constant) two-dimensional particle motion problem, para-
metrized by u. Solving the Euler-Lagrange equations
yields,

d*x 1
it (Apx+Ayy), (12)
d’y 1

This linear coupled set of second-order ordinary differential
equations are in general solved numerically given a set of
initial conditions and pulse profiles. We can see that the
polarized pulse profiles A,, A, in the Brinkmann coor-
dinate system are related to the second derivatives of the
polarized gravitational-wave strains in the local Lorentz
frame h'+, h, by comparing Eqs. (12) and (13) to Egs. (6)
and (7), respectively.

For the remainder of the paper, we consider only the
subset of pulse profiles A(u), such that the following limit
condition is met

p
ﬂlim A(u)du # too. (14)
- J_p

This limiting condition ensures that a given set of polarized
pulse profiles A, , (u), will result in a final, and finite,
constant velocity memory between test particles. This
limiting condition also implies a condition on the displace-
ment trajectories: the relative separation between a pair of
test masses, in the after-zone, must diverge linearly or
slower to infinity. [Note: the plus contribution of the
nonlinear memory strain derived in Sec. Il A satisfies this
limit condition of Eq. (14), since A(u) = h(u(i +2/c))].

In this section, we reviewed plane-wave spacetimes and
introduced the Brinkmann coordinates. We highlighted
features of the Brinkmann coordinates that make them
useful for studying the velocity memory effect. In the next
section, we integrate the equations of motion in Brinkmann
coordinates, and solve for the geodesics of test masses for
general initial conditions. We investigate how different
initial conditions, and bounding properties of the pulse
profile, give rise to velocity memory effects that arise at
different orders in the perturbative expansion.

C. Integrating the Brinkmann equations of motion

To calculate the final displacements and velocities test
particles experience due to a polarized plane gravitational
wave, we first solve the equations of motion over a finite
domain of u. We integrate the acceleration equations once,
from u, to some u < uy, such that

u 1 u . u ..
/ Xdu = 3 </ h,xdu +/ hxydu>, (15)
U Uy Uy

u 1 u .. u .,
/ ydu = = (—/ h,ydu +/ hxxdu>, (16)
Uy 2 g g

where we explicitly equate A, (u)=h,,(u) in the
equations of motion, with derivatives with respect to u.
To carry out the integration of the terms on the right-hand
side, we use integration by parts, for example,

/ e = ()l - ((hx) ' - / hjédu). (17)

The first term on the right-hand side, that involves the product
of the current position of the particle and the amplitude of the
derivative of the gravitational wave, is the contribution to the
velocity memory effect observed in previous first-order
calculations [39,41,50]. The second term, proportional to
the product of the amplitude and the current velocity, will be
the contribution to the first-order velocity memory effect
from CBCs in Sec. I'V. The third term on the right-hand side is
implicitly second and higher order in the amplitude and, as
we will further discuss in Sec. III, will contain a term
proportional to the energy density of the wave itself, for
sandwich waves.

Substituting the right-hand side of Eq. (12) and Eq. (13)
into the integrand above, for the ¥ and ¥ terms, gives the
following exact solutions for the velocities test particles
experience in Brinkmann coordinates,

1
(h+x)|50 _E(thx) I

1 . woo
+- (/ hyh, xdu —I—/ h+hxydu>
4 Uy i

1. 1 .
+§(h><y) Zo _E(hxy) ZO

1 u o u
+Z(- / i ydu + / hxhxxdu) (18)
i o

30) = 3u0) = 5 (o), + 5 (I,

1 u .. u ..
- (—/ hyh ydu+ / h+hxxdu>
4 g Uy

1 . 1
3 (hux)[i, — 3

1 u .. u ..
+Z (/ hxh+xdu+/ hxhxydu) (19)
U I

By writing the equations of motion in this convenient form,
it is relatively simple to separate out the terms that
contribute to the velocity memory effect at O(h) and those
that enter at a higher order. A summary of which assump-
tions lead to explicit first-order and second-order velocity
memory is given in Table I.

x(u) = x(ug) +

SN =

N =

(X))l

Uy
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The corresponding displacement curves can be calcu-
lated by integrating the above velocity equations once

x(u) = x(up) + luk(u)du, (20)

y(u) = y(ug) + / " $(u)du 1)

Given a set of initial conditions xg, yo, X(ug), ¥(ug), and
strains & (u), h,(u), we evaluate the velocity and dis-
placement equations above, at some finite value uy. To
clarify, we define the velocity memory effect as the final,
constant, nonzero, relative velocity gained by a pair of
particles due to the presence of gravitational waves. A
maximal transient velocity will be imparted to each test
mass during the passage of the wave, as the integrated
velocity equations above suggest. However, that is not a
real memory effect and is instead just an aspect of the
passing gravitational wave.

In this section, we derived the necessary equations to
calculate the velocity memory effect for arbitrary pulse
profiles and initial conditions. In Sec. IV we use the
memory contribution of Eq. (2) to calculate the velocity
and displacement memory effect up to O(h) in the
perturbative expansion. However, prior to calculating
velocity memory effects from CBC sources, we discuss
the lessons learned when calculating the velocity memory
effect for pulse profiles that have bounded support, such as
sandwich waves, in Sec. III.

III. VELOCITY MEMORY EFFECT FROM
SANDWICH WAVES

We highlight characteristics of the velocity memory
effect which arises for initially stationary test masses,
under the influence of a gravitational sandwich wave.
We compare results from numerically integrating the
equations of motion, and using perturbation theory to
approximate the final velocity, in Fig. 1. In this section,
we show that the velocity memory effect that arises in the
sandwich-wave case is second, and higher-order in the
amplitude of the wave.

A common pulse profile to study particle orbits in
Brinkmann coordinates is the sandwich wave, as examined
in [46,47]. The sandwich-wave pulse profile has the general
form of

3

A =i (Apou) =LA ). (22)
du
To calculate the velocity memory effect from sandwich
waves, we input Eq. (22) into the right-hand side of
Eq. (18) and Eq. (19), specify the initial conditions between
test masses and evaluate the integrals.

— exact
0.50{ =" approximate O(h?)

0.00

-0.25

Vi(ur)

-0.50

-0.75

-1.00

-1.25 -
103 1072 1071 100 10!

As [1/52]

FIG. 1. This plot summarizes the results of numerically
integrating the Brinkmann equations of motion versus approxi-
mating the equations of motion with perturbation theory. The red
dotted curve (approximate) shows how much the O(h?) energy
density term contributes to the total velocity memory effect at a
fixed amplitude of the sandwich wave. The solid blue curve
(exact) is calculated from numerically integrating the metric,
which includes all terms. We begin to see agreement between the
two curves as the amplitude decreases below A, ~ 0.5 sec™2,
implying that for weaker gravitational sandwich waves, the
velocity memory is well approximated by just the energy density
term. Higher-order terms are responsible for the disagreement
between the two curves for larger amplitudes. For reference, the
sandwhich wave studied in [46] had an amplitude of
A, =1 sec™2.

We begin our experiment by placing two test particles on
the x—y plane: one at the origin, that undergoes no change
during and after the sandwich wave, and one at an arbitrary
point (xg, yo). We interpret the final relative velocities and
positions with respect to a reference frame centered at the
particle placed on the origin. Since we integrate over a time
interval [ug, us|, which corresponds to before and after the
wave, we set h(ug) = h(us) = h(ug) = h(us) = 0. We
explicitly make use of the following assumptions in our
analysis: (i) the particle at (x, yo) initially begins at rest
relative to the particle at the origin and (ii) A(u) has
bounded support. We simplify our calculation by consid-
ering only a linearly polarized pulse profile so that 4, =0
for all u. Under these assumptions, and using the exact
equations of Eq. (18) and Eq. (19), we calculate the final
velocity in each direction at some finite u after the pulse’s
duration, where the strain and its derivatives effectively
vanish.

The velocity memory effect for sandwich waves, with
initially stationary test masses is

uy) == xtuo) [ dut O, (23

Uy
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3ug) = = o) [ iRaur o). @4

Uy

Above, we include all the terms that arise at second order in
the gravitational-wave amplitude, and it is implicit that
there are third and higher-order terms on the right-hand
sides. Since the sandwich wave has bounded support, there
is no velocity memory effect contribution at first order in
h(u). The source of the second-order term in these velocity
memory equations is proportional to a quantity similar to

the integral of the energy density h* of the gravitational
waves [49], hence, this contribution to the overall velocity
memory effect does not scale linearly with the amplitude of
the plane wave.

To compare the contribution of the second-order term in
Eqg. (23) and Eq. (24), to the total velocity memory effect, we
numerically integrate our equations of motion and solve for
the final velocity a sandwich wave induces in a particle that
begins at rest, initially at a position of (1,1). We then vary the
amplitude A, at a fixed 6 = 1 sec® and plot the results in
Fig. 1. As the amplitude of the sandwich wave gets smaller,
the velocity memory effect is well approximated by the
second-order term discussed in this section. As the amplitude
grows larger, terms that are higher order than O(h?) explain
the disagreement between the two curves in Fig. 1.

Integrating the velocity curves x(u) and y(u) and
evaluating at some u;, we arrive at an equation for the
displacement memory effect in this scenario as

x(uy) :x(uo)<1 —}l / :’ dii / hidu> O, (25)

y(us) = y(up) (1 —%L:f dii /u: hidu) +O(h). (26)

This nonzero difference in final test particle positions due
to a double integral of a second-order term was actually
known nearly two decades before the results of [35], in
[73], with the use of a Kundt metric [62].

Thus far, we have studied the velocity memory effect case
for large, and moderate, amplitudes of plane waves.
To describe memory effects in realistic space-based gravi-
tational-wave detectors from CBC sources, where the
gravitational-wave strain scales as 1/r, we restrict our
memory-effect formulas to first order in the gravita-
tional wave.

IV. VELOCITY MEMORY EFFECT FROM
COMPACT BINARY SOURCES

In this section we show how the nonlinear memory
contribution [Eq. (2)] from CBC sources induces a first-
order velocity memory effect in a pair of initially

nonstationary test masses, such as those that comprise
LISA. We discuss some implications of observation for the
velocity memory effect in LISA.

As discussed earlier in Sec. I A, the gravitational-wave
strain from CBCs can be thought of as a combination of
oscillatory and nonoscillatory modes. Since the hy,(?)
oscillatory mode from CBC sources has bounded support,
it contributes to the first-order displacement memory effect
only through terms that require an integration of the
oscillatory mode with respect to time. However, this
contribution is negligible since the area under h,,(t) for
a nonspinning circularized binary roughly averages to zero
over sufficiently many cycles. For simplicity, we set

h(ty) = h(ty) = 0 since we are concerned with changes
in the relative velocity and displacement, from 7, to 7. In
addition, the first-order term in the velocity memory effect,
proportional to the product of the initial separation and the
current value of the first derivative of the strain iz(tf),
vanishes for gravitational-wave radiation from CBCs after
the merger takes place in-band. We write the first-order
velocity and displacement memory effect equations for
CBC sources as a difference from their respective O(1)
Newtonian terms N, Ny, = x(ty) + x(10)T, y(ty) + y(t) T,
with an initial relative velocity of vy = /x>(ty) + ¥°(to),
and total integration time of T =ty —t,. After careful
evaluation we find,

u(ty) = \[382(1,) + 65%(1,) = 5 voh 0 (1y0). (27)

1
5X<tf) = x(tf) — NX = 5)CC ‘I‘ x(to) <§ ThTem(tf, l)

- / 7 pmem(y, z)dt> , (28)

)
. 1
3y(ty) = 3(17) = Ny = =55 = 30) (3 TR0

- [ bnar). (29)

Iy

The first-order velocity memory effect from CBCs in
Eq. (27), written as the magnitude of the change in velocity,
is sourced from a constant final nonzero memory strain
value h™™(t;,1) which results in a linearly diverging
relative separation between freely falling test masses that
comprise a detector. This first-order velocity memory effect
arises due to the nonvanishing of the integral in Eq. (2) for a
CBC system. This is in contrast to the velocity memory
effect in Eq. (23) and Eq. (24), which originated simply due
to the passage of a sandwich wave. We denote the constant
displacement memory effect in Eq. (28) and Eq. (29), as

064001-8



FIRST-ORDER VELOCITY MEMORY EFFECT FROM COMPACT ...

PHYS. REV. D 104, 064001 (2021)

predicted by [35], using 5x¢ and 5y©, where these terms are
a product of the initial separation and the final memory
strain value. The two newer contributions to the final
displacement memory effect are multiplied by the initial
velocity in Eq. (28) and Eq. (29), hence, vanish for particles
that are initially at rest. Above, Eq. (27) to (29) encompass
the after-zone motions of test masses, such as those that
comprise future space-based gravitational-wave detectors,
due to the nonlinear memory contribution from compact
binary sources.

We now give an order of magnitude estimate of the
relative separation induced by the first-order velocity
memory effect, between test masses that comprise LISA,
over the detector’s total observation duration. Consider the
scenario of a pair of test masses, that comprise a single arm
of the LISA detector and, moving with an initial zeroth
order relative velocity of O(m/s) due to orbital dynamical
motion of the spacecraft [44]. Since the velocity memory
effect induces a constant drift in separation between test
masses in the wave’s after zone, it will contribute to the
total path-length difference measured between the pair of
masses. This zero frequency component (DC) (f = 0) path-
length difference is on the order of O(voh™™T) m, where
T is the total integrated observation time. For a gravita-
tional-wave memory amplitude from a super massive
binary black hole merger between max{h™™} ~
[10717,10722] (see [25] for predicted rates of memory
amplitudes) and an observation duration of ten years, the
velocity memory effect will induce DC path-length
differences between a pair of spacecrafts, that are
O(10to 107*) nanometers. Formulating a practical method
to resolve this path-length difference, from known DC
displacement-noise contributions in LISA, is beyond the
current scope of this paper.

V. CONCLUSION

In this paper, we calculated the first-order velocity
memory effect from CBC sources and found that the
nonlinear memory strain, which remains at a constant
value after the wave has passed by, is also responsible
for a constant final velocity experienced by freely falling
test masses initially in motion, thereby generalizing the
historic results of [35,39—-41]. We showed that the velocity
memory effect from compact binary sources in LISA will
induce small DC path-length differences over the detector’s
lifetime. We expect these differences from the velocity
memory effect, to be orders of magnitude smaller than
other sources of DC displacement noise, however, we leave
a detailed calculation of this comparison for future work.
Our results suggest a novel, physical, prediction of general
relativity; freely-falling test masses will diverge linearly
with a constant velocity, proportional to the final value of

the nonlinear memory strain, in contrast to the constant
displacement of the Christodoulou memory effect.
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APPENDIX A: NONLINEAR HEREDITARY
MEMORY INTEGRAL

Given an anisotropic gravitational-wave energy flux, we
can represent the nonlinear memory strain at fixed distance
R away from a CBC source, in an arbitrary linearized
gauge, as (given in [55,56,38,36])

/ !
hij(1,Q°) = Q. (Al
/ /3 drdQ {1 — n’lN]] (A1)

We use spherical angular coordinates ¢, ¢, defined in the
source’s Cartesian coordinate frame (x', y’, z'). The angular
location of the observer on the sphere (6%, ¢*) centered with
respect to the source, is at a distance R away from the source.
The angular integral is taken over the solid angle
dQ' =sin(0')d0'd¢g’. Above, n'(6',¢') is defined as the
general unit radial vector directed from the source to dQ2’ with
components; 7’ = (cos @’ sin@,sin@ sin¢g’,cosd’). The
observer’s angular position is encoded in N (6*, ¢*) defined
as the unit line of sight vector drawn from the source to the
observer with components; N= (cos ¢p* sin 6%, sin 6* sin ¢p*,
cos 8%). Following the convention of [55,38] we set the
direction from the source to the observer along the source’s z’
axis so that the unit vector N = (0,0, 1). This simplifies the
dot product in the denominator as 1 —n''N, = 1 —cos#'.
We include a diagram of the orientation convention used to
derive the final memory strain in Fig. 2.

For a CBC source, the gravitational-wave energy flux is
defined as [56]

dE R%2c3

dE__ RS o,
2de ~ 1626 "0

Here, the complex valued (2, Q) = h(t,Q) — ih(1,Q) is
the gravitational-wave strain, where we have used short-

(A2)
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Earth

N(6", ")
n'(6',¢")
dq’

FIG. 2. This diagram summarizes the orientation convention
used to integrate over the solid angle in the memory equation. We
align the Earth along the CBC source’s 7’ axis. L is the direction
of angular momentum of the CBC and is perpendicular to the
plane of rotation.

hand notation to describe the real part by taking the
complex conjugate on the right-hand side so that the net
energy flux is real and always positive. The derivative is
with respect to time ¢. Gravitational waves can be decom-
posed onto a spin-two weighted spherical harmonic basis
(s = —=2,1, m) so that we can separate the time information
from the angular information,
h(1,Q) = Iy, () V15 (Q). (A3)

Including multiple higher harmonic spherical modes in the
memory integral, which enriches the phenomenology of the
memory strain, has been carried out in [56]; however, for
our calculation, using the dominant quadrupole (I =2,
m = |2|) mode as the primary driver of the energy flux is
sufficient. In actuality, the nonlinear memory part of the
outgoing gravitational-wave radiation contributes to the
overall energy flux, however, compared to the first-order
memory signal, this memory of memory has been shown to
be orders of magnitude smaller, and hence for our calcu-
lation negligible [56].

The (I = 2, m = £2) spin-weighted spherical harmonics
are given by [68],

3250.0) = 1 L1 £ eosope . (ag

Excluding higher-order mode contribution, the approxi-
mated gravitational-wave strain from the dominant quadru-
pole strain modes is

h(t.0.0) ~ oy () V50, §) + oo () V52(0.4). (AS)
To simplify our calculation, we consider nonspinning
equal-mass binaries, which allows us to relate the (I = 2,
m = £2) modes via the complex conjugate h,_, = h}, and
justifies the exclusion of higher-order modes in the energy
flux. This gives us the following expression for the
magnitude of the derivative of the gravitational-wave strain,
1% ~ (125 + W5 V?32) - (Y% + 13 )%37)". (A6)
Following the discussion of [68] and the considerations of
[74], after only including the terms that are non-negligible
averaged over one orbit, the magnitude of the derivative of
the strain becomes

. 5 .
|h(t,0)*> ~2 <6T> (cos* + 6 cos?d + 1)|hy(1)]>. (A7)

T

Note, the 6 used in the above equation should not be
confused with &, as 6 is the angle that the primary direction
of emission 7'(¢, ¢’) makes with the binary’s rotation axis
or angular momentum vector. Following the orientation
convention of [55], we can simplify the angular integral by

orienting the source’s angular momentum vector L to lie in
the x' — 7/ plane. Then, we can define the inclination angle

as the angle between L and the direction to the observer
(which we have chosen to be in the 7' direction). This
allows us to write the following equation relating the angle
0to1, &, ¢ as outlined in [55]
cos@ = sinisin@ cos ¢’ + cosicos@'. (A8)

(Note: we will concern ourselves only with circularized
binaries.) While the energy flux would normally depend on
the eccentricity, we have implicitly set that to zero.

The memory strain as a function of time and the
inclination angle now becomes

5 R [t .
hij(t,1) :T&PZ/_ |hoy (1) |*dt

x / (1 + 6c0s?0 + cos*d) [A};1dQ,  (A9)
s? '

where we define the tensor,

1,0
A nin;

U7 1 —cos®’ (A10)

Next, we calculate the plus and cross polarizations of the
memory strain near our detector. Before carrying out the
respective angular integrals, the angular integrand is
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simplified by TT projecting both the left and right-hand
sides of the memory strain Eq. (A9) above. We choose a set
of coordinate axes, defined at the location of our detector,
and orient them so that the line of sight vector N points
along the 7' axis. The TT projection on the right-hand side
acts solely on the tensor Aj; defined above. Using the
projection operator P;; = §;; — N;N; we can project an
arbitrary symmetric tensor B;; into the transverse and
longitudinal directions at the observer location by

1
BY = By — P\P!B,,,. (A12)

Then with these components, the transverse-traceless part is

B]T,;F = Pj.P;(”Blm - %ijP’”’B,m. (A13)

We now consider the case of a plane (or plane-projected)
wave traveling in the +z' direction so that all components
of the projection operator vanish except P;; = Py, = 1.
With this convention of the polarization basis, all the
longitudinal components vanish so that the plane wave
is purely transverse and traceless with polarization com-
ponents

b= T = —AI], (A14)

= WTT = AT, (A15)

Hence, to calculate the plus and cross contributions of the
memory strain we need to evaluate the following,

b = W) = — B i ()d
+= ll(t’l)_lzgn_zc |ho (1)|°dt

X / (14 6¢c0s?0 + cos*@)[A},|TTdQY,  (A16)
82
5 R [t .
hy =iz (t.1) = 128”26/_00 Iy (1) Pt
x / (1 + 6c0s?0 + cos*0)[A],]TTdQ’.  (A17)
SZ

Using the TT projection operators we can evaluate,

1 1
AT = E(A” —Ayp) = 5(1 +cos@)cos2¢’, (Al8)
1
AL =Ap, 25(1 + cos @) sin2¢’. (A19)
Note, AT = —AllT = and ALY = AZIT since Aj; = A/,
Now we can compute the angular integrals,
1
F.(1)= E/ (1 4 6¢0s%0 + cos*0) (1 + cos @) cos 2¢'dQ’
52
2
= %sinzz(ﬂ + cos?1), (A20)
1
F.(1) = E/ (1 + 60520 + cos*@) (1 + cos @) sin 2¢'dQ’
82
=0. (A21)

All together, we can calculate both the polarizations for
the memory strain,

1 R t .
Jmem (7 ) = @?sinzz(w + coszt)/_ |ho (1)|2dt,

(A22)

with h, =0 in this choice of polarization and basis
orientation. This result is in agreement with [37,75,76].

APPENDIX B: COORDINATE
TRANSFORMATIONS BETWEEN PLANE-WAVE
SPACETIMES

We provide a summary of coordinate transformations
between the TT gauge, Baldwin-Jeffery-Rosen coordinates,
Brinkmann coordinates, and a locally Lorentz frame
in Fig. 3.
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FIG. 3.

&

Brinkmann
(u, v, X, y)

A schematic diagram showing the coordinate transformations between the CBCs source frame and the following set of plane-

wave spacetimes: Brinkmann, BJR, Local Lorentz, and transverse traceless. The explicit coordinate transformations are given in the four
boxes to the upper left. Dashed lines correspond to approximate transformations, solid lines correspond to exact transformations and the
dotted line corresponds to a transformation which can be characterized exactly, but in practice, cannot be implemented exactly. This
diagram helps visualize the rich coordinate relations between plane-wave spacetimes.
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