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We show that relic vector fields can significantly impact a spectrum of primordial gravitational waves in
the postinflationary era. We consider a triplet of U(1) fields in a homogeneous, isotropic configuration. The
interaction between the gravitational waves and the vector fields, from the end of reheating to the present
day, yields novel spectral features. The amplitude, tilt, shape, and net chirality of the gravitational wave
spectrum are shown to depend on the abundance of the electric- and magneticlike vector fields. Our results
show that even a modest abundance can have strong implications for efforts to detect the imprint of
gravitational waves on the cosmic microwave background polarization. We find that a vector field
comprising less than 2% of the energy density during the radiation-dominated era can have a greater than
order unity effect on the predicted inflationary gravitational wave spectrum.
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I. INTRODUCTION

The inflationary paradigm is widely regarded as the
leading framework to describe the early stages of hot big
bang cosmology [1–3]. Indeed, the inflationary prediction
of a nearly scale-invariant spectrum of primordial adiabatic
density perturbations [4–8] underpins the successes of the
standard cosmological model. Inflation also predicts a
nearly scale-invariant spectrum of primordial gravitational
waves (GWs) [9–13]. Detection of the unique signature of
these long-wavelength GWs in the polarization pattern of
the cosmic microwave background (CMB) would provide
strong confirmation of inflation [14,15]. Consequently,
there is an enormous experimental effort to detect the
polarization signal [16–22]. Similarly, there is a concerted
theoretical effort to connect such a signal to the physics of
inflation [23–27]. Yet, despite these successes and pros-
pects, there is no leading theoretical model of inflation, and
investigations into the fundamental physics origin of the
inflationary era are an ongoing concern. Most efforts focus
on building a sufficiently flat potential for slow-roll scalar
field evolution. However, Planck-scale quantum correc-
tions make it a challenge to obtain viable inflation with an
appreciable level of GWs [28].
A new approach, consisting of a method to achieve slow-

roll inflation in a steep potential, has recently garnered
attention. In this scenario, a coupling between an axionlike
inflaton and the vacuum expectation value (VEV) of a
vector gauge field, through the Chern-Simons term, acts
like a brake on the inflaton evolution [29,30]. These
scenarios can produce sufficient inflation without resorting

to fine-tuning or Planck-scale physics. Variations on the
basic model have been explored [31–39], including the
impact on reheating [40–44]. Models such as chromona-
tural inflation [30] organize the gauge field under SU(2) to
maintain isotropy and spatial homogeneity, though other
group structures are feasible. But all such models share a
common feature: The tensor shear due to the gauge field
VEV strongly affects GW amplification and evolution
during inflation [45–56]. The upshot is that these models
overwrite the standard inflationary expressions that connect
the primordial tensor amplitude to the scale of inflation or
the tensor tilt to the slow-roll parameters. A significant
piece of this story is missing, however; the gauge field VEV
may be expected to survive inflation and reheating
[40,41,44] and further transform the GW spectrum.
There are various scenarios in which relic vector fields

emerge from inflation [57–61]. In the simplest cases, a
coupling between the inflaton or spectator scalar and a U(1)
field pumps energy into the vector field, producing a
spectrum of long-wavelength vector perturbations. The
cumulative effect of superhorizon modes contributes an
effective homogeneous background, consisting of both
electric and magnetic components [29,38].
In this paper, we investigate the effect of the relic vector

fields on the primordial GW spectrum during the post-
inflationary era. For simplicity, we consider a toy model
consisting of a triplet of U(1) fields with VEVs that are
arranged in a spatially homogeneous and isotropic con-
figuration. Such a configuration may occur as a central
feature of inflation with Abelian fields [29] but may also
arise from non-Abelian gauge field inflation, in the weakly
coupled regime [38], or as a consequence of the postinfla-
tionary thermalization process [40,57,58]. The GW–gauge*avery.tishue.gr@dartmouth.edu
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field system is parameterized by the amplitude of the
electric- and magneticlike field strengths, with constant
fractional energy density during the radiation era. We show
that the spectrum amplitude, tilt, shape, and net chirality are
transformed. This is a new twist on cosmic archaeology
[62]: the imprinting of a nonstandard expansion history
[63] or particle physics history [64–71] on a GW spectrum.
Through examples, we illustrate the consequences for
CMB probes of primordial B modes and efforts to directly
detect a stochastic GW background. In the context of these
scenarios, the strong amplification or suppression of a
primordial GW spectrum has significant observational
consequences.
The paper is organized as follows. In Sec. II, we

introduce the model and conventions. We present our
results in Sec. III and interpretations in Sec. IV.
Calculation details are presented in the appendixes.

II. MODEL AND CONVENTIONS

The vector field sector of this model is composed of a
triplet of classical U(1) fields, AðiÞ

μ , with each copy indexed
by i ¼ 1–3 Hence, after the relaxation and decay of the
inflaton through the epoch of reheating, all remaining
particles and fields are given by the Lagrangian density

L ¼ 1

2
M2

PR −
1

4
FðiÞ
μνF

μν
ðiÞ þ Lrm; ð1Þ

where Lrm is the Lagrangian for matter and radiation. Here
and throughout, the reduced Planck mass is MP ¼
1=

ffiffiffiffiffiffiffiffiffi
8πG

p
. We assume the fermions associated with the

vector fields are not present, having been diluted by
inflation or simply too heavy to reach equilibrium with
the thermal radiation. As usual, the field strength tensor for

the ith field is FðiÞ
μν ¼ ∂μA

ðiÞ
ν − ∂νA

ðiÞ
μ , and the associated

stress-energy tensor is TðiÞ
μν ¼ FðiÞα

μ FðiÞ
να − gμνFðiÞ2=4. The

total stress-energy of the system is the sum over the three:

Tμν ¼
P

i T
ðiÞ
μν . To proceed, both the metric and the gauge

fields are split into a background piece and a linear

perturbation: gμν ¼ ημν þ hμν and AðiÞ
μ ¼ ĀðiÞ

μ þ δAðiÞ
μ .

A. Background

We consider a homogeneous, isotropic spacetime with
line element ds2 ¼ a2ðτÞð−dτ2 þ dx⃗2Þ. The conformal
time is τ, and the expansion scale factor a is normalized
so that a0 ¼ 1 today. The background metric evolves
according to the Friedmann equation

H2 ≡
�
a0

a2

�
2

¼ H2
0

�
ΩM

�
a0
a

�
3

þ ΩR

�
a0
a

�
4

þΩΛ

�
; ð2Þ

where ΩM þΩR þΩΛ ¼ 1 and 0 ¼ d=dτ indicates differ-
entiation with respect to conformal time.

In accordance with the symmetries of the Robertson-
Walker (RW) spacetime, the vector fields must preserve
homogeneous and isotropic stress-energy at the back-
ground level; the background fields are set up in a
“flavor-space” locked configuration,

FðiÞ
j0 ¼ E0δ

i
j; FðiÞ

kj ¼ B0ϵ
ijk; ð3Þ

with constants E0 and B0 representing the VEVs of the
fields. We stress that these are not the electromagnetic
fields of the Standard Model. For each flavor of the U(1),
there is an “electric” field and coparallel “magnetic” field;
each flavor is aligned with one of the principal spatial
directions. We note that the two triads must be so aligned,
or antialigned, in order for the stress-energy to be isotropic.
Put another way, if the electric and magnetic fields of a
given flavor were not aligned, there would be a nonzero
Poynting vector that would break the rotational symmetry.
Later, we also consider the case that the electric- and
magneticlike fields are associated with different flavors,
requiring two triplets of U(1) fields.
With this ansatz, the energy density in the background

fields is computed via ρĀ¼uμuνTμν¼ð3=2ÞðB2
0þE2

0Þ=a4,
where uμ is the four-velocity of an observer at rest with
respect to the cosmic frame. The pressure in the i ¼ x, y, or
z direction is pĀ;ðiÞ ¼ eμðiÞe

ν
ðiÞTμν ¼ ð1=2ÞðB2

0 þ E2
0Þ=a4, the

same in all directions, where eνðiÞ are a set of mutually

orthogonal basis vectors. The equation of state is w ¼ 1=3,
but these stationary fields are not thermal radiation. To
parameterize the ratio of the U(1) energy density to
Standard Model radiation (SMR) energy density, we
introduce RB and RE:

RB ≡ 1

2

B2
0

ΩSMRM2
PH

2
0

; RE ≡ 1

2

E2
0

ΩSMRM2
PH

2
0

; ð4Þ

where ΩR ¼ ΩSMRð1þ RB þ REÞ.

B. Perturbations

Our focus in this scenario is the interaction of GWs with
the vector fields, so we begin by considering transverse,
traceless, synchronous metric perturbations, gμν¼ημνþhμν.
It will be sufficient to consider a GW propagating in theþẑ
direction:

hμν ¼ a2ðτÞ

0
BBB@

0 0 0 0

0 hþðτ; zÞ h×ðτ; zÞ 0

0 h×ðτ; zÞ −hþðτ; zÞ 0

0 0 0 0

1
CCCA; ð5Þ

where we allow both þ and × polarizations.
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Similarly, we consider linear U(1) perturbations

δAðiÞ
μ , propagating in the þẑ direction. These wavelike

perturbations can be expressed in terms of two independent
polarizations, whereby

δAð1Þ
μ ¼ 1

2
MPð0; wþðτ; zÞ; w×ðτ; zÞ; 0Þ; ð6Þ

δAð2Þ
μ ¼ 1

2
MPð0; w×ðτ; zÞ;−wþðτ; zÞ; 0Þ; ð7Þ

δAð3Þ
μ ¼ ð0; 0; 0; 0Þ: ð8Þ

The factor ofMP makes wþ;× dimensionless, and the factor
of 1=2 is introduced to make the equations of motion more
symmetrical.
The equations of motion are obtained from the perturbed

field equations: Gμν ¼ M−2
P Tμν for GWs and ∇μF

μν
ðiÞ ¼ 0

for the vector field excitations. We find that the þ and ×
polarizations mix, but, by switching to a circularly polar-
ized basis,

hR;L ¼ 1ffiffiffi
2

p ðhþ � ih×Þ; ð9Þ

wR;L ¼ 1ffiffiffi
2

p ðwþ � iw×Þ; ð10Þ

the wave equations for the two polarizations separate. For
further convenience, we define u≡ ah and move to Fourier
space. The coupled equations of motion are

u00σ þ
�
k2 −

a00

a
þ 2

B2
0 − E2

0

a2M2
P

�
uσ

¼ 2

aMP
½E0w0

σ − σkB0wσ�; ð11Þ

w00
σ þ k2wσ ¼

2

aMP

�
E0

�
a0

a
uσ − u0σ

�
− σkB0uσ

�
; ð12Þ

where σ ¼ �1 denotes the right (left) circular polarization.
We ignore the effects of photon and neutrino free-streaming
and details of the thermal history of the radiation fluid on
the GW background [66].
We comment on several aspects of the above equations

of motion. First, it may be surprising that GWs are linearly
sourced by U(1) excitations in this scenario, since the
interaction is linear in the graviton and quadratic in U(1)
fields. However, the classical background fields E0 and B0

serve as external fields for the tree-level interaction,
rendering the interaction linear in u and w. Without the
background fields, second-order perturbations would be
necessary to source GWs. Second, Eq. (11) arises from the
perturbed Einstein equation. The effective mass term
proportional to B2

0 − E2
0 is due to the δgμνF2 term in the

perturbed U(1) stress-energy tensor. The other terms on the
right-hand side of the equation, also due to the stress-
energy tensor, are due to the linear perturbations of the U(1)
fields and so contain the product of one power each of
classical field and excitation. Third, Eq. (12) is obtained
from the U(1) field equations of motion, Maxwell’s
equations. These equations are linear in field strength F.
Consequently, each term in the above equation contains
only one power of either classical field or excitation.
The above system of equations displays significant new

features affecting the propagation of GWs in the cosmo-
logical spacetime. To begin, the effective mass term in the u
equation plays an important role during the radiation-
dominated era, when a00=a is negligible, leading to sup-
pression (enhancement) of superhorizon modes when B2

0 is
greater (less) than E2

0. Hence, a blue (red) tilt will be
induced in a scale-invariant spectrum. Next, the GWs
couple to the wave excitations of the U(1) fields.
Interconversion between the two, u and w, will deplete a
spectrum of GWs across a range of frequencies. This will
imprint periodic features onto an otherwise power-law
spectrum. Last, the equations of motion differ in chirality.
The presence of both the parity-even E0 and the parity-odd
B0 at the background level causes the medium to be
effectively birefringent. Hence, right-circular-polarized
waves propagate differently than left-circular. As a result,
the processed spectrum will exhibit a difference in handed-
ness as a function of frequency. Together, these three
features will transform a primordial spectrum and leave
interesting targets for observation and experiment.
Finally, we note that scalar perturbations of the flavor-

space locked configuration may be equivalently described
as perturbations of an E and B fluid, both with w ¼
δp=δρ ¼ 1=3 and a scalar shear σ. Details are given in
Appendix A. The equations of motion are identical to the
color electrodynamics case previously studied [72]. There,
it was shown that the scalar perturbations are stable and
leave negligible imprint on the CMB, given the bounds on
the relic energy density. Hence, we will not consider the
scalar perturbations further in our analysis.

C. Stochastic gravitational wave background

The observable of interest that displays these new features
is the GW spectrum ΩGW. This quantity is defined as the
energy density in GWs, ρGW, per logarithmic frequency
interval ln k, normalized by the critical density ρc [66]:

ΩGWðk; τÞ≡ 1

ρc

dρGW
d ln k

ð13Þ

ΩGWðk; τÞ ¼
1

12ðHaÞ2
X

σ

Δ2
hσ ;prim

jT 0
hσ ;k

ðτÞj2: ð14Þ

In the second equality, we introduce the GW transfer
function T :
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T hσ ;kðτÞ≡ hk;σðτÞ=hprimk;σ ; ð15Þ

which connects the initial GW amplitude to the later,
processed amplitude. The primordial GW power spectrum is

Δ2
hσ ;prim

ðkÞ≡ 2
k3

2π2
jhσ;k;primj2 ð16Þ

for each polarization. In the standard case of slow-roll
inflation, jhσ;k;primj2 ¼ H2

I =k
3M2

P, where HI is the Hubble
expansion rate during inflation at horizon exit of a modewith
comoving wave number k.
The spectrum of U(1) excitations can be described

similarly:

ΩδAðk; τÞ≡ 1

ρc

dρδA
d ln k

ð17Þ

ΩδAðk; τÞ ¼
k3

12π2ðHa2Þ2
X

σ

jw0
σ;kðτÞj2 ð18Þ

ΩδAðk; τÞ ¼
1

12ðHa2Þ2
X

σ

Δ2
hσ ;prim

jT 0
wσ ;k

ðτÞj2: ð19Þ

Here, we cast the U(1) spectrum in terms of the primordial
GW power spectrum and define the w transfer function
T wσ ;kðτÞ≡ wk;σðτÞ=hprimk;σ , also normalized by the primor-
dial GW amplitude.
We note that the calculation of the energy densities

invokes spatial averaging over lengths much larger than the
wavelength. Although this procedure makes sense for
waves that are well within the horizon, we nevertheless
apply the above expressions to wavelengths approaching
the Hubble radius. Furthermore, at high frequencies we
apply a time-averaging filter to obtain the envelope of the
spectrum, ΩGW;env ≡ 2hΩGWiτ, where the time average
h� � �iτ is to be taken over a period of oscillation,
τ ¼ 2π=k. In subsequent figures, we plot the full oscillatory
spectrum ΩGW up to k ≃ keq. At higher wave numbers, we
plot only the envelope.

D. Initial conditions and parameter choices

We prepare the background spacetime in a radiation-
dominated universe following reheating. We use cosmologi-
cal parameters ðH0;ΩM;ΩSMRÞ ¼ ð67.66 km s−1Mpc−1;
0.3111; 9.138 × 10−5Þ obtained from the Planck 2018 TT,
TE, EE, lowE, lensing, and baryon acoustic oscillation best-
fit values [73]. The energy density of the U(1) fields is set by
choosing values of RB and RE. This additional, relativistic
energy density is constrained by big bang nucleosynthesis
(BBN) to add nomore thanΔNeff < 0.43 (2σ) extramassless
neutrinos [74]. CMB constraints on extra species, which
require some assumptions about the clustering properties,

yield ΔNeff < 0.3 (95% C.L.) [73]. A joint BBN-CMB
analysis gives ΔNeff < 0.168 (95% C.L.) [74]. We will use
this tighter bound to set a limit on the energy density. Hence,
expressing RB and RE in terms of the effective number of
neutrino species,

RB þ RE ¼
7
8
ð 4
11
Þ4=3ΔNeff

1þ 7
8
ð 4
11
Þ4=3Neff

; ð20Þ

where Neff ¼ 3.046, we obtain the upper limit RB þ RE <
Rmax ¼ 0.0225 (95% C.L.).
We assume the existence of a spectrum of primordial

GWs generated by slow-roll inflation. We set the spectrum
amplitude at the CMB pivot scale, k� ¼ 0.05 Mpc−1,
to be consistent with bounds on the tensor-to-scalar ratio
r� and the normalization of the scalar spectrum, AS ¼
2.101þ0.031

−0.034 × 10−9 [73]. A Planck 2018 analysis yields an
upper bound r� < 0.06 (95% C.L.) [19], whereas a sub-
sequent study places the upper limit at r� < 0.044
(95% C.L.) [20]. To be concrete, we will use r� ¼ 0.04
to set the spectrum amplitude, Δ2

hσ ;prim
ðk�Þ ¼

H2
I ðk�Þ=M2

Pπ
2, whereby summing over polarizations we

obtain HIðk�Þ ≈ 2.0 × 10−5MP. The amplitude at other
wavelengths, ranging from the present-day Hubble radius
down to the Hubble radius at the end of reheating, depends
on the details of both the inflationary and reheating
scenarios. For simplicity, in this work, we make the gross
assumptions that the primordial spectral tilt is vanishingly
small, nT ≪ 1, and that reheating is instantaneous. Hence,
we initialize the system at the end of reheating, at
conformal time τRH ¼ 1=ðaRHHRHÞ, where aRH ¼
ðΩRH2

0=H
2
RHÞ1=4 and HRH ¼ HI. For simplicity, we ignore

the change in number of degrees of freedom of the radiation
fluid. For the perturbations uσ;k and wσ;k, we focus our
attention on modes that are outside of the horizon at the end
of reheating. This sets the maximum frequency that we
consider kRH ¼ aRHHRH. We initialize the perturbations so
that the GW is frozen outside the horizon, as it would be in
the absence of the relic vector fields, while the vector field
perturbation is frozen at zero. That is, we assume there is no
initial spectrum of gauge field fluctuations. The transfer
functions cast in terms of the variables h, or u, and w have
initial conditions

ðT hσ ;k; T
0
hσ ;k

; T wσ ;k; T
0
wσ ;k

ÞRH ¼ ð1; 0; 0; 0ÞRH; ð21Þ

ðT uσ ;k; T
0
uσ ;k

;T wσ ;k; T
0
wσ ;k

ÞRH ¼ ð1; aH; 0; 0ÞRH: ð22Þ

We are now prepared to evolve the system of equations.

E. Numerical evolution in the high-frequency regime

To compute the GW spectral energy density across a
broad range of frequencies, we must evolve Eqs. (2), (11),
and (12) for the transfer functions of u and w. For each

AVERY J. TISHUE and ROBERT R. CALDWELL PHYS. REV. D 104, 063531 (2021)

063531-4



Fourier mode k, we evolve the system of equations from the
end of reheating, τRH, to today, τ0. We sample approx-
imately 27 decades in wave number, k∈ ½10−5;1022�Mpc−1,
sampling linearly for k≲ keq and logarithmically for
greater values. Each point in the ðk;ΩGWðk; τ0ÞÞ plane,
thus, corresponds to a single mode evolution of the
equations of motion. Accurately tracking the oscillatory
behavior of every mode once it enters the horizon presents a
computational challenge, so some comments on the pro-
cedure are in order.
Solving the system of equations exactly must be done

numerically. However, the numerical integration becomes
computationally unfeasible once the modes are deep within
the horizon, k ≫ H, due to the small step size required to
resolve the high-frequency oscillations of the GWand U(1)
modes. To circumvent this issue, we evolve each mode
numerically from τRH until it is deep within the horizon at
some time τm ∼ 104=k. At this point, we match the
numerical solution to an approximate analytic solution.
In this high-frequency limit, kτ ≫ 1, a WKB approxima-
tion is made, setting uðτÞ ¼ Re½UðτÞeikðτ−τmÞ� and assum-
ing several conditions: (i) the mode is deep within the
horizon, k ≫ H; (ii) the envelope function U varies slowly
compared to k, jU0j ≪ kjUj; (iii) the a00=a term is negli-
gible (e.g., in a radiation-dominated background). This
analytic solution captures the remaining evolution from τm
to τ0, whereby the envelope function UðτÞ is

UðτÞ ¼ Uþe
iω
R

τ

τm
dτ0=aðτ0Þ þU−e

−iω
R

τ

τm
dτ0=aðτ0Þ ð23Þ

and ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðB2
0 þ E2

0Þ=M2
P

p
[with an analogous solution for

wðτÞ]. The full details of this high-frequency analytic
solution and matching technique are presented in
Appendix B.
Here we briefly consider the standard case, without the

U(1) fields, to illustrate this procedure. The equation of
motion for the GW is

u00std þ
�
k2 −

a00

a

�
ustd ¼ 0: ð24Þ

The numerical solution requires prohibitively small step
sizes once the mode is deep within the horizon, but this can
be easily circumvented with the analytic approximations
described above. Once amode is deep inside the horizon, we
use the high-frequency ansatz for uðτÞ to find a matching
solution to the exact evolution, valid for τ > τm. In this
standard case, the envelope function U is a constant. The
resulting spectral energy density, shown in Fig. 1, is easily
characterized. For superhorizon modes k < a0H0,
ΩGW ∝ k4; for modes that entered the horizon since radi-
ation-matter equality, a0H0 < k < keq, ΩGW;env ∝ k−2; and
for modes that entered the horizon prior, k > keq, the

envelope is a constant ΩGW;env ≃ ΩRH2
I =12π

2M2
P. This

agrees with the results of Ref. [66], Eqs. (19)–(21) therein.
In more general cases, the envelope functions for u and w

satisfy coupled first-order differential equations; the values
of u and w at the matching point are used to provide
boundary conditions for the envelope solution. The analytic
solution then captures the evolution from τm to τ0.

III. RESULTS

We compute the present-day GW spectrum ΩGW in a
variety of cases, to demonstrate the impact of the U(1)
gauge fields. We begin with a B-dominant case, ðRB; REÞ ¼
ð10−2; 10−3Þ, and an E-dominant case, ðRB; REÞ ¼
ð10−3; 10−2Þ, as illustrated in the upper and lower panels,
respectively, in Fig. 1. Both circular polarizations are
shown. All curves are generated assuming a standard
inflationary scenario with the same inflationary scale HI ≈
2.0 × 10−5MP and a flat primordial GW spectrum nT ¼ 0.

FIG. 1. A comparison of ΩGW between the standard case (dark
blue, short-dashed line) and this model in (a) a B-dominant case,
upper panel, ðRB; REÞ ¼ ð10−2; 10−3Þ, and (b) an E-dominant
case, lower panel, ðRB; REÞ ¼ ð10−3; 10−2Þ. Both polarizations in
this model are shown: σ ¼ 1 (light red, long-dashed line) and
σ ¼ −1 (light blue, solid line).
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Upon inspection, it is seen that the GW spectrum acquires
three new features compared to the standard case: a tilt, a
net circular polarization, and oscillations with logarithmic
frequency. Let us now consider each feature in turn.

A. Tilt

The tilt of the spectrum is a consequence of the effective
mass term contributed by the U(1) background fields, E0

and B0. The mass term, seen in Eq. (11), modifies the
dispersion relation during the radiation era, so that low-
frequency, long-wavelength modes are no longer frozen
outside the horizon. Rather, superhorizon modes are
amplified for E0 > B0 and suppressed for B0 > E0.
Because modes with lower frequencies enter the horizon
later, this modified superhorizon evolution has a larger
cumulative effect for longer wavelengths. Hence, E0 > B0

will impart a red tilt to modes k≳ keq and a blue tilt for
B0 > E0. The magnitude of the enhancement or suppres-
sion PX for X ¼ B, E at wave number keq is illustrated in
Fig. 2. The maximum enhancement is a factor of 4 in the
E-dominant case, whereas the B-dominant suppression
can push the spectrum down by orders of magnitude.
Because this phenomenon produces a constant offset for
k < kpiv ≈ keq, the enhancement or suppression affects
wavelengths relevant for the CMB.
The degree of tilt can be predicted by solving the

equations of motion in the limit k → 0 and taking the ratio
of the transfer function amplitude at horizon entry
kτentry ¼ 1 in the modified and standard cases, P ¼
jT uðτentryÞ=T u;stdðτentryÞj2. This ratio P describes the
frequency-dependent modification of the standard spec-
trum produced by the gauge fields. Here we quote the result
for the simple case where one of the background fields is
zero, since the tilt is significant only when one background
field dominates over the other. In these cases, momentarily

setting aside other effects, the newly tilted spectrum can be
well approximated as a product of the standard spectrum
and a tilt function:

ΩGW;X ≃ΩGW;stdPXðkÞ: ð25Þ

The tilt functions in this case are given by piecewise
continuous functions:

PBðkÞ ¼ A2
R

�
maxðk; kpivÞ

kRH

�
nB
; ð26Þ

PEðkÞ ¼
�
2þAR

�
maxðk; kpivÞ

kRH

�1
2
nE
�2
; ð27Þ

where kpiv is a pivot scale, nB ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16RB

p
,

nE ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16RE

p
, kRH ¼ aRHHRH, and

AR ¼ RB − RE

RB þ RE

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16ðRB þ REÞ

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16ðRB þ REÞ

p : ð28Þ

See Appendix C for details of this calculation. The
modification to the standard case is a power law for
kpiv < k < kRH, while for k < kpiv it becomes a constant
offset. Intuitively, kpiv should be close to keq, because, after
radiation-matter equality, the U(1) fields dilute rapidly
compared to the background and no longer affect the
superhorizon evolution of the GWs. Hence, all modes that
enter the horizon after equality have the same modification
to their amplitude. A comparison of the above model to the
exact spectrum is shown in Fig. 3. We find good agreement

FIG. 2. The behavior of the tilt functions PB (dark red, dot-
dashed line) and PE (green, solid line) at k ¼ keq ¼ kpiv across a
range of background values RX . In the B-dominant case, the
suppression factor reaches a minimal value of PB ≈ 10−5 for
RB ¼ Rmax. The E-dominant case reaches a maximal value of
PE ≈ 4 for RE ¼ Rmax.

FIG. 3. Demonstration of the approximation of the modified
GW spectrum using the tilt function, Eqs. (25) and (26), in a
scenario with ðRB; REÞ ¼ ðRmax; 0Þ. The approximation (orange,
long-dashed line) of the spectrum as the product of the standard
spectrum ΩGW;std (dark blue, short-dashed line) and a tilt function
PB reliably predicts the tilt of the numerical result (light blue,
solid line).
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between the approximate tilt functions and the numerical
results when using kpiv ¼ keq.

B. Chirality

Starting from a GW spectrum with equal amplitude left-
and right-circular polarizations, the presence of the gauge
field VEVs in this scenario will cause a net chirality to
develop over time. This effect requires the presence of both
background gauge fields E0 and B0 and is relevant as the
wave enters the horizon. The necessity of B0 is an obvious
consequence of the axial nature of the magnetic field.
However, E0 is also necessary, if only to provide a
reference against which left and right can be defined.
This can be seen by recognizing that, when E0 ¼ 0, the
equations of motion for the two polarizations differ only by
a minus sign, uR ¼ −uL, which has no consequence.
Furthermore, in both the k → 0 and k ≫ H limits, for
wave numbers that are far from the effective Hubble scale
introduced by the gauge fields, the polarization σ drops
from the dynamical equations.
Interestingly, considering the cases in Fig. 1, the maxi-

mum chirality in the B-dominant case can be quite
significant, with the amplitude of the two polarizations
differing by over an order of magnitude at some frequen-
cies, whereas the chirality is weaker when the dominance is
reversed; the chirality depends on the comparison of B0

relative to E0. To further characterize the chirality in this
model, in Fig. 4 we compare the GW transfer function at
CMB formation in a B-dominant example to the standard
case. The suppressed GW amplitude and the net circular
polarization are both consequences of the interaction
between the U(1) gauge fields and the primordial GWs.
The σ ¼ �1 polarization enters the horizon later (earlier)
and is relatively suppressed (amplified). In this scenario,

the resultant B mode spectrum of the CMB would have a
net circular polarization.

C. Oscillations

The oscillation of the spectral energy density over broad
frequency ranges is best understood by considering the
spectra of both GWs and the U(1) perturbations δA
together. Figure 5 makes clear that the oscillations in
ΩGW are complementary to those in ΩδA: As one rises,
the other falls, and the sum yields a flat spectrum. This
feature is a consequence of the interconversion between the
GWs and the U(1) perturbations in the presence of the
background E0 and B0 fields. The phenomenon is referred
to alternately as the Gertsenshtein effect [75], photon-
graviton conversion [76–78], and more generally as GW–
gauge field oscillations [79]. We now discuss the main idea
underpinning this effect.
The interconversion is seen in the amplitude of the GW

and U(1) perturbations during the radiation era.
Subhorizon, the modes oscillate rapidly with frequency
k, modulated by the more slowly varying envelope

e
iω
R

τ

τm
dτ0=aðτ0Þ

: ð29Þ

The lower bound of integration is set by horizon entry
τ ∼ k−1. The upper bound is set by radiation-matter equal-
ity, when the interconversion process effectively turns off.
Hence, modes that enter the horizon earlier (later) will
accumulate more (less) phase modulation. Because the
scale factor evolves as a ∝ τ in the radiation era, the phase
acquires a logarithmic dependence on the wave number.
This slow modulation survives the time averaging in the

FIG. 5. The spectral energy densities of the GW (light red,
long-dashed line) and U(1) perturbations (dark yellow, dot-
dashed line) for the right-handed (σ ¼ 1) polarizations in an
RB ¼ RE ¼ Rmax=2 case. For comparison, we also show ΩGW;std

(dark blue, short-dashed line) and the sum of the GW and U(1)
spectral energy densities (light blue, solid line); note these two
curves are nearly on top of one another.

FIG. 4. The squared GW transfer function T 2
h at recombination

with ðRB; REÞ=0.02 ¼ ð1–10−3; 10−3Þ for both the σ ¼ −1
(light blue, solid line) and σ ¼ 1 (light red, long-dashed line)
polarizations, compared to the standard case (dark blue,
short-dashed line).
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evaluation of the spectral energy density and imparts the
log-scale modulation seen in Fig. 5. A detailed derivation is
given in Appendix B.
This analysis allows one to predict the oscillatory shape

of the spectra by relating the background U(1) energy
density in the model to the frequency dependence. The new
oscillatory contribution to ΩGW can be approximated
simplistically by multiplying the k≳ keq part of the other-
wise power-law spectrum by cos2Φ, where

Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðRE þ RBÞ

p
ln ðk=kpivÞ ð30Þ

and kpiv is a new pivot scale that should also be close to keq
for the same reasons as in Sec. III A. Because of the
simplistic nature of this approximation, the pivot scale kpiv
varies slightly with RE and RB. When RE ≈ RB, using
kpiv=keq ¼ 1=6 in Eq. (30) provides an excellent descrip-
tion of the oscillations. In the limiting case where RB → 0,
we find good results using the empirical relation kpiv=keq ¼
aðRE=bÞc for ða;b;cÞ¼ð1=5;1=50;−9=50Þ. When RE → 0,
kpiv=keq ¼ aðRB=bÞc for ða; b; cÞ ¼ ð1=18; 1=50; 1=20Þ
gives good results. Setting the phase Φ to an even (odd)
multiple of π=2 gives the frequency for a peak (dip).
Adjacent extrema at k1 and k2 are, thus, related by
lnðk1=k2Þ ¼ ðπ=2Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðRE þ RBÞ
p

. Figure 6 shows a com-
parison of this simple prediction with the detailed numeri-
cal calculation.
The simple cosine model of Eq. (30) is effective at

capturing the locations of the oscillatory features, but the
full structure of the GW spectrum can be far richer in the
presence of chirality. We provide an example in the four
panels in Fig. 7, in which we fix Rtot ¼ RB þ RE ¼ 0.02

and progressively lower the fraction of RE=Rtot. We observe
that the frequency dependence of the GW spectra is
complicated, and the spectra are substantially different for
the two polarizations. The σ ¼ 1 polarization spectrum is
generally lower in amplitude than for σ ¼ −1; the under-
lying reason is that, for a given k mode, the σ ¼ 1 transfer
function begins to oscillate sooner as it approaches horizon
entry. Furthermore, the σ ¼ 1 spectrum appears to have one
deep minimum, like a beat frequency, that progressively
shifts to lower-frequency minima as RE=Rtot is lowered.

FIG. 6. Demonstration of the approximation of the oscillatory
GW spectrum using the fitting function [Eq. (30)] in a scenario
with RB ¼ RE ¼ Rmax=2. Using a pivot scale kpiv ¼ keq=6, the
approximation (orange, long-dashed line) of the spectrum as
the product cos2½Φ� ×ΩGW;std reliably predicts the shape of the
numerical result (light blue, solid line). The standard case (dark
blue, short-dashed line) is included for comparison.

FIG. 7. The behavior of the σ ¼ −1 (light blue, solid line) and
σ ¼ 1 (light red, long-dashed line) polarizations of the GW
spectra in increasingly B-dominant cases for Rtot ¼ 0.02.
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The behavior displayed in the figure clearly shows the
limitations of the cos2ðΦÞ model when significant chirality
is present. Finally, it is only once RE=Rtot is lowered below
10−4 that the two polarization spectra begin to converge.
Roughly speaking, for larger (smaller)Rtot, the trend toward
convergence occurs at smaller (larger) values of RE=Rtot.

D. Sextet model

We extend our analysis by considering a scenario in
which the electric- and magneticlike fields originate from
distinct gauge groups. Specifically, we consider a model
variation in which the electric and magnetic backgrounds
are distributed among two separate U(1) triplets. This
model, which we refer to as a sextet, is very similar to
the triplet model, so we keep our discussion brief.
Calculation details are presented in Appendix D.
The sextet and triplet models have the same equations of

motion in the k → 0 limit, so the superhorizon behavior,
and, therefore, the tilt in the GW spectrum, is unchanged.
The models are also the same in the limit that either
background, E0 or B0, goes to zero. However, the sextet
model exhibits no handedness, so the excess circular
polarization in the transfer function in Fig. 4 and the rich
features seen in the upper panels in Fig. 7 are absent.

Rather, the unpolarized GW spectral energy density in the
sextet model generally behaves like an intermediate of the
enhanced and suppressed polarizations seen in the triplet
model. We demonstrate this in the upper panel in Fig. 8.
Furthermore, the sextet model includes two independent

wavelike gauge field excitations that mix with the GWs,
so the structure of the gauge field spectra can be more
complicated. Importantly, the oscillations in the GW
spectrum envelope in the two models are described equally
well by the approximation Eq. (30), excepting strongly
chiral cases in the triplet model. As seen in the lower panel
in Fig. 8, the oscillations in the two gauge field excitations
are together complementary to the oscillations in the GW
spectrum.

IV. DISCUSSION

In the present work, we have investigated a toy model in
which a homogeneous, isotropic configuration of relic U(1)
vector fields interacts with primordial GWs throughout the
radiation-dominated portion of the postinflationary
Universe. For simplicity, and to isolate the effects of the
relics after inflation, we have assumed instantaneous
reheating and that the primordial GW spectrum is generated
from a standard inflationary scenario, with nT ¼ 0.
However, it is straightforward to superimpose the effects
of the relics on any other primordial spectrum.
We have focused our study on the imprint left on the GW

spectral energy density, ΩGW, finding that the relic fields
impart to the spectrum three distinct features: a tilt, a net
circular polarization, and oscillations across the high-
frequency (k≳ keq) spectrum.
In particular, the tilt, induced by the U(1) background

and demonstrated in Fig. 9, is our primary result. Compared
to previous work, e.g., Refs. [30,31,72], which explored a
gauge VEV that produces a background “electric” field, the
setup presented here contains a new ingredient at the
background level in the form of an independent axial
“magnetic” field. This new ingredient allows the GW
effective mass term to be positive, altering the dispersion
relation and producing the tilt described in Sec. III A. In the
maximal scenario, the RB ≫ RE case permits a much
stronger tilt than in the reverse case, and so the suppression
when RB dominates can be quite significant. The conse-
quences of such a scenario are noteworthy.
Broadly speaking, this scenario is one of several in which

the additional ingredients complicate the relationship
between the present-day tensor-to-scalar ratio r and the
inflationary scale HI . The novel element here is that this
effect is a consequence of dynamics after inflation rather
than during it. We have demonstrated that this tilt can
reduce the amplitude of ΩGW by up to ∼5 orders of
magnitude at CMB frequencies k≲ keq, all while keeping
HI fixed. This is important for inflation model building,
because it implies that models that predict r values

FIG. 8. Upper panel: the GW spectrum for a single polarization
of the sextet model (green, dot-dashed line) compared to that of
the σ ¼ −1 (light blue, solid line) and σ ¼ 1 (light red, long-
dashed line) polarizations in the triplet model, for
RE ¼ RB ¼ Rmax=2. The standard case (dark blue, short-dashed
line) is included for comparison. Lower panel: comparison of
spectra in the sextet model for a single polarization of GW (green,
dot-dashed line), w excitation (orange, long-dashed line), and y
excitation (light blue, solid line), for RE ¼ RB ¼ Rmax=2.
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previously considered too large may instead be within
observational bounds due to this postinflationary effect.
One illustrative example is single-field slow-roll infla-

tion with a quadratic potential. Another example is chro-
monatural inflation [30]. Both of these models overproduce
GWs for acceptable values of the scalar spectral index ns.
For the free massive field, r ∼ 0.133. However, RB ≳
10−1Rmax would be sufficient to drop the amplitude at
CMB scales down below r≲ 0.04. For the case of
chromonatural inflation, the tensor-to-scalar ratio is esti-
mated to be r ∼Oð102Þ. In this case, a larger suppression
factor with RB ∼ 3Rmax=4 could bring the model within the
1σ contour in the ns − r plane [17,19]. Figure 2 and
Eq. (26) show the range of suppression possible in this
model. In numbers, the range RB ∈ ½5 × 10−3; 10−2�
roughly corresponds to a suppression factor of
PB ∈ ½10−1; 10−2�, which may be enough to revitalize a
variety of models with otherwise too strong GW back-
grounds. These arguments also apply to models of inflation
with axion spectator fields.
The postinflationary effect of the vector fields on ΩGW

has implications for CMB probes of B modes as well as
direct detection by future GW observatories. Future CMB
experiments such as the Simons Observatory [18],
LiteBIRD [22], and CMB-S4 [21] with sensitivities
approaching δr ∼ 10−3 can constrain the RE − RB param-
eter space in multiple ways. A bound on, or detection of,
primordial B modes may be interpreted as a joint bound on

a model of inflation and the presence of postinflationary
vector fields. Forthcoming CMB experiments are also
expected to improve measurement of ΔNeff . The GW
chirality catalyzed by the vector fields, however, may
prove too weak to be detectable with the CMB [80–82].
Future GW detectors may find a new target within these

scenarios. For illustrative purposes only, in Fig. 9 we show
the power-law sensitivity curves [83–85] for the Laser
Interferometer Space Antenna [86], Cosmic Explorer [87],
Einstein Telescope [88,89] (assuming a single Michelson
interferometer), and the futuristic Big Bang Observer
[90,91]. Under optimal conditions, one of these detectors
could be sensitive to the tilt, chirality, and oscillatory
features imprinted in the stochastic GW background.
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APPENDIX A: SCALAR PERTURBATIONS

In this appendix, we compute the scalar perturbations in
the U(1) vector field model in the background flavor-space
locked configuration [Eq. (3)]. For this analysis, both the
metric and U(1) fields are perturbed with only scalar
degrees of freedom, as linear perturbations in a scalar-
vector-tensor decomposition ensure the scalar, vector, and
tensor modes do not mix. The U(1) freedom in this model
allows us to perform a coordinate rotation such that the
Fourier vector points along theþz axis, so the perturbations
will be functions of ðτ; zÞ only. The metric in a flat, RW
universe is then split into a background metric and linear
perturbation, gμν ¼ ημν þ δgμν. In a gauge with smooth
spatial sections, the flat-slicing gauge, the background
metric, and perturbations,

η00 ¼ −a2ðτÞ; ðA1Þ

ηij ¼ a2ðτÞδij; ðA2Þ

δg00 ¼ 2a2ðτÞΦSðτ; zÞ; ðA3Þ

δg0i ¼ a2ðτÞ∂zbðτ; zÞ; ðA4Þ

give the corresponding line element ds2 ¼ gμνdxμdxν as

ds2¼a2ðτÞ½−ð1−2ΦSÞdτ2−2∂zbdzdτþδijdxidxj�: ðA5Þ

Similarly, the U(1) fields are linearly perturbed:

AðiÞ
μ ¼ ĀðiÞ

μ þ δAðiÞ
μ . In analogy with the SU(2) case [92],

the U(1) triplet perturbations can be written

δAðiÞ
0 ¼ δðiÞk∂k

_Y þ δðiÞjuj; ðA6Þ

FIG. 9. GW spectral density versus wave number and fre-
quency are shown, relative to the power-law sensitivity curves for
several proposed or futuristic GWobservatories. The GW spectra
correspond to a B-dominant case, ðRB; REÞ ¼ ðRmax; 0Þ, with
HI ¼ 2 × 10−5MP (light red, long-dashed line) and HI ¼ 2MP
(light blue, solid line). This scenario represents the maximal
modification to the standard case (dark blue, short-dashed line) in
which ðRE; RBÞ ¼ ð0; 0Þ, given the energy density bounds on the
relic cosmic vector fields. Any power-law spectral density that
crosses a sensitivity curve is detectable at SNR ¼ 5 in a tobs ¼
4 yr experiment.
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δAðiÞ
j ¼ δðiÞj Qþ δðiÞk∂jkM þ εðiÞkj ∂kPþ δðiÞk∂jvk

þ εðiÞkj wk þ δðiÞktjk: ðA7Þ

We consider only scalar perturbations:

δAðiÞ
0 ¼ δðiÞk∂k

_Y; ðA8Þ

δAðiÞ
j ¼ δðiÞj Qþ δðiÞk∂jkM þ εðiÞkj ∂kP; ðA9Þ

where the overdot denotes differentiation with respect
to cosmic time t. Imposing the ðτ; zÞ-only dependence
of the perturbations and defining ðW; δG; δm; δCÞ≡
ð _Y;Q;−∂2

zM; PÞ gives

δAð1Þ
μ ¼ ð0; δGðτ; zÞ; ∂zδCðτ; zÞ; 0Þ; ðA10Þ

δAð2Þ
μ ¼ ð0;−∂zδCðτ; zÞ; δGðτ; zÞ; 0Þ; ðA11Þ

δAð3Þ
μ ¼ ð∂zWðτ; zÞ; 0; 0; δGðτ; zÞ − δmðτ; zÞÞ; ðA12Þ

which includes all possible independent scalar perturba-
tions to the U(1) fields. Stress-energy conservation
∇μTμ

ν ¼ 0 and the free U(1) equations of motion
∇μFμν;ðiÞ ¼ 0 give three equations of motion (second order)
and one constraint (first order):

δG00 þ k2δG − k2E0b − E0Φ0
S ¼ 0; ðA13Þ

δC00 þ k2δCþ B0ΦS − B0b0 ¼ 0; ðA14Þ

δm00 þ k2δG − k2E0b − k2W0 ¼ 0; ðA15Þ

δm0 − δG0 þ E0ΦS − k2W ¼ 0: ðA16Þ

With these equations, we can obtain the fluid variables
through the perturbed stress-energy tensor [93], giving

ρ̄σ ¼ k2

a4
ð−E0ÞW þ E0

a4
δm0 þ k2

a4
B0δC; ðA17Þ

ðρ̄þ P̄Þθ ¼ 2
k2

a4
ð−E0ÞδG0 þ 2

k2

a4
B0ðδC0 − B0bÞ; ðA18Þ

δρ ¼ −E0

a4
ð3δG0 − δm0Þ − k2

a4
E0W þ 3

E2
0

a4
ΦS − 2

k2

a4
B0δC;

ðA19Þ

where the energy density and pressure at background and
linear order satisfy the equation of state of radiation,
P̄=ρ̄ ¼ 1=3 ¼ δP=δρ. The evolution of the fluid variables
is given by

δ0 ¼ −
4

3
ðθ þ k2bÞ; ðA20Þ

θ0 ¼ k2
�
1

4
δ −ΦS − σ

�
; ðA21Þ

where δ≡ δρ=ρ̄.
Now we transform to the conformal Newtonian (CN)

gauge and express the fluid equations in that gauge. The
metric in the CN gauge is

g00 ¼ −a2ð1þ 2ψCNÞ; ðA22Þ

g0i ¼ 0; ðA23Þ

gij ¼ a2ð1 − 2ϕCNÞδij: ðA24Þ

The CN gauge (with coordinates x̂μ) and our gauge (with
coordinates xμ) are related by a simple coordinate change
x0 ¼ x̂0 þ b, with no transformation of the spatial coor-
dinates. This yields the relationships [93] between the
metric perturbations in the two gauges:

Hb ¼ −ϕCN; ðA25Þ

−ΦS þHbþ b0 ¼ ψCN: ðA26Þ

Under a coordinate transformation, the stress-energy tensor
and, thus, the fluid variables also transform. It is simplest to
proceed by calculating the gauge-invariant (GI) perturba-
tions, which are equivalent to those in the CN gauge [94].
With this, we can compute the gauge-invariant (equiva-
lently, CN) fluid variables:

ðGIÞδ ¼ δCN

¼ 3E2
0ΦS − k2E0W − E0ð3δG0 − δm0Þ − 2B0k2δC

3ðE2
0 þ B2

0Þ=2
þ 4ϕCN; ðA27Þ

ðGIÞθ ¼ θCN ¼ −k2E0δGþ k2E0bþ k2B0δC0

E2
0 þ B2

0

; ðA28Þ

ðGIÞσ ¼ σCN ¼ −k2E0W þ E0δm0 þ k2B0δC
3ðE2

0 þ B2
0Þ=2

; ðA29Þ

where one can replace and b and ΦS with CN variables
using Eqs. (A25) and (A26). These CN fluid variables obey

ðGIÞδ0 ¼ δ0CN ¼ −
4

3
θCN þ 4ϕCN

0; ðA30Þ

ðGIÞθ0 ¼ θ0CN ¼ k2
1

4
δCN − k2σCN þ k2ψCN; ðA31Þ

ðGIÞσ0 ¼ σ0CN ¼ 2

3
θCN: ðA32Þ
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These are analogous to the first two equations in (63) of
Ref. [93] with a modified shear component, in accordance
with what was found in the color electrodynamics
case [72].

APPENDIX B: HIGH-FREQUENCY GW-U(1)
SOLUTIONS AND COMPUTATION OF ΩGW

In this section, we develop an approximate analytic
solution to the equations of motion (11) and (12) in a high-
frequency limit. This solution is used to compute ΩGW
given the computational challenges described in Sec. II E.
This solution also demonstrates the origins of the GW
envelope, Eq. (23), and the consequent oscillations in ΩGW
discussed in Sec. III C. The equations of motion are

u00σ þ
�
k2 −

a00

a
þ 2

ðB2
0 − E2

0Þ
a2M2

P

�
uσ

¼ 2

aMP
½E0w0

σ − σkB0wσ�; ðB1Þ

w00
σ þ k2wσ ¼

2

aMP

�
E0

�
a0

a
uσ − u0σ

�
− σkB0uσ

�
: ðB2Þ

Let ukðτÞ ¼ Re½UkðτÞeikðτ−τmÞ� and likewise for w. Here,
τm ∼ 104=k is a constant matching time at which we match
the high-frequency solution to the numerical solution.
Dropping subscripts for now, the equations of motion
become

U00 þ 2ikU0 −
a00

a
U þ 2

B2
0 − E2

0

M2
Pa

2
U

¼ 2

aMP
½E0W0 þ ikE0W − σkB0W�; ðB3Þ

W00 þ 2ikW0 ¼ 2

aMP
½−E0U0 − ikE0Uþ E0HU − σkB0U�:

ðB4Þ

We are searching for a high-frequency solution, so assume
the following four conditions: kjUj ≫ jU0j, k ≫ H,
kjU0j ≫ jða00=aÞUj, and kjU0j ≫ jUðB2

0 − E2
0Þ=ða2M2

PÞj.
The first condition assumes the envelope functions U
and W vary appreciably only on timescales much larger
than 1=k. The second condition assumes the mode is deep
within the horizon. The third condition is easily satisfied
during radiation domination, during which the gauge
radiation terms are most significant. Using the definition
in Eq. (4), the last condition can be expressed:

a2

2jRB − REjΩSMRH2
0

kjU0j
jUj ≫ 1; ðB5Þ

which we will show shortly is valid in the regime of
interest. When the above four conditions hold, the equa-
tions of motion simplify to

U0 ¼ 1

aMP
½E0W þ iσB0W�; ðB6Þ

W0 ¼ −
1

aMP
½E0U − iσB0U�: ðB7Þ

Defining a new time variable dx≡ dτ=a then yields
equations of motion for simple harmonic oscillators in x,
giving

U ¼ Uþeiωx þ U−e−iωx; ðB8Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2

0 þ B2
0Þ=M2

P

p
. We can now return to the

condition in Eq. (B5), which becomes

ak

Ω1=2
SMRH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðRB þ REÞ

p

2jRB − REj
jUþeiωx −U−e−iωxj
jUþeiωx þ U−e−iωxj

≫ 1; ðB9Þ

which is satisfied for all relevant modes. This is easily seen
by recognizing that the fraction containing RE and RB is
always larger than unity, and the fraction containing k=H0

is roughly kτ during the radiation era, which is large by
assumption k ≫ H.
Next, we detail how this analytic solution is used to

compute the spectral energy densities. The high-frequency
solution is matched at time τm to the numerical solution, so
it is convenient to redefine the coefficients Uþ and U− so
that

U ¼ ðUþc þ iUþsÞe−ikτm−iωxmeiωx
þ ðU−c þ iU−sÞe−ikτmþiωxme−iωx; ðB10Þ

where ðUþc; Uþs; U−c; U−sÞ ∈ R. The above choice yields
the full high-frequency solution

ukðτÞ ¼ Uþc cosðδþÞ −Uþs sinðδþÞ þ U−c cosðδ−Þ
−U−s sinðδ−Þ; ðB11Þ

where we have defined the argument δ� ≡ kðτ − τmÞ �
ωðx − xmÞ, so

dδ�
dτ

¼ k� ω

aðτÞ≡ k� fðτÞ: ðB12Þ

Note k ≫ H implies k ≫ f. The solution forW is obtained
with Eq. (B6) and inserting the solution for U, giving

w ¼ Wcþ cosðδþÞ −Wsþ sinðδþÞ þWc− cosðδ−Þ
−Ws− sinðδ−Þ ðB13Þ
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with the Ws;c;� coefficients

Wcþ ≡ σB0Uþc − E0Uþs

MPω
; ðB14Þ

Wsþ ≡ σB0Uþs þ E0Uþc

MPω
; ðB15Þ

Wc− ≡ −
ðσB0U−c − E0U−sÞ

MPω
; ðB16Þ

Ws− ≡ −
ðσB0U−s þ E0U−cÞ

MPω
: ðB17Þ

The four independent coefficients then are found by solving
a system of four linear equations:

ukðτ ¼ τmÞ≡ um ¼ Uþc þU−c; ðB18Þ

u0kðτ ¼ τmÞ≡ dum

¼ −ðkþ fmÞUþs − ðk − fmÞU−s; ðB19Þ

wkðτ ¼ τmÞ≡ wm

¼ ðσB0Uþc − E0UþsÞ
MPω

−
ðσB0U−c − E0U−sÞ

MPω
;

ðB20Þ

w0
kðτ ¼ τmÞ≡ dwm

¼ −ðkþ fmÞ
ðσB0Uþs þ E0UþcÞ

MPω

þ ðk − fmÞ
ðσB0U−s þ E0U−cÞ

MPω
ðB21Þ

for fm ≡ fðτmÞ, with solutions

Uþc ¼
−Ē0kωdwm þ Ē2

0kðk − fmÞum þ σB̄0Ē0fmdum þ ðk2 − f2mÞσB̄0ðωwm þ σB̄0umÞ
2k2ω2 − 2f2mB̄2

0

; ðB22Þ

Uþs ¼
ðfm − kÞ½Ē0kωwm þ σB̄0ωdwm þ σB̄0Ē0fmum� − dum½ðk − fmÞB̄2

0 þ kĒ2
0�

2k2ω2 − 2f2mB̄2
0

; ðB23Þ

U−c ¼
Ē0kωdwm þ Ē2

0kðkþ fmÞum − σB̄0Ē0fmdum þ ðk2 − f2mÞσB̄0½σB̄0um − ωwm�
2k2ω2 − 2f2mB̄2

0

; ðB24Þ

U−s ¼
−½Ē2

0kþ ðkþ fmÞB̄2
0�dum þ ðkþ fmÞ½Ē0kωwm þ σB̄0ωdwm þ σB̄0Ē0fmum�

2k2ω2 − 2f2mB̄2
0

; ðB25Þ

where ðĒ0; B̄0Þ≡ 1
MP

ðE0; B0Þ have been defined for notational compactness.
For the purposes of computing the spectral energy densities, we need the time average of u02 (evaluated at τ0); we have

u0k ¼ −ðkþ fÞ½Uþc sinðδþÞ þ Uþs cosðδþÞ� − ðk − fÞ½U−c sinðδ−Þ þU−s cosðδ−Þ�: ðB26Þ

The trigonometric functions in δ� can be expanded into products of trigonometric functions in kτ and ωx. For all modes of
interest, we have k ≫ f and k ≫ H, so ωx and fðτÞ are effectively constant over the averaging period 2π=k. The time
average can then be safely taken only over the functions in kτ, giving

hu0k2iτ ¼
1

2
f½k2ððUþc þ U−cÞ2 þ ðUþs þ U−sÞ2Þ þ 2fkðU2þc þU2þs −U2

−c −U2
−sÞ

þ f2ððUþc −U−cÞ2 þ ðUþs −U−sÞ2Þ�cos2½ωðx − xmÞ�
þ ½k2ððUþc − U−cÞ2 þ ðUþs −U−sÞ2Þ þ 2fkðU2þc þ U2þs − U2

−c −U2
−sÞ

þ f2ððUþc þU−cÞ2 þ ðUþs þ U−sÞ2ÞÞ�sin2½ωðx − xmÞ�
þ 4ðk2 − f2ÞðUþcU−s −UþsU−cÞ sin ½ωðx − xmÞ� cos ½ωðx − xmÞ�g ðB27Þ

and an identical expression for hw0
k
2i with the replacement

fUþc; Uþs; U−c; U−sg → fWcþ;Wsþ;Wc−;Ws−g. Equa-
tion (B27) and the w analog are what we use in practice
to compute the spectral energy densities ΩGW and ΩδA in

Eqs. (14) and (19), respectively. The trigonometric func-
tions in ωx that appear in Eq. (B27) are the cause of the
oscillations described in Sec. III C, and, for a mode that
enters in the radiation-dominated era, x − xm has a lnðkÞ
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contribution. These provide the justification for the
approximate fitting formula in Eq. (30), although it is
clear that the frequency dependence of Eq. (B27) is
complicated.

APPENDIX C: MODIFIED SUPERHORIZON
GW EVOLUTION

In this appendix, we solve the equations of motion (11)
and (12) in the low-frequency limit to examine the effect of
the U(1) fields on superhorizon GWevolution. In the k ¼ 0
limit, the equations of motion become

u00 −
a00

a
uþ 2

B2
0 − E2

0

M2
pla

2
u ¼ 2E0

aMP
½w0�; ðC1Þ

w00 ¼ 2E0

aMP
½−u0 þHu�: ðC2Þ

Dividing both equations by uk;prim recasts the equations of
motion in term of the transfer functions T u and T w. We
again focus on the radiation era during which the back-
ground U(1) terms present here are most relevant, so
aðτÞ ¼ aRHðτ=τRHÞ ¼ Ω1=2

R H0τ (see Sec. II D). Then the
equations of motion can be compactly written:

T 00
u þ 2

B̄2
0 − Ē2

0

ΩRH2
0τ

2
T u ¼

2Ē0

Ω1=2
R H0τ

½T 0
w�; ðC3Þ

T 00
w ¼ −

2Ē0

Ω1=2
R H0

d
dτ

½T uτ
−1�; ðC4Þ

which are easily decoupled and solved by integrating the
second equation of motion and inserting it into the first,
keeping in mind the initial conditions in Eq. (22). This
gives the T u equation of motion

τ2RHT
00
uþ2

ðB̄2
0þ Ē2

0Þ
ΩRH2

0ðτ=τRHÞ2
T u−

4Ē2
0

ΩRH2
0ðτ=τRHÞ

¼ 0: ðC5Þ

Dropping the negligible OðR2
XÞ difference between

ðE2
0; B

2
0Þ=ΩR and ðE2

0; B
2
0Þ=ΩSMR, this yields simple

solutions:

T u ¼BR

�
τ

τRH

�
n− þAR

�
τ

τRH

�
nþ þ 2RE

RBþRE

τ

τRH
; ðC6Þ

T w ¼ −2
ffiffiffiffiffiffiffiffi
2RE

p �
RB − RE

RB þ RE

�
τ

τRH
− 1

�

þ BR

n−

�
τ

τRH

�
n− þAR

nþ

�
τ

τRH

�
nþ
�

ðC7Þ

for n� ¼ 1
2
ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 16ðRB þ REÞ
p Þ and

BR ¼ RE − RB

RB þ RE

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16ðRB þ REÞ

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16ðRB þ REÞ

p

¼ RE − RB

RB þ RE

n−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16ðRB þ REÞ

p ; ðC8Þ

AR ¼ RB − RE

RB þ RE

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16ðRB þ REÞ

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16ðRB þ REÞ

p

¼ RB − RE

RB þ RE

nþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16ðRB þ REÞ

p ; ðC9Þ

where jARj > jBRj. In the standard case without the gauge
fields, the GW transfer function equation of motion (also
for k → 0 and in the radiation era) is T 00

u;std ¼ 0 with
solution T u;std ¼ τ=τRH. Therefore, in the presence of the
gauge fields, the GWamplitude is altered while outside the
horizon by a factor

T uðτÞ
T u;stdðτÞ

¼ BR

�
τ

τRH

�1
2
ð−1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−16ðRBþREÞ

p
Þ

þAR

�
τ

τRH

�1
2
ð−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−16ðRBþREÞ

p
Þ

þ 2RE

RB þ RE
ðC10Þ

before the mode enters the horizon at τentry ¼ 1=k. Lower-
frequency modes enter later and accumulate a larger
modification, so this effect is frequency dependent.
Taking a piecewise approximation in which this k → 0
description is valid until τ ¼ τentry, after which point the
amplitude modulation shuts off and subhorizon oscillation
begins, this modulated amplitude means that ΩGW is
different by a factor

jT ukðτentryÞ=T uk;stdðτentryÞj2 ¼
�
BR

�
k

kRH

�1
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−16ðRBþREÞ

p
Þ
þAR

�
k

kRH

�1
2
ð1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−16ðRBþREÞ

p
Þ
þ 2RE

RB þ RE

�
2

; ðC11Þ

where we have restored the k subscript and used τRH ¼ 1=kRH. The power laws in k give the GW spectrum the new tilt seen
in this model. When the background fields are absent, the standard case is recovered, and there is no additional tilt. The tilt
also disappears for RE ≈ RB, so it is useful to consider the limiting cases when one background field is zero:
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PB ¼ jT ukðτentryÞ=T uk;stdðτentryÞj2RE¼0
¼

�
BR

�
k

kRH

�1
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−16RB

p
Þ
þAR

�
k

kRH

�1
2
ð1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1−16RB

p
Þ�2

; ðC12Þ

PE ¼ jT ukðτentryÞ=T uk;stdðτentryÞj2RB¼0
¼

�
2þ BR

�
k

kRH

�1
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−16RE

p
Þ
þAR

�
k

kRH

�1
2
ð1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1−16RE

p
Þ�2

: ðC13Þ

We always have k < kRH, so the AR term is more
significant; dropping the subdominant BR term then gives

PB ≃
�
AR

�
k

kRH

�1
2
ð1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1−16RB

p
Þ�2

; ðC14Þ

PE ≃
�
2þAR

�
k

kRH

�1
2
ð1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1−16RE

p
Þ�2

: ðC15Þ

Hence, at low frequencies the E enhancement is limited to
roughly a factor of 4, while the B suppression can be far
more significant. Once radiation domination gives way to
matter domination at τeq, the E0, B0 background rapidly
dilutes away and the modification to the superhorizon
evolution ends. Thus, all modes k≲ keq accumulate the
same maximum modification. This is why the tilt for
k≲ keq becomes a constant offset. Hence, we replace
k → minðk; keqÞ in Eqs. (C14) and (C15).

APPENDIX D: SEXTET MODEL

In this section, we extend the model to incorporate six
U(1) fields, in which each field obtains only a single electric
or magnetic background. The corresponding ansatz is

FðiÞ
j0 ¼ E0δ

i
j; Fði0Þ

kj ¼ B0ϵ
ði0−3Þjk; ðD1Þ

where charge flavor i ¼ 1, 2, 3 is mapped to Cartesian
directions x, y, z, whereas charge flavor i0 ¼ 4, 5, 6 is
separately mapped to x, y, z. That is, the electric- and
magneticlike fields are associated with different triplets of
U(1) fields. This field configuration gives identical back-
ground behavior to the triplet case, but the linear wavelike
perturbations

δAð1Þ
μ ¼ MP

2
ð0; wþðτ; zÞ; w×ðτ; zÞ; 0Þ; ðD2Þ

δAð2Þ
μ ¼ MP

2
ð0; w×ðτ; zÞ;−wþðτ; zÞ; 0Þ; ðD3Þ

δAð4Þ
μ ¼ MP

2
ð0; yþðτ; zÞ; y×ðτ; zÞ; 0Þ; ðD4Þ

δAð5Þ
μ ¼ MP

2
ð0; y×ðτ; zÞ;−yþðτ; zÞ; 0Þ ðD5Þ

change the GW dynamics. The equations of motion

u00σ þ
�
k2 −

a00

a
þ 2

ðB2
0 − E2

0Þ
a2M2

P

�
uσ

¼ 2

aMP
½E0w0

σ − σkB0yσ�; ðD6Þ

w00
σ þ k2wσ ¼

2

aMP

�
E0

�
a0

a
uσ − u0σ

��
; ðD7Þ

y00σ þ k2yσ ¼
2

aMP
½−σkB0uσ� ðD8Þ

demonstrate different features than the triplet case. The
equations of motion are invariant under ðσ; yÞ → −ðσ; yÞ or
ðσ; u; wÞ → −ðσ; u; wÞ, neither of which modify the spec-
tral energy densities. Hence, the spectral energy densities
do not exhibit an excess handedness. Furthermore, the
sextet and triplet models have the same equations of motion
in the limit that either E0 or B0 vanish and in the super-
horizon k → 0 limit.
An analogous high-frequency solution exists for this

system, giving the following system:

dU
dx

¼ Ē0W þ iσB̄0Y; ðD9Þ

dW
dx

¼ −Ē0U; ðD10Þ

dY
dx

¼ iσB̄0U: ðD11Þ

The GWequation of motion can again be cast in terms of a
harmonic oscillator in x with frequency ω, but the gauge
field system is changed:

U ¼ Uþeiωx þ U−e−iωx; ðD12Þ

W ¼ W0e−ikτm þ i
Ē0

ω
Uþeiωx − i

Ē0

ω
U−e−iωx; ðD13Þ

Y¼ i
Ē0

σB̄0

W0e−ikτm þσ
B̄0

ω
Uþeiωx−σ

B̄0

ω
U−e−iωx; ðD14Þ

where we have three complex coefficients for our six initial
conditions. The corresponding solution to the coupled
system is
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u ¼ Uþc cosðδþÞ −Uþs sinðδþÞ þU−c cosðδ−Þ −U−s sinðδ−Þ; ðD15Þ

w ¼ W1 cosðkðτ − τmÞÞ −W2 sinðkðτ − τmÞÞ þ
Ē0

ω
½−Uþc sinðδþÞ −Uþs cosðδþÞ þ U−c sinðδ−Þ þ U−s cosðδ−Þ�; ðD16Þ

y ¼ Ē0

σB̄0

½−W2 cosðkðτ − τmÞÞ −W1 sinðkðτ − τmÞÞ�

þ σB̄0

ω
½Uþc cosðδþÞ −Uþs sinðδþÞ −U−c cosðδ−Þ þU−s sinðδ−Þ�; ðD17Þ

which yields the following six matching conditions:

um ¼ Uþc þU−c; ðD18Þ

dum ¼ −Uþsðkþ fmÞ −U−sðk − fmÞ; ðD19Þ

wm ¼ W1 þ
Ē0

ω
½U−s −Uþs�; ðD20Þ

dwm ¼ −kW2 þ
Ē0

ω
½−Uþcðkþ fmÞ þ U−cðk − fmÞ�; ðD21Þ

ym ¼ −
Ē0

σB̄0

W2 þ
σB̄0

ω
½Uþc − U−c�; ðD22Þ

dym ¼ −
Ē0

σB̄0

kW1 þ
σB̄0

ω
½−Uþsðkþ fmÞ þ U−sðk − fmÞ�; ðD23Þ

whose solutions give the coefficients

Uþc ¼
Ē2
0ðk − fmÞum − ωĒ0dwm þ kB̄0ðB̄0um þ σωymÞ

2kω2
; ðD24Þ

U−c ¼
Ē2
0ðkþ fmÞum þ ωĒ0dwm þ kB̄0ðB̄0um − σωymÞ

2kω2
; ðD25Þ

Uþs ¼
−B̄2

0ðk − fmÞdum − kĒ2
0dum − ωðk − fmÞðkĒ0wm þ σB̄0dymÞ

2k2Ē2
0 þ 2B̄2

0ðk2 − f2mÞ
; ðD26Þ

U−s ¼
−B̄2

0ðkþ fmÞdum − kĒ2
0dum þ ωðkþ fmÞðkĒ0wm þ σB̄0dymÞ

2k2Ē2
0 þ 2B̄2

0ðk2 − f2mÞ
; ðD27Þ

W1 ¼
B̄0½−σkĒ0ωdym þ fmB̄0Ē0dum þ ðk2 − f2mÞωB̄0wm�

ωðk2Ē2
0 þ ðk2 − f2mÞB̄2

0Þ
; ðD28Þ

W2 ¼
−B̄0½σkĒ0ωym þ fmB̄0Ē0um þ ωB̄0dwm�

kω3
: ðD29Þ

For computing the spectral energy densities, we still have Eq. (B27) for the GW, although the coefficients Uþc, etc., have
changed. The spectral energy densities for the gauge field system, on the other hand, are slightly modified. It is convenient
to define a new set of coefficients:
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Wþc ¼ −
Ē0

ω
Uþs; Wþs ¼

Ē0

ω
Uþc;

W−c ¼
Ē0

ω
U−s; W−s ¼ −

Ē0

ω
U−c;

Yþc ¼
σB̄0

ω
Uþc; Yþs ¼

σB̄0

ω
Uþs;

Y−c ¼ −
σB̄0

ω
U−c; Y−s ¼ −

σB̄0

ω
U−s;

Y1 ¼ −
Ē0

σB̄0

W2; Y2 ¼
Ē0

σB̄0

W1; ðD30Þ

which casts the solutions into similar forms:

u ¼ Uþc cosðδþÞ −Uþs sinðδþÞ þU−c cosðδ−Þ −U−s sinðδ−Þ; ðD31Þ

w ¼ W1 cosðkðτ − τmÞÞ −W2 sinðkðτ − τmÞÞ þWþc cosðδþÞ −Wþs sinðδþÞ þW−c cosðδ−Þ −W−s sinðδ−Þ; ðD32Þ

y ¼ Y1 cosðkðτ − τmÞÞ − Y2 sinðkðτ − τmÞÞ þ Yþc cosðδþÞ − Yþs sinðδþÞ þ Y−c cosðδ−Þ − Y−s sinðδ−Þ: ðD33Þ

These resemble the solutions from the triplet scenario, except the gauge field excitations have acquired homogeneous
solutions. These homogeneous solutions contribute additional terms to the time average of the squared gauge field mode
functions:

hw02
k i ¼ hw02

u i þ
k2ðW2

1 þW2
2Þ

2
þ 2

kW1

2
½ðkþ fÞWþc cosðωðx − xmÞÞ − ðkþ fÞWþs sinðωðx − xmÞÞ

þ ðk − fÞW−c cosðωðx − xmÞÞ þ ðk − fÞW−s sinðωðx − xmÞÞ� þ 2
kW2

2
½ðkþ fÞWþc sinðωðx − xmÞÞ

þ ðkþ fÞWþs cosðωðx − xmÞÞ − ðk − fÞW−c sinðωðx − xmÞÞ þ ðk − fÞW−s cosðωðx − xmÞÞ�; ðD34Þ

where hw0
u
2i schematically indicates usage of the expression for u [Eq. (B27)] with the coefficient replacement

fUþc; Uþs; U−c; U−sg → fWcþ;Wsþ;Wc−;Ws−g.
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