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Exotic electromagnetic energy injection in the early Universe may alter cosmological recombination,
and ultimately cosmic microwave background (CMB) anisotropies. Moreover, if energy injection is
inhomogeneous, it may induce a spatially varying ionization fraction, and non-Gaussianity in the CMB.
The observability of these signals, however, is contingent upon how far the injected particles propagate and
deposit their energy into the primordial plasma, relative to the characteristic scale of energy injection
fluctuations. In this study we inspect the spatial properties of energy deposition and perturbed
recombination resulting from an inhomogeneous energy injection of sub-10 MeV photons, relevant to
accreting primordial black holes (PBHs). We develop a novel Monte Carlo radiation transport code
accounting for all relevant photon interactions in this energy range, and including secondary electron
energy deposition efficiency through a new analytic approximation. For a specified injected photon
spectrum, the code outputs an injection-to-deposition Green’s function depending on time and distance
from the injection point. Combining this output with a linearized solution of the perturbed recombination
problem, we derive time- and scale-dependent deposition-to-ionization Green’s functions. We apply this
general framework to accreting PBHs, whose luminosity is strongly spatially modulated by supersonic
relative velocities between cold dark matter and baryons. We find that the resulting spatial fluctuations of
the free-electron fraction are of the same magnitude as its mean deviation from standard recombination,
from which current CMB power spectra constraints are derived. This work suggests that the sensitivity to
accreting PBHs might be substantially improved by propagating these inhomogeneities to CMB anisotropy
power spectra and non-Gaussian statistics, which we study in subsequent papers.
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I. INTRODUCTION

An alluring feature of dark matter (DM) candidates is
their possible injection of electromagnetically interacting
particles. Part of this injected energy is eventually deposited
in the form of extra heating, excitation, and importantly,
ionization of the primordial plasma around cosmological
recombination [1,2]. This changes the Thomson visibility
function and diffusion damping scale, and ultimately the
angular power spectra of cosmic microwave background
(CMB) anisotropies observed today. This effect is at the
basis of CMB anisotropy constraints on annihilating or
decaying DM particles [3], as well as evaporating [4,5] or
accreting primordial black holes (PBHs) [6–8].
A key step of the underlying calculation is to convert

energy injection into energy deposition. This has been the
subject of extensive studies in the context of homogeneous
energy injection [9–14], culminating in publicly available
code packages [13,14] that project a broad class of
homogeneous energy injections into modified cosmologi-
cal ionization histories. Energy injection, however, need
not be spatially uniform. For instance, DM density per-
turbations around recombination would imply an

inhomogeneous energy injection rate if DM annihilates
or decays [15], or if part of it is made of evaporating or
accreting PBHs. Another example, which provided the
motivation for this work, is the highly nonuniform energy
injection from accreting PBHs. As we describe in more
detail below, this is due to the modulation of their accretion
rate by supersonic relative velocities [16], as illustrated
vividly in Fig. 1. Beyond these specific examples, there is
no reason to expect that exotic energy injection in the early
Universe should be spatially uniform in general.
An interesting consequence of inhomogeneous energy

injection is that it could imply spatial perturbations in the
ionization history. In turn, inhomogeneous recombination
gives rise to non-Gaussian signatures in CMB anisotropies
[15,17,18], which are qualitatively different from the
change of the CMB power spectra resulting from homo-
geneous perturbations to recombination, and could be
significantly more constraining. In order to quantify these
effects accurately, the first step is to understand the spatial
aspect of energy deposition: if it is highly nonlocal, it may
partially smear out inhomogeneities in the injected power,
thus partially wash out non-Gaussian signatures in CMB
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anisotropies (see the Appendix of Ref. [15] for a discus-
sion). A detailed inspection on how electromagnetically
interacting particles deposit their energy spatially on
cosmological scales has, to the authors’ knowledge, yet
to be published. This work lays out the initial steps in such
a study, with the eventual goal of translating arbitrary
spatial variations of energy injection into an inhomo-
geneous recombination history, and, ultimately, non-
Gaussian CMB anisotropies.
As a first step in this program, we tackle the problem of

injection of sub-10 MeV photons, which, among other
possible applications, is relevant to accreting PBHs. In this
energy regime, photons are subject only to Compton
scattering off bound and unbound electrons and photoioni-
zation of neutral hydrogen and helium. The timescales for
these photon interactions can be comparable to or longer
than a Hubble time [9], and we thus follow photons with a
temporally and spatially dependent radiative transport
code. In contrast, the energetic electrons resulting from
these interactions lose their energy on a short timescale
through heating, collisional excitations, ionizations, and
inverse Compton scattering (ICS) of CMB photons [13,14].
For sub-10 MeV secondary electrons, ICS results in
upscattered photons with low enough energies that they
very quickly deposit it into the plasma, unless they are less
energetic than 10.2 eV. In the latter case, their energy is
effectively lost, only contributing to spectral distortions of
the CMB [13]. We develop a new and highly accurate
analytic estimate of this loss fraction, allowing us to simply
account for energy deposition by secondary electrons, and
include it in our radiative transport code. Specializing to
sub-10MeV injected photons therefore involves a relatively
simple algorithmic structure (e.g., it is not necessary to
reinject photons resulting from ICS events back into the
radiative transfer code), allowing us to focus our efforts on

checking the robustness of the code, from which we extract
novel spatial signatures of energy deposition. In particular,
we will see that for photon energies E≳MeV, the spatial
dependence of energy deposition is very different from the
Gaussian distribution one may expect from a simple
diffusion length estimate [15].
As long as the effect of nonstandard energy injection on

the thermal and ionization history is sufficiently small, the
energy deposition rate is linearly related to the energy
injection rate. Mathematically, these rates are connected
through a time- and scale-dependent injection-to-deposi-
tion Green’s function, which we extract from our radiative
transport simulations for a given photon injection spectrum.
Under the same perturbative assumption, the change in
ionization fraction is linearly related to the energy injection
rate, which is described mathematically by a deposition-to-
ionization Green’s function. The convolution of these two
functions leads to the injection-to-ionization Green’s func-
tion. This tool is one of the main outcomes of this work: for
a given injected spectrum, it serves to compute the time and
scale dependence of ionization perturbations in response to
any time- and scale-dependent energy injection history.
We apply this formalism to the specific scenario of

energy injection by accreting PBHs, which are expected to
radiate photons up to energies ∼10 MeV [7,19]. In the
mass range of ∼1–104 M⊙, the luminosity of accreting
PBHs is large enough that it would leave observable
signatures on the thermal history of the Universe, even
if PBHs make a subdominant fraction of the DM. In fact,
one of the strongest constraints on PBH abundance in this
mass range results from their effect on the mean ionization
history, thus CMB anisotropy power spectra [6–8,20]. In
the simple Bondi accretion model [21], the PBH accretion
rate has a strong dependence on supersonic relative
velocities vbc of baryons and DM, _M ∝ ðv2bc þ c2sÞ−3=2,

FIG. 1. 300 Mpc × 300 Mpc slice of a realization of the relative velocity field vbc (left), and the corresponding estimated PBH
luminosity normalized by its maximum value (right), at z ¼ 1060. At this redshift, the rms relative velocity is about 5 times the speed of
sound cs. As a consequence, the PBH luminosity L ∝ ðc2s þ v2bcÞ−3 is highly inhomogeneous, with most of the radiation concentrated in
small regions with subsonic relative velocities. Figure credit goes to Julian Muñoz.

TREY W. JENSEN and YACINE ALI-HAÏMOUD PHYS. REV. D 104, 063534 (2021)

063534-2



where cs is the sound speed. This dependence propagates to
the PBH luminosity, thus to the energy injection rate. This
implies that, on top of the spatially averaged effect, from
which the most conservative CMB anisotropy limits are
derived [7], there ought to be order-unity inhomogeneities
in the energy injection rate. This is to be contrasted with the
small fluctuations in DM density modulating the energy
injected from their annihilation products, studied in
Ref. [15]. The characteristic length scale of PBH luminos-
ity inhomogeneities is set by the scale over which baryon-
DM relative velocity fluctuate, of order ∼102 Mpc [22].
Convolving the injected power with our injection-to-ion-
ization Green’s function, we are able to compute the spatial
perturbations to the recombination history. Importantly, we
find that the finite spatial extent of energy deposition only
partially washes out inhomogeneities in the modification to
the ionization fraction, which retains order-unity relative
spatial fluctuations. This result bodes well for non-
Gaussian signatures in CMB anisotropies, which we
calculate in follow-up publications.
The remainder of this paper is organized as follows. In

Sec. II, we start by introducing the Green’s function
formalism used throughout this paper. We then review
the physical processes relevant to sub-10 MeV injected
photons, and describe our Monte Carlo radiation transport
simulations. In Sec. III we convert the energy deposited
into an inhomogeneous recombination history. We apply
our results to accreting PBHs in Sec. IV. We conclude and
outline future work in Sec. V. For completeness, we
explicitly list all the cross sections relevant to this work
in Appendix A. Appendix B describes a simple semi-
analytic approximation for the energy deposition Green’s
function, which we use as a check for our simulations. We
inspect whether the perturbed free-electron response due to
accreting PBHs is linear in Appendix C. Throughout this
paper we adopt geometric units GNewt ¼ c ¼ 1.

II. ENERGY DEPOSITION FROM INJECTED
SUB-10 MEV PHOTONS

A. Injection-to-deposition Green’s function

We denote the rate of energy injection per baryon
(specifically, per hydrogen nucleus), per logarithmic scale
factor interval, per photon energy interval, by

dϵinj
dEγ

ða; rÞ ¼ ϵinjða; rÞΨðEγ; a; rÞ; ð1Þ

where ϵinjða; rÞ is the total energy injected per baryon per
logarithmic scale factor interval, and ΨðEγ; a; rÞ is the
injected photon spectrum, normalized such thatR
dEγΨðEγÞ ¼ 1. Similarly, we denote by ϵdepða; rÞ the

total energy deposited into the plasma, per baryon, per
logarithmic scale factor interval. The quantities ϵinj;dep are
related to the volumetric rates of energy injection/

deposition _ρinj;dep through ϵinj;dep ¼ _ρinj;dep=HnH, where
nH is the total number density of hydrogen (both neutral
and ionized).
Assuming the thermal and ionization state of the gas is

close to its standard history, the deposited power is linearly
related to the injected power through a Green’s function.
Specifically, we define the energy-dependent dimension-
less injection-to-deposition Green’s function GEγ

ðad; ai; rÞ
such that

ϵdepðad; r0Þ ¼
ZZZ

d ln ai
d3r
4πr3

dEγ

×GEγ
ðad; ai; rÞ

dϵinj
dEγ

ðai; r0 þ rÞ: ð2Þ

Note that homogeneity and isotropy of the background
plasma ensures that the Green’s function only depends on
the comoving distance r from the injection point (rather
than on the vector r).
In the case where the photon spectrum is spatially

uniform, we may integrate out the energy dependence,
and define a Green’s function for the specific (time
dependent) spectrum ΨðEγ; aÞ,

Ginj
depðad; ai; rjΨÞ≡

Z
dEγΨðEγ; aiÞGEγ

ðad; ai; rÞ; ð3Þ

such that

ϵdepðad; r0Þ ¼
ZZ

d ln ai
d3r
4πr3

×Ginj
depðad; ai; rjΨÞϵinjðai; r0 þ rÞ: ð4Þ

We define the spatially averaged Green’s function,

Ḡinj
depðad; aijΨÞ≡

Z
d ln rGinj

depðad; ai; rjΨÞ; ð5Þ

and similarly define ḠEγ
ðad; aiÞ. This Green’s function

connects the spatial average of the energy deposition rate
ϵ̄dep to the spatial average of the energy injection rate ϵ̄inj: in
the case of a homogeneous injection spectrum, we get

ϵ̄depðadÞ ¼
Z

d ln aiḠ
inj
depðad; aijΨÞϵ̄injðaiÞ: ð6Þ

Lastly, we define the dimensionless Fourier transform of
the Green’s function,

Ginj
depðad; ai; kjΨÞ≡

Z
d3r

Ginj
depðad; ai; rjΨÞ

4πr3
sinðkrÞ
kr

¼
Z

d ln rGinj
depðad; ai; rjΨÞ

sinðkrÞ
kr

; ð7Þ
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and similarly for GEγ
ðad; ai; kÞ. This allows us to connect

the Fourier components of the energy deposition rate to
those of the energy injection rate; for a spatially uniform
spectrum Ψ (but inhomogeneous total injection rate ϵinj),
we have

ϵdepðad; kÞ ¼
Z

d ln aiG
inj
depðad; ai; kjΨÞϵinjðai; kÞ: ð8Þ

B. Interactions processes for sub-10 MeV photons and
electrons

As photons propagate in the expanding Universe, they
lose energy through redshifting and interacting with the
plasma. At redshifts of interest, sub-10 MeV photons are
only subject to two interactions: Compton scattering and
photoionization [9].
Sufficiently high energy photons Compton scatter with

both free and bound electrons. At energies Eγ ≲ ℏ=a0 ¼
αme ≈ 4 keV, where a0 is the Bohr radius, Compton
scattering with bound electrons is suppressed (see e.g.,
Ref. [23]). Given that at these low energies, photoionization
is the dominant source of energy loss for photons, for
simplicity, and at no loss of accuracy, we may assume that
photons scatter with bound and free electrons at all energies,
with the unsuppressed Compton cross section.
In addition, photons may photoionize hydrogen atoms if

their energy is above EI ¼ 13.6 eV and helium atoms if
their energy is above 24.6 eV. We consider redshifts
z≲ 1800, at which helium is fully recombined [24], and
thus need not account for photoionization of singly ionized
helium.
Upon Compton scattering, a photon with initial energy

Eγ ≲ 10 MeV transfers part of its energy to a secondary
electron, with energyEe ≲ 10 MeV. This energy is typically
much greater than atomic binding energies, thus results in an
ionization event if the electronwas initially bound. In the case
of photoionization events, the photon terminates and deposits
essentially all of its energy (minus the binding energy) into
the freed electron. In both instances, the secondary electron
then deposits all of its energy on a short timescale, as we
describe below. Given that atomic binding energies are much
less than the typical energies of secondary electrons, we can
neglect the small amount of energy directly deposited by the
initial photon in photoionization and Compton scattering
events off bound electrons.
Energetic electrons are subject to four possible inter-

actions in the early Universe: they may collisionally ionize
or excite a neutral hydrogen or helium atom, transfer part of
their kinetic energy to (i.e., heat up) another electron, or
inverse Compton scatter (ICS) a CMB photon. Following
either one of these interactions, the outgoing electron (or
electrons, in the case of collisional ionization) promptly
interacts again through either one of the four channels, and
so on, until all of the initial electron’s kinetic energy is used

up. The timescales for these interactions are several orders
of magnitude shorter than the Hubble timescale at the
epochs of interest, so that the loss of energy of the initial
electron can be approximated as effectively instantaneous
[13,14], as well as spatially local. The end result is that a
fraction of the initial electron’s energy is eventually
deposited into ionization, excitation and heating, and the
remainder ends up in photons produced by ICS.
In principle, the photons resulting from ICS should be

added to and evolved alongside the primary photon
spectrum. However, for the electron energies of interest
Ee ≲ 10 MeV, the photons produced in ICS have energy
E0
γ ≲ 4ðEe=meÞ2Tγ ∼ 500 eVðz=103ÞðEe=10 MeVÞ2,

much lower than the primary photons’ energies. At these
low energies, the fate of upscattered photons is simple to
determine. Photons with energies 10.2 eV < Eγ ≲ 500 eV
interact with the plasma on a timescale much shorter than
the Hubble time [9], by photoionizing or exciting a neutral
atom; the subsequently produced electrons can themselves
ionize, excite or heat the plasma, but have too little energy
to efficiently inverse Compton scatter CMB photons.
Therefore, upscattered photons with energies 10.2 eV <
Eγ ≲ 500 eV promptly deposit their energy in the form of
ionization, excitation and heating. In contrast, photons with
energies Eγ < 10.2 eV no longer interact with the plasma.
This last channel is thus taken effectively as an energy sink,
as far as the ionization and thermal history is concerned
(but it can lead to CMB spectral distortions, which we do
not consider in this work) [13].
In summary, we see that an electron with initial energy

Ee ≲ 10 MeV quickly deposits its energy into four chan-
nels: ionization, excitation, heating and noninteracting sub-
10.2 eV photons, which constitutes a sink. Given an initial
electron energy Ee, we define FsinkðEeÞ to be the fraction of
energy that goes into the latter channel. Its complement
FdepðEeÞ≡ 1 − FsinkðEeÞ is therefore the fraction of energy
that is efficiently deposited into the plasma.

C. Sub-10.2 eV ICS energy sink fraction
for secondary electrons

We now turn to computing the fraction FsinkðEeÞ of an
electron’s energy that is lost to sub-10.2 eV ICS photons.
Here we derive a simple yet remarkably accurate analytic
solution, matching the numerical results of Ref. [14].
If an electron with energy Ee collisionally ionizes a

neutral atom, the end state consists of a free proton and two
free electrons with energies E0

e ≥ E00
e , such that E0

e þ E00
e ¼

Ee − EI . In principle one should keep track of both
electrons following an ionization event. However, the
differential ionization cross section dσion=dE0

e is peaked
at jEe − E0

ej ∼ EI, i.e., E00
e ∼ EI ≪ E0

e (see Appendix A).
Therefore, in practice we may neglect the lower-energy
electron. The differential rate of ionization events per final
electron energy interval is therefore
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dΓionðEeÞ
dE0

e
¼ nat

dσionðEeÞ
dE0

e
; ð9Þ

where nat is the abundance of the relevant atomic species:
nat ¼ ð1 − xeÞnH for hydrogen, where xe is the ionization
fraction, and nat ¼ nHe for neutral helium.
If an electron has energy greater than the atomic

excitation energy Eexc, it may collisionally excite a neutral
hydrogen or helium atom. For simplicity, we only consider
collisional excitation from the ground state to the first
excited state, with Eexc ¼ 10.2 and 21.2 eV for hydrogen
and helium, respectively. The corresponding differential
rate takes the form

dΓexcðEeÞ
dE0

e
¼ natσexcðEeÞδðE0

e þ Eexc − EeÞ; ð10Þ

where σexcðEeÞ is the collisional excitation cross section,
provided explicitly in Appendix A.
Similarly, we denote by dΓheatðEeÞ=dE0

e the differential
rate at which an electron with energy Ee interacts with the
plasma in “heating events,” producing a final electron with
energy E0

e. We will see shortly that the relevant quantity of
interest is the heating rate, given in Appendix A, rather than
this differential interaction rate. We only need the latter for
intermediate calculations, and will assume that it is sharply
peaked at E0

e ≈ Ee [25].
Lastly, let us consider ICS ofCMBphotons. The final state

of an ICS event is an electron with energy E0
e and an

upscattered photon with energy E0
γ, such that E0

e þ E0
γ ¼

Ee þ Eγ;cmb > Ee. The total differential rate of ICS events is
given by converting the doubly differential rate provided in
Appendix A:

dΓICSðEeÞ
dE0

e
¼

Z
dE0

γ
d2ΓICSðEeÞ
dE0

edE0
γ

: ð11Þ

As discussed earlier, upscattered photons with energy E0
γ <

Eexc ¼ 10.2 eV no longer interact and are effectively an
energy sink. We may define the corresponding differential
rate by

dΓsinkðEeÞ
dE0

e
¼

Z
Eexc

dE0
γ
d2ΓICSðEeÞ
dE0

edE0
γ

; ð12Þ

which is nonzero if E0
e > Ee − Eexc.

We denote by ΓtotðEeÞ the total rate of interaction of the
original electron:

ΓtotðEeÞ ¼
Z

dE0
e

�
dΓionðEeÞ

dE0
e

þ dΓexcðEeÞ
dE0

e

þ dΓheatðEeÞ
dE0

e
þ dΓICSðEeÞ

dE0
e

�
: ð13Þ

We are now in a position to compute the fraction FsinkðEeÞ
of the initial electron energy Ee going into sub-10.2 eV
photons. Assuming all the processes at play occur on a
timescale much shorter than the expansion time, FsinkðEeÞ
satisfies the following integral equation:

FsinkðEeÞ ¼
1

ΓtotðEeÞ
Z

dE0
e
dΓsinkðEeÞ

dE0
e

Ee − E0
e

Ee

þ 1

ΓtotðEeÞ
X
c

Z
dE0

e
dΓcðEeÞ
dE0

e

E0
e

Ee
FsinkðE0

eÞ:

ð14Þ

The first term in this equation accounts for the fraction of
the electron’s energy that directly goes into the sink
channel, and the second term accounts for the indirect
sink deposition, after first interacting through any of the
channels c ¼ ionization, excitation, heat, and ICS.
The discretized version of Eq. (14) was solved numeri-

cally in Ref. [14]. Here we propose a simple approximation
that dramatically simplifies the evaluation of FsinkðEeÞ, yet
produces very accurate results. We consider electrons with
energies Ee ≫ EI . In that case, in all the processes
considered, electrons only lose a small fraction of their
energy upon interacting. Mathematically, the rates
dΓcðEeÞ=dE0

e are all peaked at E0
e ≈ Ee, with a width

much smaller than Ee. Assuming that FsinkðEeÞ is a smooth
function of Ee (which we confirm a posteriori), inside the
integral we may approximate

E0
eFsinkðE0

eÞ ≈ EeFsinkðEeÞ − ðEe − E0
eÞ

d
dEe

ðEeFsinkðEeÞÞ:

ð15Þ

With this approximation, Eq. (14) becomes a simple first-
order ordinary differential equation,

d
dEe

ðEeFsinkðEeÞÞ ≈
_EsinkðEeÞP
c
_EcðEeÞ

; ð16Þ

where _EcðEeÞ is the rate of direct energy deposition through
channel c:

_EcðEeÞ≡
Z

dE0
e
dΓcðEeÞ
dE0

e
ðEe − E0

eÞ: ð17Þ

Equation (16) has the explicit integral solution

FsinkðEeÞ ¼
1

Ee

Z
Ee

0

dE0
e

_EsinkðE0
eÞP

c
_EcðE0

eÞ
: ð18Þ

We show our analytic solution for 1 − FsinkðEeÞ in
Fig. 2, and compare it to the numerical solution of
Ref. [14]. The sharp feature in the result of Ref. [14] is
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due to their assumption that electrons lose all their energy
via atomic processes at Ee < 3 keV (see also [13]),
implying Fsink ¼ 0 for Ee < 3 keV. When imposing this
boundary condition for comparison, we find that our
approximation agrees remarkably well with the results of
Ref. [14] across all redshifts and electron energies. For our
computations we make no such cutoff and simply use
Eq. (18), which gives a smooth transition FsinkðEeÞ → 0 at
low energies, differing somewhat from (and likely more
accurate than) that of Ref. [14] at electron ener-
gies Ee ≲ 10 keV.
Let us note that our calculation for the fractionFsinkðEeÞ of

electron energy deposited into sub-10.2 photons is accurate
across all energies Ee ≫ EI (as can be seen from the
agreement with the numerical results of Ref. [14] up to
Ee ¼ GeV). However, its complement 1 − FsinkðEeÞ can be
interpreted as the fraction of energy efficiently deposited into
ionizations, excitations and heating only for Ee ≲ 10 MeV.
For higher electron energies, part of the energy not ending in
the sub-10.2 eV sink goes into higher-energy upscattered
photons which do not necessarily interact immediately with
the plasma, and would have to be followed numerically
alongside the primary injected photons.
Let us also remark that our simple analytic approximation

for FsinkðEeÞ can be easily generalized to the fraction of
electron energy deposited into ionizations, excitations, heat-
ing and ICS photons. For the former three channels, the
relevant fractions FcðEeÞ satisfy Eq. (18), with the sub-
stitution _EsinkðE0

eÞ → _EcðE0
eÞ in the numerator. For ICS

photons, one can define a differential fraction of energy
deposited into photons, per photon energy interval,
dFICSðEeÞ=dE0

γ , satisfying Eq. (18), with the substitution
_EsinkðE0

eÞ → d _EICSðE0
eÞ=dE0

γ in the numerator, where the
latter is defined as in Eq. (17), with dΓcðEeÞ=dE0

e →
d2ΓICSðEeÞ=dE0

edE0
γ.

D. Radiation transport simulations

While at z ≫ 103 photon interactions occur on a time-
scale much shorter than the Hubble time, it is not the case
around and after recombination, at z≲ 103. Therefore, one
must study the time-dependent evolution of the photon
spectrum, and we do so with a Monte Carlo radiative
transport simulation, following the temporal and spatial
evolution of sub-10 MeV photons.
For a given time-dependent injected photon spectrum

ΨðEγ; zÞ [such that
R
dEγΨðEγ; zÞ ¼ 1], we run a separate

simulation for every injection redshift zi. We assume a
matter- and radiation-dominated Universe (i.e., neglect
dark energy), with cosmological parameters consistent
with the Planck 2018 results [3]. We assume a standard
ionization history computed with HYREC [26,27], i.e., we
do not account for the feedback of a modified ionization
history on the energy deposition efficiency.

1. Initialization

We initialize the simulation at redshift zi with N ¼ 106

photons, all located at the origin of coordinates r ¼ 0. The
photon energies are distributed according to dN=dEγ ¼
EtotΨðEγ; zinjÞ=Eγ , where Etot ¼ NðR dEγΨðEγÞ=EγÞ−1 is
the total injected energy.

2. Quantities evolved

In the course of a simulation, we keep track of four
phase-space coordinates for each of the N photons, namely
their energy Eγ and three-dimensional comoving vector to
the origin r⃗γ. Note that we do not store these quantities as a
function of redshift, but simply update them at each time
step. Since the photons do not interact with one another, we
may use a different coordinate system for each photon, and
choose it such that, at any given time, the photon’s direction
of propagation is along the z axis.

3. Time step

We take logarithmic time steps in scale factor d ln a, no
larger than 0.0025, and such that the probability of any
photon to either Compton scatter or photoionize a hydrogen
or helium atom is at most 0.005.

4. Free-streaming step

We account for cosmological redshifting by updating
each photon’s energy to Eγ ≔ Eγe−d ln a. We update each
photon’s position by freely propagating it from its position

FIG. 2. Total fraction of an electron’s energy Ee that does not
end in sub-10.2 eV photons. For electron energies Ee ≲ 10 MeV
of interest in this paper, this corresponds to the fraction of energy
efficiently deposited into the plasma in the form of ionizations,
heating and excitations. Solid lines show our analytic approxi-
mation Eq. (18) and dashed black lines are the numerical results
from Ref. [14]. The semitransparent lines are obtained with our
approximation, but imposing a sharp boundary condition
FsinkðEe < 3 keVÞ ¼ 0, as is done in Ref. [14], and showing
that this sharp cutoff is the main source of difference between our
result and that of Ref. [14] at Ee ≲ 10 keV. Otherwise, we find a
remarkable agreement at all energies and redshifts. We use the
solid lines with no energy cutoff in this paper.
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at the previous time step along the current direction of
propagation ẑ, i.e., r⃗γ ≔ r⃗γ þ ðd ln a=aHÞẑ.

5. Interaction step

For each photon, we compute the probability of photo-
ionizing a hydrogen or helium atom, and of Compton
scattering during d ln a. Explicitly, for a photon of energy
Eγ , the probability for each process X is given by

PXðEγÞ ¼ nXσXðEγÞ
d ln a
HðaÞ ; ð19Þ

where the relevant cross sections are given in Appendix A,
and nX is the number density of scatterers relevant to
process X—neutral hydrogen or helium abundance for
photoionization, total abundance of free and bound elec-
trons for Compton scattering.
We draw a first random number for each photon,

uniformly distributed in (0, 1). If this number is less than
Pion;HðEγÞ, the photon photoionizes a hydrogen atom,
leading to an electron of energy Ee ¼ Eγ − 13.6 eV. The
original photon is then terminated. We reiterate this
procedure with the remaining photons for helium photo-
ionization. If a photon photoionizes a neutral helium atom,
it is terminated and leads to an electron of energy
Ee ¼ Eγ − 24.6 eV.
With the same procedure, we determine whether each

remaining photon Compton scatters. If so, we sample the
polar angle θ (with respect to the propagation direction)
into which the photon scatters and resulting final energy E0

γ

from Eqs. (A1) and (A2), and uniformly sample the
azimuthal angle ϕ in ½0; 2πÞ. This process results in an
electron with energy Ee ¼ Eγ − E0

γ. We then update the
photon’s energy Eγ ≔ E0

γ, and rotate the photon’s coor-
dinate system such that the new direction of propagation is
along the z direction; explicitly, we update its spatial
coordinates r⃗γ ≔ Rðθ;ϕÞ · r⃗γ , with the rotation matrix

Rðθ;ϕÞ≡
0
B@

cos θ cosϕ cos θ sinϕ − sin θ

− sinϕ cosϕ 0

sin θ cosϕ sin θ sinϕ cos θ

1
CA: ð20Þ

At the end of each time step, we thus have an updated table
of photon energies and position vectors, for photons that
have not been terminated. Moreover, for each photon that
interacted during the time step, we have extracted the
energy Ee of the secondary electron produced in the
interaction.

6. Maintaining a large photon sample

As a simulation progresses, photons lose energy to
redshifting and Compton scattering, and the gas is increas-
ingly neutral. As a consequence, photons are increasingly

likely to be terminated in photoionization events. In order
to maintain low statistical errors, we duplicate the remain-
ing photons every time their number decreases by a factor
of 2. This procedure is equivalent to having initialized the
simulation with twice the original photon number, and we
therefore update Etot → 2 × Etot every time we duplicate
photons. Depending on the injection energy and redshift,
this duplication can happen up to Oð10Þ times.

7. Simulation outputs

For a given photon injection spectrum Ψ, the end results
of each simulation (with initial scale factor ai) is a two-
dimensional table of the injection-to-deposition Green’s
function Ginj

depðad; ai; rkÞ, in predetermined bins in deposi-
tion scale factor ad and comoving distance from the origin
rk. The scale factor bins are logarithmically distributed, in
(6.6 × 10−4, 0.020) with bin width Δ ln a ¼ 0.005 (this is
fixed and not to be confused with the adaptive time step
d ln a). The radial distance bins are logarithmically dis-
tributed in (1, 103) Mpc with bin width Δ ln r ¼ 0.05; we
also include a single bin for 0 < r < 1 Mpc and a single
final bin for r > 103 Mpc. The Green’s function table
Ginj

depðad; ai; rkÞ is initialized to zero; at each time step in the
simulation, if the scale factor a falls within the dth bin
ðad − Δ ln a=2; ad þ Δ ln a=2Þ, the relevant table row is
incremented by

Ginj
depðad; ai; rkÞþ ¼

P
frγ in k-th bingEeFdepðEeÞ
EtotΔ ln aΔ ln r

; ð21Þ

where the sum goes over all photons that have interacted
during the time step, and the fraction FdepðEeÞ of the
secondary electron’s energy efficiently deposited was
described in Sec. II C. This numerical Green’s function
matches our formal definition (4). This can be checked
explicitly by inserting the simulation’s input, correspond-
ing to ϵinjða; rÞ ¼ Etotδ

3ðrÞδðln a − ln aiÞ=n0H, where n0H is
the comoving baryon density, into Eq. (4).

8. Convergence

To check convergence with respect to the number of
injected photons, time step length, and bin resolution, we
have run a Dirac-delta photon injection spectrum simu-
lation with 60 times as many photons (Nγ ¼ 60 × 106), half
the maximum logarithmic time step (d ln a no larger than
0.00125), and double the radial and temporal bin resolution
(Δ ln r ¼ 0.025, Δ ln a ¼ 0.0025). We find that, although
there is less noise in the real-space output Eq. (21),
computing the Fourier transformed Green’s function
defined in Eq. (8) produced indistinguishable results. In
other words, our simulations produce well-converged large-
scale Fourier-space Green’s functions, of interest here.
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Note that we do not keep track of the energy deposited
directly into photoionizations, as it is small relative to the
energies of the secondary electron produced in photoioni-
zation events, of which we do keep track. This neglect is
moreover consistent with our Taylor-expansion approxi-
mation for FdepðEeÞ, which breaks down near the ionization
threshold. These approximations become inaccurate for
sub-keV photons, for which the neglected atomic binding
energy exceeds a percent of the energy deposited. For
injected photons with energies below a few keV, the
timescale for photoionization is much shorter than the
Hubble time even at z ∼ 100, and thus these photons could
be treated as depositing energy effectively instantaneously.
The comoving mean-free path for helium photoionization
is lmfp ≈ 4 Mpcð102=zÞ2ðEγ=keVÞ3.3, implying that energy
deposition can be approximated as spatially on the spot at
z≳ 102, for scales larger than a few Mpc. Our treatment
would therefore have to be improved if one is interested in
sub-keV photon injection at redshifts z≲ 102, relevant e.g.,
for 21-cm fluctuations. Our main focus is on photons
injected at z ≫ 102, with initial energies well above a keV,
and whose vast majority photoionize well before reaching a
keV. We thus expect our neglect of photoionization
energies to be very accurate for our purposes.

E. Results

1. Spatially averaged Green’s function: Cross-check
against existing results and analytic solutions

As a cross-check of our numerical code, we extract the
spatially averaged Green’s function for a Dirac spectrum of
injected photon energies, i.e., Ḡinj

dep ¼ ḠEγ
. The most

sophisticated numerical computations of ḠEγ
are provided

in Refs. [13,14], and simple approximations are provided in
Refs. [7,15]. In what follows, we compare the results from
our Monte Carlo radiation transport simulations with
existing results and a new analytic approximation we
develop in Appendix B.
First, we consider a simplified problem: only accounting

for Compton scattering, neglecting photoionizations, and
assuming FdepðEÞ ¼ 1, i.e., full efficiency of secondary
electron energy deposition. We derive a simple semian-
alytic approximation for the corresponding Green’s func-
tion in Appendix B, generalizing the result of Ref. [7]. The
final result is

Ḡanalytic
Eγ

ðad; aiÞ ¼
_ECðad; Etrjðad;Eγ; aiÞÞ

EγHðadÞ
; ð22Þ

where _ECða; EÞ is the mean rate of energy loss due to
Compton scattering defined explicitly in Eq. (B3), and
Etrjða;Eγ; aiÞ is the energy trajectory of a photon at scale
factor a, subject to redshifting and to the mean rate of energy

loss toCompton scattering.That is,we solve _Etrj ¼ −HEtrj −
_ECða; EtrjÞ with initial conditions EtrjðaiÞ ¼ Eγ , where Eγ is
the photon’s initial injection energy. In other words, Eq. (22)
is the normalized instantaneous energy loss of photons to
Compton scattering at scale factor ad, assuming they have
followed a “mean” energy trajectoryEtrj since their injection
at ai.
In Fig. 3, we compare the semianalytic result (22) to our

numerical Green’s function obtained from Compton-scat-
tering-only simulations, for initial photon energies
Eγ ¼ 0.1, 1, and 10 MeV injected at zi ¼ 1300. It can
be seen that the two agree remarkably well for injected
energies Eγ ¼ 0.1 and 1 MeV, giving us confidence in the
robustness of our simulations. For E ¼ 10 MeV, however,
the match is rather poor. This results from the fact that,
within our analytic approximation, an initially narrow
distribution of injected photons evolves into a narrow
distribution centered at EtrajðEγ; ad; aiÞ. As can be seen
in Fig 4, this is not accurate at either injected energies, as
the time-evolved photon spectrum is broad, as a result of
the finite width of the distribution of final photon energies
in Compton scattering. Nevertheless, for injection energy
Eγ ¼ 0.1 MeV, the photon spectrum is indeed centered
around Etrjðad;Eγ; aiÞ, shown with dashed lines. In con-
trast, for Eγ ¼ 10 MeV, the evolved photon energy dis-
tribution is clearly bimodal, with a significant fraction of
photons near the free-streaming energy Eγai=a, due to
preferentially forward scattering in the Compton limit. The
disagreement of the semianalytic and numerical Green’s

FIG. 3. Comparison of the spatially averaged Green’s function
obtained in our simulation (black) with the semianalytic approxi-
mation (22) derived in Appendix B (red), when ignoring photo-
ionizations and assuming full efficiency of secondary electron
energy deposition. The labeled curves correspond to Einj ¼ 0.1,
1, and 10 MeV at zi ¼ 1300, with multiplicative offsets for
clarity. The agreement is excellent for low energies, giving us
confidence in our simulations’ accuracy; it is poor for 10 MeV
injected photons, for which the semianalytic approximation
breaks down.
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functions at Eγ ¼ 10 MeV is thus due to the breakdown of
the assumptions underlying the former.
Second, we compare our full-fledged simulations [includ-

ing photoionizations and the ICS sink, i.e., FdepðEÞ < 1] to
the results of Ref. [13], where the homogeneous Green’s
function is computed, accounting for all photon processes at
all energy scales. Note that our simulation has a higher
resolution in deposition time than that of Ref. [13]. At
injected photon energies Eγ ≲ 10 MeV, the results of
Ref. [13] should match our simulation. This is indeed the
case, as shown in Fig. 5 for various injection energies. The
factor-few disagreement at low redshifts has no observable
consequence as it only affects the Green’s function in the
regime where it is exponentially suppressed.

2. Spatial part of the Green’s function

We now discuss the spatial distribution of energy
deposition, for which no other numerical code currently
accounts. In Fig. 6, we show GEγ

ðzd; zi; rÞ=ḠEγ
ðzd; ziÞ for

Dirac-delta photon spectra at energies Eγ ¼ 0.1 MeV and
10 MeV injected at zi ¼ 1300, including all physical
processes (i.e., Compton scattering, photoionization, and
ICS sink). The shapes of the Green’s function are signifi-
cantly different for the low- and high-energy cases: for the
former, the Green’s function has a broad, Gaussian-like
shape, while for the latter, it is initially concentrated at a
narrow ring, and eventually develops an additional broad
feature. These features can be understood qualitatively and
semiquantitatively, as we show below.
As long as the Compton scattering timescale is short

relative to the Hubble time, and that photon energies are
within or near the Thomson regime such that scattering is
approximately forward-backward symmetric, photons
undergo a random walk. The spatial diffusion scale is then

qualitatively similar to the Silk damping scale, except for
the fact that at the relevant energies, photons may Compton
scatter with both free and bound electrons (this point was
missed in the Appendix of Ref. [15]). Explicitly, we may
estimate the Compton diffusion scale as

λ2CðtÞ≡
Z

t

ti

dt0

a02n0HσCðEtrjða0;Eγ; aiÞÞ
; ð23Þ

where the Compton scattering cross section σC is evaluated
along the energy trajectory Etrjða;Eγ; aiÞ defined in the
previous section, and again nH is the total abundance of

FIG. 4. Evolution of the normalized photon energy spectrum with zi ¼ 1300 as a function of energy over several deposition redshifts,
for a Compton-scattering-only simulation, with a Dirac-delta spectrum of injected photons, at energy Eγ;i ¼ 0.1 MeV (left) and 10 MeV
(right). The vertical dashed lines show the mean energy trajectory of photons subject to Compton scattering and Hubble flow discussed
in Appendix B. For 10 MeV photons, the right panel reveals a bimodal distribution that is not well approximated by this mean energy:
the high-energy mode is dominated by photons that have not scattered once and hence have energies Eγ;ið1þ zdÞ=ð1þ ziÞ (dotted lines
in the right panel), and the low-energy mode is photons that have scattered many times.

FIG. 5. Comparison of the spatially averaged Green’s function
obtained in our simulation (black) with the results from Ref. [13]
(blue), including Compton scattering, photoionizations, and
secondary electrons’ ICS sink. The labeled curves correspond
to Einj ¼ 0.1, 1, and 10 MeV at zi ¼ 1300, with multiplicative
offsets for clarity. The agreement of these curves gives us
confidence in the robustness of our simulation.
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neutral and ionized hydrogen. If the number of scatterings
during a Hubble time is large, and if photon propagation
directions are uncorrelated between two scatterings (as is
the case in the Thomson limit, with forward-backward
symmetry), from the central-limit theorem we expect the
photon spatial distribution—and thus the spatial distribu-
tion of energy deposition—to be a Gaussian with vanishing
mean and variance of order λ2C. We overlay the Compton
diffusion scale λC on top of the numerically evaluated
Green’s function in Fig. 6. We see that for injection energy
Eγ ¼ 0.1 MeV, the numerical Green’s function has an
approximately Gaussian shape, whose peak is within a
factor ∼2 from λC.
When Compton scattering events are rare, or when they

are preferentially forward, as in the case in the limit
Eγ ≫ me, we do not expect the Green’s function’s spatial
dependence to be Gaussian. Instead, in this regime we
expect photons to be mostly located on the light horizon of
the injection point, at r ¼ R

t
ti
dt0=a0, either because they

propagate mostly freely, or because they effectively propa-
gate along straight lines due to preferentially forward
scattering. This is confirmed in the right panel of Fig. 6,
where the Green’s function exhibits a sharp light horizon
feature at early times. We have checked explicitly that these
narrow features are robust and independent of the radial and
temporal bin resolution, simulation time step and photon
number. At late times, the 10 MeV-photon Green’s function
shows a bimodal spatial distribution, consisting of a sharp
light-cone feature, and a broad Compton diffusion bump.
These two subdistributions correspond to the high-energy
photons that have scattered less than a few times and/or
preferentially forward, and to those that have lost a
significant part of their energy and reached the Thomson

regime, respectively. This is a spatial manifestation of the
bimodal photon energy distribution shown in Fig. 4. As
time progresses, more and more photons reach the
Thomson regime, and the Green’s function approaches
the Gaussian shape with scale near λC.
As an application of our code beyond a Dirac spectrum,

we consider injected photon spectra that are flat up to some
cutoff energy, ΨðEγÞ ¼ ΘðEmax − EγÞ=Emax, where Θ is
the Heaviside step function. We tabulated the spectrum-
averaged Green’s function for two values of the cutoff
energy Emax ¼ 0.2 MeV and Emax ¼ 10 MeV, including
all physical processes. These flat injected spectra and upper
energy cutoffs are relevant to PBH accretion considered in
Sec. IV. In practice, due to the diverging photon number
distribution dN=dEγ ∝ 1=Eγ in this case, we have to
impose a numerical lower cutoff Emin in the injected
photon energies. We set Emin ¼ 0.02 MeV, and checked
explicitly that setting Emin ¼ 0.002 MeV instead leads to
no noticeable differences in results for the Emax ¼ 0.2 MeV
case. We emphasize that this numerical cutoff is only
applied to the injected spectrum, but that our code follows
photons down to arbitrarily low energies. In Fig. 7, we
show the Fourier transforms of the corresponding Green’s
functions, for zi ¼ 1300. Their qualitative features can be
understood in light of the real-space Green’s functions for
Dirac-function spectra discussed above. At low energies
(such that photon energies are always in the Thomson
regime), the real-space Green’s function resembles a
Gaussian, and so does its Fourier transform. At high
energies (such that photon energies are in the Compton
regime initially), Ginj

depðad; ai; kÞ shows ringing features;
these are due to the sharp light-cone feature in the real-
space Green’s function.

FIG. 6. Injection-to-deposition Green’s function normalized to its spatial average, GEγ
ðzd; zi; rÞ=ḠEγ

ðzd; ziÞ, for injection redshift
zi ¼ 1300, and a Dirac spectrum of injected photons, at Eγ ¼ 0.1 MeV (left) and 10 MeV (right). Solid lines are outputs from our full
simulation (including photoionization, Compton scattering, and ICS sink), and the vertical dotted lines show the Compton diffusion
scale λC defined in Eq. (23). At low energies the spatial distribution has a near-Gaussian shape with a peak near λC. At high energies, the
distribution shows a feature near the light horizon radius, in addition to a near-Gaussian shape at low redshifts; see the main text for a
qualitative explanation of these features.
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III. FROM ENERGY INJECTION TO DELAYED
RECOMBINATION

A. Definitions: Deposition-to-ionization
and injection-to-ionization Green’s functions

In this section we study the change to the free-electron
fraction xeðzÞ for a given rate of energy injection, thus
deposition, into the plasma. We make two simplifying
approximations to keep the problem tractable. First, we
assume that the effect on the ionization history only
depends on the local (in space) energy deposition rate.
This ought to be an excellent approximation at the scales of
interest k ≪ 103 Mpc−1, much larger than the scales at
which Lyman-continuum and Lyman-α transport is relevant
[28]. Second, we assume that perturbations to the standard
ionization history are small, i.e., that Δxe ≪ x0e; 1 − x0e,
where x0e is the standard ionization fraction. This is
motivated by CMB anisotropy constraints on changes to
recombination history near the peak of the visibility
function [3]. It is also consistent with our assumption that
xe ¼ x0e when computing the energy deposition efficiency.
These assumptions allow us to define a purely temporal
deposition-to-ionization Green’s functionGdep

xe ða; adÞ, such
that

Δxeða; rÞ ≈
Z

d ln adG
dep
xe ða; adÞ

ϵdepðad; rÞ
EI

: ð24Þ

In this definition, we have normalized ϵdep to the ionization
energy of hydrogen, EI ¼ 13.6 eV, so that ϵdep=EI repre-
sents the effective number of ionizing photons deposited
per baryon, per Hubble time. With this convention, we
expect Gdep

xe to be of order unity, and the linear approxi-
mation to hold as long as ϵdep=EI ≪ 1.

Combining with Eq. (4), we then obtain (in the case of a
homogeneous injection spectrum Ψ)

Δxeða; r0Þ ¼
ZZ

d ln ai
d3r
4πr3

×Ginj
xe ða; ai; rjΨÞ

ϵinjðai; r0 þ rÞ
EI

; ð25Þ

where the injection-to-ionization Green’s function Ginj
xe is

obtained from the temporal convolution of the injection-to-
deposition and deposition-to-ionization Green’s functions:

Ginj
xe ða; ai; rjΨÞ≡

Z
a

ai

d ln adG
dep
xe ða; adÞGinj

depðad; ai; rjΨÞ:

ð26Þ

As in the case of the injection-to-deposition Green’s
function, we may define the spatially averaged injection-
to-ionization Green’s function Ḡinj

xe ða; aijΨÞ, as well as its
Fourier transform Ginj

xe ða; ai; kjΨÞ, both defined as in
Eq. (26) above, with Ginj

depðad; ai; rjΨÞ replaced by

Ḡinj
depðad; aijΨÞ and Ginj

depðad; ai; kjΨÞ, respectively. With
these Green’s functions, we obtain the homogeneous part
of the perturbation to the free-electron fraction, as well as
its Fourier components, as follows:

ΔxeðaÞ ¼
Z

d ln aiḠ
inj
xe ða; aijΨÞ

ϵ̄injðaiÞ
EI

; ð27Þ

Δxeða; kÞ ¼
Z

d ln aiG
inj
xe ða; ai; kjΨÞ

ϵinjðai; kÞ
EI

: ð28Þ

We now turn to the numerical evaluation of Gdep
xe .

FIG. 7. Normalized Fourier transform of the injection-to-deposition Green’s function Ginj
depðzd; zi; kÞ=Ḡinj

depðzd; ziÞ, for a flat spectrum
of injected photons ΨðEγÞ ¼ ΘðEmax − EγÞ=Emax, with cutoff Emax ¼ 0.23 MeV (left) and Emax ¼ 10 MeV (right). These spectra
correspond to two limiting assumptions for energy injected by accreted PBHs, discussed in Sec. IV. At low injected energies, the Green’s
function and its Fourier transform are approximately Gaussian, but at high injected energies, the sharp light-cone feature in the real-
space Green’s function results in ringing in its Fourier transform. These Green’s functions were extracted from our full simulation,
including photoionization, Compton scattering, and the ICS sink.
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B. Calculation of the ionization Green’s functions

We now describe how we compute the ionization
Green’s functions. For simplicity, we focus on hydrogen
recombination, and neglect the effect of energy deposition
on helium recombination (but note that we do account for
helium photoionization as a means of converting injected
photons into energetic electrons, as described in Sec. II).
This neglect is justified as follows. First, during helium
recombination at z≳ 1800, the matter temperature is
effectively locked to the radiation temperature by
Compton scattering, and therefore all the energy deposited
in the form of heat has virtually no impact on the thermal
history. Second, and most importantly, CMB anisotropies
have very little sensitivity to changes to the ionization
history at these high redshifts. With that being said, helium
atoms can also get ionized at z ∼ 1000, i.e., during the
epoch of hydrogen recombination. Given the small helium-
to-hydrogen number ratio nHe=nH ≈ 0.08, we expect that
accounting for this effect would lead to order Oð10%Þ
corrections to our results, as found in Ref. [29] in the
context of dark matter annihilation. Our results should
therefore be accurate at the Oð10%Þ level.
Computing hydrogen recombination history with sub-

percent accuracy requires solving ordinary differential
equations (ODEs) for the free-electron fraction xe and
baryon temperature Tb, coupled with a partial differential
radiative transfer equation for the photon distribution near
the Lyman resonances [30], accounting for two-photon
emission and absorption [31,32] and resonant scattering
[33,34]. These equations are solved numerically by the
state-of-the-art codes HYREC [26,27] and COSMOREC [35].
In order to compute the deposition-to-ionization Green’s
function with these codes, one could in principle include
energy deposition source terms with narrow redshift sup-
port, approximating Dirac functions. Instead, we use the
simpler system of two coupled ODEs solved in HYREC-2

[36], which allow us to compute the Green’s function more
robustly. These ODEs are based on the effective four-level
atom model for hydrogen [26], with correction functions
accounting for detailed radiative transfer, calibrated
with HYREC.
The ODEs solved by HYREC-2 take the form

_xe ¼ F ða; xe; TbÞ þ Sxe ; ð29Þ

_Tb ¼ −2HTb þ ΓCðxeÞ × ðTγ − TbÞ þ STb
; ð30Þ

where F ða; xe; TbÞ is the standard rate of change of the
free-electron fraction provided explicitly in Eq. (6) of
Ref. [36], ΓCðxeÞ is the Compton heating rate, which
depends on xe (but not on Tb), and can be found, e.g.,
in Eq. (12) of Ref. [27], and Tγ is the radiation temperature.
The last terms in Eqs. (29) and (30) are source terms due to
nonstandard energy deposition in the plasma. Making
the approximation that the deposited energy goes into

ionization, excitation and heating with fractions
ð1 − xeÞ=3; ð1 − xeÞ=3; ð1þ 2xeÞ=3, respectively [2], and
generalizing the results of Ref. [37], the source terms are

Sxe ≡
1 − xe
3

�
1þ 4

3
ð1 − C̄Þ

�
_ρdep
EInH

; ð31Þ

STb
≡ 2

3ntot

1þ 2xe
3

_ρdep; ð32Þ

1 − C̄≡ 1

4
ð1 − C2sÞ þ

3

4
ð1 − C2pÞ; ð33Þ

where ntot is the total number density of baryons (electrons,
nuclei and atoms), and the coefficient C2s (C2p) is the
effective probability that an atom in excited state 2s (2p)
reaches the ground state rather being photoionized, general-
izing Peebles’ C factor [38], and is provided in Eq. (7) of
Ref. [36]. The first term in the parentheses of Eq. (31)
corresponds to direct ionizations, and the second term
corresponds to excitations followed by ionizations.
We now assume that the source terms lead to small

perturbations Δxe;ΔTb to the ionization fraction and
baryon temperature, and linearize Eqs. (29) and (30):

Δ_xe ¼
∂F
∂xe Δxe þ

∂F
∂Tb

ΔTb þ Sxe ð34Þ

Δ _Tb ¼ −ð2H þ ΓCÞΔTb þ
dΓC

dxe
Δxe þ STb

; ð35Þ

where the derivatives of F and ΓC, as well as the source
terms, are evaluated along the standard ionization and
thermal history.
The deposition-to-ionization Green’s function is extracted

by setting _ρdep=ðEInHÞ ¼ Hϵdep=EI ¼ Hδðlna − lnadÞ ¼
δðt − tdÞ. Explicitly, for a given deposition scale factor ad,
we solve Eqs. (34) and (35), with Sxe and STb

set to zero, and
starting with initial conditions at a ¼ ad:

ΔxeðadÞ ¼
1 − xe
3

�
1þ 4

3
ð1 − C̄Þ

�
; ð36Þ

ΔTbðadÞ ¼
2nH
3ntot

1þ 2xe
3

EI; ð37Þ

with both right-hand sides to be evaluated at a ¼ ad.
We show the deposition-to-ionization Green’s function

Gdep
xe ða; adÞ in Fig. 8. The envelope of this function follows

the initial condition (36). Much before recombination,
when the plasma is fully ionized (xe → 1), the impact of
energy deposition on the ionization history is suppressed.
Once the plasma becomes significantly neutral, the
envelope is approximately ð1þ 4=3ð1 − C̄ÞÞ=3; the effec-
tive Peebles C-factor C̄ is initially small, and reaches unity
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for z≲ 800 (see e.g., Ref. [39]), which translates to the
bump in the Green’s function envelope around z ∼ 1000,
and the 1=3 plateau at z≲ 800. Note that, although we
simultaneously solve for the temperature evolution for
completeness, at z≳ 200, ΓC ≫ H, implying an exponen-
tial damping of temperature perturbations. The evolution of
the ionization Green’s function is thus mostly controlled by
the term proportional to ∂F

∂xe. As time progresses, ∂F
∂xe =H

decreases (the recombination process slows down), leading
to a more extended tail for the Green’s function at low
redshifts.
Given Gdep

xe and Ginj
dep for a given injection spectrum Ψ,

we convolve them to obtain the injection-to-deposition
Green’s function Ginj

xe defined in Eq. (26). In Fig. 9, we
show the spatially averaged Green’s function, for a flat
injected spectrum, up to cutoff energies Emax ¼ 0.2 and
10 MeV, respectively. For the latter energy cutoff, we see
that, after recombination, changes in the free electron
fraction are suppressed in comparison with the lower

FIG. 8. Dimensionless deposition-to-ionization Green’s func-
tion Gdep

xe ðz; zdÞ, as a function of the ionization redshift z, for
various energy deposition redshifts zd. Different line thicknesses
are used only for the purpose of better visualization.

FIG. 9. Homogeneous injection-to-ionization Green’s function [defined in Eq. (26)] for a flat photon spectrum with cutoff Emax ¼
0.23 MeV (left) and Emax ¼ 10 MeV (right), as a function of ionization redshift z. Different line colors correspond to different injection
redshifts zi; note that we vary the thickness of lines only for clarity.

FIG. 10. Normalized Fourier transform of the injection-to-ionization Green’s function Ginj
xe ðz; zi; kÞ=Ḡinj

xe ðz; ziÞ, for a flat energy
spectrum injected at zi ¼ 1300, as a function of wave number. The left panel is with a high-energy cutoff of Emax ¼ 0.23 MeV, and the
right is for Emax ¼ 10 MeV, showing a more pronounced small-scale suppression due to the propagation of higher-energy photons, as
well as ringing features due to the light-cone feature in the injection-to-deposition Green’s function.
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energy cutoff photon injection spectrum. This is likely due
to a combination of two effects: one, the higher-energy
photons can result in secondary electrons (Ee ∼MeV) that
are mostly inefficient in depositing energy into the plasma
(cf. Fig. 2); and two, higher-energy photons have a lower
probability of scattering and thus disperse their energy
deposition over later redshifts. In Fig. 10, we show the
normalized Fourier transform Ginj

xe ðz; zi ¼ 1300; kÞ, as a
function of wave number and ionization redshift, for each
of the two injected spectra. In both cases, fluctuations in the
ionization fraction are suppressed for k≳ few times
10−1 Mpc−1, with a suppression length scale increasing
as time progresses, and typically larger for higher-energy
photons, which can propagate over larger distances.

IV. APPLICATION TO ACCRETING PBHS

A. PBH accretion and radiation model

We now apply the formalism developed above to energy
injection by accreting PBHs. Despite the relatively simple
physical conditions in the early Universe, the problem of
accretion on PBHs remains complex, and existing estimates
of their accretion rate and luminosity vary by orders of
magnitude and are highly uncertain [6–8]. One of the major
uncertainties is the geometry of the accretion flow: if an
accretion disk forms, the radiative efficiency and overall
luminosity is expected to be significantly larger than for a
quasispherical flow [8]. Lacking a definitive proof that an
accretion disk must form, in order to make headway while
remaining conservative, in this work we adopt the quasi-
spherical accretion model of Ref. [7] (hereafter AK17). We
emphasize that our main point should remain qualitatively
valid regardless of the details of the accretion flow: the
luminosity of accreting PBHs ought to depend on the local
supersonic relative velocities of accreted baryons, leading
to a spatially modulated energy injection rate. Our final
results, applied to the spherical accretion model of AK17,
should therefore be understood as an example application,
and can be generalized to more sophisticated accretion
models as they become available.
We begin by briefly reviewing the idealized, spherically

symmetric accretion model. Consider a stationary, non-
rotating black hole with mass M embedded in a homo-
geneous plasma with an average baryon mass density ρ̄b,
temperature T̄b, and mean ionization fraction x̄e (all defined
far from the black hole). The rate of accretion, _M, was
computed by Bondi [21] by solving for the physical
solution to the steady-state continuity and Euler equations.
Namely, by enforcing the monotonic increase of the fluid’s
radial velocity approaching the black hole and avoiding
singularities in the flow outside the event horizon, the
unique solution can be found to be

_M ¼ λ × 4πρ̄b
M2

v3B
; ð38Þ

where λ is a dimensionless parameter and vB ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄b=ρ̄b

p
is

a characteristic velocity, where P̄b ≡ ρ̄bð1þ x̄eÞT̄b=mp is
the average gas pressure. With this definition, vB is equal to
the isothermal sound speed (but note that the gas is not
isothermal in general).
In Bondi’s original calculation, the only nongravitational

force was assumed to be pressure, and the gas was assumed
to be barotropic. In the cosmological context of interest,
accreting PBHs are embedded in an intense photon bath. In
light of this, AK17 generalize this accretion model as well
as the calculations of Refs. [6,40], accounting for Compton
drag and Compton cooling by CMB photons. In practice,
AK17 compute λ numerically by solving the steady-state
fluid equations, and provides an analytic approximation as
a function of the ratios of the accretion timescale tB ≡
M=v3B to the Compton drag and Compton cooling time-
scales. The parameter λðvBÞ is thus a function of redshift as
well as of vB. When Compton drag is negligible (typically
after recombination), λ lies somewhere between the adia-
batic and isothermal limits, λad ≈ 0.12 and λiso ≈ 1.12,
respectively, depending on the strength of Compton cool-
ing. When the Compton drag timescale is short relative to
the accretion timescale (typically before recombination),
accretion is suppressed by Compton drag, i.e., λ ≪ 1.
It was shown in Ref. [40] that the steady-state approxi-

mation is valid for black hole masses M ≲ 3 × 104 M⊙.
Additionally, AK17 found that local thermal feedback (i.e.,
Compton heating of the accreting gas by the radiated
gamma rays, which we describe shortly) is also negligible
in this mass range. We therefore limit ourselves to PBH
masses M ≲ 104 M⊙, for which the simple spherical
accretion model is self-consistent.
As the accreted gas falls towards the black hole’s

horizon, it gets compressed and heated up, and eventually
fully ionized. At minimum, we thus expect the accreted
plasma to produce free-free radiation. The total free-free
luminosity is dominated by emission near the black hole’s
horizon. It scales as the local gas density squared, thus as
the accretion rate squared, and is a function of the gas
temperature Ts near the horizon. The temperature Ts
determines not only the overall PBH luminosity, but also
the radiation spectrum, as the differential free-free spectrum
dL=dEγ is approximately constant up to photon energies
Eγ ¼ Emax ∼ Ts. In other words, the assumed PBH lumi-
nosity per photon energy interval takes the form

dL
dEγ

≈
L

Emax
ΘðEmax − EγÞ; L≡ LðTsÞ _M2; ð39Þ

where Θ is the Heaviside step function, and LðTsÞ is a
known function of temperature [41].
AK17 approximately determine the gas temperature Ts

near the black hole’s horizon in two limiting regimes. In the
first case, they assume the accreting gas is photoionized by
the black hole’s radiation; in this case, the gas temperature
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near the horizon can reach up to Ts ∼ 1011 K ∼ 10 MeV
[19] once Compton cooling is negligible. The other limiting
regime is that of collisional ionization of the accreting gas.
This scenario would apply if the radiation produced by the
PBH is not strong enough to photoionize the infalling gas.
In this case, the gas remains mostly isothermal throughout a
collisional ionization region [19], and can only heat up to
Ts ∼ 3 × 109 K ∼ 0.2 MeV near the horizon. In both cases,
Ts can be significantly lower than the quoted maximum
values before recombination, when Compton cooling
inhibits significant heating of the infalling gas, as can be
seen in Fig. 11. Importantly, AK17 showed that neither of
these two limiting regimes is self-consistent, as in both
cases the PBH luminosity is neither large enough to fully
photoionize the gas nor small enough to be entirely
negligible. The PBH luminosity can vary by up to 2 orders
of magnitude between these two extreme limits, which
highlights the broad theoretical uncertainty remaining in
this problem. Still, the collisionally ionized case should
provide a very conservative, minimum-plausible estimate
of the luminosity of accreting PBHs.
Let us remark that, prior to recombination, the temper-

ature Ts depends on the ratio of the Compton cooling and
accretion timescales. Just like the accretion rate _M, it is thus
a function of redshift and of the characteristic velocity vB,
and so is the PBH luminosity L.
Given the differential luminosity dL=dEγ of each PBH,

one can finally infer the volumetric rate of energy injection
by accreting PBHs, per photon energy interval:

d_ρinj
dEγ

¼ fpbh
ρcdm
M

dL
dEγ

; ð40Þ

where fpbh is the fraction of PBHs that comprise dark
matter. This equation holds for a single PBH mass and can
be trivially generalized to an extended mass distribution.

B. Relative velocity of accreted gas

The simple accretion model described above applies to a
spherically symmetric flow. In practice, the accreted gas
has significant velocity at infinity in the PBH rest frame. In
this subsection we describe the properties of these veloc-
ities, and describe their estimated impact on PBH accretion
in Sec. IV C.
It is now well known that, with adiabatic initial con-

ditions, CDM and baryons have supersonic relative veloc-
ities vbc around and after recombination [22]. Indeed,
before recombination baryons and photons are tightly
coupled and undergo acoustic oscillations, while the
CDM free-falls in gravitational potentials. These different
dynamics result in large-scale relative velocities, fluctuat-
ing on ∼100 Mpc scales, and with a rms reaching about 5
times the baryon sound speed at recombination. After
baryons kinematically decouple from photons at
z ∼ 1000, they behave as a cold fluid on scales larger than
their Jeans length, and the baryon-CDM relative velocities
then decay as 1=a, as long as baryons and CDM perturba-
tions remain linear. As the gas cools and the sound speed
decreases too, relative velocities remain supersonic until
baryons heat up again at reionization.
If PBHs make up a significant part of the CDM, they

must have adiabatic initial conditions on large scales in
order to satisfy observational constraints [42]. Even if they
make up a subdominant part of the CDM, if PBHs are
produced through the gravitational collapse of rare over-
dense regions upon horizon entry, their large-scale distri-
bution is expected to follow that of the radiation, in the
absence of significant primordial non-Gaussianity [43,44].
In other words, in this formation scenario, we also expect
PBH initial density perturbations to be adiabatic on large
scales. We thus expect the velocity of baryons relative to
PBHs to follow the baryon-CDM relative velocity on large
scales, regardless of PBH abundance.
The picture is notably different on small scales, at which

PBH (thus CDM) density perturbations get enhanced by
unavoidable Poisson fluctuations [45–47], leading to early
formation of nonlinear structures [48,49]. This results in
additional relative velocities on small scales, with magni-
tude similar to the virial velocities of collapsed halos. In
their mixed PBH and particlelike CDM simulations,
Ref. [50] found these virial velocities to be smaller than
the background baryon sound speed for z≳ 300 and
smaller than the rms large-scale relative velocity for
z≳ 100. These results indicate that small-scale nonlinear
relative velocities can be neglected in the PBH accretion
problem, at least for z≳ 100. Note that even if PBHs make
a very small fraction of CDM, and Poisson fluctuations do
not significantly affect structure formation, nonlinear

FIG. 11. Temperature near the Schwarzschild radius derived in
AK17 for black hole masses M ¼ 1, 100 M⊙ as a function of
redshift, evaluated for two different values of the relative velocity
vbc ¼ 0 (solid) and vbc ¼ hv2bci1=2 (dashed). We show both
accretion scenarios where the accreting plasma is either colli-
sionally ionized or photoionized by the black hole radiation itself.
This temperature governs the overall PBH luminosity as well as
the energy cutoff of the approximately flat radiated spectrum.
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structures eventually form at z≲ 30, leading to small-scale
relative velocities [8].
Given that CMB anisotropies have little sensitivity to the

ionization history at z≲ 100, in this work, following
previous studies, we shall only consider the large-scale,
linear component of baryon-CDM relative velocities vbc,
with a Gaussian distribution entirely characterized by its
power spectrum, which can be extracted from linear
Boltzmann codes, and with rms hv2bci1=2 ≈ 30 km=s ≈
5vB at z ≈ 103 [22].

C. Effect of relative velocities on PBH luminosity and
radiated spectrum

Generalizing Bondi’s prescription [21], we account
approximately for relative velocities by making the follow-
ing substitution in λ; _M and Ts:

vB →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2B þ v2bc

q
: ð41Þ

Modulo the weak dependence of vB in the dimensionless
accretion parameter λðvBÞ, simulations have shown the
functional form of Eq. (41) to be accurate in accretion rates
within several tens of percents [51–53].
With the prescription (41), relative velocities affect most

significantly the accretion rate, which scales approximately
as _M ∝ 1=v3B. To a lesser extent, they also affect the ratio of
the Compton drag and cooling timescales to the accretion
timescale, thus the accretion constant λðvBÞ, as well as the
gas temperature Ts near the horizon. The first effect
dominates the PBH luminosity, which scales as
L ∝ _M2 ∝ 1=ðv2B þ v2bcÞ3. The luminosity is thus domi-
nated by the rare regions where the relative velocity is
subsonic, which occupy a volume fraction of order
ðvB=hv2bci1=2Þ3 ∼ 10−2 at z ∼ 103. In the remaining vast
majority of the volume, the accretion luminosity is strongly
suppressed by the supersonic relative motions. This physi-
cal picture is illustrated in Fig. 1, showing the function
v6B=ðv2B þ v2bcÞ3 computed for a three-dimensional realiza-
tion of the relative velocity field. This figure shows that the
PBH luminosity, thus energy injection rate, is concentrated
in small and rare islands with subsonic relative velocities,
surrounded by a mostly quiet sea of regions with supersonic
velocities. It moreover indicates that the distribution of
PBH luminosities is highly skewed, and that its average
value is not at all a representative luminosity. We illustrate
this in a different way in Fig. 12, where we show that the
rms luminosity can be up to an order of magnitude greater
than its mean.
Relative velocities also modulate the gas temperature Ts

near the PBH horizon, thus the cutoff Emax ∼ Ts of the free-
free emission spectrum. In practice, for a given accretion
scenario (collisional ionization or photoionization of the
accreted gas), Ts varies by no more than a factor of a few
when vbc is varied from 0 to hv2bci1=2, as can be seen in

Fig 11. Moreover, these variations are mostly limited to
z≳ 103. Given that our simple accretion model is certainly
not accurate to that degree, in order to simplify computa-
tions, we shall neglect the variations of Emax with relative
velocity. For consistency, we shall also neglect its varia-
tions with PBH mass and redshift, which are of comparable
magnitude. For each accretion scenario, we therefore
assume a flat spectrum up to a constant cutoff Emax,
independent of redshift, mass and relative velocity. We
take Emax ≈ 0.2 MeV for the collisional-ionization sce-
nario, and Emax ≈ 10 MeV for the photoionization sce-
nario. We checked explicitly that restoring variations of
Emax with respect to mass and redshift per accretion
scenario does not significantly affect our final results
(the rms fluctuations of xe). It is important to note that
this approximation only concerns the photon spectrum
cutoff, not the overall amplitude of luminosity LðTsÞ, in
which we include the full dependence on PBH mass,
redshift and relative velocity.

D. Spatially perturbed recombination
due to accreting PBHs

We now have all the ingredients to compute the perturba-
tions to the free-electron fraction Δxe due to inhomoge-
neously accreting PBHs. For a given accretion scenario
(photoionization or collisional ionization of the accreted
gas), we assume a uniform injected photon spectrum
ΨðEγÞ ¼ ΘðEmax − EγÞ=Emax, with constant Emax.
We compute the injection-to-deposition and injection-to-

ionization Green’s functions for this spectrum, as described
in Secs. II and III. We then obtain Δxe from Eq. (25), with

ϵinjðrÞ ¼ ϵ̄injð1þ δLðrÞÞ; ϵ̄inj ≡ fpbhρcdm
MnHH

L̄; ð42Þ

FIG. 12. The ratio of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hL2i − hLi2

p
to hLi (where average here

means over realizations of relative velocity between cold dark
matter and baryons) as a function of redshift for several different
black hole mass, as computed in AK17. These curves are
obtained in the collisional-ionization accretion scenario.
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where δLðrÞ≡ LðrÞ=L̄ − 1 is the relative fluctuation of
PBH luminosity.
The new quantities computed in this work are the spatial

perturbations to the free-electron fraction Δxeða; kÞ,
obtained from Eq. (28), with ϵinjðkÞ ¼ ϵ̄injδLðkÞ. These
perturbations are not directly observable, but leave an
imprint on CMB anisotropy power spectra and higher-
order correlations, the computation of which we defer to
upcoming works. Importantly, to lowest order in fpbh, these
CMB observables depend on the part of Δxe that is
correlated with terms quadratic in unperturbed CMB
anisotropies. In order to obtain a proxy for this correlated
part, we split PBH luminosity perturbations in a piece
tracing fluctuations in v2bc (superscript c), and a piece that is
uncorrelated with them (superscript unc):

δLðrÞ ¼ δcLðvbcðrÞÞ þ δuncL ðvbcðrÞÞ; ð43Þ

δcLðvbcðrÞÞ ¼ b

�
v2bcðrÞ
hv2bci

− 1

�
; b≡ 3

2

hv2bcδLi
hv2bci

; ð44Þ

hv2bcδuncL i ¼ 0; ð45Þ

where h� � �i represents averaging over the Gaussian dis-
tribution of relative velocities, and all quantities implicitly
depend on scale factor. Note that the two-point correlation
function of δcL matches the large-scale limit of the two-point
correlation function of δL [54,55]. Numerically, we find
that the power spectrum of δcL reproduces well the power
spectrum of δL for k≲ 0.1 Mpc−1, but significantly under-
estimates it for smaller scales. Using δcL in lieu of δL should
therefore provide a conservative estimate of the spatial
perturbations of Δxe, which, in any case, are suppressed at
k≳ 0.1 Mpc−1 due to nonlocal energy deposition, as can
be seen in Fig. 10.
We thus define Δxceða; kÞ as the free-electron perturba-

tion resulting from the v2bc-correlated part of the injected
energy, ϵcinj ¼ ϵ̄injδ

c
LðkÞ, inserted in Eq. (28). This “corre-

lated part” of the free-electron fluctuations serves as a
proxy for the quantity relevant to CMB anisotropies.
For any field Xða; kÞ we define the dimensionless

unequal-time power spectrum Δ2
Xða; a0; kÞ through

hXða; kÞX�ða0; k0Þi ¼ 16π5

k3
Δ2

Xða; a0; kÞδ3ðk0 − kÞ; ð46Þ

and for short denote Δ2ða; kÞ≡ Δ2ða; a; kÞ, which gives
the variance of Xða; rÞ per logarithmic k interval:

varðXðaÞÞ≡ hXða; rÞ2i ¼
Z

d ln kΔ2
Xða; kÞ: ð47Þ

From Eq. (28), with ϵinj → ϵ̄injδ
c
L, we obtain

Δ2
Δxceða;kÞ ¼

ZZ
a
d lnaid lna0iG

inj
xe ða;ai; kÞGinj

xe ða;a0i; kÞ

× bðaiÞϵ̄injðaiÞbða0iÞϵ̄injða0iÞΔ2
ηðai; a0i; kÞ; ð48Þ

where bðaÞ is defined in Eq. (44) and ηða; rÞ≡
v2bcða; rÞ=hv2bcðaÞi − 1. The power spectrum of η is easily
computed, and can be expressed as an integral quadratic in
the power spectrum of vbc, given explicitly in Ref. [16]; we
show it for several redshifts in Fig. 13.
In Fig. 14, we show rmsðΔxceÞ=x0e ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðΔxceÞ

p
=x0e, as a

function of redshift, for both accretion scenarios; this

FIG. 13. Dimensionless power spectrum of ηðz; rÞ≡
v2bcðz; rÞ=hv2bcðzÞi − 1 at several redshifts, normalized by its
variance varðηÞ ¼ 2=3. The shape is approximately constant at
z≲ 1000, after kinematic decoupling [22].

FIG. 14. The rms of spatial fluctuations of the (v2bc-correlated
part of) free-electron fraction perturbations induced by accreting
PBHs (solid lines), compared to the mean change in the free-
electron fraction (dashed lines), both normalized to the standard
ionization history x0e. The two colors correspond to the two
accretion scenarios discussed in Sec. IVA. In both cases, we
consider 100-M⊙ PBHs, whose abundances roughly saturate
AK17’s limits: fpbh ¼ 1, 10−2 for the collisional ionized and
photoionized cases respectively.
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quantity is obtained from Δ2
ΔxceðkÞ through Eq. (47). For

reference, we also show the mean relative change Δxe=x0e,
obtained through our Green’s function. We see that
rmsðΔxceÞ is comparable to Δxe, within a factor of order
unity. Note that our estimate of Δxe is somewhat different
from that of AK17. Our treatment is more accurate in some
respects, as AK17 have a simplified treatment of energy
deposition and do not account for photoionization nor the
ICS energy sink. On the other hand, our Green’s function
approach does not capture nonperturbative changes to the
free-electron fraction, for which AK17 do solve. As we
show in Appendix C, our Green’s function approach is
accurate as long as Δxe=x0e ≪ 1, in which case our treat-
ment is overall more accurate.
We show Δ2

Δxceðz; kÞ=varðΔxceðzÞÞ at several redshifts in
Fig. 15, for accretion onto 100-M⊙ PBHs in either
accretion scenario. This quantity represents the overall
shape of the relative fluctuations in the ionization fraction
Δxce per logarithmic k-interval. For contrast, we overlay the
normalized power spectrumΔ2

ηðkÞ=varðηÞ at z ¼ 1000, i.e.,
after kinematic decoupling, for which η is time invariant
[22]. This comparison reveals the small-scale suppression
of power in Δxce due to nonlocal energy deposition that is
more stark for later redshifts, as we would expect from
photon propagation. Additionally, for the photoionized
accretion scenario, the higher-energy injected photons have
larger propagation distances, resulting in a more pro-
nounced suppression of small-scale power relative to
large-scale power (this can be seen by examining the ratios
of the amplitudes of the second and first peaks). Note that,
besides the redshift-dependent small-scale suppression, the
power spectrum of Δxe does not quite have the universal
shape of low-redshift velocity-induced acoustic oscillations

[56,57] shown as a black dashed line, which is relevant to
large-scale structure [54] or 21-cm fluctuations [55,58].
Indeed, free-electron fraction perturbations at a given
redshift are affected by energy injection at all prior epochs,
including before kinematic decoupling, during which the
scale dependence of relative velocities is time dependent, as
seen in Fig. 13.
Figures 14 and 15 constitute the main results of this study.

Figure 14 shows that the spatial modulations of the free-
electron fraction perturbations sourced by accreting PBHs
are comparable in amplitude to theirmean.Moreover, Fig. 15
shows that these perturbations have support on large scales
k ∼ 0.01–0.1 Mpc−1, similar to the scales at which CMB
anisotropies are maximal. In past studies, the mean pertur-
bation to recombination Δxe has been the sole quantity
consideredwhen estimating the impact of accreting PBHs on
CMB anisotropies. Qualitatively, a homogeneous increase to
the free-electron fraction affects CMB-anisotropy power
spectra similarly to an increase in the reionization optical
depth: it damps anisotropies on small angular scales and
enhances polarization on large angular scales. The order-
unity spatial perturbations in Δxe shown in Figs. 14 and 15
ought to impact CMB anisotropies in two different ways.
First, they should lead to order-unity modifications to the
perturbation to CMBpower spectra, with an angular depend-
ence qualitatively different from that resulting from the
homogeneous Δxe. This means that this additional pertur-
bation to CMB power spectra should have different degen-
eracies with standard cosmological parameters, in particular
the reionization optical depth, and should therefore help
improve constraints on accreting PBHs. Second, the large-
scale perturbations to Δxe should source higher-order
correlation functions inCMBanisotropies, beyond thepower

FIG. 15. Dimensionless power spectrum of the (v2bc-correlated part of the) free-electron fraction Δxce at several redshifts, obtained from
Eq. (48), normalized by its variance. Each panel corresponds to a PBH accretion scenario: collisionally ionized (left) and photoionized
(right), see Sec. IVA for details. For reference, the black dashed line shows the normalized power spectrum of ηðz; rÞ≡
v2bcðz; rÞ=hv2bcðzÞi − 1, at z ¼ 1000 (this quantity is independent of redshift for z ≲ 1000). These plots reveal the small-scale
suppression of free-electron perturbations due to nonlocal energy deposition, which becomes more pronounced for lower redshifts, as
photons have propagated farther from their injection point. Still, free-electron perturbations retain significant spatial fluctuations up to
k ∼ 0.1 Mpc−1.
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spectra.Wewill study and quantify these effects in upcoming
publications.

V. DISCUSSION AND CONCLUSION

In this work, we have developed a set of analytic and
numerical tools to compute spatial perturbations to recom-
bination resulting from inhomogeneous injection of sub-
10 MeV photons, and applied them to the specific case of
accreting PBHs.
The first step was to translate energy injection to a time-

and space-dependent energy deposition rate. To that end,
we developed a Monte Carlo radiation transport code,
incorporating all relevant plasma interactions with up-to-
date cross sections. This code follows the evolution of an
injected photon spectrum, accounting for photoionization
and Compton scattering, and tabulates the energy deposited
into secondary electrons as a function of time and distance
from the injection point. While secondary electrons dis-
sipate their energy almost instantaneously through rapid
interactions, a non-negligible part of this energy is lost to
upscattering CMB photons to sub-10.2 eV energies, at
which they do not interact efficiently with the plasma. We
computed the fraction of electron energy that is lost to this
sink with a novel analytic integral expression (18), match-
ing existing numerical results remarkably accurately. The
final output of our radiation transport code is a time- and
space-dependent injection-to-deposition Green’s function,
self-consistently accounting for this energy sink.
The second step was to convert the energy deposited in

the primordial plasma to a perturbation of its ionization and
thermal history. We extracted a deposition-to-ionization
Green’s function by linearizing the effective four-level
atom differential equations solved by HYREC-2, which
provide a highly accurate approximation of the exact
numerical radiative transfer calculation of HYREC. By
convolving the two Green’s functions, we obtained the
injection-to-ionization Green’s function, which directly
connects an energy injection rate to a time-dependent
inhomogeneous free-electron fraction. We find that recom-
bination inhomogeneities are typically washed out for
scales k≳ 0.1 Mpc−1, due to the finite propagation of
injected photons. The Green’s function we compute allows
us to quantify this suppression in detail, as a function of
time, injected spectrum, and comoving scale.
We applied these new tools and methods to inspect, for

the first time, the imprint on cosmological recombination of
inhomogeneous photon injection by accreting PBHs. The
physical origin of this inhomogeneity is the dependence of
the accretion rate on the velocities of accreted baryons
relative to dark matter, thus PBHs. Importantly, these
relative velocities are typically supersonic, and therefore
ought to have a strong, nonperturbative effect on PBH
luminosities. Fluctuations of relative velocities on
∼100 Mpc scales thus translate to a large-scale spatial
modulation of the PBH accretion rate and luminosity, thus

energy injection rate. To quantify this effect, we adopted
the accretion model of Ref. [7], which was used to derive
conservative upper limits to the PBH abundance from
CMB-anisotropy power spectra. Within this model, the
PBH luminosity is highly inhomogeneous, concentrated in
small islands with subsonic relative velocities (see Fig. 1).
Conservatively, we extracted the free-electron variations
resulting from the component of luminosity fluctuations
that is correlated with relative velocities squared, as we
expect those to give the dominant contributions to observ-
able effects in CMB anisotropies. We found that spatial
perturbations to the free-electron fraction Δxe peak at
k ∼ 10−2 Mpc−1, and are only partially washed out by
the finite propagation distance of high-energy photons.
Importantly, we found that the rms of Δxe is comparable to
its mean, which was the only quantity evaluated in previous
studies.
While we focused on accreting PBHs in this work, the

tools we developed ought to be useful to study other
sources of nonstandard energy injection, and their effect
beyond the CMB. For instance, it may be useful to extend
our study to annihilating or decaying DM particles in the
cosmic dark ages, during which the DM density distribu-
tion is significantly inhomogeneous. The resulting energy
injection should heat the gas inhomogeneously, and there-
fore leave unique signatures on the high-redshift 21-cm
signal [59–62].
This work presents the first detailed calculation of the

spatial aspect of energy deposition and ionization pertur-
bations, and it is worth mentioning several aspects in which
it could be improved or expanded upon. First, it would be
interesting to generalize our spatial injection-to-ionization
Green’s function to arbitrary photon energies, and to
arbitrary types of injected particles. This would allow this
formalism to be applied, e.g., to inhomogeneously distrib-
uted annihilating or decaying dark matter particles [15].
Second, we derived a novel and accurate analytic expres-
sion for the fraction of electron energy resulting in sub-
10.2 eV inverse-Compton-scattered (ICS) photons. This
result can be extended to the branching ratios of electron
energy deposition into ionization, excitation, heating and
ICS, as we outline in the main text. In particular, our
analytic approximation can be generalized to derive the full
spectrum of sub-10.2 eV photons produced in ICS; this will
be useful to quantify the impact of sub-10.2 eV photons on
cosmological recombination, and thus check the standard
assumption that their effect is entirely negligible. Third,
when computing the deposition-to-ionization Green’s func-
tion, we assumed that the deposited energy is shared
equally between ionization, excitation and heating (for a
fully neutral gas) [2]. Our Green’s function could be made
more accurate by computing these branching ratios explic-
itly. Lastly, for the specific problem of energy injection by
accreting PBHs, we adopted the extended-Bondi accretion
model of Ref. [7], which provides a clear prescription for
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the effect of relative velocities on PBH luminosities. It
would be interesting to consider the case of disklike
accretion [8], for which the dependence of luminosity on
relative velocities has not yet been studied.
To conclude, we have laid the groundwork for studying

the imprints of inhomogeneous energy injection in the early
Universe on CMB anisotropies. In the context of accreting
PBHs, our preliminary result shows that spatial fluctuations
in ionization perturbations are as large as their mean, which
suggests novel signatures in CMB anisotropies. First, these
fluctuations should source additional contributions to CMB
temperature and polarization power spectra, comparable in
magnitude to the effect of the mean perturbation to the free-
electron fraction. Importantly, these additional contribu-
tions should have very different shapes than the previously
computed perturbations to CMB power spectra, thus could
help break parameter degeneracies and probe lower PBH
abundances. Second, we expect these spatial perturbations
to recombination to imprint non-Gaussian signatures in
CMB anisotropies—specifically, a nonzero trispectrum at
lowest order in PBH abundance. This novel qualitative
effect should provide a sensitive window into PBHs, given
the tight limits on CMB non-Gaussianities [63]. To
quantify these auspicious signatures requires perturbing
the photon Boltzmann-Einstein system. We tackle this
challenging problem in upcoming companion papers.
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APPENDIX A: CROSS SECTIONS AND ENERGY
LOSS RATES

1. Sub-10 MeV photons

a. Compton scattering

The Compton cross section σCðEÞ is the integral of the
Klein-Nishina differential cross section computed from
tree-level quantum electrodynamics. Namely, for a given
initial photon energy E,

dσC
d cos θ

ðEÞ ¼ 3

8
σT

�
E0

E

�
2
�
E
E0 þ

E0

E
− 1þ cos2 θ

�
; ðA1Þ

where σT is the Thomson cross section and the outgoing
photon energy, E0, is a function of cos θ and E,

E0

E
¼

�
1þ E

me
ð1 − cos θÞ

�
−1
: ðA2Þ

b. Photoionization

We adopt the following cross sections for photoioniza-
tion of hydrogen and neutral helium [64]:

σHðEÞ ¼
64π

α3
σTðEI=EÞ4

expð−4η arctanð1=ηÞÞ
1 − expð−2πηÞ ; ðA3Þ

η ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=EI − 1

p ; ðA4Þ

σHeIðEÞ ¼ −12σHðEÞ

þ 5.1 × 10−20 cm2

�
250 eV

E

�
ΓðEÞ

; ðA5Þ

where α is the fine structure constant, and EI ¼ 13.6 eV is
the ionization energy of hydrogen. The exponent in the
helium cross section, ΓðEÞ, is a broken power-law fit
[64]: Γ ¼ 3.30 for E > 250 eV, and Γ ¼ 2.65 for
50 eV < E < 250 eV, but a posteriori our injected pho-
tons do not reach this latter limit even accounting for
Hubble expansion and Compton scattering. For comparison
to Thomson scattering, when E ≫ EI ,

σHðEÞ ≈ 0.24σT

�
αme

E

�
7=2

: ðA6Þ

2. Electrons

a. Inverse Compton scattering (ICS)

For ICS we use the general spectrum with no assump-
tions on the energy regime originally from [65], which we
checked matches the asymptotic low- and high-energy
approximations (see the appendix of [14] for discussion).
In the situation of interest, electrons interact with CMB

photons, with a blackbody spectrum: the number density of
photons per energy interval is

nBBðϵ; TÞ≡ 1

π2ℏ3

ϵ2

expðϵ=kBTÞ − 1
: ðA7Þ

Given an electron with initial energy E, the doubly differ-
ential ICS rate, per initial CMB photon energy ϵ and final
photon energy ϵ1, is then

d2ΓICS

dϵdϵ1
¼ 3σTnBBðϵÞ

32β6γ2ϵ

�
1

γ4

�
ϵ

ϵ1
−
ϵ21
ϵ2

�

þ ð1þ βÞ
�
βðβ2 þ 3Þ þ 1

γ2
ð9 − 4β2Þ

�

þ ð1 − βÞ
�
βðβ2 þ 3Þ − 1

γ2
ð9 − 4β2Þ

�
ϵ1
ϵ

−
2

γ2
ð3 − β2Þ

�
1þ ϵ1

ϵ

�
log

�
1þ β

1 − β

ϵ

ϵ1

��
; ðA8Þ
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where γ ≡ E=me and β≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=γ2

p
are the Lorentz factor

and velocity of the incoming electron, respectively. The
expression above holds for ð1 − βÞϵ1=ð1þ βÞ < ϵ < ϵ1. In
addition, for ϵ1 < ϵ < ð1þ βÞϵ1=ð1 − βÞ,

d2ΓICS

dϵdϵ1
ðϵ1 < ϵ; βÞ ¼ −

d2ΓICS

dϵdϵ1
ðϵ1 > ϵ;−βÞ: ðA9Þ

All other values of the incoming photon energy are kine-
matically forbidden. The energy lost by the electron per
scattering is ΔE ¼ E − E0 ¼ ϵ1 − ϵ. The quantity of interest
to us is the rate of electron energy loss to sub-10.2 eVphotons,

_EsinkðEÞ ¼
Z

dϵ
Z

Eexc

dϵ1ðϵ1 − ϵÞ d
2ΓICS

dϵdϵ1
: ðA10Þ

b. Ionization

We use the relativistic binary-encounter-dipole model
from Ref. [66] for an incident electron ionizing ground-
state hydrogen and neutral helium. Taking the liberated
electron’s outgoing energy as W ¼ E − E0 − EI , where EI
is the binding energy of the target atom, the differential
ionization cross section per atomic orbital is

dσionðEÞ
dE0 ¼ 3σTNme

ðβ2Eþβ2Uþβ2EI
Þ4E2

I

�ðNi=NÞ−2

tþ1

�
1

wþ1
þ 1

t−w

�
1þ2t0

ð1þ t0=2Þ2

þ½2−ðNi=NÞ�
�

1

ðwþ1Þ2þ
1

ðt−wÞ2þ
ðEI=meÞ2
ð1þ t0=2Þ2

�
þ 1

Nðwþ1Þ
df
dw

�
ln

�
β2E

1−β2E

�
−β2E− ln

�
2EI

me

���
; ðA11Þ

where N is the orbital electron occupation number for the
relevant atom, t≡ E=EI , t0 ≡ E=me, w≡W=EI , and
u≡U=EI , where U ¼ hp2=2mi is the average orbital
kinetic energy of the target electron. βi here are the
velocities computed for energies i ∈ fE;U; EIg.
Ni ≡ R∞

0 ðdf=dwÞdw, where df=dw is the differential di-
pole oscillator strength, and is taken from Ref. [67] as a
fitted power series

df
dw

¼ Ay2 þ By3 þ Cy4 þDy5 þ Fy6; ðA12Þ

with y≡ EI=ðW þ EIÞ ¼ 1=ð1þ wÞ. The coefficients are
given by

(i) hydrogen: EI ¼ 13.6, U ¼ 13.6, N ¼ 1, A ¼ 0,
B ¼ 12.2, C ¼ −29.6, D ¼ 31.3, and F ¼ −12.2.

(ii) helium: EI ¼ 24.6, U ¼ 39.5, N ¼ 2, A ¼ −0.0225,
B ¼ 1.18, C ¼ −0.463, D ¼ 0.0891, and F ¼ 0.

The relevant energy loss is then

_EionðEÞ ¼ vE
X

i¼H;He

ni

Z
dE0 dσion;iðEÞ

dE0 ðE − E0Þ; ðA13Þ

where vE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

e=E2
p

is the velocity of the incoming
electron.

c. Excitation

We only consider excitations from the ground state to the
first excited. We use the fitting functions in Ref. [68],

σexcðEÞ ¼
3σTR

α42πðEþ EI þ EexcÞ
�
A ln

�
E
R

�
þ Bþ C

R
E

�
;

ðA14Þ

where R ≈ 13.6 eV is the Rydberg energy. The coefficients
are given by

(i) hydrogen: Eexc ¼ 10.204, EI ¼ 13.6, A ¼ 0.5555,
B ¼ 0.2718, and C ¼ 0.0001.

(ii) helium: Eexc ¼ 21.218, EI ¼ 24.6, A ¼ 0.1656,
B ¼ −0.07694, and C ¼ 0.03331.

We assume the energy lost by the electron is simply the
excitation energy. We therefore obtain the following rate of
energy loss through excitation:

_EexcðEÞ ¼ vE
X

i¼H;He

niEexc;iσexc;iðEÞ: ðA15Þ

d. Heating

An energetic electron propagating in a plasma shares its
kinetic energy with ambient electrons, thus heats the
plasma. Because we eventually compute the rate of energy
loss, we simply use from Ref. [25]

_EheatðEÞ ¼
4πðαℏcÞ2nHxe lnΛ

mevE
; ðA16Þ

where vE is the electron velocity, and the Coulomb
logarithm is taken as
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lnΛ ¼ ln

�
4E
ζe

�
; ζe ≡ 2ℏ

�
4πnHxeαℏc

me

�
1=2

: ðA17Þ

APPENDIX B: SEMIANALYTIC
APPROXIMATION FOR THE SPATIALLY
AVERAGED GREEN’S FUNCTION WITH

COMPTON SCATTERING ONLY

In this Appendix we focus on the temporal part of the
Green’s function ḠEðad; aiÞ defined in Eq. (6). The most
detailed numerical computation of ḠE is given in
Refs. [13,14]. Here we provide a simple semianalytic
approximation, holding when photoionizations are negli-
gible, and assuming secondary electrons efficiently deposit
all their energy (i.e., Fsink ¼ 0). This approximation pro-
vides a consistency check for our simulations.
We define N E as the photon number density per energy

interval. In the homogeneous limit, and neglecting photo-
ionizations, the collisional Boltzmann equation satisfied by
N E takes the form

a−2
d
dt

ða2N EÞ ¼
1

E

d_ρinj
dE

þ CC½N E�: ðB1Þ

On the left-hand side, d=dt≡ ∂t −HE∂E is the total
derivative along free photon trajectories. The first term
on the right-hand side of Eq. (B1) accounts for energy
injection in the form of photons, and the second term is the
Compton collision operator, which is a linear integral
operator.
Given the photon number density N EðtÞ, the (homo-

geneous) volumetric power deposited in secondary elec-
trons is then simply

_ρeðtÞ ¼
Z

dE _ECðEÞN EðtÞ; ðB2Þ

where

_ECðEÞ≡ nH

Z
E

Emin

dE0 dσCðEÞ
dE0 ðE − E0Þ ðB3Þ

is the rate of photon energy loss through Compton
scattering—it can be expressed analytically, but the expres-
sion is not particularly enlightening and we do not provide
it here. Note that in this equation (just like our simulations)
the ionization energy is neglected relative to the initial
photon energy.
With the exact Compton collision operator, the

Boltzmann equation (B1) has to be solved numerically.
Following Ref. [7], we shall approximate CC½N E� by a
simple number-conserving divergence term, reproducing
the exact energy loss rate for a given N E:

CC½N E� ≈
∂
∂E ð _ECðEÞN EÞ: ðB4Þ

This approximation ought to be accurate when the
Compton scattering kernel is narrowly peaked at final
photon energies close to the initial photon energy. In
particular, we expect it to be accurate for E≲me.
With this approximation, the Boltzmann equation for

N E becomes

∂tða2N EÞ − ðHEþ _ECðEÞÞ∂Eða2N EÞ

−
∂ _EC

∂E a2N E ¼ a2

E

d_ρinj
dE

: ðB5Þ

We now derive an explicit semianalytic solution for this
approximate photon Boltzmann equation.
Given an initial photon energy Et0 at time t0, we define

EtðEt0 Þ to be the solution of the differential equation,

dEt

dt
¼ −HEt − _ECðEtÞ; ðB6Þ

Etðt ¼ t0Þ ¼ Et0 ; ðB7Þ

In other words, Et is the evolution of the mean energy of
photons injected with energy Et0 at time t0, subject to energy
loss through cosmological redshifting and Compton scat-
tering. The solution EtðEt0 Þ is unique, and one can therefore
uniquely define Et0 ðEtÞ, the initial energy at some time t0
evolving to Et at a later time t. We will refer to the solutions
Et as the “Compton trajectories.” We show a few trajecto-
ries in Fig. 16. Since _EC ∝ nH ∝ a−3 and H ∝ a−3=2 during
matter domination, energy loss through Compton scattering

FIG. 16. Trajectories of a photon’s energy subject to Compton
scattering and Hubble flow with zinj ¼ 1200 and energies of
Einj ¼ ð20; 15; 10; 5; 1; 0.1; 0.01Þ ×me. The orange dashed line
marks the redshift below which redshifting becomes dominant
over energy loss through Compton scattering. Note the y-axis is
scaled by a.
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dominates at early times, and cosmological expansion
dominates at late times.
The first two terms in Eq. (B5) have a simple inter-

pretation: they represent the total time derivative along
Compton trajectories, d=dtjC (in contrast with d=dt, the
total derivative along free trajectories). In other words, we
may rewrite Eq. (B5) as

d
dt

				
C
ða2N EÞ þ γðEÞa2N E ¼ a2

E

d_ρinj
dE

; ðB8Þ

γðEÞ≡ −
∂ _EC

∂E : ðB9Þ

This is now a simple first-order ODE along Compton
trajectories, which has an explicit integral solution:

a2N Et
¼

Z
t

0

dt0 exp
�
−
Z

t

t0
dt00γðEt00 ðEtÞÞ

�

×

�
a2

E

d_ρinj
dE

�
ðt0; Et0 ðEtÞÞ: ðB10Þ

To find _ρeðtÞ, we insert this solution into Eq. (B2). This
involves an integral overEt, the photon energy at time t. We
are, instead, interested in expressing _ρeðtÞ as an integral
over the initial energies at injection, Et0 . The two integrals
are related by the Jacobian

Jðt; t0Þ≡ ∂Et

∂Et0
: ðB11Þ

Differentiating Eq. (B6) with respect to Et0 , we find that the
Jacobian satisfies the ODE:

∂J
∂t ¼ −

�
H þ ∂ _EC

∂E
�
J; Jðt0; t0Þ ¼ 1; ðB12Þ

with solution

Jðt; t0Þ ¼ a0

a
exp

�
−
Z

t

t0
dt00

∂ _EC

∂E
�
; ðB13Þ

where the integrand is to be expressed at Et00 ðEt0 Þ.
Inserting Eq. (B10) into (B2), switching the order of

integration and replacing
R
…dEt ¼

R
…JdEt0 , we finally

arrive at

_ρeðtÞ ¼
Z

dt0
Z

dEt0
a03

a3
_ECðt; EtðEt0 Þ

1

Et0

d_ρinj
dEt0

: ðB14Þ

From this expression, we may finally read off the Green’s
function for energy deposition into secondary electrons
(defined with the same convention as ḠE),

Ḡe
Et0
ða; a0Þ ¼

_ECðt; EtðEt0 ÞÞ
Et0HðaÞ : ðB15Þ

This result can be understood rather intuitively. It repre-
sents the rate of photon energy deposition through
Compton scattering at time t, accounting for the fact that
photons lost energy between t0 and t, so that their energy at
t is EtðEt0 Þ. Let us note that AK17 derived an analytic
solution for _ρdep given _ρinj, neglecting photoionizations,
assuming that all the secondary electron’s energy is
efficiently deposited, and moreover approximating _ECðEÞ≈
0.1nHσTE. It is straightforward to check that our more
general solution recovers that of AK17 when making the
same approximations.

APPENDIX C: VALIDITY OF THE LINEAR
APPROXIMATION FOR RECOMBINATION

PERTURBATIONS

In this paper we have computed the effect of energy
deposition on ionization perturbations Δxe by linearizing
the recombination equations. In this Appendix, we check
the validity of this linear approximation for the specific case
of energy injection from accreting PBHs.
The assumption that Δxe ≪ x0e is not necessarily always

justified in the case of inhomogeneously accreting PBHs.
To illustrate this point, we have computed the fractional
change to the ionization history with the modified version

FIG. 17. Comparison of the fractional change in ionization
history from a homogeneous perturbation to recombination
Δxe=xe0, from PBH’s with masses of 102 M⊙ and abundance
approximately saturating the CMB anisotropy limit, in the
collisional-ionization case. We assume that every PBH has an
identical luminosity in two limiting cases: luminosity averaged
over the distribution of relative velocity (hLi, purple or lower) as
done in AK17; or the luminosity at the peak of the PBH
population’s luminosity contribution (Lpeak, blue or upper). We
expect the actual effect to be in between these limiting cases.
Solid lines are computed from our deposition-to-ionization
Green’s function, relying on the linearization of the recombina-
tion equations, and dashed lines show the nonperturbative result
from a modified version of HYREC [7].
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of HYREC [27] used in AK17. While AK17 use an
approximate energy deposition efficiency, this allows
them to solve for xe and _ρdep simultaneously and self-
consistently, without assuming that perturbations to the
ionization history are small. In Fig. 17, we show the
changes to the free-electron fraction in two limiting cases
for 100 M⊙ PBHs.
On the one hand, if one assumes that the energy

deposition is fully smeared out spatially, then the relevant
energy injection is coming from a relative velocity-aver-
aged luminosity as was done in AK17 (purple lines). In this
case, the change in ionization fraction is indeed small at all
times and our linearized approximation agrees with the
nonperturbative result of AK17 within ∼30%.

On the other hand, if one instead assumes a spatially local
energy deposition, the effect on the recombination history is
significantly enhanced in regions where the baryon-PBH
relative velocity is subsonic. The majority of the PBH
population’s luminosity then arises from black holes with
relative velocity vbc ≈ cs;∞=

ffiffiffi
2

p
, where cs;∞ is the speed of

sound of baryons far away from the accreting mass. In this
limit, we obtain changes to the free electron fraction as large
as Δxe ∼ 10x0e at z≲ 800 (blue lines), which our linearized
approximation fails to accurately reproduce. The actual
effect lies somewhere in between these two limits, and we
therefore expect the linear approximation to be reasonably
accurate, especially around the peak of thevisibility function.
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