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In scalar-tensor Horndeski theories, nonsingular cosmological models—bounce and genesis—are
problematic because of potential ghost and/or gradient instabilities. One way to get around this obstacle is
to send the effective Planck mass to zero in the asymptotic past (“strong gravity in the past”). One may
suspect that this feature is a signal of a strong coupling problem at early times. However, the classical
treatment of the cosmological background is legitimate, provided that the strong coupling energy scale
remains at all times much higher than the scale associated with the classical evolution. We construct various
models of this sort, namely (i) bouncing Universe which proceeds through inflationary epoch to kination
(expansion within general relativity, driven by massless scalar field); (ii) bouncing Universe with kination
stage immediately after bounce; (iii) combination of genesis and bounce, with the Universe starting from
flat space-time, then contracting and bouncing to the expansion epoch; (iv) “standard” genesis evading the
strong coupling problem in the past. All these models are stable, and perturbations about the backgrounds
are not superluminal.

DOI: 10.1103/PhysRevD.104.063530

I. INTRODUCTION

Nonsingular cosmological models—bouncing cosmol-
ogy and genesis fromMinkowski space—are of continuous
interest as alternatives to or completions of inflation.
Provided that the spatial curvature is negligible, a pre-
requisite for the construction of these models is the stable
violation of the null energy condition (and, more generally,
null convergence condition). It is known since 2010 [1–3]

that the latter feature can exist in Horndeski theories [4] (for
reviews see, e.g., Refs. [5,6]). These are scalar-tensor
modifications of gravity, with the Lagrangians containing
second derivatives of both the metric and scalar field, and
yet with the second-order equations of motion. Indeed,
within Horndeski theories, numerous explicit examples of
stable early genesis [1,7–12] and bouncing [13–21] stages
were constructed.
However, within Horndeski theory, these cosmologies

typically suffer from either singularities or gradient and/or
ghost instabilities at some earlier or later stage (possibly
well after the initial genesis epoch and, likewise, well
before or well after the bounce). In earlier papers, this
property was observed explicitly in most cases where the
evolution was followed by sufficiently distant past and
future [10,12,15,18–21] (see Ref. [22] for the discussion of
other problematic properties of the model of Ref. [21]).
Later on, the problem has been formulated as a no-go
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theorem [23,24]. Namely, in the unitary gauge and in the
spatially flat Friedmann–Lemaître–Robertson–Walker
background ds2¼dt2−a2ðtÞδijdxidxj, the quadratic
actions for tensor (transverse traceless) perturbation hij
and scalar perturbation ζ have the forms

Shh ¼
Z

dtd3x
a3

8

�
GT

_h2ij −
F T

a2
hij;khij;k

�
; ð1aÞ

Sss ¼
Z

dtd3xa3
�
GS

_ζ2 −
F S

a2
ζ;iζ;i

�
: ð1bÞ

The theorem states that if in a Horndeski theory the
background is nonsingular during the entire evolution
−∞ < t < þ∞, the coefficient GT is strictly positive at
all times, and the following two integrals are divergent at
lower and upper limits, respectively,Z

t

−∞
aðtÞðF T þ F SÞdt ¼ ∞; ð2aÞ

Z þ∞

t
aðtÞðF T þ F SÞdt ¼ ∞; ð2bÞ

then F S < 0 and/or F T < 0 in some time interval, i.e.,
there exists either ghost or gradient instability (or both).
Adding extra scalar fields, conventional or Galileon, does
not improve the situation [25,26].
As a digression, we emphasize that like most cosmology

model builders, we stick to the study of homogeneous and
isotropic backgrounds and their stability against linearized
perturbations. Like most others, we are confident that the
standard (3þ 1) decomposition with algebraic gauge con-
ditions (unitary gauge in our case) is adequate for this
particular purpose: the wave equations derived from the
actions (1) are manifestly strongly hyperbolic for positive
GT , F T , GS, and F S and manifestly elliptic for negative
sound speeds squared (but we tend to agree with Ref. [27]
that the algebraic gauges, including unitary, may not be
convenient for analyzing the evolution at a fully nonlinear
level). We leave aside the issue of stability at the nonlinear
level and, even more so, the issue of well posedness
of general backgrounds in Horndeski theories; the
latter issues are discussed, e.g., in Refs. [27–30]. In this
regard, positivity of GT , F T , GS, and F S is necessary, albeit
possibly not a sufficient condition for a healthy cosmo-
logical model.
One way to deal with instabilities implied by the no-go

theorem is to arrange for (or merely declare) a sufficiently
low energy scale of the UV completion and make sure that
the unstable modes (with energies below this scale) do not
have enough time to develop [10,31–33]. Another is to get
around these instabilities altogether [34–38] by making
use of beyond Horndeski [39,40] or more general degen-
erate higher-order scalar-tensor theories [41,42], which,

however, have problems with superluminality [43]. In this
paper we follow yet another route [24], namely, we stick to
the Horndeski theory and ensure that the coefficients GT ,
F T , GS, and F S (“effective Planck masses” squared) in the
quadratic actions for perturbations (1) sufficiently rapidly
decay as one goes backwards in time to t → −∞, so that the
integral in the left-hand side of Eq. (2a) is actually
convergent. In this way we relax the assumption of the
no-go theorem and construct Horndeski models without
gradient or ghost instabilities (at the linearized level). A
peculiarity of this case is that the gravitational and scalar
interactions are strong at early times, which, among other
things, signalizes a potentially strong coupling problem.1

For brevity, we refer to this property as “strong gravity in
the past.”
In the latter class of models, the fact that the effective

Planck masses tend to zero as t → −∞ does not necessarily
mean that the classical field theory treatment of the
(homogeneous and isotropic) cosmological evolution is
not legitimate at early times [45,46]. Indeed, the classical
analysis is valid, provided that the quantum strong coupling
energy scale Estrong stays well above the energy scale of
the classical evolution Eclass (for power-law evolution, the
latter is Eclass ∼ jtj−1 as t → −∞). This issue was consid-
ered in Refs. [45–47] in the framework of the class of
models suggested in Ref. [24]. Using the dimensional
analysis, it was shown, order by order in perturbation
theory, that there actually exists a region in the parameter
space where the classical field theory treatment is legiti-
mate.2 It is worth noting, though, that the parameters of the
concrete model given in Ref. [24] do not belong to this
region. Interestingly, the result of the all-order analysis of
Ref. [47] coincides with the result of Ref. [46] obtained by
studying the cubic order only: both lead to the same
constraints on the parameters.3

Explicit Horndeski models with strong gravity in the past
have not been constructed so far. It is the purpose of this
paper to fill this gap: we introduce several Horndeski
cosmologies of this sort, which are stable at all times; we
emphasize that we always work in the Jordan frame. We

1There exists an even more radical proposal that the effective
Planck masses squared GT and F T vanish at some finite time t0,
i.e., GT;F T ∝ ðt − t0Þ2 [44]. It remains to be seen whether or not
models of this sort are tractable within classical field theory.

2We note in passing that another model with vector field and
power-law background solution was constructed in Ref. [48]; it
describes stable early genesis which is legitimately treated within
classical field theory.

3Awould-be caveat in the analysis of Ref. [47] is that it did not
give explicit comparison of strong coupling energy scales
emerging at different orders of perturbation theory. The subtlety
is that when the strong coupling scale inferred from a higher order
term is below that coming from lower order ones, the naive
estimate for the strong coupling scale may break down [49]. The
dominance of the cubic order shows that this is not the case in
models we consider.
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ensure that these models are free of the strong coupling
problem, i.e., Eclass ≪ Estrong at all times, even though
Eclass → 0 as t → −∞. Our cosmologies are complete in
the sense that at late times the Universe expands in a
standard way: at large positive t, the models turn into
general relativity with a conventional massless scalar field
that drives the expansion. This is kination epoch which is
assumed to end up with reheating through, say, one of the
mechanisms of Refs. [50,51]. The least straightforward part
of our construction is to ensure the (linear) stability of the
solutions during the entire evolution. We also make sure
that the speed of the perturbations about our backgrounds
does not exceed the speed of light. So, our cosmologies are
exotic but healthy (modulo possible pathologies at non-
linear level).
The first model, elaborated in greater detail, is the

bouncing Universe. In the asymptotic past the Universe
contracts with the power-law behavior of the scale factor,
then the contraction terminates and expansion begins
(bounce). Depending on the choice of the Lagrangian, the
expansion epoch may or may not pass through the infla-
tionary stage; we give examples of both scenarios. As
described above, we follow the evolution up to the kination
epoch.
Another model is a combination of genesis and

bounce: the Universe starts from the flat space-time, then
contracts, passes through the bounce, and then evolves in
the same way as in the first example. For completeness, we
design yet another “standard” genesis model (in which the
Universe expands from the beginning), which satisfies the
condition [47] of the absence of strong coupling and thus
improves on the model of Ref. [24].
This paper is organized as follows. We introduce our

subclass of models from the Horndeski class in Sec. II,
where we also discuss general properties of these models.
Bouncing Universes are constructed in Sec. III. Models
with genesis are presented in Sec. IV. We conclude in
Sec. V. In Appendix A we derive the condition of the
absence of strong coupling at early times in the models of
Sec. III, while in Appendix B we give details of our
numerical treatment of the models of Sec. IV.

II. GENERALITIES

In this paper we consider a subclass of the Horndeski
theories. The general form of the Lagrangian for this
subclass is

L ¼ G2ðϕ; XÞ −G3ðϕ; XÞ□ϕþG4ðϕ; XÞR
þG4X½ð□ϕÞ2 − ð∇μ∇νϕÞ2�;

X ¼ −
1

2
gμν∂μϕ∂νϕ; ð3Þ

where □ϕ ¼ gμν∇μ∇νϕ and ð∇μ∇νϕÞ2 ¼ ∇μ∇νϕ∇μ∇νϕ,
and R is the Ricci scalar. The metric signature is

ð−;þ;þ;þÞ. Unlike the general Horndeski theory, the
Lagrangian (3) involves three arbitrary functions G2;3;4

rather than four. We recall that we always work in the
Jordan frame.
It is convenient for our purposes to work in the

Arnowitt–Deser–Misner (ADM) formalism. The ADM
form of the metric is

ds2 ¼ −N2dt2 þ γijðdxi þ NidtÞðdxj þ NjdtÞ;

where γij is the three-dimensional metric, N is the lapse
function, and Ni ¼ γijNj is the shift function. In ADM
terms, the action for the Horndeski theory subclass (3) has
the form

S ¼
Z ffiffiffiffiffiffi

−g
p

d4xL; ð4Þ

with [6]

L ¼ A2ðt; NÞ þ A3ðt; NÞK þ A4ðt; NÞðK2 − K2
ijÞ

þ B4ðt; NÞRð3Þ; ð5Þ

where

A4ðt; NÞ ¼ −B4ðt; NÞ − N
∂B4ðt; NÞ

∂N ;

and ð3ÞRij is the Ricci tensor made of γij,
ffiffiffiffiffiffi−gp ¼ N

ffiffiffi
γ

p
,

K ¼ γijKij, ð3ÞR ¼ γijð3ÞRij and

Kij ≡ 1

2N
ð_γij − ð3Þ∇iNj − ð3Þ∇jNiÞ:

The relationship between the two formalisms is estab-
lished by choosing the equal-time slices as slices of
constant ϕ and defining the time coordinate in such a
way that ϕðtÞ is a prescribed monotonous function, _ϕ > 0
(as an example, it is convenient to choose at large positive
times eϕ ¼ t). This gives

N−1 ¼
ffiffiffiffiffiffi
2X

p
_ϕðtÞ :

Then one has [40,52,53]

G2 ¼ A2 − 2XFϕ; ð6Þ

G3 ¼ −2XFX − F; ð7Þ

G4 ¼ B4; ð8Þ

where
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FX ¼ −
A3

ð2XÞ3=2 −
B4ϕ

X
: ð9Þ

It is worth noting that the general relativity (GR) descrip-
tion of gravity is restored for B4 ¼ −A4 ¼ M2

P=2 ¼ const,
where MP is the reduced Planck mass, which we set equal
to 1 in what follows. Note also that the transition from the
“covariant” formulation (3) to ADM action (4) is not
unique: it depends on the choice of the function ϕðtÞ.
Thus, one can impose additional constraints on the func-
tions A2, A3, B4, or, in other words, on the background
solution. We will use this freedom in Sec. III B 1.
The equations of motion for homogeneous, isotropic,

and spatially flat background are obtained by setting
N ¼ NðtÞ, γij ¼ a2ðtÞδij and varying the action (4) with
the respect to NðtÞ and aðtÞ. They read [54]

ðNA2ÞN þ 3NA3NH þ 6N2ðN−1A4ÞNH2 ¼ 0; ð10aÞ

A2 − 6A4H2 −
1

N
d
dt

ðA3 þ 4A4HÞ ¼ 0; ð10bÞ

where H ¼ _a=ðaNÞ is the Hubble parameter. To perform
the stability analysis, one writes

N ¼ N0ðtÞð1þ αÞ;
Ni ¼ ∂iβ þ NT

i ;

γij ¼ a2ðtÞðe2ζðehÞij þ ∂i∂jY þ ∂iWT
j þ ∂jWT

i Þ;

where aðtÞ and N0ðtÞ are background solutions, ∂iNTi ¼ 0
and

ðehÞij ¼ δij þ hij þ
1

2
hikhkj þ

1

6
hikhklhlj þ � � � ;

hii ¼ 0; ∂ihij ¼ 0:

Note that the ADM formulation automatically implies the
unitary gauge, δϕ ¼ 0. The residual gauge freedom is fixed
by setting Y ¼ 0 andWT

i ¼ 0, so that the spatial part of the
metric reads

γij ¼ a2e2ζðehÞij:

Variables α, β, and NT
i enter the action without temporal

derivatives; the dynamical degrees of freedom are ζ and
transverse traceless hij, i.e., scalar and tensor perturbations.
In what follows we omit subscript 0 in the notation for

the background lapse function. Then the quadratic action
for tensor perturbations reads [12]

Shh ¼
Z

dtd3x
Na3

8

�
GT

_h2ij
N2

−
F T

a2
hij;khij;k

�
; ð11Þ

where

GT ¼ −2A4;

F T ¼ 2B4:

Likewise, the quadratic action for scalar perturbation ζ
is [12]

Sss ¼
Z

dtd3xNa3
�
GS

_ζ2

N2
−
F S

a2
ζ;iζ;i

�
; ð12Þ

where

F S ¼
1

aN
d
dt

�
a
Θ
G2
T

�
− F T; ð13aÞ

GS ¼
Σ
Θ2

G2
T þ 3GT ð13bÞ

with

Σ ¼ NA2N þ 1

2
N2A2NN þ 3

2
N2A3NNH

þ 3ð2A4 − 2NA4N þ N2A4NNÞH2;

Θ ¼ 2H

�
NA3N

4H
− A4 þ NA4N

�
:

To avoid ghost and gradient instabilities, one requires that

F S;GS;F T;GT > 0: ð14Þ

We also require that the speed of perturbations does not
exceed the speed of light,

c2T ¼ F T

GT
≤ 1; ð15aÞ

c2S ¼
F S

GS
≤ 1: ð15bÞ

It has been argued that the latter conditions are necessary
for the existence of the UV completion [55,56].
It is worth noting that under rescaling of the Lagrangian

functions

A2ðt; NÞ → λ2A2ðλt; NÞ; ð16aÞ

A3ðt; NÞ → λA3ðλt; NÞ; ð16bÞ

B4ðt; NÞ → B4ðλt; NÞ ð16cÞ

with constant λ, one has A4ðt; NÞ → A4ðλt; NÞ, and sol-
utions to equations of motion (10) scale as

HðtÞ → λHðλtÞ; NðtÞ → NðλtÞ; ð17Þ
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while the coefficients of the quadratic action transform as

GTðtÞ → GTðλtÞ;…; F SðtÞ → F SðλtÞ: ð18Þ

In particular, stability and subluminality conditions remain
intact under the transformation (16). The scaling property
of (16), (17), and (18) implies, in particular, that the overall
time scale of evolution can be chosen at one’s will, so that
at epochs described by GR it is safely longer than the
Planck time.

III. BOUNCING UNIVERSES

A. Ansatz

Our purpose in this paper is to design the functions A2,
A3, A4, and B4 in such a way that the model admits a
cosmological solution of interest. To this end, we do not
need to work in complete generality. To construct bouncing
cosmologies in this Section, we make use of the following
Ansatz:

A2 ¼
1

2
f−2μ−2 · a2ðt; NÞ; ð19aÞ

A3 ¼
1

2
f−2μ−1 · a3ðt; NÞ; ð19bÞ

A4 ¼ −B4 ¼ −
1

2
f−2μ; ð19cÞ

where μ > 0 is a time-independent parameter which may be
different for different cosmologies,4 and f ¼ fðtÞ is a
positive function of time which is extracted as a prefactor
in (19a) and (19b) for convenience. Functions a2, a3 are
given by

a2ðt; NÞ ¼
�
xðtÞ
N2

þ vðtÞ
N4

�
; ð20aÞ

a3ðt; NÞ ¼ yðtÞ
N3

: ð20bÞ

Thus, our Ansatz generalizes Ref. [24] and involves four
arbitrary functions of time fðtÞ, xðtÞ, vðtÞ, and yðtÞ. The
construction of concrete cosmological models boils down
to the design of these functions.
Given the Ansatz (19), the background equations of

motion (10) are

�
−
xðtÞ
N2

−
3vðtÞ
N4

�
−
9yðtÞ · f ·H

N3
þ 6f2 ·H2 ¼ 0; ð21aÞ

�
xðtÞ
N2

þ vðtÞ
N4

�
þ 6f2 ·H2 þ ð2μþ 1Þ · _f

N

�
yðtÞ
N3

− 4f ·H
�

−
f
N

d
dt

�
yðtÞ
N3

− 4f ·H

�
¼ 0; ð21bÞ

while the functions entering (13) are given by

Θ ¼ f−2μ−1
�
f ·H −

3yðtÞ
4N3

�
;

Σ ¼ f−2μ−2

2N4
ð6vðtÞ þ 18yðtÞ · f ·H · N

þ xðtÞ · N2 − 6f2 ·H2 · N4Þ:

Thus

F T ¼ GT ¼ f−2μ; ð22aÞ

F S¼f−2μ ·

�
f ·H

f ·H− 3y
4N3

−1

�
þ 1

N
d
dt

�
f−2μþ1

f ·H− 3y
4N3

�
; ð22bÞ

GS ¼ f−2μ
�
6vþ18y ·f ·H ·Nþx ·N2−6f2 ·H2 ·N4

2N4 · ðf ·H− 3y
4N3Þ2

þ3

�
:

ð22cÞ

We always choose the functions fðtÞ;…yðtÞ in such a
way that inequalities (14) and (15) are satisfied.

B. Bounce followed by inflation

In this Section, we construct a linearly stable bounce
solution which evolves through the following stages:

(i) contraction, with power-law behavior of the scale
factor

(ii) bounce
(iii) inflation, with the Hubble parameter almost constant

in time
(iv) kination, with the Horndeski field reduced to a

massless scalar field.
Unlike at contraction and bounce, gravity at inflation and
kination is described by conventional GR, and the expan-
sion is driven by the scalar field.
To build the model, we make use of the following

approach. We design the functions fðtÞ, xðtÞ, vðtÞ, and yðtÞ
in (19) and (20) for the contraction, inflation, and kination
epochs separately and then construct smooth interpolations
between these epochs. One of these interpolating stages
involves bounce, and we have to figure out the conditions
for its realization. Needless to say, we have to ensure
stability and absence of superluminality throughout the
whole evolution. Clearly, the construction involves a lot of
guesswork, some of which is sketched in what follows. The
existence of a consistent solution is ultimately proven by a
numerical example.4Note that our parameter μ was denoted by α in Refs. [24,46].
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1. Early times: the Universe contracts

We begin with the earliest epoch, i.e., large negative
times. We require the power-law contraction with constant
lapse function,

H¼−
χ

ð−tÞ ; N¼ 1; χ> 0; t→−∞: ð23Þ

Here we set N ¼ 1 by making use of the ambiguity
of transition from covariant to ADM formalism pointed
out in Sec. II after Eq. (9). As we discussed there, this is
equivalent to imposing a constraint on the functions
A2;…; A4, or, in other words, on fðtÞ;…; yðtÞ. We will
encounter this constraint in due course, see Eq. (26).
The desired behavior (23) is achieved by choosing

f ¼ −ct; c > 0; ð24aÞ

xðtÞ ¼ x0; vðtÞ ¼ v0; yðtÞ ¼ y0; ð24bÞ

where c, x0, v0, and y0 are constant parameters. Our next
purpose is to find the complete set of constraints on these
parameters. There are several sources of these constraints.
(i) We have to ensure that the background equations (21)

are satisfied (with N ¼ 1). Making use of (23) and (24) one
finds that the background equations reduce to algebraic
equations

x0 þ 3v0 − 9y0 · c · χ − 6c2 · χ2 ¼ 0; ð25aÞ

x0 þ v0 þ 6c2 · χ2 − ð2μþ 1Þðy0 þ 4χcÞc ¼ 0: ð25bÞ

This set of equations determines the Hubble coefficient χ
and also constrains the values of c, x0, v0, and y0. The latter
constraint is precisely the one that ensures N ¼ 1. For an
appropriate root5 of (25), the constraint can be written as
follows:

v0 ¼
1

192

�
48c2 · ð2μþ 1Þ2 − 96x0 þ 120c · y0 · ð2μþ 1Þ − 81y20

− ð4c · ð2μþ 1Þ þ 9y0Þ ·
ffiffiffi
3

p
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48c2 · ð2μþ 1Þ2 − 64x0 þ 27y20 þ 24c · y0 · ð2μþ 1Þ

q �
: ð26Þ

Then the Hubble coefficient is given by

χ ¼ 2x0 þ 4v0 − y0 · c · ð2μþ 1Þ
9y0 · cþ 4c2 · ð2μþ 1Þ : ð27Þ

So, the first set of constraints on the parameters defining the
model at early times is that v0 is not arbitrary but is given by
Eq. (26), it must be real (argument of square root must be
positive), and the Hubble parameter given by (27) must be
positive,

χ > 0:

(ii) The second set of constraints comes from the stability
requirement (14) and the absence of superluminal propa-
gation (15). We make use of (22) and write

F T ¼ GT ¼ ð−c · tÞ−2μ; ð28aÞ

F S ¼ ð−c · tÞ−2μ · 4c · ð1 − 2μÞ − 3y0
4c · χ þ 3y0

; ð28bÞ

GS ¼
ð−c · tÞ−2μ

ð4c · χ þ 3y0Þ2
· ½48c2 · χ · ð2μþ 1Þ − 16x0

þ 12c · y0 · ð2μþ 3χ þ 1Þ þ 27y20�; ð28cÞ

c2S ¼
ð4c · χ þ 3y0Þ · ð4c · ð1 − 2μÞ − 3y0Þ

48c2 · χ · ð2μþ 1Þ − 16x0 þ 12c · y0 · ð2μþ 3χ þ 1Þ þ 27y20
: ð28dÞ

Thus, the constraints F T;GT > 0 are satisfied automati-
cally and cT ≡ 1, while the constraints F S;GS > 0, c2S ≤ 1

are nontrivial (but time independent).

(iii) One more constraint comes from the desire to get
around the no-go theorem of Refs. [23,24]. A necessary
condition for having a stable bouncing solution in the
Horndeski theory with GR asymptotics as t → þ∞, is [24]

Z
t

−∞
aðtÞðF T þ F SÞdt < ∞;5The second root is inconsistent with the all-time stability of

the set up.
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i.e., this integral must be convergent in the lower limit of
integration. At large negative times we have

a ∝ ð−tÞχ ;
F T;F S ∝ ð−tÞ−2μ;

so the convergence of the integral requires

χ < 2μ − 1: ð29Þ

(iv) Yet another constraint is obtained by requiring that
despite the fact that F T , F S, GT , and GS (effective Planck
masses squared) tend to zero as t → −∞, the background
evolution can be described classically at early times. We
consider this issue in Appendix A along the lines of
Ref. [47]. The outcome is simple: the classical treatment
of early time evolution is legitimate provided that

μ < 1: ð30Þ

Note that this constraint together with (29) implies that

χ < 1; ð31Þ

i.e., the contraction velocity j _aj increases.
(v) Finally, there is a constraint that has to do with the

Belinsky-Khalatnikov-Lifshitz phenomenon [57–59]. In
our framework this phenomenon manifests itself in the
behavior of superhorizon tensor (and also scalar) modes in
the contracting Universe6: in the BKL case, one of the two
solutions for a superhorizon mode of given conformal
momentum grows as t increases and diverges in the formal
limit t → 0 (while another solution stays constant in time).
This means that the Universe becomes strongly anisotropic
and inhomogeneous at late times, which is undesirable (see,
e.g., Ref. [60] for discussion). To avoid BKL, one makes
sure that the time-dependent superhorizon solution decays,
instead of growing, as t increases towards zero. In our
framework, the equation of motion for superhorizon
perturbation is obtained from (11) with spatial derivatives
neglected,

1

a3GT

d
dt

ða3GT
_hijÞ ¼ 0:

One of its solutions is constant in time, while another is

hij ∝
Z

dt
1

a3GT
∝ ð−tÞ2μ−3χþ1:

It decays as t increases towards zero for

2μþ 1 > 3χ:

This constraint ensures also that the BKL phenomenon is
absent for scalar perturbations. Given that μ < 1, it is
weaker than (29).
Thus, the parameter μ in the Lagrangian and the Hubble

coefficient χ must belong to the intervals [constraints (i),
(iii), and (iv)]

1

2
< μ < 1

0 < χ < 2μ − 1:

To find the allowed range of parameters entering the
Lagrangian, we note that in accordance with Eqs. (16),
(17), and (18), both equations of motion for background
and constraints coming from the absence of instability and
superluminality are invariant under rescaling c → λc,
x0 → λ2x0, v0 → λ2v0, y0 → λy0. This is explicit in (26),
(27), and (28). The parameter v0 is given by Eq. (26) in
terms of other parameters. So, it is sufficient to determine
the allowed range of x0, y0 for a given value of μ and one
value of c. With the reduced Planck mass set equal to 1, c is
roughly the inverse characteristic time scale in Planck units,
so it should be small.7 In our numerical example below we
set c ¼ 4 × 10−3, and here we stick to this choice. The
allowed ranges of x0 and y0 for several values of μ are
shown in Fig. 1. In fact, the allowed range is not empty in
the entire interval 1=2 < μ < 1; this is illustrated in Fig. 1.
It is useful to note that the asymptotics of vðtÞ and xðtÞmay
be chosen in such a way that

v0 > 0; x0 < 0: ð32Þ

This is possible for all allowed values of μ. In what follows
we consider this case only.

2. Inflation after bounce

As outlined in the beginning of this Section, our next
step is to describe the inflationary stage, and then discuss
the transition from contraction to inflation through bounce.
Models of inflation in the Horndeski theory have been

6The action (11) for tensor perturbations (with F T ¼ GT) is the
same as the action for tensor modes in GR in the background
metric with aeff¼aG1=2

T , Neff¼G1=2
T . The combination jaeffHeff ¼

_aeff=Neff j behaves as ð−tÞχ−1, i.e., in view of (31) it tends to zero
as t → −∞ and grows as the Universe contracts. Thus, a mode of
sufficiently small conformal momentum k is subhorizon at
early times, k=aeff ≫ Heff , and becomes superhorizon at later
times. Note that in view of (29) and (30), the effective Universe
with scale factor aeff ∝ ð−tÞχ−μ is expanding, rather than con-
tracting. The same properties are characteristic of scalar pertur-
bations as well.

7We could equally well set c ¼ 1 and after performing the
whole analysis make use of the scaling properties (16), (17), and
(18) to obtain a model with the time scale of evolution much
longer than the Planck time. It is worth keeping this in mind, but
we take a more intuitively transparent approach here.

NONSINGULAR COSMOLOGICAL MODELS WITH STRONG … PHYS. REV. D 104, 063530 (2021)

063530-7



proposed in Refs. [3,10,12,54,61,62]; here we employ the
construction similar to Ref. [24]. Namely, exact exponential
expansion occurs when the functions in the Lagrangian
take constant values,

f ¼ 1; ð33aÞ

x ¼ x1; v ¼ v1; y ¼ y1; ð33bÞ

where the choice (33) is made to restore GR already at
inflation (recall that G4 ¼ −A4 ¼ f=2). With the Ansatz
(33), equations of motion (21) read�

−
x1
N2

−
3v1
N4

�
−
9y1 ·H
N3

þ 6H2 ¼ 0; ð34aÞ

�
x1
N2

þ v1
N4

�
þ 6H2 ¼ 0; ð34bÞ

and we denote the (time-independent) solution to
these equations by H ¼ H1 and N ¼ N1. We require
H1 > 0, N1 > 0.

Now, it is convenient to consider H1, N1, and y1 as
independent parameters, and express x1 and v1 through
these parameters using (34):

x1 ¼ −
3ð8H2

1 · N
3
1 − 3H1 · y1Þ
2N1

; ð35aÞ

v1 ¼
3

2
ð4H2

1 · N
4
1 − 3H1 · N1 · y1Þ: ð35bÞ

Let us turn to the requirements of background stability
and subluminal propagation of perturbations. Using (22)
and (35), we arrive at the constraints

3y1
4H1 · N3

1 − 3y1
> 0;

64H2
1 · N

6
1 − 36y1 ·H1 · N3

1 þ 9y21 > 0;

y1 · ð4H1 · N3
1 − 3y1Þ

64H2
1 · N

6
1 − 36y1 ·H1 · N3

1 þ 9y21
< 1:

These constraints can be written in a simple form:

y1 > 0; ð36aÞ

3y1 < 4H1 · N3
1; ð36bÞ

which also leads to

v1 > 0; x1 < 0: ð37Þ

It is worth noting that the value of y at inflation has the
opposite sign to its value at contraction: y1 > 0 [see
Eq. (36a)] and y0 < 0 (see Fig. 1), respectively. On the
contrary, the values of x and v have the same signs at these
two stages, see Eqs. (32) and (37).
Now, let us comment on the possible behavior of the

functions xðtÞ, vðtÞ, yðtÞ, and fðtÞ near the bounce.
Since xðtÞ and vðtÞ do not change signs during the
transition from contraction to inflation, it is natural to take
them monotonously changing from x0 to x1 and from v0 to
v1, respectively. The function fðtÞ flattens out, with _f < 0
both at contraction and bounce. Near the bounce, at t ≈ tb,
we have HðtÞ ≈ 0. Assuming that the functions xðtÞ < 0
and vðtÞ > 0 vary slowly in comparison with fðtÞ in the
vicinity of the bounce, we obtain from the first equation of
motion, Eq. (21a) with HðtbÞ ¼ 0, that

NðtbÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
3vðtbÞ
xðtbÞ

s
: ð38Þ

We note in passing that with our choice of signs of x and v
at contraction, inflation, and bounce (xðtbÞ < 0, vðtbÞ > 0),
the argument of square root is positive. Then, we take the
time derivative of Eq. (21a) and solve it together with
Eq. (21b) for _H and _N to find

FIG. 1. Space of parameters x0 and y0 determining the early
time asymptotics (24) of the Lagrangian (19). Blue, yellow,
green, and pink patches are regions forbidden by the constraints
χ > 0, GS > 0, F S > 0 and constraint on v0 (positivity of the
argument of square root), respectively. The constraint coming
from cS ≤ 1 is relevant as well, but it would not be visible in these
figures; we show this constraint in Fig. 2. Other conditions are
weaker and not shown. The red line corresponds to v0 ¼ 0. The
regions to the right and left of this line have v0 < 0 and v0 > 0,
respectively. The white black-framed area shows the allowed
range of parameters x0 and y0, where all constraints of this
Section are satisfied. We set μ ¼ 0.6 in the upper left panel, μ ¼
0.8 in the upper right panel and μ ¼ 0.95 in the bottom panel;
c ¼ 4 × 10−3 everywhere.
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_HðtbÞ≈
2vðtbÞ ·xðtbÞ · ð−2vðtbÞþ _fðtbÞ ·yðtbÞ · ð2μþ1ÞÞ
3

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffi
−vðtbÞ

xðtbÞ
q

·f2ðtbÞ · ð8v2ðtbÞ−3xðtbÞ ·y2ðtbÞÞ
;

where we again neglect _xðtÞ, _vðtÞ, and _yðtÞ in comparison
with _fðtÞ. Since _HðtbÞ > 0, we see that yðtbÞ may be
negative, but only slightly:

yðtbÞ >
2vðtbÞ

_fðtbÞ · ð2μþ 1Þ :

With this qualification, most of the smooth functions
interpolating between (24) and (33) indeed give rise to
the bouncing solution. We present a numerical example in
Sec. III B 4.

3. Kination epoch after transit from inflation

To describe the final kination epoch with GR and free
massless scalar field, we make use of the covariant
formalism with the Lagrangian (3). It is convenient to
use the freedom of field redefinition and choose the
background field ϕ as follows:

eϕ ¼ t; t → þ∞: ð39Þ

This choice corresponds to the Lagrangian

L ¼ 2

3
X:

Indeed, it is straightforward to check that the scalar field
equation and Friedmann equation have the solution (39)

with a ¼ const · t1=3, N ¼ const, and H ¼ ð3tNÞ−1. Note
that during the transition from inflation to kination, the
coefficient of X in the Lagrangian changes sign (it changes
from x1 < 0 at inflation to 2=3 at kination). This is in
complete accordance with [50,51].
Towards the kination epoch, other terms in the scalar

field Lagrangian should tend sufficiently rapidly to zero.
This can be achieved, e.g., by requiring the following
asymptotics of functions in the covariant Lagrangian (3) at
large ϕ (distant future; recall that GR is restored already at
inflation, G4 ¼ 1=2):

G2ðϕ; XÞ ¼
2

3
X þ ω2ðϕÞ · X2; ð40aÞ

G3ðϕ; XÞ ¼ ω3ðϕÞ · X; ð40bÞ

where ω2ðϕÞ and ω3ðϕÞ are damping factors, which
suppress higher order terms. They can be chosen rather
arbitrarily. We choose them as follows:

ω2ðϕÞ ¼ 4ðv2 · e−ϕ − y2 · e−2ϕÞ; ω3ðϕÞ ¼ 3y2 · e−2ϕ:

The reason for this choice is that we obtain simple ADM
functions A2 and A3 using conversion formulas (6)–(9):

A2 ¼
1

3t2 · N2
þ v2
t5 · N4

;

A3 ¼
y2

t5 · N3
:

In fact, we have to generalize these expressions by
introducing time shift, t → t − t�, where t� is a new
parameter. The point is that once contraction is described
literally by formulas of Sec. III B 1, inflation begins soon
after t ¼ 0 and ends at some much later time te. The time
shift (with t� of order of te but somewhat smaller than te)
has to be introduced to account for the fact that kination
begins around te ≠ 0. Thus, the asymptotic behavior of
xðtÞ, vðtÞ, and yðtÞ at large t is (recall that fðtÞ ¼ 1 at
inflation and later)

xðtÞ → 2

3ðt − t�Þ2
; ð41aÞ

vðtÞ → v2
ðt − t�Þ5

; ð41bÞ

yðtÞ → y2
ðt − t�Þ5

: ð41cÞ

By choosing the functions xðtÞ, vðtÞ, and yðtÞ in such a
way that they interpolate between constant values x1, v1,
and y1 at inflation and functions (41) at late times, we
obtain a smooth transition from inflation to kination. The
issues of stability and subluminality are, however, tricky at

FIG. 2. Part of the upper right panel of Fig. 1, with the
constraint cS ≤ 1 added. Notice the scales of the axes. Blue
and yellow patches are again regions forbidden by the constraints
χ > 0 and GS > 0, respectively. The red patch is the new region
forbidden by the constraint cS ≤ 1: the allowed (white) region is
somewhat squeezed by the constraint cS ≤ 1. The constraint
F S > 0 is not shown.
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transition epochs; designing a completely stable and sub-
luminal model requires considerable trial and error effort.

4. Numerical example

Here we present a concrete model which proves by
example that there exists stable and subluminal cosmology
with the desired properties listed in the beginning of this
Section. We emphasize again that by rescaling the func-
tions in the Lagrangian in accordance with Eq. (16), one
can make all time scales like c−1, inverse inflationary
Hubble parameter H−1

1 , etc., arbitrarily long, much longer
than the Planck time. This observation applies also to other
models considered in this paper.
We choose the parameter μ near the center of allowed

interval 1=2 < μ < 1:

μ ¼ 0.8:

As we already mentioned, at the contracting stage we
choose, quite arbitrarily,

c ¼ 4 × 10−3: ð42Þ

The parameters x0 and y0 are then chosen from the allowed
region shown in the upper right panel of Fig. 1; by trial and
error we find convenient values, consistent with the sign
choice (32):

x0 ¼ −1.6 × 10−5; y0 ¼ −1.2 × 10−3: ð43Þ

The value of v0 and the Hubble coefficient χ at the
contraction stage are found from (26) and (27):

v0 ¼ 5.19 × 10−6; χ ¼ 0.01: ð44Þ

This completes the description of the contraction stage.
We would like to have bounce at some time before t ¼ 0;

we request [although we do not have to do so in view of
scaling (16)] that the characteristic time scales are large
compared to 1 (i.e., Planck time). We begin with the
function fðtÞ which should interpolate between f ¼ −ct at
contraction and f ¼ 1 at inflation. A simple choice is

fðtÞ ¼ c
2

�
−tþ lnð2 coshðstÞÞ

s

�
þ 1: ð45Þ

The parameter s is the inverse time scale of the transition,
and we set

s ¼ 2 × 10−3: ð46Þ

We wish the bounce to occur roughly at t ∼ −s−1, so the
maximum value of jHj at contraction is estimated as

jHjmax ∼ χ · s ∼ 2 × 10−5:

Let us now turn to the inflationary stage and transition to
it. A simple Ansatz for the inflationary Hubble parameter
H1 is that it is comparable to the maximum value jHjmax at
contraction. There is no reason to think that the lapse
function at inflation is considerably different from 1. We
choose

H1 ¼ 3.7 × 10−5; N1 ¼ 0.82:

We also have to specify the value of y1 at inflation. To this
end, we introduce a simple Ansatz of proportionality
between xðtÞ and vðtÞ:

vðtÞ ¼ xðtÞ v0
x0

; ð47Þ

so that vðtÞ=xðtÞ is time independent at the transition from
contraction to inflation. Note that with the numerical values
(43) and (44), the estimate (38) is consistent with our
choice N ∼ 1. Equation (47) implies v1=x1 ¼ v0=x0, then
(35) gives

y1 ¼
4x0H2

1N
5
1 þ 8v0H2

1N
3
1

3x0H1N2
1 þ 3v0H1

;

and numerically

y1 ¼ 1.2 × 10−6:

This set of parameters is consistent with the stability and
subluminality constraints (36). The values of x1 and v1 are
found from (35):

x1 ¼ −1.07 × 10−8; v1 ¼ 3.47 × 10−9:

Note that jx1j, v1, and y1 are much smaller than jx0j, v0, and
jy0j, respectively. This has to do with two properties of the
contracting stage which distinguish it from inflation. First,
the constraints shown in the upper right panel of Fig. 1 are
consistent with fairly large values of jy0j, and it is indeed
quite large in our example; on the contrary, inflationary y1
is bounded by H1, see (36b). Second, equation of motion
(21b) contains a term proportional to _fy0 ¼ −cy0, which is
not so small at contraction and drives jx0j and v0 to fairly
large values; this term vanishes at inflation. We note in
passing that Eq. (21a) is satisfied at the contraction stage
due to the partial cancellation between x0 and 3v0.
The transition from contraction through bounce to

inflation is described by xðtÞ, vðtÞ, and yðtÞ smoothly
interpolating between x0, v0, y0 and x1, v1, y1 [and with
fðtÞ given by (45)]. A nontrivial part of the construction is
to make sure that stability and subluminality conditions
(14) and (15) are satisfied. By trial and error, we find
appropriate forms
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xðtÞ ¼ x0ð1 −UxðtÞÞ þ x1UxðtÞ; ð48aÞ

yðtÞ ¼ y0ð1 −UyðtÞÞ þ y1UyðtÞ; ð48bÞ

where the functions

UxðtÞ ¼ ln

�
e−1.5·s·ðt−80Þ þ e2

e−1.5·s·ðt−80Þ þ e

�
ð49aÞ

UyðtÞ ¼ ln
�
e−3.8·s·ðtþ180Þ þ e2

e−3.8·s·ðtþ180Þ þ e

�
ð49bÞ

interpolate between 0 and 1, while vðtÞ is given by (47),
and the parameter s is the same as in (46).
We show the behavior of the Hubble parameter and lapse

function at contraction, bounce, and beginning of inflation
in Fig. 3. The scalar coefficients F S and GS are shown in
Fig. 4, and scalar sound speed cS is shown in the upper
panel of Fig. 5, respectively; the stability and subluminality
are explicit. We show tensor coefficient F T for complete-
ness in the bottom panel of Fig. 5 (recall that GT ¼ F T and
cT ¼ 1 at all times).

So, after a rather short transition period, the inflationary
stage sets in. Depending on the parameters of the model, it
can last for a longer or shorter time. Note that this property
may be of interest from a phenomenological viewpoint
[62]. We take, quite arbitrarily, the duration of inflation
approximately equal to Δtinf ≈ 1.55 × 106 (in Planck
units), which corresponds to the number of e-foldings at
inflation Ne ¼ N1H1Δtinf ≈ 46.
To have the transition from inflation to kination, we take

at late times

xðtÞ ¼ x1ð1 − Vðt − t�ÞÞ þ x2
Vðt − t�Þ
ðt − t�Þ2

; ð50aÞ

vðtÞ ¼ v1ð1 − Vðt − t�ÞÞ þ v2
Vðt − t�Þ
ðt − t�Þ5

; ð50bÞ

yðtÞ ¼ y1ð1 − Vðt − t�ÞÞ þ y2
Vðt − t�Þ
ðt − t�Þ5

; ð50cÞ

with the parameter which regulates the duration of inflation
equal to t� ¼ 1.5 × 106, and

FIG. 3. Hubble parameter (upper panel) and lapse function
(bottom panel) for the model of Sec. III B 4 at contraction,
bounce, and beginning of inflation.

FIG. 4. CoefficientsF S (upper panel) and GS (bottom panel) for
the model of Sec. III B 4 at contraction, bounce, and beginning of
inflation.
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x2 ¼
2

3
;

y2 ¼ −T3y1 ·
x2
x1

¼ 6.83 × 1015;

v2 ¼ −T3v1 ·
x2
x1

¼ 1.97 × 1013;

where T ¼ 4.5 × 104, and the function

VðtÞ ¼ 1þ ln

�
e0.5·s·ðt−TÞ þ e

e0.5·s·ðt−TÞ þ e2

�
;

again interpolates between 0 and 1 [the value of parameter s
is still given by (46)]. The parameters t� and T are chosen in
such a way that the functions xðtÞ, vðtÞ, and yðtÞ are
reasonably smooth in the transition period, and inflation
smoothly ends somewhat later than t�. This is illustrated in
Fig. 6. At late times we obtain the correct kination behavior
given by (41), and the Hubble parameter asymptotes to
H ¼ ½3ðt − t�ÞN�−1. The Hubble parameter and lapse func-
tion are shown in Fig. 7, while the scalar coefficient F S and
scalar sound speed cS are shown in Fig. 8. Clearly, themodel
is stable and subluminal at the transition from inflation to
kination. The sound speed tends to 1 rather slowly, since the
ratio vðtÞ=xðtÞ exhibits slow decay ðt − t�Þ−3 (and yðtÞ

decays as ðt − t�Þ−5). To end up this Section, we note that
since the duration of inflation is fairly long, the complete
expressions for xðtÞ, vðtÞ, and yðtÞ, valid at all times, are
obtained by simple superpositions of (48) and (50), e.g.,

xðtÞ¼x0ð1−UxðtÞÞþx1UxðtÞð1−Vðt− t�ÞÞþx2
Vðt− t�Þ
ðt− t�Þ2

;

ð51Þ

FIG. 5. Sound speed of scalar perturbations cS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F S=GS

p
(upper panel) and coefficient F T (bottom panel) for the model of
Sec. III B 4 at contraction, bounce, and beginning of inflation.

FIG. 6. Function xðtÞ at transition epoch from inflation to
kination.

FIG. 7. Hubble parameter (upper panel) and lapse function
(bottom panel) for the model of Sec. III B 4 at the end of inflation
and beginning of kination.
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etc. This completes our discussion of themodelwith bounce,
inflation, and kination.

C. Bounce directly to kination

Contraction and bounce need not necessarily proceed into
the inflationary stage: a short transition epoch after bounce
may end up directly at kination. In this scenario, the initial
stage is described in the sameway as in Sec. III B 1, whereas
the evolution after bounce proceeds as in Sec. III B 3. Let us
give a numerical example which shows that stable and
subluminal cosmology of this sort is indeed possible.
We again consider a model with μ ¼ 0.8 and choose the

parameters of the contraction stage as in (42), (43), and
(44). The function fðtÞ is again given by (45), so that we
restore GR at later times. We would like to approach the
behavior (41) soon after bounce and, by trial and error, end
up with the following example:

xðtÞ¼ x0ð1−UxðtÞÞþ
4

3ððtþ2000Þ2þðt−5000Þ2Þ ·UxðtÞ;

vðtÞ¼ v0ð1−UxðtÞÞþ
v2

ðjtjþ2000Þ5 ·UxðtÞ;

yðtÞ¼ y0ð1−UyðtÞÞþ
y2

ðjtjþ2000Þ5 ·UyðtÞ;

where UxðtÞ and UyðtÞ are still given by (49), and now

v2 ¼ 1.04 × 108; y2 ¼ 9.6 × 1010:

We show the Hubble parameter and lapse function for this
model in Fig. 9 and the scalar coefficient F S and scalar
sound speed in Fig. 10. The latter figure illustrates that the
model is stable and subluminal at all times.

IV. MODELS WITH GENESIS

A. Ansatz

To illustrate that interesting cosmologies can be obtained
within various Ansätze, in this Section we construct genesis
models by choosing the functions in the Lagrangian (5) in
the following form:

A2 ¼
1

2
f−2μ−2−δa2ðNÞ; ð52aÞ

A3 ¼
1

2
f−2μ−1−δa3ðt; NÞ; ð52bÞ

B4 ¼
1

2
f−2μb4ðt; NÞ; ð52cÞ

FIG. 8. Coefficient F S (upper panel) and sound speed of scalar
perturbations cS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F S=GS

p
(bottom panel) for the model of

Sec. III B 4 at the end of inflation and beginning of kination.

FIG. 9. Hubble parameter (upper panel) and lapse function
(bottom panel) for the model of Sec. III C: bounce directly to
kination.
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A4 ¼
1

2
f−2μa4ðt; NÞ: ð52dÞ

The parameter μ > 0 is similar to that in the previous
Section, and the parameter δ > 0 is new. The functions A4

and B4 depend on N now; functions a2ðNÞ, a3ðt; NÞ,
a4ðt; NÞ, and b4ðt; NÞ are chosen as follows:

a2ðNÞ ¼ x

�
1

N2
−

1

3N4

�
; x ¼ const; ð53aÞ

a3ðt; NÞ ¼ yðtÞ
N3

; ð53bÞ

a4ðt; NÞ ¼ −
�
1þ zðtÞ

N2

�
; ð53cÞ

b4ðt; NÞ ¼
�
1 −

zðtÞ
N2

�
: ð53dÞ

Note that the parameter x is now time independent,
unlike in the models of Sec. III where functions xðtÞ and
vðtÞ entering a2 exhibited step-function behavior.
Given the Ansatz (52), the background equations of

motion (10) are

xf−2−δ
�

1

N4
−

1

N2

�
− 9yðtÞ · f−1−δ · H

N3

þ 6H2 ·

�
1þ 3zðtÞ

N2

�
¼ 0; ð54aÞ

xf−2−δ
�

1

N2
−

1

3N4

�
þ 6 ·H2 ·

�
1þ zðtÞ

N2

�
−

1

N
d
dt

�
yðtÞ
N3

· f−1−δ − 4 ·H ·

�
1þ zðtÞ

N2

��

þ 2μ ·
_f
f
1

N

�
yðtÞ
N3

· f−1−δ − 4 ·H ·

�
1þ zðtÞ

N2

��
¼ 0: ð54bÞ

The functions entering (13) are given by

F T ¼ f−2μ ·
�
1 −

zðtÞ
N2ðtÞ

�
; ð55aÞ

GT ¼ f−2μ ·

�
1þ zðtÞ

N2ðtÞ
�
; ð55bÞ

F S ¼ f−2μ ·
3yðtÞ · zðtÞ − 3yðtÞ · N2 − 16f1þδ ·H · N · z2ðtÞ

N2½3yðtÞ − 4f1þδ ·H · N · ðN2 þ 3zðtÞÞ� −
1

N
d
dt

�
4f−2μþδþ1ðN2 þ zðtÞÞ2

N · ½3yðtÞ − 4f1þδ ·H · N · ðN2 þ 3zðtÞÞ�
�
; ð55cÞ

GS ¼ f−2μ ·

�
1þ zðtÞ

N2

��
8fδ · ðN2 þ zðtÞÞ · x · ð−2þ N2Þ þ 18f ·H · N · yðtÞ − 6f2þδ ·H2 · N2 · ðN2 þ 6zðtÞÞ

½3yðtÞ − 4f1þδ ·H · N · ðN2 þ 3zðtÞÞ�2 þ 3

�
:

ð55dÞ

We will make sure that the functions fðtÞ, yðtÞ, and zðtÞ are such that inequalities (14) and (15) are satisfied.

FIG. 10. Coefficient F S (upper panel) and sound speed of
scalar perturbations cS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F S=GS

p
(bottom panel) for the model

of Sec. III C.
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B. Contracting genesis followed by bounce

Here we construct a model with genesis of contracting
Universe. This cosmology begins with the flat space-time,
then the Universe starts to contract, and the rate of
contraction increases. At some moment of time the bounce
occurs: the contraction terminates and expansion begins.
We consider for definiteness the case in which bounce is
followed by inflationary expansion; inflation is assumed to
end up as in Sec. III B. Alternatively, bounce may lead
directly to kination epoch like in Sec. III C; we do not
elaborate on this possibility.
We begin with early times and consider the following

asymptotics:

f ¼ −ct; c > 0; ð56aÞ

yðtÞ ¼ y0; zðtÞ ¼ z0: ð56bÞ

This choice leads to power-law behavior of the Hubble
parameter. Indeed, by substituting (56) into equations of
motion (54) we arrive at

H ¼ −
χ

ð−tÞ1þδ ; N ¼ 1; t → −∞;

with

χ ¼
2
3
x − ð2μþ δþ 1Þ · y0 · c

4ð2μþ δþ 1Þ · ð1þ z0Þ · cδþ2
ð57Þ

[the fact that N ¼ 1 for this solution is due to the particular
choice of the coefficient ð−1=3Þ of N−4 in (53); this choice
replaces in this model the constraint (26)]. For δ > 0, the
scale factor tends to a constant as t → −∞:

a ¼ const ·

�
1 −

χ

δð−tÞδ
�
;

as required for genesis. Contracting genesis occurs for
χ > 0.
Let us note that for small δ, early time asymptotics is

approached slowly (backwards in time), since the expan-
sion parameter is ð−tÞ−δ:

HðtÞ ¼ −ð−tÞ−1−δ · ðχ þ χ1 · ð−tÞ−δ þ…Þ; ð58aÞ

NðtÞ ¼ 1þ N1 · ð−tÞ−δ þ…; ð58bÞ

where coefficients χ1 and N1 are not particularly small.
This complicates the numerical analysis; we explain how
we get around this obstacle in Appendix B. The same
comment applies to the genesis model of Sec. IV C.
The asymptotic behavior of coefficients (55) entering the

quadratic action for perturbations is

F T ∝ ð−ctÞ−2μ; GT ∝ ð−ctÞ−2μ;
F S ∝ ð−ctÞ−2μþδ; GS ∝ ð−ctÞ−2μþδ:

The constraints on parameters arise from the same require-
ments as in Sec. III B 1. Let us list them:

(i) Contraction at early times:

χ > 0; ð59Þ

(ii) Stability of background and subluminality of
perturbations:

F T;GT;F S;GS > 0; ð60aÞ

c2T ≤ 1; c2S ≤ 1; ð60bÞ

(iii) Evading the no-go argument of Ref. [24]:

2μ > 1þ δ; ð61Þ

(iv) Absence of strong coupling in the past. This issue
has been studied in detail in Ref. [47] with the result

μþ 3

2
δ < 1; ð62Þ

(v) Belinsky-Khalatnikov-Lifshitz phenomenon. In
the same way as in Sec. III, we obtain for time-
dependent superhorizon perturbations

hij ∝
Z

dt
1

a3GT
∝ ð−tÞ2μþ1;

and

ζ ∝
Z

dt
1

a3GS
∝ ð−tÞ2μ−δþ1:

They decay as t increases towards zero, provided
that 2μþ 1 > δ. This constraint is weaker than (iii).

All these constraints can be satisfied without much of
fine-tuning. In view of (61), the constraints give

F T > 0∶ z0 < 1;

c2T ≤ 1∶ z0 ≥ 0;

GS > 0∶ x0 < 0;

χ > 0∶ 3ð2μþ δþ 1Þcjy0j > 2jx0j; y0 < 0;

and c2S ≤ 1 gives

3ð2μ − δ − 1Þð2μþ δþ 1Þcjy0j
≤ ½4ðμþ δþ 1Þ þ 6z0ðδþ 1Þ�jx0j:
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The constraintF S > 0 is satisfied automatically. This set of
inequalities can be satisfied for all μ and δ from their
allowed range.
Let us turn to inflationary epoch. Like in Sec. III B,

inflation occurs for time-independent coefficients in the
Lagrangian:

f ¼ 1; ð63aÞ

y ¼ y1; z ¼ z1: ð63bÞ

In this case, equations of motion (54) read

x

�
1

N4
−

1

N2

�
−
9y1 ·H
N3

þ 6H2 ·

�
1þ 3z1

N2

�
¼ 0; ð64aÞ

x

�
1

N2
−

1

3N4

�
þ 6H2 ·

�
1þ z1

N2

�
¼ 0; ð64bÞ

and we denote the (time-independent) solution to
these equations by H ¼ H1 and N ¼ N1. We require
H1 > 0, N1 > 0.
In analogy to Sec. III B, it is convenient to treat H1 and

N1 as independent parameters and express y1 and z1
through these parameters using (64):

y1 ¼ −
12H2

1 · N
4
1 − 2xþ 4x · N2

1

9H1 · N1

; ð65aÞ

z1 ¼
−18H2

1 · N
4
1 þ x − 3x · N2

1

18H2
1 · N

2
1

: ð65bÞ

We emphasize that unlike in the bounce scenario of
Sec. III, the inflationary epoch in our current model is not
described by GR since z1 ≠ 0. The conditions for the

background stability and subluminal propagation of per-
turbations, Eqs. (55), read

F T¼2þx ·ð3N2
1−1Þ

18H2
1 ·N

4
1

>0; GT¼
x ·ð1−3N2

1Þ
18H2

1 ·N
4
1

>0; ð66aÞ

c2T ¼ −1þ 36H2
1 · N

4
1

x · ð1 − 3N2
1Þ

≤ 1; ð66bÞ

F S ¼
−648H4

1 · N
8
1 þ 18x ·H2

1 · N
4
1 · ð1 − 9N2

1Þ þ x2 · ð−1þ 9N2
1 − 18N4

1Þ
54H2

1 · N
6
1 · ð6H2

1 · N
2
1 þ xÞ > 0; ð66cÞ

GS ¼ −
x · ð−1þ 3N2

1Þ · ð108H4
1 · N

6
1 þ 6x ·H2

1 · N
2
1ð1þ 3N2

1Þ þ x2 · ð−1þ 6N2
1ÞÞ

18H2
1 · N

6
1 · ð6H2

1 · N
2
1 þ xÞ2 > 0; ð66dÞ

c2S ¼
1

3
−

12H2
1 · N

4
1

x · ð1 − 3N2
1Þ

þ 72H4
1 · N

6
1 − 4x ·H2

1 · N
2
1

108H4
1 · N

6
1 þ 6x ·H2

1 · N
2
1 · ð1þ 3N2

1Þ þ x2 · ð−1þ 6N2
1Þ

≤ 1: ð66eÞ

These can also be satisfied without much of fine-tuning.
As an example, the allowed range of x and H1 is shown in
Fig. 11 for rather arbitrarily chosen μ ¼ 0.8, δ ¼ 0.1, and
N1 ¼ 0.74. Plots for other values of N1 are similar,
provided that N1 ≲ 1. The fact that x is negative and jxj
is small for small H1 (inflationary expansion rate much
lower than the Planck scale) is clear from, e.g., Eq. (66b).

To see that the contracting genesis stage can
consistently pass through bounce to inflationary expansion,
we now give an explicit numerical example. As we alluded
to above, we choose μ ¼ 0.8, δ ¼ 0.1. The parameter
relevant to the contracting genesis stage is chosen as
c ¼ 1.7545 × 10−2. By trial and error we find convenient
values for other Lagrangian parameters at early times,

FIG. 11. Space of parameters x and H1 characteristic of
inflation in Sec. IV B. Parameters x and H1 in the gray region
satisfy constraints (66). Other parameters are μ ¼ 0.8, δ ¼ 0.1,
and N1 ¼ 0.74.
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consistent with the system of constraints (59)–(62)
and (66):

x¼−2.097×10−4; y0¼−2.481×10−2; z0¼0.905:

ð67Þ

The value of the Hubble coefficient χ at the contraction
stage is found from (57), χ ¼ 0.25. Next, we turn to the
function fðtÞ which should interpolate between f ¼ −ct at
contraction and f ¼ 1 at inflation. To ensure stability and
subluminality at all times, we choose this function in
somewhat more complicated form than in (45):

fðtÞ ¼ c
2

�
−tþ lnð2 coshðstÞÞ

s

�
þ 0.89 ·UfðtÞ þ 1;

where

UfðtÞ ¼ ln

�
e4·s·ðt−600Þ þ e

e4·s·ðt−600Þ þ e2

�

interpolates between −1 and 0. The parameter s is the same
as in (46), s ¼ 2 × 10−3.
We now define the parameters of the inflationary stage

and describe transition to it through bounce. We choose the
(time-independent) Hubble parameter and lapse function at
inflation as follows:

H1 ¼ 3.71 × 10−3; N1 ¼ 0.74:

This set of parameters is consistent with the stability and
subluminality constraints (66). Then Eq. (65) with x given
by (67) leads to

y1 ¼ −4.01 × 10−4; z1 ¼ 0.445: ð68Þ

The transition from contraction to inflation is described by
yðtÞ and zðtÞ smoothly interpolating between y0, z0 and y1,
z1. By trial and error, we find appropriate functions

yðtÞ ¼ y0ð1 −UyðtÞÞ þ y1UyðtÞ; ð69aÞ

zðtÞ ¼ z0ð1 −UzðtÞÞ þ z1UzðtÞ; ð69bÞ

where the functions

UyðtÞ ¼ 1þ ln

�
e3.8·s·ðtþ150Þ þ e

e3.8·s·ðtþ150Þ þ e2

�
;

UzðtÞ ¼ ln

�
e−5.8·s·ðt−605Þ þ e2

e−5.8·s·ðt−605Þ þ e

�

interpolate between 0 and 1. A nontrivial requirement
leading to (69) is again stability and subluminality of
perturbations at all times.

We show the behavior of the Hubble parameter and lapse
function at contraction, bounce, and beginning of inflation
in Fig. 12. The scalar coefficient F S and scalar sound speed
cS are shown in Fig. 13: the stability and subluminality are
explicit (although not obvious in the upper panel of Fig. 13,
the coefficient F S is, in fact, strictly positive at all times).
We end up this Section by the following remark. As we

pointed out above, gravity at the inflationary epoch is not
yet described by GR, since z1 ≠ 0 and, therefore A4 ≠ −B4,
see Eqs. (53c) and (53d). To ensure that inflation at its last
stage proceeds within GR, one chooses zðtÞ which, at
the intermediate inflationary stage, smoothly evolves from
z ¼ z1 to z ¼ 0. The function yðtÞ should also be nontrivial,
as it should interpolate between the negative value y1 [see
(68)] and some positive value y2. The latter property
follows from the expression for F S, which for z ¼ 0 has
the following form:

F S ¼
3y2

4H2 · N3
2 − 3y2

> 0;

where N2 > 0 and H2 > 0 are lapse function and Hubble
parameter at GR inflation. It is straightforward to design
appropriate functions zðtÞ and yðtÞ without spoiling the
stability and subluminality properties. An example is

FIG. 12. Hubble parameter (upper panel) and lapse function
(bottom panel) for the model of Sec. IV C: contracting genesis
and bounce.
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zðtÞ ¼ z1 · ð1 −Uz1ðt − t��ÞÞ;
yðtÞ ¼ y1 · ð1 −Uy1ðt − t��ÞÞ þ y2 ·Uy1ðt − t��Þ;

where y2 ¼ 2 × 10−4, t�� ¼ 1.8 × 104 and

Uz1ðtÞ ¼ ln

�
e−5.8·s·ðt−500Þ þ e2

e−5.8·s·ðt−500Þ þ e

�
;

Uy1ðtÞ ¼ 1þ ln

�
e3.8·s·t þ e
e3.8·s·t þ e2

�
:

The transition from late GR inflation to kination proceeds
in the same way as in Sec. III B.

C. Genesis without strong coupling

As we pointed out in the Introduction, the genesis
model of Ref. [24] suffers from the strong coupling
problem at early times. For completeness, we present here
a version of this model which is free of the strong coupling
problem. The Lagrangian is the same as in [24] but with
different parameters. Namely, the Lagrangian functions
are defined by Ansatz (52) with x ¼ const, y ¼ const, and
z ¼ 0, i.e.,

A2 ¼
1

2
f−2μ−2−δa2ðNÞ; ð70aÞ

A3 ¼
1

2
f−2μ−1−δa3ðNÞ; ð70bÞ

A4 ¼ −B4 ¼ −
1

2
f−2μ; ð70cÞ

where μ > 0, δ > 0 and

a2ðNÞ ¼ x ·

�
1

N2
−

1

3N4

�
;

a3ðNÞ ¼ y
N3

:

As before, we choose the asymptotic behavior f ¼ −ct
(c > 0) as t → −∞, and using equation of motion (54)
obtain the genesis behavior

H ¼ ξ

ð−tÞ1þδ ; N ¼ 1; t → −∞; ð71Þ

where ξ is given by

ξ ¼ 3ð2μþ δþ 1Þ · c · y − 2x
12ð2μþ δþ 1Þ · cδþ2

:

The asymptotics of the scalar coefficients and scalar sound
speed squared are

F S ¼ −ð−c · tÞ−2μþδ ·
6c2 · ð2μ − δ − 1Þ · ð2μþ δþ 1Þ

xþ 3c · y · ð2μþ δþ 1Þ ;

GS ¼ −ð−c · tÞ−2μþδ ·
18 · c2 · x · ð2μþ δþ 1Þ2
ðxþ 3c · y · ð2μþ δþ 1ÞÞ2 ;

c2S ¼
ð2μ − δ − 1Þðxþ 3c · y · ð2μþ δþ 1ÞÞ

3x · ð2μþ δþ 1Þ :

Parameters of this model should obey several constraints.
The first one comes from the requirement of evading the
no-go argument of Ref. [24]:

2μ > 1þ δ: ð72Þ

The second constraint ensures that the classical treatment of
early time evolution is legitimate [47]:

μþ 3

2
δ < 1: ð73Þ

The third one is the requirement that the Universe expands
at early times:

ξ > 0: ð74Þ

FIG. 13. The coefficient F S (upper panel) and the sound speed
for the scalar perturbations cS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F S=GS

p
(bottom panel) for the

model of Sec. IV B.
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Finally, one requires the background stability and sub-
luminal propagation of perturbations. For y > 0 (as needed
for linearly stable inflation, see below), all these constraints
are satisfied, provided that x < 0 and

x < −3c · yð2μþ δþ 1Þ: ð75Þ

The transition from the genesis stage to inflation is
achieved simply by flattening out the function fðtÞ to
f ¼ 1. For f ¼ 1, equations of motion (54) read

x

�
1

N4
−

1

N2

�
−
9y ·H
N3

þ 6H2 ¼ 0; ð76aÞ

x

�
1

N2
−

1

3N4

�
þ 6H2 ¼ 0; ð76bÞ

and we denote the (time-independent) solution to these
equations by H ¼ H1 and N ¼ N1. We require H1 > 0,
N1 > 0. The requirements of background stability and
subluminal propagation of perturbations, Eqs. (55), read
in this case

F S ¼
3y

4H1 · N3
1 − 3y

> 0; ð77aÞ

GS¼
8N2

1 ·x · ðN2
1−2Þþ72H1 ·N3

1 ·yþ27y2

ð4H1 ·N3
1−3yÞ2 > 0; ð77bÞ

c2S ¼
3y · ð4H1 ·N3

1−3yÞ
8N2

1 ·x · ðN2
1−2Þþ72H1 ·N3

1 ·yþ27y2
≤ 1: ð77cÞ

As before, it is convenient to treat H1 and N1 as
independent parameters and express x and y through these
parameters using (76):

x ¼ 18H2
1 · N

4
1

1 − 3N2
1

; ð78aÞ

y ¼ 4H1 · N3
1 · ð3N2

1 − 2Þ
ð9N2

1 − 3Þ : ð78bÞ

Then the constraints (75) and (77) reduce to

N1 >

ffiffiffi
6

p

3
; ð79aÞ

H1 >
2c · ð2μþ δþ 1Þ · ð3N2

1 − 2Þ
9N1

: ð79bÞ

In accordance with (78), these constraints translate into
constraints on x and y. It is straightforward to see that the
latter are satisfied, provided that y > 0 and x obeys (75).

Now, let us turn to our numerical example. We choose

μ ¼ 0.65; δ ¼ 0.2:

This choice is consistent with the constraints (72) and (73).
We choose

fðtÞ ¼ c
2

�
−tþ lnð2 coshðstÞÞ

s

�
þ 1;

c ¼ 10−4; s ¼ 2 × 10−5:

We obtain the values of x and y by considering the
inflationary stage. We choose H1 and N1 at inflation as
follows:

H1 ¼ 3.3 × 10−3; N1 ¼ 1.02:

This set of parameters is consistent with constraints (79).
Then Eq. (78) leads to

x ¼ −10−4; y ¼ 2.5 × 10−3;

which is consistent with (75). We show the evolution of the
Hubble parameter, lapse function, scalar coefficient F S,
and scalar sound speed in Figs. 14 and 15. In the tensor

FIG. 14. Hubble parameter (upper panel) and lapse function
(bottom panel) for the model of Sec. IV C: genesis without strong
coupling.
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sector we have F T ¼ GT ¼ f−2μ > 0, cT ¼ 1. Thus, our
background solution is fully stable and free of the strong
coupling problem at early times; perturbations about it are
not superluminal. We conclude that our model gives an
example of linearly stable genesis with strong gravity in
the past.

V. CONCLUSION

This paper demonstrates that it is relatively straightfor-
ward to construct, within the Horndeski class of scalar-
tensor theories, nonsingular cosmological models which
are free of instabilities and superluminal propagation of
linearized perturbations. The price to pay is strong gravity
in the past, the property that effective Planck masses tend to
zero as t → −∞. We have made sure, however, that the
latter property does not spoil the description of the back-
ground within classical field theory. In this way we have
constructed bouncing models, genesis cosmology, and a
combination thereof. These may or may not pass through
the inflationary stage, as we explicitly demonstrated in
Sec. III.
In our constructions, we heavily exploited the functional

freedom that exists in the Horndeski class of theories. On
the one hand, this freedom is instrumental for designing
models with prescribed properties (in other words, for

employing the “inverse method” [21]); on the other, it
makes the whole approach not so appealing. It is certainly
desirable to have a better idea of which Horndeski theories,
if any, have a chance to be realistic as low energy effective
theories.
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APPENDIX A: ABSENCE OF STRONG
COUPLING AT EARLY TIMES

The purpose of this Appendix is to study the issue of
strong coupling at early times in the model with the
Lagrangian (5) and (19) and contracting background
solution (23) and (24). As we outlined in Sec. I, we are
going to compare the energy scale of classical evolution
Eclass ∼ jtj−1 with quantum strong coupling scale Estrong

inferred from the analysis of the nonlinear terms in the
Lagrangian for perturbations about this background. We
begin with the action written in terms of metric variables,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L ¼

Z
dtd3xNa3ð1þ αÞe3ζL;

with the Lagrangian (5) (recall that N denotes the back-
ground lapse function). Different terms in the Lagrangian
(5) contain different powers of the scale factor, which in the
contracting Universe nontrivially depends on time,
aðtÞ ∝ ð−tÞ−χ . It is therefore convenient to work with
physical momenta and frequencies. Assuming that they
are higher than Eclass, i.e., assuming that Estrong ≫ Eclass,
we can neglect slow dependence of the scale factor on t and
at a given time treat a as an (instantaneously) time-
independent parameter (with the exception of expressions
that involve the Hubble parameter explicitly). Of course,
this assumption must be justified a posteriori: the whole
analysis is valid if the classical treatment of the background
is legitimate, Estrong ≫ Eclass. Having this in mind, we
introduce physical spatial and temporal coordinates

x̃≡ xa;

t̃≡ tN ¼ t:

Note that N ¼ 1 in our case, but we keep the notation t̃ for
concordance with spatial coordinates. Then the derivatives
are, respectively,

∂̃i ≡ 1

a
∂i; ðA1aÞ

FIG. 15. The coefficient F S (upper panel) and scalar sound
speed cS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F S=GS

p
(bottom panel) for the model of Sec. IV C.
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∂̃t ≡ 1

N
∂t ¼ ∂t: ðA1bÞ

We now rewrite our Lagrangian (5) in terms of physical
coordinates. We define

Eij ¼ KijNð1þ αÞ; ðA2Þ

and find

Ei
j ¼ γikEkj ¼ γik

�
1

2
ð_γkj − ð3Þ∇kNj − ð3Þ∇jNkÞ

�

¼ 1

2
½γik _γkj − 2γik∂j∂kβ þ 2Γk

lj∂kβγ
il

þ 2Γk
ljN

T
k γ

il − γik∂kNT
j − γik∂jNT

k �

¼ 1

2
½γik _γkj − 2e−hike−2ζ∂̃j∂̃kβ þ 2Γ̃k

lj∂̃kβe−hile−2ζ

þ 2Γ̃k
ljÑ

T
k e

−hile−2ζ − e−hike−2ζ∂̃kÑT
j − e−hik ∂̃jÑT

k �;
ðA3Þ

where ehij ≡ ðehÞij,

γik _γkj ¼
1

a2
e−hike−2ζ

∂
∂t ða

2e2ζehkjÞ

¼ 2Hδij þ e−hike−2ζ
∂
∂ t̃ ðe

2ζehkjÞ; ðA4Þ

the new (physical) transverse shift vector is given by

ÑT
k ≡ NT

k

a
;

and Γ̃l
ij (and

ð3ÞR̃ below) are made of metric γ̃ij ¼ ehije2ζ.

We rewrite ð3ÞR in the same way:

ð3ÞR ¼ γijð3ÞRij ¼ γij½∂lΓl
ij − ∂iΓl

lj þ Γl
ijΓm

ml − Γm
ilΓl

jm�
¼ e−hije−2ζ½∂̃lΓ̃l

ij − ∂̃iΓ̃l
lj þ Γ̃l

ijΓ̃m
ml − Γ̃m

il Γ̃l
jm� ¼ ð3ÞR̃:

ðA5Þ

Finally, we have
ffiffiffiffiffiffi−gp

d4x ¼ ð1þ αÞe3ζdt̃d3x̃. Thus, the
action written in terms of physical variables does not
contain the scale factor anymore, but otherwise the
Lagrangian has the same structure as the original one (5),
except for the first term in the right-hand side of (A4).
The action for perturbations, written in terms of physical

variables x̃i, t̃, is identically the same as the limiting case of
the action that we encountered in Ref. [47], where we
studied the strong coupling issue in the model with genesis
described in Sec. IV C. Namely, the model with genesis has
an additional parameter δ > 0 in (70), while the bouncing
model we discuss does not. By direct inspection we find
that the action for perturbations in the bouncing model,

written in terms of physical variables, is obtained from the
action for perturbations in the genesis model by sending
δ → 0 [this includes also the first term in the right-hand side
of (A4)]. Thus, the sufficient condition for the absence of
the strong coupling problem is obtained from the result of
Ref. [47] in the limit δ → 0 and reads

μ < 1:

This result is quoted in Sec. III.
Let us illustrate this constraint by considering the

quadratic and cubic action for tensor modes. The complete
expression is [63]

Sð2Þ
hh þ Sð3Þ

hhh ¼
Z

dt̃d3x̃F Tð∂̃hijÞ2

þ
Z

dt̃d3x̃
F T

4

�
hikhjl −

1

2
hijhkl

�
∂̃k∂̃lhij:

We recall that F T ∝ ð−t̃Þ−2μ, see (28a). To figure out the
associated strong coupling scale, we introduce the canoni-
cally normalized field (omitting indices)

hc ¼ F 1=2
T h ∝ ð−t̃Þ−μh;

and find that the interaction term is (modulo numerical
factor) Z

dt̃d3x̃F−1=2
T hchc∂̃2hc:

Thus, on dimensional grounds, the strong coupling scale is

Estrong ∝ F 1=2
T ∝ ð−t̃Þ−μ.

This scale is much higher than the classical scale Eclass ¼
t̃−1 for μ < 1, as promised.

APPENDIX B: CONTRACTING GENESIS:
SUBTLETY OF NUMERICAL SOLUTION

As we pointed out in Sec. IV B, corrections to the
leading asymptotics of classical solutions at early times
behave as ð−tÞ−δ. This makes straightforward numerical
treatment problematic for small δ. Here we sketch our way
of dealing with this problem. We consider for definiteness
the model of Sec. IV B with δ ¼ 0.1.
We study the time interval −∞ < t < t1, where t1 is

negative and jt1j is large enough, so that it is a very good
approximation to use the asymptotics

yðtÞ ¼ y0; zðtÞ ¼ z0; fðtÞ ¼ −ct ðB1Þ

(recall that these asymptotics are approached exponentially
fast backwards in time). We introduce a new variable u
instead of t:
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u≡ ð−ctÞ−δ > 0; ðB2Þ

early-time asymptotics occur as u → 0. Then corrections to
the leading asymptotics of classical solutions are of order u.
The key point is to introduce, instead ofH, a new unknown
function kðuÞ as follows:

kðuÞ≡ u−1=δ−1 ·HðuÞ · NðuÞ:

Then coefficient u2=δ factors out in equations of motion
(54), and coefficients in these equations become linear
polynomials in u. This form of equations of motion enables
one to solve them in a straightforward way.
The initial condition in distant past is set by expanding

NðuÞ and kðuÞ in u at small u. The first nontrivial terms in
this expansion are straightforward to calculate. One writes,
in notations (58),

NðuÞ ¼ 1þ N1 · cδ · uþ…;

and

kðuÞ ¼ −χ · c1þδ − ðχ · N1 þ χ1Þ · c1þ2δ · uþ…:

For our choice of parameters x, y0, and z0 in (67), and
μ ¼ 0.8, δ ¼ 0.1, and c ¼ 1.75 × 10−2, the coefficients are

χ · c1þδ ¼ 0.0029;

ðχ · N1 þ χ1Þ · c1þ2δ ¼ 0.0043;

N1 · cδ ¼ 1.09:

Thus, corrections are small for small enough u ¼ u0, where
initial conditions are imposed. In practice we choose
u0 ¼ 10−7, which corresponds to t0 ¼ −6 × 1071. This huge
number is the reason why we have invented our procedure.
We solve the equations of motion written in terms of u

until u becomes roughly of order 1; in practice we choose
u1 ¼ ð−ct1Þ−δ ¼ 0.67, so that t1 ¼ 3000. At that time
Eq. (B1) is still a good approximation. Then we continue
solving equations of motion using time t, with obvious
matching at t ¼ t1.
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