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We elaborate on the correspondence between the canonical partition function in asymptotically AdS
universes and the no-boundary proposal for positive vacuum energy. For the case of a pure cosmological
constant, the analytic continuation of the AdS partition function is seen to define the no-boundary wave
function (in dS) uniquely in the simplest minisuperspace model. A consideration of the AdS gravitational
path integral implies that on the dS side, saddle points with Hawking-Moss/Coleman-De Luccia-type
tunneling geometries are irrelevant. This implies that simple topology changing geometries do not
contribute to the nucleation of the universe. The analytic AdS/dS equivalence holds up once tensor
fluctuations are added. It also works, at the level of the saddle point approximation, when a scalar field with
a mass term is included, though in the latter case, it is the mass that must be analytically continued. Our
results illustrate the emergence of time from space by means of a Stokes phenomenon, in the case of
positive vacuum energy. Furthermore, we arrive at a new characterization of the no-boundary condition,
namely that there should be no momentum flux at the nucleation of the universe.
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I. INTRODUCTION

The close connections between gravitational path integrals
with Anti-de Sitter (AdS) and with de Sitter (dS) asymptotics
have been studied for some time, see, e.g., [1–5]. Usually
these connections have been explored at the level of saddle
point geometries, i.e., at the level of solutions of the classical
equations of motion. Progress was made recently in [6],
where the correspondence could be extended very explicitly
to the full path integral, albeit with metrics restricted by
symmetry assumptions (i.e., in minisuperspace). Crucial for
the successful implementation of the path integral was the
imposition of a regularity condition in the bulk, required
such that the asymptotically AdS geometries cap off
smoothly. This regularity condition took the form of a
condition on the momentum of the scale factor of the
universe, i.e., the path integral needed to be defined with
a Neumann condition on one end, and a Dirichlet condition
at the “outer” boundary, where the metric was held fixed. It is
important that this choice of boundary conditions was not
arbitrary, but was required to match established thermody-
namic properties of black holes in AdS, such as the
Hawking-Page phase transition [7]. Interestingly, the

required momentum condition turns out to be identical to
that used in recent path integral implementations of the no-
boundary proposal1 [11,12] (in those works, the momentum
condition was imposed in order to eliminate saddle points
with unstable perturbations), thus demonstrating a direct
correspondence between path integrals with AdS asymp-
totics and the no-boundary proposal in dS.
The aim of the present paper is two-fold: first to take a

closer look at the implications of the above-described
correspondence for simple cosmologies, and second to extend
the correspondence to tensor perturbations and scalar fields.
Regarding the first point, one can use the analytic

properties of the exact AdS wave function in order to
define the no-boundary wave function uniquely (at least in
the simple setting studied here). Moreover, the analytic
continuation indicates that there is no contribution to the
no-boundary wave function from simple geometries with a
different topology. In particular, there is no contribution to
the nucleation of the universe from Hawking-Moss or
Coleman-De Luccia instantons [13,14]. Furthermore, time
is seen to arise from space via a Stokes phenomenon, where
the path integral is initially dominated by a single saddle
point which, after joining with an irrelevant saddle, splits
into two complex relevant saddles. This is the basic
difference between AdS path integrals, where no Stokes
phenomenon occurs, and dS path integrals, where the
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1The original descriptions of the no-boundary proposal can be
found in [8–10].
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Stokes phenomenon allows asymptotically Lorentzian
geometries to become relevant, and thus allows one space
direction to morph into a time direction.
The extension to perturbations and scalar fields can only

be described at the level of the saddle point approximation,
but there it is seen to hold. We recover the well-known
result that for tensor perturbations the Bunch-Davies
ground state is implied. We illustrate, however, the rather
striking differences with standard inflationary calculations.
In particular, on the saddle points (as represented in the
minisuperspace path integral, i.e., with a constant, complex,
lapse function) the perturbations do not oscillate when
the universe is smaller than the dS radius, and they are
massively suppressed at early “times” when the wave
number is high. This demonstrates how the no-boundary
proposal manages to significantly smooth out fluctuations.
When the universe is small, cosmological fluctuations
behave such as those in AdS, and not such as those in
the flat slicing of de Sitter space, as commonly described
for classical inflationary models. This may have implica-
tions for considerations of trans-Planckian issues. The
AdS/dS equivalence continues to work when deformed
to include a scalar field with a mass term, though in this
case one must analytically continue the mass. Here also the
dominant geometries remain Euclidean for negative poten-
tials, and become complex (asymptotically Lorentzian) for
positive potentials. Thus a Stokes phenomenon is again
responsible for the emergence of time from space.
A note on conventions: we set 8πG ¼ 1, and use

Lorentzian metrics with mostly plus signature. In inter-
mediate calculations, ℏ is set to unity, but restored at the
end. We work in 4 dimensions.

II. PURE COSMOLOGICAL CONSTANT

The theory we consider at first is that of gravity with a
cosmological constant Λ, with action

S¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðR− 2ΛÞ þ
Z

d3y
ffiffiffi
g

p
Kjouter boundary; ð1Þ

where K is the trace of the extrinsic curvature on the outer
boundary; this term will be discussed in more detail below.
Wewill be interested in both positive and negative values of
Λ—in fact, we will consider an analytic continuation in Λ,
so that it will be useful to think ofΛ as a complex parameter
in general. With the metric [15]

ds2 ¼ −
N2

q
dt2 þ qdΩ2

3; ð2Þ

where N is the lapse function, qðtÞ the square of the scale
factor and dΩ2

3 the metric on a unit 3-sphere of volume 2π2,
this simple minisuperspace model is described by the
Lagrangian

L ¼ 2π2
�
−

3

4N
_q2 þ 3N − NΛq

�
; ð3Þ

where a dot denotes a derivative with respect to t. The
canonical momentum p corresponding to q is given by

p ¼ ∂L
∂ _q ¼ −

3π2

N
_q: ð4Þ

Consequently the Hamiltonian takes the simple form

H ¼ _qp − L ¼ −
N
6π2

½p2 þ 12π4ð3 − ΛqÞ� ¼ NĤ: ð5Þ

The Wheeler-DeWitt equation then corresponds to the
operator version of the classical constraint,

ĤΨ ¼ 0; ð6Þ

where Ψ is the wave function of the universe.
The canonical commutation relation ½q; p� ¼ i can

be implemented in different ways. In the position/field
representation, we may represent the momentum operator
by the substitution p ↦ p̂ ¼ −i ∂

∂q, leading to the Wheeler-
DeWitt equation

ĤðqÞΨ ¼ 0 →
∂2Ψ
∂q2 þ 12π4ðΛq − 3ÞΨ ¼ 0: ð7Þ

Alternatively, the commutator may be realized by the
substitution q ↦ q̂ ¼ i ∂

∂p, leading to the Wheeler-DeWitt
(WdW) equation in momentum space

ĤðpÞΨ ¼ 0 → ðp2 þ 36π4ÞΨþ 12π4Λi
∂Ψ
∂p ¼ 0; ð8Þ

where the only subtlety is that in addition we had to flip the
sign ∂

∂p → − ∂
∂p since we are considering this equation at the

“initial” boundary, as we will discuss presently.
In 4 dimensions, gravitational path integrals always

interpolate between two 3-dimensional hypersurfaces, on
which boundary conditions must be imposed. Moreover,
gravitational path integrals satisfy the WdW equation by
construction on these two hypersurfaces [16]. It is now
crucial to recall the results of [6]: in the case of negative Λ,
we are interested in calculating the canonical partition
function with the 3-sphere kept fixed at a large radius (in
fact, for AdS=CFT this radius is eventually sent to infinity),
and with a sum over regular geometries in the interior. Thus
at the large radius q1 we would like to impose a Dirichlet
condition on the scale factor, and the field space WdW
equation (7) should be satisfied. This explains the inclusion
of the York-Gibbons-Hawking boundary term in the action
in Eq. (1). On the other boundary, however, a regularity
condition must be imposed, which corresponds to the
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imposition of a momentum constraint p ¼ p0. (Momentum
conditions have been repeatedly considered in quantum
cosmology, see for instance [15,17,18]. The finding of [6]
was that one had to use a momentum condition in the
interior in order to reproduce known results about black
hole thermodynamics in asymptotically AdS spacetimes.)
Thus on the “inner” hypersurface the WdW equation in
momentum space (8) should be satisfied. The specific value
that the momentum constraint should take is easy to find:
it corresponds to the requirement that the Hamiltonian
constraint be satisfied as the geometry caps off at q ¼ 0.
From Eq. (5) we see that when q ¼ 0, we must demand
p2
0þ36π4¼0→p0¼�6π2i. As we will show in Sec. III,

only the choice of sign

p0 ¼ −6π2i ð9Þ

leads to stable perturbations around the most symmetric
solution. Note that this implies that on the inner boundary,
the wave function satisfies

∂
∂pΨjinner ¼ 0; ð10Þ

i.e., we arrive at the interesting notion that there is no
momentum flux at the creation of the universe.2

The considerations above imply that the wave function
will factorize

Ψðp0; q1Þ ¼ ΨðpÞðp0ÞΨðqÞðq1Þ; ð11Þ

with ΨðpÞ, ΨðqÞ satisfying the WdWequation in momentum
and position space respectively. Now Eq. (8) implies that

ΨðpÞðp0Þ ¼ cpe
3
ℏΛip0þ 1

36π4ℏΛ
ip3

0 ; ΨðpÞð−6π2iÞ ¼ cpe
12π2

ℏΛ ;

ð12Þ

where we have reinstated ℏ and where cp is a normalization
constant, which plays no role in what follows and which we
will therefore drop. Thus the “nucleation” part of the WdW
equation is essentially uniquely fixed.
At the large boundary where q ¼ q1, the WdW equa-

tion (7) takes the form of an Airy equation. Its general
solution is given by

ΨðqÞðq1Þ ¼ c1Ai

��
18π2

−ℏΛ

�
2=3

�
1 −

Λ
3
q1

��

þ c2Bi

��
18π2

−ℏΛ

�
2=3

�
1 −

Λ
3
q1

��
: ð13Þ

Here c1, c2 are two a priori complex integration constants,
though once again we do not care about the overall
normalization. Note that for Λ < 0, the arguments of the
Airy functions are real (and positive), and thus the values of
the Airy functions are also real. As discussed in [6], a
comparison to the expected CFT result implies that, first of
all, the wave function must be real (thus we need
c1; c2 ∈ R) and second, that one expects a volume diver-
gence at large q1, which will be compensated by counter
terms. Given the asymptotic expressions AiðxÞ ∼ e−

2
3
x3=2 ,

BiðxÞ ∼ eþ2
3
x3=2 , it is clear that the expected result is the Bi

function, suggesting that we set c1 ¼ 0. We will argue
below that this is the correct result, however at this stage it
is premature to reach this conclusion, as the Ai function
automatically vanishes in the large q1 limit, and thus we
cannot exclude its presence in the wave function. This is
important in the present context, as we want to look at the
analytic properties of the wave function. Moreover, for the
Airy functions it is known that small contributions in some
parameter ranges can become large (and even dominant) in
other parameter ranges, as a reflection of the well known
Stokes phenomenon.
We can make progress by reviewing the path integral

representation of the wave function. This calculation was
performed in detail in [6,12] (building on [20]) and thus
we will not repeat all the steps. In brief: since the
Lagrangian (3) is quadratic in the scale factor squared q,
we may perform the path integral over q by shifting
variables to qðtÞ ¼ q̄ðtÞ þQðtÞ, where q̄ is a solution of
the equation of motion q̈ ¼ 2

3
ΛN2 satisfying the boundary

conditions, explicitly

q̄ðtÞ ¼ Λ
3
N2ðt2 − 1Þ − p0

3π2
Nðt − 1Þ þ q1

¼ Λ
3
N2ðt2 − 1Þ þ 2Niðt − 1Þ þ q1: ð14Þ

The shifted variable QðtÞ is an arbitrary perturbation
satisfying _Qðt¼0Þ¼0¼Qðt¼1Þ. Here we have defined
the coordinate t such that the inner boundary is at t ¼ 0,
while the outer boundary is at t ¼ 1. (Note that the total
time/distance between t ¼ 0 and t ¼ 1 will be determined
by the value of the lapse N.) By construction, the path
integral overQ now reduces to a standard Gaussian integral
with mixed Neumann-Dirichlet conditions, which just
contributes a numerical factor to the wave function (see
the Appendix of [6]). We are then left with an ordinary
integral over the lapse function,

Ψðp0; q1Þ ¼
Z

dNeiðS0Þ=ℏ; ð15Þ
1

2π2
S0ðNÞ ¼ Λ2

9
N3 −

p0Λ
6π2

N2 þ
�
−q1Λþ 3þ p2

0

12π4

�
N

þ p0

2π2
q1 ð16Þ

2This should be contrasted with Vilenkin’s tunneling prescrip-
tion, according to which the wave function should only contain
outgoing modes on the boundaries of superspace [19].
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¼ Λ2

9
N3 þ iΛN2 − Λq1N − 3q1i; ð17Þ

which, as one may readily verify, satisfies the WdW
equation.3 The saddle points of this integral are located at

N� ¼ 3

Λ

�
−i ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
q1 − 1

r �
; ð18Þ

S0ðN�Þ ¼
12π2

Λ

�
−i�

�
Λ
3
q1 − 1

�
3=2

�
; ð19Þ

where we have also included a calculation of the saddle
point action.
The steepest descent contours emanating from the saddle

points, as well as the asymptotic regions of convergence,
are shown in Fig. 1 for the case where Λ < 0. There are
three asymptotic regions of convergence, indicated by the
green shaded areas. Thus a priori there are three possible
convergent contours of integration, denoted in the figure
by C0;1;2. A comparison to the asymptotic behavior of the
solutions indicates that the integral along C0 yields the Ai
function, while an integration along C2 − C1 yields the Bi

function (with an overall factor of −i). Thus the Ai part
in (13) stems from the saddle point Nþ, while the Bi part
comes from N−. The corresponding geometries are shown
in Fig. 2. At the saddle points, the scale factor is given by

q̄ðtÞjN� ¼
�
q1 −

6

Λ
� 6

Λ
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
q1 − 1

r �
t2

þ 6

Λ

�
1 ∓ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
q1 − 1

r �
t: ð20Þ

When Λ < 0, the scale factor is purely real. In that case the
saddle points are imaginary, resulting in purely Euclidean
geometries. Note that even though we imposed a momen-
tum condition at t ¼ 0, the scale factor always vanishes
at t ¼ 0. Thus the saddle point geometries are capping
off smoothly, as intended. For N−, the scale factor only
vanishes at t ¼ 0 and then grows monotonically to the final
value q̄ð1Þ ¼ q1. For Nþ, there is a coordinate value
0 < t� < 1 at which the scale factor vanishes a second
time. As we will show in Sec. III, perturbations blow up
near this second zero. This indicates that the saddle point
Nþ is in fact singular, and must be excluded from the sum
over histories. This then confirms that the correct result is
obtained by summing over the combination of contours
C2 − C1, yielding a partition function that is purely propor-
tional to the Bi function.
After this brief recap, we are in a position to analytically

continue the wave function to positive values of the

FIG. 1. Flow lines for the case of Euclidean saddle points,
either for AdS (all q1) or for dS (small universes in the quantum
regime, q1 <

3
Λ), in the complexified plane of the lapse N. Green

regions are regions of asymptotic convergence, at angles
0 < θ < π

3
, 2π

3
< θ < π and 4π

3
< θ < 5π

3
. When Λ < 0, the upper

saddle point is Nþ, while for Λ > 0 the upper saddle point is N−,
and vice versa for the lower saddle point. The saddle point
geometries are shown in Figs. 2 and 4.

FIG. 2. Geometry of Euclidean saddle points, for AdS (all q1).
When the outer boundary has zero size, q1 ¼ 0, the saddle points
are closest together, and in that case N− ¼ 0 is associated with a
vanishing geometry. As the outer boundary is increased, the
saddle points move apart, but remain on the Euclidean axis.

3E.g., to check Eq. (8), one may use the relation p2
0 þ 36π4−

12π4S0;p0
¼ 6π2S0;N , and then use the fact that the integration

contours over N contain no end points.
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cosmological constant. For this purpose, the following
connection formula is most useful,

Bi

��
18π2

−ℏΛ

�
2=3

�
1 −

Λ
3
q1

��

¼ e
π
6
iAi

�
e
2π
3
i

�
18π2

−ℏΛ

�
2=3

�
1 −

Λ
3
q1

��

þ e−
π
6
iAi

�
e−

2π
3
i

�
18π2

−ℏΛ

�
2=3

�
1 −

Λ
3
q1

��
ð21Þ

¼
ffiffiffi
3

p
Ai

��
18π2

ℏΛ

�
2=3

�
1 −

Λ
3
q1

��
: ð22Þ

Thus, for Λ > 0, the wave function is once again real, but
now it is better thought of as given by the Ai function,
rather than the Bi function. Its full expression, up to
normalization, is given by

Ψðp0; q1Þ ¼ e
3
ℏΛip0þ 1

36π4ℏΛ
ip3

0Ai

��
18π2

ℏΛ

�
2=3

�
1 −

Λ
3
q1

��
:

ð23Þ

It is worth emphasizing that the wave function is thus
uniquely defined. A graphical representation is provided in
Fig. 3, where one may immediately see its main character-
istics: it rises exponentially from q1 ¼ 0 (though note that
Ψðq1 ¼ 0Þ ≠ 0) up to about q1 ¼ 3

Λ, and for larger values of
q1 it oscillates with increasing frequency and slightly
diminishing amplitude.
It is again illustrative to see what the implications of the

exact solution are for the path integral representation. When
the final radius of the universe is small, q1 <

3
Λ, the saddle

points are at imaginary values of the lapse, and the
geometries are Euclidean. This is very much like the
situation for Λ < 0, cf. Fig. 1. However, compared to
the AdS case, the contour of integration now must be
different, so as to yield the Ai function. More precisely,
the contour of integration for the lapse integral must be the
contour denoted C0 in that figure. Note that this is implied by
the analytic continuation. This means that, in contrast to the
AdS case, it is now the upper saddle point that is relevant to
the path integral, and not the lower one. The geometry at the
saddle points is shown graphically in Fig. 4. At small q1,
the geometries are Euclidean and consist of portions of
the 4-sphere, with N− containing less than an hemisphere,
and Nþ containing more than one hemisphere. At the

a1
1 2 3 4

5 1033

5 1033

1 1034

FIG. 3. For a universe with spatial 3-spheres, the no-boundary
wave function is given by an Airy Ai function. Here the wave
function Ψ is plotted as a function of the final scale factor
a1 ¼ ffiffiffiffiffi

q1
p

. The cosmological constant is set to Λ ¼ 1, implying
that the Stokes phenomenon occurs at a1 ¼ 1. For a1 < 1, the
wave function is approximately exponential (and nonzero at the
origin), while for a1 > 1 it is oscillatory.

FIG. 4. Geometry of saddle points, for dS. For q1 ≤ 3
Λ the saddle point geometries are Euclidean and correspond to portions of the

4-sphere, while for q1 >
3
Λ they are complex, with increasingly Lorentzian (dS) asymptotics.

WAVE FUNCTION OF SIMPLE UNIVERSES ANALYTICALLY … PHYS. REV. D 104, 063527 (2021)

063527-5



nucleation of the universe, i.e., for q1 ¼ 0, the relevant
saddle point N− corresponds to a vanishing geometry,
while the irrelevant saddle at Nþ corresponds to a full
sphere.
As the universe grows, in contrast to the AdS case, the

saddle points now approach each other and coalesce when
q1 ¼ 3

Λ. The steepest descent lines for the resulting degen-
erate saddle (sometimes called a monkey saddle) are shown
in Fig. 5. The geometry at the saddle point is that of exactly
one hemisphere. Up to this radius, the wave function
behaves approximately exponentially,

Ψðp0; q1Þ ≈ e
3
ℏΛip0þ 1

36π4ℏΛ
ip3

0e−
12π2

ℏΛ ð1−Λ
3
q1Þ3=2 ¼ e

12π2

ℏΛ ½1−ð1−Λ
3
q1Þ3=2�;

q1 ≤
3

Λ
: ð24Þ

Note that the weighting increases until q1 ¼ 3
Λ is reached.

As the universe grows further, q1 >
3
Λ, the degenerate

saddle separates into two saddles which are both
relevant to the path integral, see Fig. 6. The contour of
integration for the lapse function remains C0 ¼ −C2 − C1.
The saddle points are now located at complex values of
the lapse, with a real part that increases in magnitude as
the universe grows. The two saddle point geometries are
of no-boundary type, meaning that they start at qð0Þ ¼ 0
and have an asymptotic region near t ¼ 1 that is ever
closer to Lorentzian dS spacetime as q1 grows. The
geometries are complex conjugates of each other. The
transition from one relevant saddle to two relevant
saddles is known as a Stokes phenomenon. It has
important implications for the physical meaning of the
wave function. In particular, the wave function changes
from exponential to oscillatory in this regime, with its
approximate expression given by

Ψðp0; q1Þ ≈
1

2i
e
12π2

ℏΛ

h
ei

12π2

ℏΛ ðΛ
3
q1−1Þ3=2þiπ

4 − e−i
12π2

ℏΛ ðΛ
3
q1−1Þ3=2−iπ4

i
;

q1 >
3

Λ
ð25Þ

¼ e
12π2

ℏΛ sin

�
12π2

ℏΛ

�
Λ
3
q1 − 1

�
3=2

þ π

4

�
;

q1 >
3

Λ
: ð26Þ

The fact that the wave function oscillates ever faster with
increasing q1 while its weighting remains constant
implies that the wave function becomes classical in the
WKB sense. Therefore, successive path integrals with
increasing real boundary values q1 describe real
Lorentzian dS universes (even though the saddle points
of each individual path integral have a complex geom-
etry), as long as q1 >

3
Λ.

We should highlight that time only appears after a Stokes
phenomenon has occurred. This is a direct consequence of
the definition of the path integral: it is defined with a
Euclidean momentum condition at the nucleation of the
universe. Thus the universe necessarily starts off Euclidean,
and there is no time yet. In order for time to start existing,
the wave function must become oscillatory. Thus the
relevant saddle point(s) has/have to become complex.
But since the wave function is by definition real (as implied
by the analytic continuation from AdS), the wave function
can only be oscillatory if it is composed of two complex
conjugate saddles. Thus we may identify a link between the
emergence of time from space, and a Stokes phenomenon
in the path integral defining the wave function of the
universe. From this point of view it is then inevitable that

FIG. 5. Flow lines for the case where the saddle points
degenerate, i.e., Λ > 0 with q1 ¼ 3

Λ. This graph represents the
crossover between Figs. 1 and 6.

FIG. 6. Flow lines for the case of complex saddle points with
Lorentzian asymptotics, i.e., for large universes with q1 >

3
Λ,

with Λ > 0.
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for any quasiclassical geometry contributing to the wave
function, its complex conjugate (and thus time reversed)
geometry will also contribute.
A further remark is in order: the irrelevant saddle point

Nþ, for q1 ¼ 0, has scale factor given by q̄ ¼ 12
Λ ðt − t2Þ

and corresponds to a full 4-sphere. If we had added a
scalar field, then the natural boundary condition would
have been a Dirichlet boundary condition for the scalar.
At a maximum of the scalar potential one would then have
obtained the Hawking-Moss instanton [13], with constant
scalar field. At other (sufficiently flat) locations on
the potential the geometry would have been a slightly
deformed 4-sphere with almost constant scalar and, for
potentials with an appropriate barrier, the instantons
would have included those of Coleman-De Luccia type
[14], with the scalar interpolating across the barrier.4 The
point is now that all these instantons do not contribute to
the nucleation of the universe, according to the no-
boundary wave function (as defined via analytic con-
tinuation from AdS path integrals). This is perhaps
surprising: as we saw above, the no-boundary wave
function does not vanish when the size of the universe
is set to zero, i.e., Ψðq1 ¼ 0Þ ≠ 0. This property was
already noticed by Hartle and Hawking, who attributed
this fact to contributions from nontrivial topologies [9].
The reason for this interpretation is that topology change
occurs precisely at zero scale factor (in an appropriate
slicing). Hence a diagnostic for the contribution of
nontrivial topologies would be a nonvanishing wave
function at zero scale factor. The simplest nontrivial
topologies are of 4-sphere form (and at larger scale
factors, one can think of a 4-sphere being glued onto
the bottom of the geometry with trivial topology), i.e., of
HM or CdL type. Here we see that such geometries
however do not contribute, casting doubt on the original
interpretation of Hartle and Hawking. To reinforce this
point, note that the action of the 4-sphere would give a
contribution proportional to e24π

2=ðℏΛÞ, cf. Eq. (19). This
would vastly dominate over the contribution from the
vanishing geometry, and similar considerations also
apply when 0 < q1 <

3
Λ. Thus, if they were not eliminated

outright, the simplest nontrivial topologies would domi-
nate the wave function. Maybe a better interpretation
stems from considering the definition of the path integral
as a sum over all regular geometries: the uncertainty
principle implies that since we have fixed the initial
momentum, the sum over histories must include a sum
over universes with all possible initial sizes. Thus, even

when the universe is tiny, it may still receive some small
contributions from geometries of vastly different sizes.
This point seems worthy of further exploration in the
future.

III. ADDING TENSOR PERTURBATIONS

In order to assess the cosmological implications of the
wave function of the universe, one must add fluctuations.
This is doubly important, as fluctuations provide a link to
the early universe via the CMB, but on a purely theoretical
level also, it has been realized over the last few years that a
quantization of background plus fluctuations may yield
nontrivial results: in particular, certain backgrounds may
lead to unsuppressed fluctuations [21]—this is how it was
discovered that a definition of a no-boundary path integral
with purely Dirichlet boundary conditions is not ten-
able [22]. The first calculations of no-boundary fluctuations
already date back to the 1980s [23], hence we do not need
to repeat all results. Rather, we will illustrate no-boundary
fluctuations from the perspective of the minisuperspace
path integral discussed in the previous section, which will
reveal a few hitherto little discussed aspects of these
fluctuations, and relate them to fluctuations in AdS spaces.
Our analysis will proceed at the level of the saddle point

approximation to the path integral, neglecting the back-
reaction of the perturbations on the background. At the
saddle points, the geometries are given by

q̄�ðtÞ ¼
Λ
3
N2

�t
2 þ 2N�it: ð27Þ

Tensor perturbations then obey the equation of motion [22]

ḧþ 2
_q
q
_hþ N2

�
q2

kðkþ 2Þh ¼ 0; ð28Þ

where hðtÞ denotes a Fourier component of a fluctuation
mode expanded into spherical harmonics with wave num-

ber k. Solutions with hðt ¼ 1Þ ¼ h1 are given by hðtÞ ¼
h1

FðtÞ
Fð1Þ with the time/space dependence encoded in [22]

FðtÞ ¼
�
1 −

i
Λ
3
N�tþ i

�k
2

�
1þ i

Λ
3
N�tþ i

�
−ðkþ2Þ

2

×

�
1þ iðkþ 1Þ

Λ
3
N�tþ i

�
ð29Þ

¼ ðΛ
3
N�tÞk2½Λ3 N�tþ ðkþ 2Þi�

ðΛ
3
N�tþ 2iÞkþ2

2

: ð30Þ

Here we have picked the solution for which Fð0Þ ¼ 0,
ensuring regularity at t ¼ 0. A second solution exists, but
this solution diverges at t ¼ 0, and is thus unphysical.

4Our momentum condition (9) implies that these instantons
would in fact be the complex conjugates of the usual HM and
CdL instantons considered in tunneling phenomena. Their
geometries would be identical.
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At the saddle point N−, the tensor perturbations are well
behaved. They give the action [22]

SðkÞh ¼ 1

2

Z
dtN

�
q2
�
_h
N

�2

− kðkþ 2Þh2
�

ð31Þ

¼h21
2

�
−kðkþ2Þ

ffiffiffiffiffiffiffi
3q1
Λ

r
þi

3kðkþ1Þðkþ2Þ
2Λ

þO
�

1ffiffiffiffiffi
q1

p
��

:

ð32Þ

For Λ > 0, they yield a suppressed Gaussian distribution

ΨðkÞ ∝ e−
3kðkþ1Þðkþ2Þ

4ℏΛ h2
1 and correspond to the Bunch-Davies

vacuum in the closed slicing of de Sitter space, see Fig. 7
for a graphical representation. Had we chosen the
opposite momentum condition in Eq. (9), we would have
ended up with an inverse Gaussian distribution, and
consequently an ill-defined model [22]. For Λ < 0, the
wave function is pure imaginary, and the divergence at
large volume would have to be canceled by a counterterm,
as usual [3].
At the saddle point Nþ, there is always a value 0<t�≤1

at which qþðt�Þ ¼ 0. At that location, the tensor perturba-
tions blow up, i.e., FðtÞ → ∞ as t → t�. A numerical
example is shown in Fig. 8 for Λ < 0. This confirms that
the saddle points Nþ are not physical, and should not be
included in path integral. This restricts the possible con-
tours of integration for the lapse function, and lead to the
selection of the Bi solution only in (13).
It is useful to also present the expression for the

perturbations in physical coordinates, with the metric
ds2 ¼ −dt2p þ a2dΩ2

3. The relation between the t coordi-
nate and tp is given by

sinh

� ffiffiffiffi
Λ
3

r
tp

�
¼ Λ

3
Ntþ i; ð33Þ

so that the solution for the perturbations (29) becomes

FðtpÞ ¼

0
B@1 −

i

sinh
� ffiffiffi

Λ
3

q
tp
�
1
CA

k
2

0
B@1þ i

sinh
� ffiffiffi

Λ
3

q
tp
�
1
CA

−ðkþ2Þ
2

×

0
B@1þ iðkþ 1Þ

sinh
� ffiffiffi

Λ
3

q
tp
�
1
CA ð34Þ

¼

0
B@1 −

1

sin
� ffiffiffiffiffi

−Λ
3

q
tp
�
1
CA

k
2

0
B@1þ 1

sin
� ffiffiffiffiffi

−Λ
3

q
tp
�
1
CA

−ðkþ2Þ
2

×

0
B@1þ ðkþ 1Þ

sin
� ffiffiffiffiffi

−Λ
3

q
tp
�
1
CA; ð35Þ

where the top line is more convenient for dS and the bottom
expression more convenient for AdS. These expressions are
the closed slicing analogues of the much more familiar
expressions for perturbations in the flat slicing.5 The inner

boundary (t ¼ 0) is located at tp ¼ i
ffiffiffi
3
Λ

q
π
2
¼

ffiffiffiffiffi
3
−Λ

q
π
2
, and

the perturbations vanish there, as required for regularity.
One can see that for Λ < 0, the range of tp will be over

real values, while for Λ > 0 we must allow tp to take on
complex values. The range 0 ≤ t ≤ 1 is then translated into
a path in the complex tp plane. This has significant
implications for the shape of the perturbations. Figure 9
shows the same perturbation mode, namely a mode with
wave number k ¼ 20, on different representations/slicings
of (complexified) de Sitter spacetime, each time as a
function of the coordinate tp. The time evolution is shown
up to the point of horizon crossing, where the mode freezes.
The left panel shows the evolution of a tensor perturbation,
normalized such that at the end it equals unity, in the flat
slicing. This is familiar from standard inflationary calcu-
lations. In the past the perturbation oscillates rapidly. The
central panel shows the same perturbation, but now on a
closed slicing of dS, where the time evolution starts at the
waist (minimum radius) of the dS hyperboloid. The
perturbation oscillates equally rapidly as in the flat slicing,
but the amplitude is somewhat reduced near the minimum
size of dS. The right panel shows the same perturbation
mode, but now along the complex path in the tp plane
implied by Eq. (33), for the relevant saddle point N−. The
difference is striking: the oscillations are far fewer in
number, the overall amplitude is significantly reduced,

t

Re[F(t)]
Im[F(t)]

0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.5

1.0

FIG. 7. Normalized tensor perturbations at the relevant no-
boundary saddle point, with Λ ¼ 1, q1 ¼ 1201 and for wave
number k ¼ 100.

5That is to say that for dS they are the analogue of the standard
solution FðηÞ ¼ eikηð1 − ikηÞ, expressed here in terms of con-

formal time η ¼ −1=ðHaÞ ¼ −
ffiffiffi
3
Λ

q
e−

ffiffi
Λ
3

p
tp . See [3] for a discus-

sion of the relation between dS and AdS perturbations in the flat
slicing.
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and at early times the amplitude is very significantly
damped. We can understand this from an inspection of
Eq. (30), which shows that for small t, the perturbations are
suppressed as tk=2. No-boundary geometries are often
represented by a Euclidean half-sphere glued onto half
of a Lorentzian dS hyperboloid.6 Had we used such a
representation, we would not have seen the smoothing
effect on the perturbations: going back in time, we would
have seen the evolution such as that in the center panel of
Fig. 9 first, and then in the Euclidean part the perturbations
would have shrunk to zero. Here we have used the
complexified dS representation given to us by the minis-
uperspace path integral, and this exhibits the full smoothing
effect of the no-boundary condition. This provides a
slightly new take on the much-discussed trans-Planckian
issue of perturbations [25,26]: we see that high wave
number modes are very strongly suppressed when the

universe is small, as F ∝ tk=2. Moreover they do not
oscillate at all until the universe has grown to larger than
q1 ≈ 3

Λ. Hence one might question whether there is any
operational meaning to testing such perturbations in the
near- or trans-Planckian regime. Certainly, the quantum-to-
classical transition of both background and perturbations
deserves further study in this context.

IV. SCALAR FIELD

The previous sections have shown that one may analyti-
cally continue thewave functionof the universe fromnegative
to positive cosmological constant, and that this correspon-
dence can be extended to gravitational perturbations of the
geometries. This raises the question as to how general such a
correspondence might be. As a first step in trying to answer
that question,wewill consider the case of gravity coupled to a
scalar field, i.e., we will consider the action

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − ð∂ϕÞ2 − 2VðϕÞ�: ð36Þ

tp

Re/Im[Fflat (tp )]

1 2 3 4 5 6

20

10

10

20

tp

Re/Im[Fclosed (tp )]

1 2 3 4 5 6

20

10

10

20

tp

Re[F(tp )]

Im[F(tp )]
1 2 3 4 5 6

20

10

0

10

20

FIG. 9. Tensor perturbations hðtpÞ ¼ h1FðtpÞ for dS geometries, for k ¼ 20. The left panel shows the perturbations for the flat slicing
most often employed in inflationary calculations. The center panel shows the perturbations in real physical time for the closed slicing of
dS spacetime, and the right panel at the no-boundary saddle point N−, but rescaled to “physical” time tp. The function F is normalized
such that F ¼ 1 at final times. Real parts are shown in blue, and imaginary parts in orange. Here we used Λ ¼ 1, q1 ¼ 1201.

t

F(t)/F(1)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

t

F(t)/F(1)

0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

FIG. 8. Tensor perturbations hðtÞ ¼ h1
FðtÞ
Fð1Þ for AdS saddle point geometries, for k ¼ 5. The left panel shows the perturbation at the

regular saddle point N−. Note that in the case of a negative Λ < 0, the perturbations grow from zero to their final size without any
oscillations. The right panel shows the perturbation at the saddle point Nþ, where the scale factor passes through zero (vertical thin grey
line), and where consequently the perturbation blows up.

6That this representation cannot be the appropriate one is
already indicated by studies of no-boundary saddle points with
large anisotropies [24].
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We will use a potential of the form of a mass term,
VðϕÞ ¼ 1

2
m2ϕ2 ¼ − 1

2
μ2ϕ2, where we will allow the poten-

tial to be either positive or negative/tachyonic. It is not known
how to solve the path integral analytically in such a model,
even in minisuperspace, hence wewill proceed at the level of
the saddle point approximation of the path integral.
We will first analyze the case of a negative potential, i.e.,

we will assume μ to be real. Since we can only work at the
level of the saddle point approximation, there is no reason
to rescale the time coordinate as in (2), but it will prove
useful to use Euclidean time τ ¼ itphysical. Thus our ansatz
for the background evolution is

ds2 ¼ dτ2 þ aðτÞ2dΩ2
3; ϕ ¼ ϕðτÞ: ð37Þ

The equations of motion and the constraint are given by

ϕ;ττ þ 3
a;τ
a
ϕ;τ þ μ2ϕ ¼ 0; ð38Þ

3a;ττ þ aϕ2
;τ −

1

2
aμ2ϕ2 ¼ 0; ð39Þ

3a2;τ −
1

2
a2ϕ2

;τ − 3 −
1

2
a2μ2ϕ2 ¼ 0: ð40Þ

We would like to find a solution that is regular as the
geometry caps off, i.e., that is regular at a ¼ 0 (where we
will choose the origin of the time coordinate such that
aðτ ¼ 0Þ ¼ 0). The constraint shows that this requires
a;τðτ ¼ 0Þ ¼ �1, and the requirement that fluctuations
be stable fixes the choice of sign to a;τðτ ¼ 0Þ ¼ þ1. A
Taylor expansion of the equations of motion then shows
that one should also specify ϕ;τðτ ¼ 0Þ ¼ 0, while the value
of ϕ itself remains free; wewill denote it by ϕðτ ¼ 0Þ ¼ ϕ0.
An approximate solution near the origin is then given by

ϕ ≈ ϕ0; a ≈
sinhð μffiffi

6
p ϕ0τÞ
μffiffi
6

p ϕ0

: ð41Þ

At larger scale factor, the scalar field will necessarily
evolve. For sufficiently small “time” spans, we obtain
the approximate solution

ϕ ≈ ϕ0 −
ffiffiffi
2

3

r
μτ; a ¼ 1

2μϕ0

e
μffiffi
6

p ϕ0τ−1
6
μ2τ2 ; ð42Þ

where we fixed the normalization of the scale factor by
matching to the approximate solution near the origin.
One may also use the approximate solution (42) to find
a relation between the final values a1, ϕ1 and the initial
value ϕ0,

a1 ≈
1

2μϕ0

e
1
4
ðϕ2

0
−ϕ2

1
Þ: ð43Þ

This relation shows that for any specified values a1, ϕ1 on
the “outer” boundary, a suitable real initial value ϕ0 may be
found. Moreover, the entire solution is real valued, imply-
ing that the saddle point is purely Euclidean when the
potential is negative.
The action of the saddle point solutions may straight-

forwardly be estimated. For this, we can evaluate the on-
shell action, obtained by inserting the constraint into the
action,

Son−shell ¼ −2π2i
Z

dτ½6aþ a3μ2ϕ2�: ð44Þ

It is clear that the main contribution will come from the a3

term at late times, when the universe is large. Using (42),

we immediately find Slargeon−shell ≈ −2π2i
ffiffi
2
3

q
μϕ1a31. But when

a is small, there is an additional contribution, which only
becomes important after analytic continuation, but which
we must include precisely for this reason. It is obtained by
using the small a solution (41), and reads Ssmall

on−shell ≈
−24π2i=ðμ2ϕ2

0Þ. At the relevant saddle point, the partition
function may thus be usefully approximated by

Ψða1;ϕ1;ϕ0Þ ≈ e
i
ℏSon−shell ≈ e

12π2

ℏVðϕ0Þþ
2π2

ℏ

ffiffi
2
3

p
μϕ1a31 : ð45Þ

In the limit where one would send the outer boundary
to infinity, the divergence of the partition function with a31
is seen to be the usual volume divergence encountered
in AdS=CFT. It could be canceled by a counterterm
Sct ¼ −i ffiffiffi

g
p

ϕ∂τϕjboundary, see e.g., [27].
We can now simply analytically continue μ to −iμ ¼ m

so as to find the corresponding results for the case of a
positive potential. This analysis was originally done by
Lyons [28], and we refer to his paper for further details.
What is of prime interest to us here is the manner in which
the results for a negative potential are modified by the
analytic continuation. At small radii, the solution remains
approximately Euclidean and is readily found,

ϕ ≈ ϕ0; a ≈
sinð mffiffi

6
p ϕ0τÞ
mffiffi
6

p ϕ0

: ð46Þ

A more interesting change occurs at large radii where the
solutions, which were real, now become complex; namely,
we get the approximate solution

ϕ ≈ ϕ0 − i

ffiffiffi
2

3

r
mτ; a ¼ 1

2imϕ0

ei
mffiffi
6

p ϕ0τþ1
6
m2τ2 : ð47Þ

We also need to consider complex values of ϕ0, with the
proviso that Reðϕ0Þ ≫ Imðϕ0Þ. More precisely, Eq. (43)
implies that if we consider Imðϕ0Þ ¼ π=Reðϕ0Þ, then there
exists a line in the complexified τ plane where the solution
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becomes increasingly Lorentzian in the limit of large a1.
After analytic continuation, the action becomes complex,
and the wave function is given by

Ψða1;ϕ1;ϕ0Þ ≈ e
i
ℏSon−shell ≈ e

12π2

ℏVðϕ0Þþi2π
2

ℏ

ffiffi
2
3

p
mϕ1a31 : ð48Þ

The volume part of the action becomes real, implying that it
will contribute a mere phase factor to the wave function,
and no divergence any more. In fact this phase factor is
welcome, as it ensures that the wave function becomes
classical in a WKB sense, at large a1. The imaginary part
of the action provides different weightings for different ϕ0.
Here we reproduce the well-known result that the no-
boundary wave function seems to prefer small values of the
potential [29,30], at least when one uses the naive inter-
pretation that the probability is (approximately) given
by jΨj2. It might be worth pointing out that a rigorous
justification of this probability interpretation remains
lacking, however.
We conclude that the equivalence between wave func-

tions for negative and positive potentials, via analytic
continuation, continues to hold for simple scalar field
models. It is interesting that terms that one would eliminate
on the AdS side via counterterms actually end up playing
an important role once the potential is continued to positive
values, as they are related to the classicality of the universe.
We have only been able to check the correspondence at the
level of the saddle point approximation. But it is clear that
the properties of the path integral are quite similar to the
case of pure gravity: once the universe grows to be large
enough, for positive potentials the saddle points become
complex, and thus the saddle points again appear in
complex conjugate pairs. Thus a similar Stokes phenome-
non as that described for a cosmological constant arises in
this case also, and it is related to the emergence of time. It
will be of interest to extend the current analysis to a scalar
field model that can be solved exactly in minisuperspace,
and where we are not limited to small excursions of the
scalar field. Such a model will be presented in upcoming
work [31].

V. DISCUSSION

Gravitational path integrals naturally describe transitions
between two separate 3-dimensional hypersurfaces. But
there are situations of interest, such as in the context of the
AdS=CFT correspondence or in cosmology, where we only
want to keep the metric fixed on one hypersurface. In both
situations the natural boundary condition that one would
like to impose at the other “end” of the 4-geometry is that it
should round off smoothly. This is a regularity condition
that turns out to be independent of the vacuum energy (or
matter content) of the universe—for the simplest boundary
topology, it is the condition that the 4-geometry is locally
that of a 4-sphere. As we found in Eq. (10), this condition

also says that there is no momentum flux at the nucleation
of the universe or, equivalently, that the zero size condition
on the universe is imposed not in field space, but in
momentum space. Thus we arrive at a succinct characteri-
zation of the no-boundary condition,

i
∂
∂pΨ ¼ q̂Ψ ¼ 0 no-boundary condition; ð49Þ

which shouldbe satisfied in addition to theWdWequation (8).
The absence of momentum flowing in or out of the universe
at nucleation fits well with the no-boundary philosophy that
the universe should be entirely self-contained. As a side
comment, let us remark that this condition allows for a
specification of the no-boundarywave function directly at the
level of theWdWequation, which is in principle independent
of a path integral implementation.
The no-boundary condition (49) effectively removes the

boundary at one end of the path integral. Not only is the
condition independent of any matter content, but at
the level of the action it also requires no surface term in
order to allow for a consistent variational problem. Path
integrals defined in this way are essentially holographic by
construction, as the only data that one is free to vary resides
on the outer boundary. From this point of view, it becomes
clear that the canonical partition function with asymptoti-
cally AdS boundary should be equivalent to the no-
boundary wave function with asymptotically dS boundary
conditions, after analytic continuation of the vacuum
energy. We have verified this hypothesis for the case where
tensor perturbations to the geometry are included, and also
when gravity is coupled to a scalar field with a positive or a
tachyonic mass term.
It is noteworthy that when we specify the metric on one

hypersurface, we have no say about the geometry in the
interior spacetime. This is determined by the relevant
saddle points of the path integral. In particular, we have
no say even over such basic properties as to whether the
resulting spacetime will be Euclidean or Lorentzian. In fact,
we find that with the negative potential energies that we
considered here, the saddle points always turn out to be
Euclidean, i.e., we obtain 4-geometries that contain no time
direction and thus no notion of causality. But when the
potential is analytically continued to positive values, a
Stokes phenomenon occurs in which, as the universe
grows, the Euclidean saddle point splits into two complex
conjugate saddles, each of which describes a geometry
that at large radii becomes increasingly Lorentzian (with
opposite time directions in both saddle point geometries).
This is the mathematical description of how a space
direction changes into a time direction.
A corollary of the present analysis is that simple top-

ology-changing geometries, such as a 4-sphere glued onto a
no-boundary geometry, do not contribute to the gravita-
tional path integral. Thus Hawking-Moss or Coleman-De
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Luccia instantons may play a role in the description of
tunneling events in a preexisting universe, but they do
not seem to contribute to the creation of the universe
from nothing.
It may also be useful to contrast the present approach

with the closely related, but distinct, holographic approach
of Hertog and Hartle [5] (for which perturbations were
studied in [32]). In that approach, the cosmological con-
stant Λ is kept fixed. However, it was noted that in the
analytic continuation of the (dS) saddle point geometry, a
region exists which has a geometry that is asymptotically
Euclidean AdS spacetime (even though Λ > 0), provided
the final scale factor is large. Thus a region of the saddle
point geometry effectively behaves as if Λ had changed
sign, and in this region one may apply the standard
Euclidean AdS=CFT correspondence. In our notation,
the total “time” elapsed from the nucleation of the universe
until the final hypersurface is given by

T ¼
Z

1

0

NðtÞffiffiffiffiffiffiffiffi
qðtÞp dt: ð50Þ

Whereas in the present approach NðtÞ is taken to be
constant, Hertog and Hartle split up NðtÞ into three seg-
ments, such that one starts at the usual South Pole of the
instanton and that the final time T is reached, but in such
a way that the intermediate segment corresponds to the
Euclidean AdS geometry. The advantage of this approach is
that one may make use of well-established results related
to the AdS=CFT conjecture and furthermore one obtains
an interesting interpretation of the counter terms. What has
not been demonstrated yet is whether in the path integral
one may consistently split the lapse function into distinct
pieces; conditions for gauge fixing the lapse function were
analyzed in [33], and the simplest way to implement these
is to takeN constant. This point thus deserves further study.
By contrast, in the approach of the present paper, the
cosmological constant itself is analytically continued. What
one finds is that this leads to consistent results, with AdS
and dS path integrals satisfying identical (no-)boundary
conditions and being related by simple analytic continu-
ation. What remains unclear is to what extent a dual theory
still exists after analytic continuation from negative Λ. We
make no claims as to the existence of such a theory when Λ

is positive. Elucidating this question will require, among
others, an understanding of AdS=CFT not just when the
AdS boundary is sent off to infinity, but also at finite radius.
In fact, understanding the latter issue will impact both of the
approaches that have just been described.
There are a number of obvious additional questions

for future investigation. The main conceptual question is
perhaps the question of what the general requirements
are for a Stokes phenomenon to occur, i.e., what are the
circumstances necessary for the effective geometry to
contain a time direction, rather than just space? Does this
impose a restriction on the properties of our universe?
Also, why should the canonical partition function in AdS,
describing a sum over states at a fixed temperature, be at all
related to the wave function of the universe?What would be
the analogue concept of temperature in the latter case?
Also, given the results found here, one may ask under
what circumstances the correspondence between negative
and positive potential energies continues to hold, or breaks
down. This may be investigated in many different direc-
tions, but to give just three examples: it will be of interest
to see what happens in scalar field models where the full
minisuperspace version can be solved analytically, and
where the scalar field is not restricted to small changes
only (this is work in progress [31]). Furthermore, for steep
negative potentials complex no-boundary instantons with
late-time ekpyrotic evolution also exist [34,35]. It is not
clear how these are related to corresponding solutions with
positive potentials, and this may be another fruitful future
research direction. Finally, in [6] an important ingredient in
determining the appropriate boundary conditions for gravi-
tational integrals with AdS asymptotics was a consideration
of black holes. It would clearly be of interest to include
black holes in further verifying the correspondence
between AdS and dS path integrals, also with regard to
the possibility of creating primordial black holes [36].
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