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We study models with several SUð2Þ scalar doublets where the inert doublets have a nonminimal
coupling to gravity and play the role of the inflaton. We allow for this coupling to be complex, thereby
introducing CP violation—a necessary source of the baryon asymmetry—in the Higgs-inflaton couplings.
We investigate the inflationary dynamics of the model and discuss how the CP violation of the model is
imprinted on the particle asymmetries after inflation in the hot big bang universe.
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I. INTRODUCTION

The Standard Model (SM) of particle physics has been
extensively tested and is in great agreement with exper-
imental data, with its last missing particle the Higgs boson
discovered by ATLAS and CMS experiments at the CERN
Large Hadron Collider (LHC) [1,2]. Although the proper-
ties of the observed scalar are in agreement with those of
the SM-Higgs boson, it may just be one member of an
extended scalar sector. Even though so far no signs of new
physics have been detected, it is well understood that the
SM of particle physics is incomplete.
Cosmological and astrophysical observations imply a

large dark matter (DM) component in the energy budget of
the universe. Within the particle physics setting, this
would be a particle which is stable on cosmological
timescales, cold, nonbaryonic, neutral and weakly inter-
acting [3]. A particle with such characteristics does not
exist in the SM. Another shortcoming of the SM is the lack
of an explanation for the origin of the observed matter-
antimatter asymmetry in the universe. One of the most
promising baryogenesis scenarios is electroweak baryo-
genesis (EWBG) [4], which produces the baryon excess
during the electroweak phase transition (EWPT).
Although the SM in principle contains all required
ingredients for EWBG, it is unable to explain the observed
baryon excess due to its insufficient amount of CP
violation [5–7] and the lack of a first-order phase
transition [8].

Furthermore, in its current form, the SM fails to incor-
porate cosmic inflation in a satisfactory manner. Inflation is a
well-motivated theory predicting a period of exponential
expansion in the early universe which explains the generation
of primordial density fluctuations seeding structure forma-
tion, flatness, homogeneity and isotropy of the universe
[9–12]. The simplest models of inflation in best agreement
with observations are those driven by a scalar field, the
inflaton, with a standard kinetic term, slowly rolling down its
smooth potential. At the end of inflation, the inflaton which
naturally is assumed to have couplings with the SM-Higgs,
dumps its energy into the SM bath during the reheating
process which populates the universe with SM particles.
Scalars with nonminimal couplings to gravity are well-

motivated inflaton candidates since they acquire fluctua-
tions proportional to the inflationary scale and can drive the
inflation process in the early universe, as in the Higgs-
inflation model [13] where the SM-Higgs plays the role of
the inflaton, and s-inflation models [14,15] where the SM is
extended by a singlet scalar. Extensive studies have been
carried out in simple one singlet or one doublet scalar
extensions of the SM (see e.g., [16–19] and references
therein). These models, however, by construction can only
partly provide a solution to the main drawbacks of the SM.
For example, to incorporate both CP violation and DM into
the model one has to go beyond simple scalar extensions of
the SM [20]; see also e.g., [21–26].
It is therefore theoretically appealing to have a more

coherent setting where different motivations of beyond SM
frameworks could be simultaneously investigated. For
example, in nonminimal Higgs frameworks with conserved
discrete symmetries one can accommodate stabilized DM
candidates. Moreover, the extended scalar potential could
provide new sources of CP violation and accommodate a
strong first order phase transition [27]. Collider searches can
constrain these model frameworks by excluding or discov-
ering the existence of the spectrum of new states.
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In this paper we introduce a model where a source of CP
violation originates from the couplings of the inflation.
Through the process of reheating this is transmitted to an
asymmetry within the SM and can furthermore seed the
generation of an excess of matter over antimatter during the
evolution of the early universe. We describe these dynamics
in the context of a Z2 symmetric 3-Higgs doublet model
(3HDM) with a CP-violating extended dark sector, which
also provides a viable DM candidate, new sources of CP
violation and a strong first-order EWPT [20–25]. We study
the inflationary dynamics of this setup and outline its main
consequences. In a future work we aim to continue to
complement this study by more thorough analysis of
EWBG and DM observables as well as a phenomenological
analysis towards LHC searches for new physics.

The paper is organized as follows. In Sec. II we present
the scalar potential and explore the inflationary dynamics.
In Sec. III, we discuss the inflationary imprints of our novel
CP violating inflation phenomena. In Sec. IV, we discuss
the inflaton decay into the SM particles and possible
consequences. In Sec. V we draw our conclusions and
discuss the outlook for further work.

II. THE SCALAR POTENTIAL

A. General definitions

A 3HDM scalar potential which is symmetric under a
groupG of phase rotations can be written as the sum of two
parts: V0 with terms symmetric under any phase rotation,
and VG with terms symmetric under G [28,29]. As a result,
a Z2-symmetric 3HDM can be written as1

V ¼ V0 þ VZ2
;

V0 ¼ −μ21ðϕ†
1ϕ1Þ − μ22ðϕ†

2ϕ2Þ − μ23ðϕ†
3ϕ3Þ þ λ11ðϕ†

1ϕ1Þ2 þ λ22ðϕ†
2ϕ2Þ2 þ λ33ðϕ†

3ϕ3Þ2 þ λ12ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ
þ λ23ðϕ†

2ϕ2Þðϕ†
3ϕ3Þ þ λ31ðϕ†

3ϕ3Þðϕ†
1ϕ1Þ þ λ012ðϕ†

1ϕ2Þðϕ†
2ϕ1Þ þ λ023ðϕ†

2ϕ3Þðϕ†
3ϕ2Þ þ λ031ðϕ†

3ϕ1Þðϕ†
1ϕ3Þ;

VZ2
¼ −μ212ðϕ†

1ϕ2Þ þ λ1ðϕ†
1ϕ2Þ2 þ λ2ðϕ†

2ϕ3Þ2 þ λ3ðϕ†
3ϕ1Þ2 þ H:c:; ð1Þ

where the three Higgs doublets, ϕ1, ϕ2, ϕ3, transform under
the Z2 group, respectively, as

gZ2
¼ diagð−1;−1;þ1Þ: ð2Þ

The parameters of the V0 part of the potential are real by
construction. We allow for the parameters of VZ2

to be
complex, using the following notation throughout the paper:

λj ¼ jλjjeiθj ðj ¼ 1; 2; 3Þ; and μ212 ¼ jμ212jeiθ12 : ð3Þ

The composition of the doublets is as follows:

ϕ1 ¼
� Hþ

1

H1þiA1ffiffi
2

p

�
; ϕ2 ¼

� Hþ
2

H2þiA2ffiffi
2

p

�
;

ϕ3 ¼
� Gþ

vþhþiG0ffiffi
2

p

�
; ð4Þ

where ϕ1 and ϕ2 are the Z2-odd inert doublets,
hϕ1i ¼ hϕ2i ¼ 0, and ϕ3 is the one Z2-even active doublet,
which at low energy attains a vacuum expectation value
(VEV) hϕ3i ¼ v=

ffiffiffi
2

p
≠ 0. The doublet ϕ3 plays the role of

the SMHiggs doublet, with h being the SMHiggs boson and
G�,G0 the would-be Goldstone bosons. Note that according
to the Z2 generator in Eq. (2) the symmetry of the potential is
respected by the vacuum ð0; 0; v= ffiffiffi

2
p Þ. In this paper we

consider the scenario where the components of the inert
doublets act as inflation candidates and reheat the universe at
the end of inflation through their interactions with the SM-

Higgs and gauge bosons. Note that at the scales relevant for
inflation we can take the VEV of the active doublet to be
zero, hϕ3i ¼ 0.
Furthermore, CP violation is only introduced in the inert

sector which is forbidden from mixing with the active sector
by the conservation of the Z2 symmetry. As a result, the
amount of CP violation is not limited by electric dipole
moments [21]. The lightest particle amongst the CP-mixed
neutral fields from the inert doublets is a viable DM candidate
and stable due to the unbroken Z2 symmetry. In this paper,
we focus on the inflationary dynamics of the model and shall
not discuss DM implications of the model any further.

B. Potential for the inflaton

We start by rewriting the doublets in the unitary gauge
and ignore the charged scalars (since they do not affect the
inflationary dynamics):

ϕ1 ¼
1ffiffiffi
2

p
�

0

h1 þ iη1

�
; ϕ2 ¼

1ffiffiffi
2

p
�

0

h2 þ iη2

�
;

ϕ3 ¼
1ffiffiffi
2

p
�

0

h3

�
: ð5Þ

1We ignore additional Z2-symmetric terms that can be added to
the potential, e.g., ðϕ†

3ϕ1Þðϕ†
2ϕ3Þ, ðϕ†

1ϕ2Þðϕ†
3ϕ3Þ, ðϕ†

1ϕ2Þðϕ†
1ϕ1Þ

and ðϕ†
1ϕ2Þðϕ†

2ϕ2Þ, as they do not change the phenomenology of
the model [23].
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The action of the model in the Jordan frame is

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
M2

plR −Dμϕ
†
1D

μϕ1

−Dμϕ
†
2D

μϕ2 −Dμϕ
†
3D

μϕ3

− Vðϕ1;ϕ2;ϕ3Þ − ðξ1jϕ1j2 þ ξ2jϕ2j2

þ ξ3jϕ3j2 þ ξ4ðϕ†
1ϕ2Þ þ ξ�4ðϕ†

2ϕ1ÞÞR
�
; ð6Þ

where R is the Ricci scalar,Mpl is the reduced Planck mass
and the parameters ξi are dimensionless couplings of the
scalar doublets to gravity. Note that, in principle, ξ4 could
be a complex parameter for which we use the notation

ξ4 ¼ jξ4jeiθ4 : ð7Þ

In Eq. (6) the covariant derivative, Dμ, contains cou-
plings of the scalars with the gauge bosons. However, for
the dynamics during the inflation, the covariant derivative
is reduced to the normal derivative Dμ → ∂μ. The minus
sign in the kinetic terms follows the metric convention
of ð−;þ;þ;þÞ.
Since we identify the two inert doublets with inflaton, we

assume that the energy density of ϕ3 is subdominant during
inflation. Therefore, the part of the potential relevant for
inflation is

V ¼ −μ21ðϕ†
1ϕ1Þ − μ22ðϕ†

2ϕ2Þ
þ λ11ðϕ†

1ϕ1Þ2 þ λ22ðϕ†
2ϕ2Þ2

þ λ12ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ þ λ012ðϕ†
1ϕ2Þðϕ†

2ϕ1Þ
− μ212ðϕ†

1ϕ2Þ þ λ1ðϕ†
1ϕ2Þ2 þ H:c: ð8Þ

Due to local SU(2) invariance, we can rotate away one of
the CP-odd fields, say η2. Such a transformation is
equivalent to taking the η2 → 0 limit, and we assume this
limit to be taken when writing the fields in terms of
components in Eq. (5).
To facilitate the analysis, we apply a conformal trans-

formation from the Jordan frame, which contains terms
with scalar-gravity quadratic couplings, to the Einstein
frame with no explicit couplings to gravity [30]. Physical
observables are invariant under this frame transformation.
The two frames are equivalent after the end of inflation
when the transformation parameter equals unity.
The action in the Einstein frame can be written as

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−
1

2
M2

plR̃ −
1

2
g̃μν Gij∂μφi∂νφj − Ṽ

�
;

ð9Þ

where Ṽ ¼ V=Ω4 is the potential in the Einstein frame
following the conformal transformation

g̃μν ¼ Ω2gμν;

Gij ¼
1

Ω2
δij þ

3

2

M2
pl

Ω4

∂Ω2

∂φi

∂Ω2

∂φj
; ð10Þ

where φk ¼ h1, h2, η1, and the transformation parameter

Ω2 ¼ 1þ ξ1
M2

pl

ðh21 þ η21Þ þ
ξ2
M2

pl

h22

þ 2jξ4j
M2

pl

ðh1h2cθ4 þ η1h2sθ4Þ ð11Þ

using the shorthand notation cθk ¼ cos θk and sθk ¼ sin θk
throughout the paper.
The prefactor Gij in Eq. (10) leads to mixed kinetic

terms. We introduce the reparametrization

A ¼
ffiffiffi
3

2

r
Mpl logðΩ2Þ with

∂Ω2

∂φk
¼

ffiffiffi
2

3

r
Ω2

Mpl

dA
dφk

ð12Þ

which reduces the kinetic terms to the diagonal form:

g̃μνGij∂μφi∂νφj ¼ Ω2gμν

�
δij
Ω2

þ ∂A
∂φi

∂A
∂φj

�
∂μφi∂νφj

¼ ∂μφi∂μφi þ Ω2∂μA∂μA: ð13Þ

To write the potential in the Einstein frame, we keep
only terms in the potential in Eq. (8) which are quartic in
h1;2 and η1. This reduces the potential to

Ṽ ≈
1

4Ω4
½λ11ðh21 þ η21Þ2 þ λ22h42 þ ðλ12 þ λ012Þðh21 þ η21Þh22

þ 2jλ1jðcθ1ðh22ðh21 − η21ÞÞ þ 2sθ1h
2
2h1η1Þ�; ð14Þ

where θ1 is the CP-violating phase of the λ1 parameter.
Further, we introduce another reparametrization,

η1 ¼ β1h1; h2 ¼ β2h1; ð15Þ

with β1, β2 as field dependent values, to rewrite the
potential as

Ṽ ≈
h41
4Ω4

½λ11ð1þ β21Þ2 þ λ22β
4
2 þ ððλ12 þ λ012Þð1þ β21Þ

þ 2jλ1jðcθ1ð1 − β21Þ þ 2sθ1β1ÞÞβ22�: ð16Þ

Using this reparametrization, one can also simplify the Ω2

parameter in Eq. (11) as
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Ω2 ¼ 1þ
�

ξ1
M2

pl

ð1þ β21Þ þ
ξ2
M2

pl

β22 þ
2jξ4j
M2

pl

β2ðcθ4 þ β1sθ4Þ
�

h21 ≡ 1þ B
M2

pl

h21: ð17Þ

From Eq. (12), recall thatΩ2 ¼ expðÃÞ using the shorthand
notation Ã ¼

ffiffi
2
3

q
A
Mpl

. One can then write the field h1 in

terms of the reparametrized field Ã:

h21 ¼
M2

pl

B
ðeÃ − 1Þ: ð18Þ

Therefore, expressing h21 and Ω2 in terms of Ã allows us to
write the potential in Eq. (16) in the form

Ṽ ∼ ð1 − e−ÃÞ2Xðβ1; β2Þ: ð19Þ

We will be interested in the effect of the nonminimal
coupling ξ4 and the associated phase θ4. Therefore, we will
set ξ1 ¼ ξ2 ¼ 0 and assume that the initial field values are
such that Ω2 > 0 is guaranteed. Therefore, with these
assumptions, the potential in Eq. (16) can be written as

Ṽ ¼
�
M2

pl

2jξ4j
�

2

ð1 − e−ÃÞ2 Xðβ1; β2Þ; ð20Þ

where

Xðβ1; β2Þ ¼
λ11ð1þ β21Þ2 þ λ22β

4
2 þ ððλ12 þ λ012Þð1þ β21Þ þ 2jλ1jðcθ1ð1 − β21Þ þ 2sθ1β1ÞÞβ22

4β22ðcθ4 þ β1sθ4Þ2
: ð21Þ

Following the procedure in [16], to find the direction of
inflation, we first minimize the Xðβ1; β2Þ function with
respect to β2 which occurs at

∂Xðβ1; β2Þ
∂β2 ¼ 0 ⇒ β22 ¼

ffiffiffiffiffiffi
λ11
λ22

s
ð1þ β21Þ: ð22Þ

The second order derivative at this point is

∂2Xðβ1; β2Þ
∂β22 ¼ 2λ22

ðcθ4 þ β1sθ4Þ2
ð23Þ

which is always positive provided λ22 > 0, as shown in the
left panel in Fig. 1.
Using the β2 value in Eq. (22), we can write the Xðβ1; β2Þ

function solely in terms of β1,

Xðβ1Þ ¼
ð1þ β21ÞΛþ 2ðð1 − β21Þcθ1 þ 2β1sθ1Þjλ1j

4ðcθ4 þ β1sθ4Þ2
ð24Þ

with Λ ¼ λ12 þ λ012 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
λ11λ22

p
.

We repeat the same treatment and minimize the Xðβ1Þ
function with respect to β1.
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FIG. 1. The second order derivative of the function Xðβ1; β2Þ with respect to β2 at the minimum (∂X=∂β2 ¼ 0) on the left and the
second order derivative of the function Xðβ1Þ with respect to β1 at the minimum (∂X=∂β1 ¼ 0) on the right (all λi ∼ 0.001). The white
area on the left panel corresponds to where the denominator in Eq. (23) becomes zero.
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∂Xðβ1Þ
∂β1 ¼ 0 ⇒ β1 ¼

ðΛþ 2jλ1jcθ1Þsθ4 − 2jλ1jcθ4sθ1
ðΛ − 2jλ1jcθ1Þcθ4 − 2jλ1jsθ4sθ1

:

ð25Þ

We check the positivity of the second order derivative at the
minimum point which is satisfied for all θ1, θ4 values as
shown in the right panel of Fig. 1.
Replacing the β1 value which minimizes the Xðβ1Þ

function back into the Xðβ1Þ function itself, yields the
form of X independent of β1 and β2 with only θ1 and θ4 as
variables:

Xðθ1; θ4Þ ¼
1
4
Λ2 − λ21

Λ − 2λ1 cosðθ1 − 2θ4Þ
: ð26Þ

The left panel in Fig. 2 shows the Xðθ1; θ4Þ function for
allowed values of θ1 and θ4. At each point in the plots, one
can derive the values of β1 and consequently β2 using
Eq. (22) for given values of θ1 and θ4. The right panel in
Fig. 2 shows the values of β1 for varying values of θ1
and θ4.

III. INFLATIONARY DYNAMICS

With the procedure used in the previous section, the
dynamics is essentially that of a single field inflation. The
full inflationary potential in Eq. (20) can be written as

Ṽ ¼
�
M2

pl

2jξ4j
�

2

ð1 − e−ÃÞ2 Xðθ1; θ4Þ: ð27Þ

Figure 3 shows the inflationary potential for different values
of θ1 and θ4. Note that the potential is almost flat at high field
values which ensures a slow roll inflation.

For the usual slow roll parameters in this case the
function X is irrelevant, since it cancels in the expressions
for ϵ and η, which are

ϵ ¼ 1

2
M2

pl

�
1

Ṽ

dṼ
dA

�
2

¼ 4

3ð1 − eÃÞ2 ; ð28Þ

η ¼ M2
pl
1

Ṽ

d2Ṽ
dA2

¼ 4ð2 − eÃÞ
3ð1 − eÃÞ2 : ð29Þ

For field values A ≫ Mpl (or equivalently Ã ≫ 1), both
parameters ϵ, η ≪ 1 which satisfies the slow roll condition.
Inflation ends when ϵ ≃ 1. To calculate the values of A at
the beginning and end of inflation, Ai and Af respectively,
one needs to calculate the number of e-folds Ne, i.e., the
number of times the universe expanded by e times its own
size. Ne is calculated to be

Ne ¼
1

M2
pl

Z
Ai

Af

Ṽ

Ṽ0 dA ¼ 3

4
½Ãf − Ãi − eÃf þ eÃi �; ð30Þ

where Ṽ 0 ¼ dṼ
dA and Ai (Ãi) is the value of A (Ã) at the

beginning of inflation and Af (Ãf) is the value of A (Ã) at
the end of the inflation. Since inflation ends when ϵ ≃ 1,
one can calculate Af, which yields

eÃf ¼ exp

� ffiffiffi
2

3

r
Af

Mpl

�
≃ 2.1547

⇒ Ãf ¼
ffiffiffi
2

3

r
Af

Mpl
≃ 0.7676: ð31Þ

To calculate Ai, one could plug in the Af value into Eq. (30)
assuming Ne ¼ 60, which results in
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FIG. 2. The Xðθ1; θ4Þ function on the left and the values of β1 on the right for varying values of θ1 and θ4 (all λi ∼ 0.001). The white
region in the right panel shows a discontinuity where β1 values tend to plus infinity approaching from the bottom and to minus infinity
approaching from the top of the plot.
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3

4
½−Ãi þ eÃi � − 1.0403 ¼ 60;

⇒ Ãi ¼
ffiffiffi
2

3

r
Ai

Mpl
≈ 4.4524: ð32Þ

At this point we can also check the field values in terms
of the original field h1 using Eq. (18). This gives

h1f ¼ 1.85 × 1018ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijξ4jβ2ðcθ4 þ β1sθ4Þ
p ;

h1i ¼
1.59 × 1019ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijξ4jβ2ðcθ4 þ β1sθ4Þ

p : ð33Þ

In the case of Higgs inflation where the nonminimal
coupling to gravity, ξ, is forced to be of the order
∼104 GeV, the h field values during inflation are as large
as 1016 GeV or so. In our case the situation is similar.
Having fixed Ne to 60, and calculated the A field value at

the start of inflation, we can derive the scalar power
spectrum, Ps, the tensor to scalar ratio r and the spectral
index ns as follows:

Ps ¼
1

12π2M6
pl

ðṼÞ3
ðṼ 0Þ2

¼
�ð1 − eÃÞ4
128π2e2Ã

�
Xðθ1; θ4Þ
jξ4j2

¼ 5.565 ×
Xðθ1; θ4Þ
jξ4j2

; ð34Þ

r ¼ 16ϵ ¼ 0.00296; ð35Þ

ns ¼ 1 − 6ϵþ 2η ¼ 0.9678; ð36Þ

where Ṽ 0 is the derivative of Ṽ with respect to A and both Ṽ
and Ṽ 0 are calculated at the Ai. Figure 4 shows the slow roll
parameters Ne, ns and rwith respect to Ãwith the grid lines
highlighting the 55 < Ne < 65 values. We show the infla-
tionary parameters over a range of Ne, since there is no
reason for Ne to be precisely 60. The values of r and ns are
well within the Plank bounds of ns ¼ 0.9677� 0.0060 at
the 1σ level and r < 0.11 at 95% confidence level [31].
Note that the spectral index and the tensor to scalar ratio are
in agreement with the Planck bounds over the full range of
Ne. Figure 5 shows the 1σ and 2σ regions allowed by
Planck observations in the r − ns plane and the theoretical
predictions of our framework for Ne values of 55 and 65.
Observations from WMAP7 [32] constrain the scalar

power spectrum which put a bound on the ξ4 coupling and
angles θ1, θ4,

FIG. 3. The inflationary potential for different values of θ1 and θ4 (all λi ∼ 0.001).
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FIG. 4. The slow roll parameters: the number of e-folds Ne (left), spectral index ns (center) and tensor to scalar ratio r (right) as a
function of Ã with the grid lines highlighting the 55 < Ne < 65 values.
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Ps ¼ ð2.430� 0.091Þ × 10−9 ¼ 5.565 ×
Xðθ1; θ4Þ
jξ4j2

: ð37Þ

In the left panel of Fig. 6, we show Ps values for the fixed
θ1 ¼ π=3 angle and varying values of ξ4 and θ4 up to 3σ
standard deviation from the central value in Eq. (37). In the
right panel, we fix Ps to the WMAP7 central value for fixed
values of λi ∼ 0.001 to get

jξ4j ¼ 4.785 × 104
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xðθ1; θ4Þ

p
ð38Þ

and show contours of ξ4 for varying values of θ1 and θ4.
Note that every point in the plot yields the exact Ps
central value.
This is a very important feature of our framework. To

satisfy the bounds on the scalar power spectrum, the
function Xðθ1; θ4Þ allows for a wide range of ξ4 values
as shown in Fig. 6. This is in contrast to the Higgs-inflation

models where Ps ∝ λ=ξ2 with λ the Higgs self-coupling
which is fixed to be ∼0.12 at the electroweak scale. Thus,
for Ps to agree with observations at the inflationary scale, ξ
will have to be very large Oð104Þ. In our setup, a
combination of parameters λ1, λ11, λ22, λ12, λ012 appears
in the Xðθ1; θ4Þ function. The only constraint limiting these
parameters is the stability of the potential requiring

λii > 0; λij þ λ0ij > −2
ffiffiffiffiffiffiffiffiffiffi
λiiλjj

q
;

jλij ≤ jλiij; jλijj; jλ0ijj; i ≠ j ¼ 1; 2; 3; ð39Þ

which allows for very small values of λi ∼ 0.001 which, in
turn, allows for much smaller values of ξ4, at least 1 order
of magnitude than the ξ value in Higgs-inflation models.

IV. REHEATING AND SCALAR ASYMMETRIES

At the end of inflation, the energy stored in the inflaton
disperses as the inflaton decays/annihilates into the SM
particles through processes mediated by the SM-Higgs and
gauge bosons in our case, during the so-called reheating
phase [33]. There are numerous details on how the inflaton
decays and creates the initial condition for the conventional
hot early universe. Here our main interest is to discuss how
the CP asymmetry originating from the nonminimal
coupling is transferred to the SM degrees of freedom.
For the discussion of the scalar asymmetries, let us focus

on the neutral components of the ϕ1 doublets acquiring an
initial nonvanishing expectation value at the exit from
inflaton. We write the field fluctuations around the initial
conditions as

0.94 0.95 0.96 0.97 0.98 0.99
0.00
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0.15

0.20

0.25
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Planck 2
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Ne=65

r

FIG. 5. The 1σ and 2σ regions for ns and r from Planck
observation compared to the theoretical prediction of our frame-
work.
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FIG. 6. Left panel: Ps values for the fixed θ1 ¼ π=3 angle and varying values of ξ4 and θ4 up to 3σ standard deviation from the
observed central value. Right panel: contours of ξ4 in the θ1 − θ4 plane which lead to Ps central values (all λi ∼ 0.001).
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ϕ1 → ϕ1 − a1eiα; ϕ†
1 → ϕ�

1 − a1e−iα

ϕ2 → ϕ2 − a2; ϕ†
2 → ϕ�

2 − a2

ϕ3 → ϕ3 − a3; ϕ†
3 → ϕ�

3 − a3: ð40Þ

The phase α here is related to the CP-violating phases of
inflation. Note that at the end of inflation the h1 field has
taken the value h1f according to Eq. (33) which is
dependent on the inflationary dynamics, namely θ4, β1
and β2 which are dependent on θ1. Since h1 is the real part
of the complex field ϕ1, its value is what feeds the a1 cos α
component of fluctuations in Eq. (40). The imaginary part
of ϕ1, represented by η1, takes a value proportional to η1f ¼
β1h1f as shown in Eq. (15), and feeds the a1 sin α
component of the field fluctuations. Recall that one can
obtain the values of β1 and β2 for any given value of θ1 and
θ4 from Eqs. (22) and (25). Explicitly, one can write

tan α ¼ a1 sin α
a1 cos α

¼ η1f
h1f

¼ β1

¼ ðΛþ 2jλ1jcθ1Þsθ4 − 2jλ1jcθ4sθ1
ðΛ − 2jλ1jcθ1Þcθ4 − 2jλ1jsθ4sθ1

; ð41Þ

with Λ ¼ λ12 þ λ012 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
λ11λ22

p
as mentioned before.

However, to keep the present discussion more transparent,
we retain a generic phase α here.
To discuss the consequences of this complex phase, we

now assume instant reheating. Since the field ϕ3 is light
with respect to the inflaton degrees of freedom, we expect
the latter to quickly decay to ϕ3. The asymmetry arising
from the values of the fields in Eq. (40) will manifest in
creation of an unequal number of ϕ3 and ϕ�

3 quanta as
follows.
Let us study the decay process ϕ1 → ϕ�

3ϕ
�
3 in detail.

From the potential in Eq. (1), the amplitude of the tree-level
process is proportional to

Mðϕ1→ϕ�
3
ϕ�
3
Þ ∝ −2a1λ3eiðαþθ3Þ and

Mðϕ�
1
→ϕ3ϕ3Þ ∝ −2a1λ3e−iðαþθ3Þ: ð42Þ

The generation of the asymmetry is sensitive to the
interference between the tree and loop diagrams [34,35].
Hence, we need to sketch what happens at loop level. At
one loop level, there are many diagrams that contribute to
this decay process. For the purpose of demonstration, we
consider the bubble diagrams which convert ϕ1 to ϕ3 with
only ϕ1 and ϕ�

1 in the loop, as shown in Fig. 7. Clearly one
needs to take into account all diagrams contributing to this
decay process, especially since there may be interferences
canceling the CP asymmetry. However, since all triple
scalar couplings in the potential can be different, one can
ensure that such cancellation does not occur. More careful
analysis of these effects is deferred to a future work.

The amplitude of the loop process with ϕ1 and ϕ�
1

running in the loop is proportional to

Mðϕ1→ϕ3→ϕ�
3
ϕ�
3
Þ ∝ −4a1a23λ11λ33ðλ31 þ λ031Þe−iα; ð43Þ

Mðϕ�
1
→ϕ�

3
→ϕ3ϕ3Þ ∝ −4a1a23λ11λ33ðλ31 þ λ031Þeiα: ð44Þ

Due to the interference of the tree and loop diagrams, the
decay processes are CP violating and result in an unequal
number of ϕ3 and ϕ�

3 states. Consequently, we define the
asymmetry A1

CP as the difference between the ϕ1 decay rate
and its conjugate, and we find

A1
CP ¼ Γtreeþloop

ðϕ1→ϕ�
3
ϕ�
3
Þ − Γtreeþloop

ðϕ�
1
→ϕ3ϕ3Þ

¼ −
1

16
ffiffiffi
3

p
π2

a21a
2
3λ3λ11λ33ðλ31 þ λ031Þ sinð2αþ θ3Þ:

ð45Þ

This asymmetry in the scalar sector is then transferred to
the fermion sector through the couplings of the Higgs field
(the ϕ3 doublet) with the fermions. For example, assuming
the existence of right-handed neutrinos, the Yukawa inter-
actions between neutrinos and ϕ3 will generate an asym-
metry between νL and ν̄R, which would be further translated
into baryon asymmetry by the electroweak sphalerons.

V. CONCLUSION AND OUTLOOK

Scalar fields which have nonminimal couplings to gravity
are well-motivated inflaton candidates. Paradigmatic exam-
ples are the Higgs-inflation [13] and s-inflation models [15].
In this paper we have considered a scenario where several
nonminimally coupled scalars contribute to the inflationary
dynamics. In particular we investigated a model where these
scalars are electroweak doublets and therefore generalize the
Higgs inflation. We focused on a setting where the dominant
nonminimal coupling is allowed to be complex and inves-
tigated the effect that this would have on CP violation in our
universe. We determined the inflationary dynamics in the
regime where the model essentially conforms to the pre-
dictions of single field inflation. The essential difference is
that the inflaton obtains a nonzero phase representing a
possible source of CP violation for subsequent postinfla-
tionary evolution. At the end of inflation, the inflaton particle
which is naturally assumed to have couplings with the SM
Higgs, dumps its energy into the SM particle bath through

FIG. 7. The tree-level decay process ϕ1 → ϕ�
3ϕ

�
3 and the one-

loop bubble diagram with ϕ1 and ϕ�
1 in the loop.
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the process of reheating, which populates the universe with
the SM particles. We sketched how the complex value of the
inflaton field leads to an asymmetry in the scalar sector
decays, and how this asymmetry will further be transmitted
to the fermion sector. There are numerous details in our
scenario which can be investigated in more detail. These
include the multifield dynamics during the inflation as well
as the details of reheating and subsequent particle decays.
Also the detailed analysis of the effects on the generation of
baryon asymmetry needs to be addressed in more detail. We

will consider these in future work on the model introduced in
this paper.
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