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“Axion-CMB scenario” is an interesting possibility to explain the temperature anisotropy of the cosmic
microwave background (CMB) by primordial fluctuations of the QCD axion [S. Iso, K. Kawana, and K.
Shimada, Phys. Rev. D 102, 103513 (2020)]. In this scenario, fluctuations of radiations are generated by an
energy exchange between axions and radiations, which results in the correlation between the primordial
axion fluctuations and the CMB anisotropies. Consequently, the cosmological observations stringently
constrain a model of the axion and the early history of the universe. In particular, we need a large energy
fraction ΩA of the axion at the QCD phase transition, but it must become tiny at the present universe to
suppress the isocurvature power spectrum. One of natural cosmological scenarios to realize such a situation
is the thermal inflation which can sufficiently dilute the axion abundance. Thermal inflation occurs in
various models. In this paper, we focus on a classically conformal (CC) B − Lmodel with a QCD axion. In
this model, the early universe undergoes a long supercooling era of the B − L and electroweak symmetries,
and thermal inflation naturally occurs. Thus it can be a good candidate for the axion-CMB scenario. But the
axion abundance at the QCD transition is shown to be insufficient in the original CC B − L model. To
overcome the situation, we extend the model by introducing N scalar fields S (either massive or massless)
and consider a novel cosmological history such that the OðNÞ and the B − L sectors evolve almost
separately in the early universe. We find that all the necessary conditions for the axion-CMB scenario can
be satisfied in some parameter regions for massless S fields, typically N ∼ 1019 and the mass of B − L
gauge boson around 5–10 TeV.
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I. INTRODUCTION

Anisotropy of the cosmic microwave background
(CMB) is one of the most fascinating subject in the particle
cosmology since it is generated at an early stage of the
history of the Universe and possibly related to the physics
beyond the Standard Model (BSM). The current observa-
tional data such as Planck 2018 [1–3] tells us that the
temperature fluctuation is almost scale invariant and
adiabatic, which favors inflation models by a single scalar
field. But it is is not the unique scenario for explaining the
CMB anisotropy. A well-known example is the curvaton
scenario [4–14] where the origin of fluctuations comes

from an additional scalar field called curvaton. In this
scenario, the primordial fluctuation of curvaton is con-
verted to that of radiation through decay of curvatons. An
interesting aspect of the curvaton model is a prediction of
sizable non-Gaussianities.
Axion-CMB scenario is similar to the curvaton scenario

where CMB anisotropy is induced by the primordial
perturbations of the QCD axion [15]. In this scenario,
Peccei-Quinn symmetry [16–24] is assumed to be already
broken before the primordial inflation, and the axion field
acquires primordial fluctuations during the inflation. As
the universe cools down to the QCD scale TQCD, the axion
potential is generated by transferring non-zero energy
from radiation. Then the primordial axion fluctuations
are converted to the density fluctuation of the radiation.
For a successful realization of the scenario, three conditions
must be satisfied: (1) A large amount of energy density
of axions at T ¼ TQCD is necessary to suppress non-
Gaussianity. (2) Axions must be largely diluted until
present in order to satisfy the isocurvature constraint.
(3) In addition, it must explain the observed CMB
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amplitude. These three conditions require something like
thermal inflation [25–28] after the QCD temperature [15].
Indeed, under a couple of reasonable assumptions, we
found that they can be satisfied as long as the thermal
inflation lasts long enough after the QCD phase transition.
The purpose of this paper is to present a concrete particle

physics model that can realize such a thermal inflation.
In this paper, we will consider the classically conformal
B − L model [29–32] with a QCD axion and its extension
withOðNÞ scalar fields S. Originally, the B − Lmodel with
classical conformality was proposed to explain the eletro-
weak (EW) scale by Coleman-Weinberg (CW) mechanism
[29–31,33,34]. Besides, it was pointed out that this model
predicts a long supercooling era of the B − L and EW
symmetries due to the classical conformality of the scalar
potential [32]. The supercooling lasts below TQCD and the
energy density of radiation becomes smaller than the
vacuum energy of the false vacuum. Thus thermal inflation
occurs even after the QCD phase transition and axions can
be sufficiently diluted after the QCD phase transition. But
there is one technical difficulty to obtain a large value of the
axion abundance at T ¼ TQCD. It is because the Higgs
vacuum expectation value (vev), hhijTQCD

∼ ΛQCD, which is
responsible for the nonzero axion potential, is generated by
quark condensates hq̄qi and becomes of order 100 MeV. As
we will see, it is too small for the necessary value of the
axion abundance. In order to overcome this difficulty, we
need an additional mechanism to raise hhijTQCD

to at least
100 GeV.
For this purpose, we introduce OðNÞ scalar fields S

coupled to the Higgs field with a very weak negative
coupling, and consider a novel history of the early universe:
we suppose that the OðNÞ sector has evolved almost
separately from our universe, with a much higher temper-
ature T̃ than that of our universe. Then the negative
coupling will generate sizable negative thermal corrections
to the Higgs quadratic potential [35–42], and hhijTQCD

can
become as large as 100 GeV. In the paper, we will consider
two extremal cases, very massive S with mS ≫ mZ0 or
massless S. We show that various observational constraints,
especially sufficient dilution of axions and S particles,
can be simultaneously satisfied in the massless case for
N ≳ 1019, but not in the massive case. One might think that
such a large number of degrees of freedom (dof) would be
inconsistent with various phenomenological aspects such
as collider observables. This is actually problematic as long
as we focus on moderate values of the portal coupling λSH.
However, as discussed in Refs. [36,38], it is possible to
make a model consistent by taking λ̃SH ≔ NλSH as a free
parameter and choosing moderate values of λ̃SH. Roughly
speaking, collider observables are determined by the
combination Nλ2SH and this is suppressed by 1=N when
we fix λ̃SH. See Refs. [36,38] for more detailed discussion.

The organization of the paper is as follows. In Sec. II, we
first summarize the setup and a typical set of parameters of
our model. In Sec. III, we review the axion-CMB scenario
[15] and explain what conditions are necessary for the
scenario to be observationally viable. In Sec. IV, we focus
on a specific particle physics model of the axion-CMB
scenario, a classically conformal (CC) B − L model since
the model predicts thermal inflation below TQCD. We first
see that the original CC B − L model has a problem as a
candidate for the axion-CMB scenario. We then propose an
extended model to overcome this difficulty by introducing
an additionalOðNÞ scalar field S, and investigate the model
for either large mS ≫ mZ0 or mS ¼ 0. Our analysis shows
that the massless case can satisfy all the necessary con-
ditions for the model to be phenomenologically viable.

II. SCHEMATIC PICTURE

Before going into details, we summarize the setup of our
particle physics model and its cosmological history of the
early universe. We then provide an example set of param-
eters of the model that can realize a phenomenologically
viable axion-CMB scenario. Our particle physics model
consists of, besides standard model (SM) particles,

(i) axion field A
(ii) B − L Uð1Þ gauge field Z0 with gauge coupling

gB−L, right-handed neutrinos to cancel Uð1ÞB−L
gauge anomaly, and SM singlet scalar ϕ with
Uð1ÞB−L charge.

(iii) OðNÞ scalars S with very weak scalar mixings of
λSH ¼ −jλSHj and λSϕ.

Our basic assumption of the model is classical conformal-
ity: there are no quadratic terms in the scalar potential
so that the EW phase transition has experienced a long
supercooling era and is triggered by QCD chiral symmetry
breaking (χSB).OðNÞ scalars are introduced to enhance the
vev of Higgs field by the inverse symmetry breaking (ISB)
mechanism [35] owing to the negative scalar mixing λSH. A
typical set of parameters that can satisfy various observa-
tional constraints is given, for example, by

gB−L ∼ 0.1; mZ0 ∼ 10 TeV; N ∼ 1019; jλSHjN ∼ 1:

Though N is huge, it is phenomenologically allowed due to
the very weak mixing with the SM. This model exhibits a
peculiar thermal history of the early universe;

(i) The universe has experienced a long supercooling
era and the EW phase transition is triggered by
QCD χSB.

(ii) Thermal inflation occurs when the temperature of
the OðNÞ sector T̃ is around mZ0=N1=4. After the
thermal inflation ends, the universe is reheated and
then the ordinary big bang universe begins.

(iii) T̃ has evolved separately from the SM and B − L
sector due to the very weak mixings.
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In Fig. 1, we plot evolutions of temperatures of the two
separate sectors. The green (blue) lines represent temper-
atures of the SM (and B − L) sector T, and OðNÞ sector T̃,
respectively. Before thermal inflation, OðNÞ sector has
higher temperature than the SM sector so that thermal
effect of T̃ with a negative coupling gives the Higgs field a
large nonvanishing vev. In the figure, we also plot the vev
of Higgs hhi, which is enhanced to 100 GeV when the
curvature perturbation ζr is produced via the transfer from
the axion field fluctuation. After thermal inflation, noOðNÞ
sector particles are produced and T̃ ∼ 0. In the big bang
universe after thermal inflation, the EW phase transition
takes place again in the standard manner with the Higgs
negative mass term due to the vev of the singlet ϕ. The
thermal inflation dilutes the axions and suppresses the
isocurvature fluctuations at the present universe. Sufficient
amount of CMB fluctuations can be produced due to the
enhancement of Higgs vev hhi by the ISB mechanism,
since larger vev gives a larger axion potential.

III. AXION-CMB SCENARIO

In this section, we summarize the axion-CMB scenario
[15]. It is similar to the curvaton scenario, but the transfer
mechanisms of the fluctuations from the curvaton (or
axion) to radiation are different. Curvatons decay into
radiation to generate the CMB anisotropy while axions are
assumed to be stable until present. In the axion-CMB
scenario, the fluctuations of radiation are induced when the
axion potential is generated at the QCD phase transition.
Such scenario is discussed in Ref. [43] but it is shown to
be inconsistent with observations as far as the standard
cosmology is concerned. The reason is the following. For
the scenario to be observationally viable, the model must
satisfy the following three conditions:
(1) production of sufficient amplitudes of the CMB

anisotoropy
(2) consistency with the axion isocurvature constraint

(3) consistency with the non-Gaussianity constraint.
The conditions, 1 and 3, require that a sufficiently large
energy fraction ΩA of the axion is present at the QCD scale
when the axion-potential is generated. On the other hand,
the axion abundance must be tiny at the present era to
satisfy the isocurvature constraint. In order to satisfy them
simultaneously, we need a mechanism to dilute axions after
the QCD phase transition such as low scale thermal
inflation.
The axion-CMB scenario is effectively parametrized by

three parameters:
(i) Amplitude of the primordial fluctuations of ax-

ion ðδA=ĀÞ2 ∼H2
exit=ðfAθÞ2,

(ii) ratio of energy densities of axion to that of radia-
tion right after the axion potential is generated,
R ¼ ΩA=Ωr,

(iii) fraction of the axion abundance in the total cold dark
matter (CDM) today, rA ¼ ΩA=ΩCDMjtoday.

The three conditions constrain the allowed region of the
three three parameters, together with the initial misalign-
ment angle θini. We first summarize them in the following.
See Ref. [15] for more details.

(i) CMB amplitude QCD-like axion A is assumed to be
massless during the primordial inflation and fluc-
tuates with the amplitude δAini;

hδAiniðkÞδAiniðk0Þi ¼ ð2πÞ3δð3Þðkþ k0ÞH
2
exitðkÞ
2k3

;

HexitðkÞ ≔ Hjk¼aH̄: ð1Þ

The axion acquires potential VAðAÞ at the QCD
temperature and becomes massive. In the generation
of the axion potential, increase of the potential
energy is compensated by decrease of radiation
energy. Thus the primordial axion fluctuations in-
duce the density fluctuations of radiations. Suppose
that the dominant part of the density fluctuations of
radiation originate in this induced fluctuations and
their initial curvature perturbation is negligible.
Then the curvature perturbation is given by the
axion fluctuation as

ζr ∼
R
4

δVA

VĀ
δAini; ð2Þ

where VĀ ¼ VAðA ¼ ĀÞ and

R ≔
ρA
ρr

����
TQCD

ð3Þ

is the ratio of the energy densities of the axion to
radiation evaluated right after the potential is in-
stantaneously generated at T ¼ TQCD. If ρA is
dominated by the potential energy of QCD axion

FIG. 1. Evolutions of the temperatures of the two separate
sectors. The blue (green) corresponds to the OðNÞ (SM) sector.
Here we also show the evolution of the Higgs vev by orange.
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at this moment, R can be calculated as [15]

R¼ VAðĀÞ
ρr

����
T¼TQCD

≃
30

π2gQCD

mu=md

ð1þmu=mdÞ2
m2

πf2π
T4
QCD

ð1− cosðθ̄iniÞÞ ð4Þ

≃0.012 ×
�
150 MeV
TQCD

�
4
� hhi
246 GeV

�
ð1 − cosðθ̄iniÞÞ;

ð5Þ

where gQCD ¼ 69=4 is the effective number of dof
right after the QCD phase transition to which pions
also contribute. Note that the Higgs vev is treated as
a free parameter in the above equation since this
point becomes the most crucial in discussing an
explicit realization of the scenario in a concrete
particle physics model discussed in the next section.
The above curvature perturbation ζr is passed

down to the current density of radiation if there are
no further mixings with other fields, and the CMB
amplitude is given byffiffiffiffiffi
As

p
¼ R

Hexitðk�Þ
4πfAθ̄ini

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2.1 × 10−9

p
¼ 4.6 × 10−5;

ð6Þ
where k� ¼ 0.05 Mpc−1 is the reference (pivot)
scale. This gives a relation between R and
Hexitðk�Þ=πfA for each misalignment angle θ̄ini.

(ii) Non-Gaussianity The anharmonicity of the axion
potential produces non-Gaussianities of the CMB
anisotropy. Following Ref. [15], we have

fNL ∼ −
10

3R
cosðθ̄iniÞð1 − cosðθ̄iniÞÞ

sin2ðθ̄iniÞ
−
10

3
; ð7Þ

gNL ∼ −
1

6

�
20

3R

�
2

tan2
�
θ̄ini
2

�
þ 20

3
fNL −

1

6

�
20

3

�
2

:

ð8Þ
The non-Gaussianities are inversely proportional to
R, because both of the leading Gaussian fluctuation
and subleading nonlinear parts are proportional to
Rð< 1Þ. Consequently non-Gaussiannities, by def-
inition, become tiny for a small value of R. Thus the
observational non-Gaussianity constraints favor
large R region.
In Fig. 2, we plot the allowed region of ðθ̄ini; RÞ

determined by the observational bounds for the non-
Gaussianity [3]

flocalNL ¼ 4� 20; gNL ¼ ð−5.8� 13Þ × 104;

ð95% CL by Planck 2018Þ: ð9Þ

For more details, see Ref. [15]. The blue (orange)
region corresponds to fNLðgNLÞ. One can see that, as
long as θ̄ini ∼ 0, the lower bound of R is Oð0.1Þ, but
the bound can be reduced to Oð0.01Þ around θ̄ini ¼
π=2 or 3π=2. From Eq. (5), these lower bounds of R
requires the Higgs vev hhi at the QCD phase
transition to be larger than Oð1Þ TeV for θini ∼ 0,
or larger than Oð102Þ GeV for θini ∼ π=2 or 3π=2.
Using Eq. (6), the bound R≳ 0.01 corresponds to

Hexitðk�Þ
4πfAθ̄ini

< 4.6 × 10−3: ð10Þ

(iii) Isocurvature perturbations The fluctuation of the
axion field also produces isocurvature perturba-
tions as in the standard cosmology of QCD-axion
[43–50]. The isocurvature power spectrum is calcu-
lated as

PIIðkÞ ¼
k3

2π2
PIðkÞ ¼

�
rAHexitðkÞ
πfAθ̄ini

�
2

; ð11Þ

where rA is the ratio of the abundance of the axion to
the total cold dark matter (CDM) today,

rA ≔
ΩA

ΩCDM

����
today

; ð12Þ

where ΩCDM denotes the energy fraction of CDM.
By plugging this into the isocurvature constraint [2],

FIG. 2. Allowed regions of ðθ̄QCD; RÞ by the non-Gaussianity
constraints, Eq. (9). The blue (orange) region represents the
region allowed by fNLðgNLÞ. θ̄ ∼ π=2; 3π=2 is necessary to obtain
R ∼Oð0.01Þ, where V 00 vanishes.
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βisoðkÞ ¼
PII

PRR þ PII
< 0.00107 for cosΔ ¼ −1;

cosΔ ¼ PRIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRRPII

p ; ð13Þ

and using PRRðk�Þ ¼ 2.1 × 10−9, we obtain the
following constraint

rAHexitðk�Þ
πfAθ̄ini

< 1.5 × 10−6 for cosΔ ¼ −1: ð14Þ

In particular, by eliminating Hexitðk�Þ=ðfAθ̄iniÞ from
Eqs. (6) and (14), we obtain an inequality between
rA and R as

rA < 8.2 × 10−3R; ð15Þ
which shows that the axion abundance has to be
sufficiently diluted after the QCD transition. Thus
we need a mechanism such as thermal inflation at
the QCD scale.
In the previous paper [15], we have studied thermal

inflation scenario and shown that all the necessary
conditions can be satisfied under reasonable assump-
tions. Thus, a next step is to construct a concrete
model of particle physics. In the next section, we will
consider the classically conformal B − L model [29–
32] with a QCD axion because the model undergoes
supercooling of the B − L and EW symmetries, and
low scale thermal inflation naturally occurs. However,
as we will see in the next section, the model predicts a
small Higgs vev hhijTQCD

∼ ΛQCD when the axion
potential is generated. Consequently the height of the
axion potential is too low to get a sufficiently large
value of R ∼ 0.01, and the model is already excluded
from the non-Gaussianity constraint. Hence, we need
some modifications of the original B − L model so
that hhijTQCD

becomes at leastOð102Þ GeV, or larger.

IV. PARTICLE PHYSICS MODELS OF
AXION-CMB SCENARIO

As we saw in the previous section, we need a larger
value of R than ∼0.01, which corresponds to hhijTQCD

∼
Oð102Þ GeV. In addition, a dilution mechanism like
thermal inflation is necessary to satisfy a small value of
rA; rA < 8.2 × 10−3R. In this section, we consider a
classically conformal B − L model since the low scale
thermal inflation naturally occurs.

A. Classically conformal B−L model

The classically conformal (CC) B − L model [29–32] is
an extension of the SM with the right handed neutrinos Ni,
the B − L gauge boson Z0, and the B − L scalar Φ which
breaks the B − L gauge symmetry by Coleman-Weinberg

(CW) mechanism. Real components of scalar fields are
represented as h and ϕ respectively. We first summarize the
thermal history of the early universe of the model.
For this purpose we need the behavior of the scalar

potential. At zero-temperature, the effective potential is
given, at one-loop level, by [32]

V ¼ VTI þ λHðH†HÞ2 − λϕHðH†HÞðΦ†ΦÞ þ VCWðΦ; HÞ:
ð16Þ

The SM and B − L sectors couple through the Uð1Þ gauge
and the scalar mixings. We will focus on the CW potential
for the ϕ field by setting h ¼ 0,

VCWðϕÞ ¼
B

32π2
ϕ4 ln

�
ϕ

vϕe1=4

�
;

B ≃ 3ð2gB−LÞ4 − 2Tr½ðŶN=
ffiffiffi
2

p
Þ4�: ð17Þ

Here, gB−L is the B − L gauge coupling, YN;ij is the
Yukawa coupling between Φ and Ni, and vϕ represents
the minimum of the potential VCWðϕÞ. The vev will be
shifted by the scalar mixing in a nonzero Higgs vev, but its
effect to VðϕÞ is tiny for hhi ≪ hϕi and neglected in the
following discussions. The parameter VTI is chosen so that
the total vacuum energy vanishes:

VTI ¼
B

128π2
v4ϕ; ð18Þ

which determines the Hubble scale of thermal inflation
discussed below. The B − L symmetry breaking triggers
the EW symmetry breaking via the scalar mixing with a
negative coefficient. Since the Higgs potential becomes

λH
4

�
h4 −

λϕH
λH

v2ϕh
2

�
¼ λH

4

�
h2 −

λϕH
2λH

v2ϕ

�
2

−
λ2ϕH
4λH

v4ϕ;

ð19Þ

the Higgs vev is given by

vh ¼
ffiffiffiffiffiffiffiffi
λϕH
2λH

s
× vϕ ¼ 246 GeV; ð20Þ

which gives a relation between λϕH and vϕ.
Next, let us consider its thermal effects. Including

the thermal correction of Z0 and Ni, the high tempera-
ture expansion of one-loop effective potential of ϕ is given
by [32]

V1loopðϕÞ ¼
c2
2
T2ϕ2 −

c3
3
Tϕ3 þ B̃

4
ϕ4; ð21Þ

where
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c2 ¼ g2B−L þ 1

24
TrðŶ†

NŶNÞ; c3 ¼
6

π
g3B−L;

B̃ ¼ 1

8π2

�
3ð2gB−LÞ4 ln

�
T

mZ0c

�

− 2Tr

�
ðŶ=

ffiffiffi
2

p
Þ4 ln

�
T

mNc

��	
; ð22Þ

and

mZ0 ¼ 2gB−Lvϕ; mN ¼ YNvϕ=
ffiffiffi
2

p
;

c ¼ ðeαBÞ−1=2; log α−1=2B ¼ − log 4π þ γE: ð23Þ

In the following, we assume gB−L ≫ YN so that we can
neglect the contributions from Ni for simplicity. At high
temperature, the potential has a minimum at ϕ ¼ h ¼ 0.
When T decreases, a new minimum appears and, below
Tc ¼ ce4=3mZ0 , the potential height at the new minimum
becomes lower. In usual cases, the false minimum at ϕ ¼ 0
becomes unstable around this temperature. But in the class
of models with classical conformality, there are no quad-
ratic terms in the zero-temperature scalar potential, and the
coefficient of the quadratic term of finite-temperature
potential is always positive, and hence the false vacuum
ϕ ¼ 0 remains the local minimum at any smaller temper-
ature below Tc; the early universe experiences a long
supercooling era of the would-be broken symmetries.
Finally quantum tunneling or some other effects destabilize
the false vacuum.
During the supercooling era, temperature of the universe

drops preserving B − L and EW symmetries, and when the
vacuum energy in Eq. (18) dominates the radiation energy,
thermal inflation begins. By using Eqs. (17) and (18), the
temperature when the thermal inflation starts is given by

TTI ¼
�
30VTI

π2gTI

�
1=4

¼
�

45

64gTI

�
1=4mZ0

π
; ð24Þ

where gTI is the degrees of freedom (dof) at T ¼ TTI. As the
Hubble scale during the thermal inflation, we have

HTI ¼
V1=2
TIffiffiffi
3

p
Mpl

: ð25Þ

At the QCD critical temperature TQCD ∼ ΛQCD ∼
150 MeV, chiral condensation occurs and the Higgs
potential acquires an additional linear term via the top
Yukawa coupling [51]

−
ytffiffiffi
2

p ht̄tih ∼ −
ytffiffiffi
2

p Λ3
QCDh: ð26Þ

Then the minimum of the Higgs field potential is shifted to
have a nonzero vev,

hhi ¼ vQCD ≔ ðytht̄ti=
ffiffiffi
2

p
Þ1=3 ∼ ΛQCD: ð27Þ

Simultaneously, axion field acquires a potential through
QCD nonperturbative effects. We now figure out why it
is difficult to realize the axion-CMB scenario in the
original B − L model. As we discussed in the previous
section, the lower bound of R is Oð0.01Þ due to the non-
Gaussianity constraints, and the Higgs vev in Eq. (5) must
be Oð100Þ Gev. Hence the above vev hhi ∼ ΛQCD is too
small to be consistent with the non-Gaussianity constraint.
In the next subsection, we will extend the model by
introducing additional OðNÞ scalar in order to evade this
difficulty.
Even after the Higgs acquires the QCD scale vev at

T ¼ TQCD, the thermal inflation continues because ϕ field
remains at ϕ ¼ 0, if mZ0 ≥

ffiffiffi
2

p
mH. It can be seen by

looking at the quadratic term of the finite temperature
potential of ϕ in presence of hhi ¼ vQCD;

T2MZ0 ðϕÞ2
8

−
λϕH
4

v2QCDϕ
2 ¼m2

Z0

8v2ϕ

�
T2− 2

�
mH

mZ0

�
2

v2QCD

�
ϕ2;

ð28Þ

where mH ¼ 125 GeV is the Higgs mass. If mZ0 ≥
ffiffiffi
2

p
mH,

the coefficient is positive at T ¼ TQCD, and the scalar field
is trapped at the false vacuum until the coefficient of
quadratic term of ϕ becomes negative. The temperature at
which the coefficient becomes negative and the thermal
inflation ends1 is given by

Tend ¼
mHffiffiffi
2

p
mZ0

vQCD: ð30Þ

The e-folding number after T ¼ TQCD is now given by

ΔNQCD ¼ ln

�
TQCD

Tend

�
¼ ln

� ffiffiffi
2

p
mZ0

mH

�
: ð31Þ

B. OðNÞ scalar extension of the CC B−L model

In the previous section, we have seen the difficulty of
realizing the CMB anisotropy by QCD axion in the original
CC B − L model due to the smallness of the Higgs vev at
the time of QCD phase transition. In this section, we
discuss a possibility to overcome this situation by utilizing

1As long as

gB−L >

ffiffiffi
3

p

16π

m3
Z0

ΛQCDmHMpl
∼
�

mZ0

10 PeV

�
3

; ð29Þ

the slow-roll condition at hhi ¼ vQCD is violated, so that ϕ starts
rolling down toward the true minimum as soon as the temperature
gets to Tend.
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the idea of the symmetry nonrestoration (SNR) or inverse
symmetry breaking (ISB) mechanism [35].
We extend the model by adding a gauge singlet OðNÞ

scalar field S;

L ¼ LB−L þ 1

2
ð∂SÞ2 − VðS;H;ΦÞ: ð32Þ

Scalar potential is given by

VðS;H;ΦÞ ¼ m2
S

2
S2 þ λS

4!
ðS2Þ2 − λSH

2
S2ðH†HÞ

þ λSϕ
2

S2ðΦ†ΦÞ; ð33Þ

where LB−L is the Lagrangian of the B − L model with a
QCD axion and S2 ≔

P
N
i¼1 S

2
i . In the following, we call a

total set of SM, B − L and QCD axion field as the SM
sector to distinguish S fields as the S sector.
Usually, the thermal mass of the SM Higgs, denoted

by Πh, is positive because of the large positive contribu-
tion from the top-loop ∼y2t T2. However, as discussed in
Refs. [35–42], it is also possible to obtain a negative
effective mass through a negative Higgs portal coupling
−λSH. Qualitatively, such a contribution is given by ΔΠh∼
−NλSHT̃2, where T̃ is the temperature of the S field. In the
following, we use T̃ to denote the temperature of the S
sector while T without a tilde denotes the temperature of the
SM sector. It indicates that Πh can be negative when the
combination

λ̃SH ≔ NλSH ð34Þ

is sufficiently large. Apparently, the behavior of the Higgs
thermal mass can significantly change the thermal history
of the universe and have various cosmological implications.
See Refs. [36–42] for recent studies. It is usually assumed
that OðNÞ scalars S are in the thermal equilibrium at the
same temperature as the SM particles, T̃ ¼ T. For our
present purpose, however, it is not desirable since all the
energy scale is then given by the QCD scale at T̃ ¼ T ∼
TQCD and the resultant Higgs vev would be also given
by the same scale. Hence it is difficult to obtain hhi ∼
100 GeV at T ∼ TQCD.
In order to achieve a large Higgs vev, we will consider a

different thermal history in which S evolves almost
separately from the SM sector in the early universe. If
the temperature (or density) of S is much higher than that of
the SM sector, T̃ ≫ T, we can have a large negative
contribution to the effective Higgs mass, and consequently
hhi ∼ 100 GeV even at the QCD phase transition.
Based on the idea, we consider the following cosmo-

logical history of Eq. (33):
(1) OðNÞ scalars S are supposed to be dominantly

produced in the primordial reheating and dominates

the energy density of the universe until thermal
inflation starts. We represent the energy densities
and temperatures of (S, SM) sectors as (ρS, ρSM) and
(T̃, T) respectively.

(2) Production processes SS → hh and ϕϕ are assumed
to be very tiny so that the temperature of two sectors
evolve differently. The condition is guaranteed as
long as the scalar mixings, λSH; λSϕ, are suffi-
ciently small.

(3) At T ¼ TQCD ∼ 150 MeV, the axion acquires po-
tential and the primordial fluctuation of the axion
field is converted to the fluctuations of the SM
radiation. The temperature of the S sector is denoted
by T̃QCD at this moment. After that, the production
of the SM radiation from the OðNÞ scalar should be
ineffective so that the fluctuations are not diluted.

(4) Thermal inflation starts at T̃ ¼ T̃TI (and T ¼ TTIÞ
when the dominant radiation energy ρS in the early
universe becomes comparable to VTI of Eq. (18), and
dilutes the initial abundance of S.

(5) Thermal inflation ends when the trapped field
ϕ starts rolling down at the temperature T̃ ¼
T̃endðT ¼ TendÞ.

(6) Vacuum energy of the thermal inflation reheats up
the SM sector. During and after the secondary
reheating, the production of S is required to be
suppressed. The universe then follows the usual
thermal history.

Figure 3 is a schematic picture of the thermal history of
the OðNÞ extended model. The thermal history of our
model is highly dependent on the mass scale of S and we
will study two extremal cases, mS ≫ mZ0 and mS ¼ 0. As
we see, a viable model needs to satisfy the following two
requirements:

(i) a requirement of large Higgs vev hhi ∼ 246 GeV at
T ¼ TQCD gives a constraint, Eq. (61) for a massive

FIG. 3. Thermal history of the early universe of the Axion-
CMB scenario in the OðNÞ extended model. The OðNÞ sector
evolves with different temperature T̃ from the SM sector with
temperature T.
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case or Eq. (91) for a massless case, among various
parameters of the model.

(ii) a requirement of sufficient dilutions of S and axions
during thermal inflation gives additional constraints
on the model.

As we see in the following sections, we will find that
only the massless case can be consistent with all the
theoretical and observational constraints for N ≳ 1019

and mZ0 ¼ Oð10 TeVÞ.

C. Massive OðNÞ sector with mS ≥ mZ0

We first study details of the thermal history in the
massive S case. Although we see that the massive case
does not have an allowed parameter region for the axion-
CMB scenario, we will show the detailed calculations for
comparison to the massless case. We assume mS ≥ mZ0 to
forbid reproduction of S after the B − L thermal inflation.
As depicted in Fig. 3, the cosmological history can be
divided into three different eras: matter dominated era by
OðNÞ scalar, thermal inflation era, and then the ordinary
SM radiation dominated era follows the reheating after the
thermal inflation.

1. Evolution of hS2i and hhi
We assume that the energy density that has driven the

primordial inflation is converted only to the OðNÞ scalar

particle S, not to the SM sector particles. The initial
distribution function of S is set when S becomes decoupled
from other unspecified fields such as inflatons, and given
by

fS;decðkÞ ¼ ðeðEk−μdecÞ=T̃dec − 1Þ−1 ≃ eðμdec−EkÞ=T̃dec ; ð35Þ

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

S þ ðk=adecÞ2
p

and we have assumed mS −
μdec ≫ T̃dec for the Boltzmann approximation. After the
decoupling, the number density is given by

nS ¼
N
a3

Z
d3k
ð2πÞ3 fS;decðkÞ ≃ Nα

�
mST̃
2π

�
3=2

; ð36Þ

where we have defined α ≔ eðμdec−mSÞ=T̃dec and the effective
temperature decreases as T̃ ≔ T̃decðadec=aÞ2. The number
density nS and the energy density ρS ≃mSnS are diluted
as nS; ρS ∝ a−3.
Thermal inflation starts at t ¼ tTI when the energy

density of S, which has dominated until then, becomes
identical to the vacuum energy VTI of the B − L field,

ρS ≃mSnS ¼ VTI: ð37Þ

Equation (36) tells us that the effective temperature of the S
sector at this moment is

T̃TI ¼
2π

m5=3
S ðαNÞ2=3

V2=3
TI ∼ 0.013 GeV

�
mZ0

3 × 109 GeV

��
4 × 1015

αN

�
2=3�mZ0

mS

�
5=3

: ð38Þ

We denote the SM energy density at t ¼ tTI as

ρSM;TI ≔
π2gSM
30

T4
TI; ð39Þ

where TTI is calculated below. In the following, we set the scale factor as a ¼ 1 at t ¼ tTI. Then the Hubble parameter
evolves as

H ¼ HTI ×

�
a−3=2 for a ≤ 1;massive S dominated

1 for a > 1; until the end of thermal inflation
; ð40Þ

where HTI is defined by Eq. (25). The scale factor at the
decoupling is given by

adec ¼ ðT̃TI=T̃decÞ1=2; ð41Þ

which becomes very small if decoupling occurs much
earlier than the start of the thermal inflation. Since S is
massive and behaves nonrelativistically, the energy density
ρS is written in terms of the averaged amplitude of
fluctuations as

ρS ≃m2
ShS2i: ð42Þ

Thus we have

hS2i ¼ VTI

m2
S
a−3 ¼ 3m2

Z0

128π2

�
mZ0

mS

�
2

a−3; ð43Þ

where Eq. (18) is used in the last equality.
Through the portal coupling λSH, the Higgs also acquires

time-dependent vev in the early universe as

ISO, KAWANA, and SHIMADA PHYS. REV. D 104, 063525 (2021)

063525-8



hhi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λSH
2λH

hS2i
s

∼
31=2mZ0

16π

ffiffiffiffiffiffiffi
λSH
λH

s �
mZ0

mS

�
a−3=2: ð44Þ

2. Evolution of T̃

It is useful to rewrite ρS as a function of hhi by
eliminating hS2i from the above equations,

ρS ¼
2λHm2

Shhi2
λSH

: ð45Þ

By equating this tomSnS with Eq. (36), the evolution of the
temperature T̃ can be written in terms of hhi as

T̃ ¼ 2π

�
2λH
αλ̃SH

�
2=3 hhi4=3

m1=3
S

¼ 2.3 × 104 GeV
�
λH
0.1

�
2=3

�
10−6

αλ̃SH

�
2=3

×

�
3 × 109 GeV

mS

�
1=3

� hhi
246 GeV

�
4=3

: ð46Þ

See the schematic picture in Fig. 3 and the lower panel
of Fig. 4. The induced Higgs mass via hS2i is given

by mH;eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λSHhS2i

p
. Then the ratio of mS to this

becomes

�
mS

mH;eff

�
2

¼ 1

λ̃SHα

�
2πmS

T

�
3=2

≫ 1; ð47Þ

and thus hh → SS is kinematically suppressed so that we
can safely neglect the process.

3. Production of SM particles and
evolution of X = ρSM=ρS

The SM radiation ρSM is generated by the SS → HH
process with the weak λSH coupling. Let us now study its
time evolution. Our assumption is that the process is
extremely low and the ratio

X ≔ ρSM=ρS ð48Þ

is much less that unity until the thermal inflation. Under
this assumption, we can safely neglect the back-reaction to
ρS and the behavior ρS ∝ a−3 discussed above remains
intact. Then the Boltzmann equation of ρSM is given by

FIG. 4. Time evolutions of the ratio X ¼ ρSM=ρS (top-left), temperature of the SM sector T (top-right) and the Higgs vev (down). The
orange line corresponds to the value of each quantity at T ¼ TQCD.
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_ρSM þ 4HρSM ≃mS
λ2SH

16πm2
S
nSni ¼

λ2SH
16πm3

S

ρSρi; ð49Þ

where ni ≔ nS=N and ρi ≔ ρS=N. Its derivation is pre-
sented in A. From this, the ratio (48) obeys the following
equation;

dX
dt

þHX ¼ λ2SH
16πNm3

S

ρS ¼
λ2SHVTI

16πNm3
S

a−3: ð50Þ

Inserting the explicit time-dependence of ρS and the Hubble
parameter H ¼ d ln a=dt, we have

dðaXÞ
da

¼ λ2SHVTI

16πNm3
SH

a−3 ≔ c ×

�
a−3=2 for a ≤ 1

a−3 for a > 1
;

ð51Þ

where

c ≔
ffiffiffi
3

p
λ̃2SHMplV

1=2
TI

16πN3m3
S

: ð52Þ

It can be integrated as (noting aTI ¼ 1)

aX − XTI ¼ c ×

�
2ð1 − a−1=2Þ for a ≤ 1

1
2
ð1 − a−2Þ for a > 1

; ð53Þ

where XTI is the value of X at T ¼ TTI. By denoting the
initial value of X right after the decoupling of S as Xdec, we
have

XTI ¼ adecXdec − 2cð1 − a−1=2dec Þ ≃ adecXdec þ 2ca−1=2dec :

ð54Þ

The top-left figure of Fig. 4 shows the time evolution
of the ratio with Xdec ¼ 0. It first grows with time
through the energy transfer from S and SM sectors. At
a ∼ ð3c=XTIÞ2 ∼ ð3=2Þ2adec ≪ 1, it starts decreasing as
X ∼ a−1 since the SS → HH process is not fast enough
to overwhelm the expansion and ρSM ∼ a−4 is diluted more
quickly than ρS ∼ a−3 is. This behavior continues in the
thermal inflation period;

X →
1

a

�
XTI þ

c
2

�
∼
XTI

a
for a ≫ 1: ð55Þ

In the following, it is supposed that the first term adecXdec
in Eq. (54), which depends on the unspecified dynamics
before the decoupling, is negligible. The initial conditions
of later evolution are given by T̃dec and μdec, which
characterize the physics in the primordial reheating era.

4. Various quantities at T =TQCD

The top-right figure of Fig. 4 is the temperature evolu-
tion of the SM sector, T. It first grows by the energy
transfer from S sector, but then decreases due to the
expansion of the universe and eventually reaches TQCD,
which is depicted by the orange line. The scale factor at
which T gets down to TQCD ∼ 150 MeV is evaluated as

aQCD ¼
�

ρSM;TI

ρSM;QCD

�
1=4

¼
�
XTIVTI

ρSM;QCD

�
1=4

ð56Þ

¼ 7.6 × 10−4 × α
1
24

�
λ̃SH
10−6

�1
2
�
4 × 1015

N

�
17=24

×

�
100

gSM

�
1=4

�
150 MeV
TQCD

�

×

�
mZ0

3 × 109 GeV

�3
4

�
mZ0

mS

� 7
12

�
T̃dec

mS

�
1=16

; ð57Þ

where we used ρSM;QCD ¼ ðgSMπ2=30ÞT4
QCD. From

Eq. (57), we can confirm T̃QCD ¼ T̃TIa−1QCD ≫ T̃TI again.
As mentioned after Eq. (46), T ¼ TQCD is realized well
before the beginning of thermal inflation. Note also that
the SM temperature TTI satisfies

TTI ¼ TQCDaQCD ≪ TQCD: ð58Þ

Recall that we need hhi ¼ Oð100 GeVÞ at T ¼ TQCD for
the axion-CMB scenario to be observationally viable in the
CC B − L model. The time evolution of hhi is plotted in
the down figure of Fig. 4. From Eqs. (45) and (48), the
condition for the Higgs vev is written as

XjT¼TQCD
¼ λSHρSM;QCD

2λHm2
Shhi2jT¼TQCD

: ð59Þ

On the other hand, from Eqs. (55) and (56), we have

XjT¼TQCD
¼ X3=4

TI

�
ρSM;QCD

VTI

�
1=4

: ð60Þ

By equating Eq. (60) to Eq. (59), N is determined in terms
of other parameters of the model;

N ∼ 4 × 1015 ×

�
λ̃SH
10−6

�
4=9�λH

0.1

�
8=9

�
100

gSM

�
2=3

×

� hhi
246 GeV

�
16=9

�
150 MeV
TQCD

�
8=3

×

�
mS

3 × 109 GeV

�
2=9

�
Tdec

mS

�
1=6

: ð61Þ

As we discussed in Eq. (5), the Higgs must have as large
vev at T ¼ TQCD as the current value so that it is consistent
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with the non-Gaussianity constraint and the CMB ampli-
tude can be explained in terms of the primordial axion
fluctuations. Then, we see from the above relation, that N
must be quite large.
Finally note that the assumption adec ≪ 1 is justified as

far as

�
Tdec

mS

�
3=2

α × N ≫ ð2πÞ3=2 VTI

m4
S
: ð62Þ

5. Dilution factor by thermal inflation

By definition, the number density of S at T̃ ¼ T̃TI is
VTI=mS and it is diluted rapidly during the thermal
inflation. The Higgs vev hhi decreases and finally
approaches the value vQCD determined by the QCD chiral
condensates in Eq. (27);

hhi2 ¼
( hhi2jT¼TQCD

ðaQCD=aÞ3 T ∼ TQCD

v2QCD T ≪ TQCD

: ð63Þ

where aQCD is given by Eq. (57).
To calculate the dilution factor, we need to know the

temperature Tend at which the thermal inflation ends. In
presence of the S sector, the quadratic term of the B − L
scalar ϕ of Eq. (28) is modified to be

T2

8
M2

Z0 ðϕÞ − λϕH
4

hhi2ϕ2 þ λ̃Sϕ
4N

hS2iϕ2: ð64Þ

For simplicity, we consider a situation where the last term is
negligibly small by assuming the smallness of λ̃Sϕ,

λ̃Sϕ
4N

hS2i ¼ λ̃SϕλH
2λ̃SH

hhi2 ≪ λϕH
4

hhi2; ð65Þ

where we have used Eq. (44). Then the end of the thermal
inflation is determined by the first two terms of Eq. (64);

T2

2
g2B−Lϕ

2 − g2B−L

�
mh

mZ0

�
2

hhi2ϕ2

¼ g2B−L

�
T2

2
−
�
mH

mZ0

�
2

hhi2
�
ϕ2: ð66Þ

As long as hhi2 decreases as a−3 [see Eq. (63)], the first
term in Eq. (66) is always dominant because T2 decreases
as a−2. Thus, these two terms can become comparable after
hhi reaches the constant value vQCD, which means that Tend

is similarly determined as in the case of the conventional
B − L model and given by Eq. (30). Then the dilution
factor during the thermal inflation from T ¼ TTI until T ¼
Tend is obtained as

e−3ΔN ¼
�
Tend

TTI

�
3

¼ 1

23=2

�
vQCD
TQCD

�
3
�
mH

mZ0

�
3

× a−3QCD:

ð67Þ

If mZ0 is sufficiently heavy, the dilution factor during the
thermal inflation becomes large.

6. Dilution of axions

We now estimate rA in the massive case. The axion field
starts to oscillate when mAðTÞ ≥ 3H is satisfied. Here,
mAðTÞ is the temperature-dependent axion mass:

mAðTÞ ¼ mA0 ×

� ðTQCD=TÞ4b for T ≥ TQCD

1 for T ≤ TQCD
; ð68Þ

where b ∼ 1.02. In the massive S case, the solution is
determined by mA0 ¼ 3H;

T̃osc ¼
2πðMplmA0Þ4=3
32=3ðαNÞ2=3m5=3

S

¼ 6.9 × 10−21 GeV

�
4 × 1015

αN

�
2=3�3 × 109 GeV

mS

�
5=3

×

�
mA0

6 × 10−6 eV

�
4=3

; ð69Þ

which is actually tiny compared to T̃QCD and T̃TI, which is
consistent with the assumption Tosc < TQCD. Thus, the
axion field does not evolve until the beginning of thermal
inflation and we can use the same result of rA calculated in
Ref. [15] with a different e-folding number;

rA ∼
�
2 tanðθ̄ini=2Þ

0.3

�
2
�

fA
1012 GeV

�
1.16

expð−2η × ΔNÞ;

ð70Þ

where

η ≔
1

3

�
mA0

HTI

�
2

¼ 8.6 × 10−6 ×

�
1012 GeV

fA

�
2
�
10 TeV
mZ0

�
4

ð71Þ

andΔN ¼ log ðTTI=TendÞ. The result (70) shows that, in the
massive case, Z0 gauge boson has to be lighter than 10 TeV
for realizing the necessary condition of rA ≲ 10−4. On the
other hand, as we see in the following, a condition for
sufficient dilution of S requires mZ0 ≫ 10 TeV. Thus it is
impossible to satisfy all the observational constraints in the
massive S case.
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7. Dilution of initial abundance of S

In addition to the dilution of the axion abundance, the
thermal inflation also has to dilute the initial abundance of
S. Otherwise, such an abundance may cause various
cosmological problems. Especially rS ≔ ρS=ρDM must
satisfy the same constraint as in Eq. (15),

rS < 8.2 × 10−3R: ð72Þ
Let us now evaluate the relic abundance of S at the present
universe. After the thermal inflation ends at a ¼ aend, the
energy density of the ϕ-oscillation dominates the universe
until the universe is reheated to the temperature TR. The
relic abundance of S is estimated as

ρSjtoday ∼
�
aend
atoday

�
3

e−3ΔN × VTI

∼
gRπ2

30

T4
R

VTI

�
T today

TR

�
3

e−3ΔN × VTI; ð73Þ

where T today ¼ 2.73 K and gR is the effective degrees of
freedom at the reheating. By substituting Eq. (67) into
Eq. (73), we obtain

rS ≔ ρS=ρDMjtoday ¼ ðρS=ργÞðργ=ρDMÞjtoday
¼ 0.011 ×

�
10−6

λ̃SH

�
3=2

�
N

4 × 1015

�
17=8

�
vQCD
TQCD

�
3

×

�
TQCD

150 MeV

�
3
�
106 TeV

mZ0

�
21=4

�
mS

mZ0

�
7=4

×

�
TR

10 MeV

��
mS

Tdec

�
3=16

; ð74Þ

where we used ðργ=ρDMÞjtoday ¼ 2.9 × 10−4. Even with the
reheating temperature around its lower limit ∼10 MeV for
the successful big bang nucleosynthesis, large mZ0 is
required. Therefore, the two necessary conditions of
rA; rS < 10−3 cannot be simultaneously satisfied.

D. Massless OðNÞ sector
In the previous subsection, we saw a difficulty to realize

the axion-CMB scenario formS ≥ mZ0. Here, let us consider
another extremal case ofmS ¼ 0. The followingdiscussion is
almost parallel to the massive case except that (i) the SM
production processes can be kinematically suppressed if
λ̃SH ≳ 1 and (ii) the SM radiation produced directly from the
primordial reheating needs to be taken into account.

1. Evolution of hhi
The number and energy densities of S after the primor-

dial reheating are now given by

nS ¼
Nζð3Þ
π2

T̃3; ρS ¼
Nπ2

30
T̃4; ð75Þ

where T̃ ¼ T̃rehðareh=aÞ.
Thermal inflation starts at t ¼ tTI when ρS becomes

identical to the vacuum energy of the B − L field, ρS ¼ VTI.
The corresponding temperature of the S sector is

T̃TI ¼
�

30

π2N

�
1=4

V1=4
TI ∼ 0.05 GeV×

�
mZ0

10 TeV

��
1019

N

�
1=4

:

ð76Þ
Since the scale factor is set as a ¼ 1 at t ¼ tTI, the Hubble
parameter behaves as

H ¼ HTI ×

�
a−2 for a ≤ 1;massless S dominated

1 for a > 1; until the end of thermal inflation
; ð77Þ

where HTI is defined by Eq. (25). In the massless case, the
Higgs vev is determined by the thermal mass −λ̃SHT̃2=24 as
in the conventional studies [35–38] and given by

hhi2 ¼ λ̃SHT̃2=ð24λHÞ: ð78Þ
We require that hhi ∼ 246 GeV at T ¼ TQCD. Note also
that, because of the Higgs vev, one of the components of
OðNÞ scalar acquires mass

ffiffiffiffiffiffiffi
λSH

p hhi ∼ λ̃SHT̃=
ffiffiffiffi
N

p
. How-

ever, it is much smaller than T̃ so that the massive
component can be regarded as practically massless.

2. Production of SM particles and
evolution of X = ρSM=ρS

If λSH < 1, SS → hh is the dominant process as in the
massive case. On the other hand, for λSH ≳ 1, the thermal

mass of the Higgs ∼
ffiffiffiffiffiffiffi
λ̃SH

p
T̃ becomes larger than the

radiation temperature T̃ of the OðNÞ scalar sector, and
the SM production rate gets Boltzmann-suppressed. Then,
by introducing the suppression factor ϵ, the Boltzmann
equation of ρSM is given by

_ρSM þ 4HρSM ¼ ϵλ2SH
128πT̃

nSni

¼ ϵλ̃2SH
128πN9=4

�
30

π2

�
5=4

�
ζð3Þ
π2

�
2

ρ5=4S ; ð79Þ

where we have used

nS ¼
30ζð3Þ
π4

ρS
T̃
; T̃ ¼

�
30ρS
π2N

�
1=4

: ð80Þ
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The suppression factor ϵ ≤ 1 is normalized as ϵ ¼ 1 when
the process SS → hh is unsuppressed, and it dose not have
any temperature dependence since there is no explicit mass
scale. Note that SM particles other than Higgs are also
produced; SS → ðSM particlesÞ. A process like SS → bb̄
may not be thermally suppressed unlike SS → hh, but it is
negligibly small because of the tiny Yukawa coupling. For
example we have ϵ ∼ y2bλ̃

−1
SH ∼ 10−5 for λ̃SH ∼ 10 and we

can safely neglect them.
Then, the ratio X ¼ ρSM=ρS obeys

dX
da

¼ 1

aH
dX
dt

¼ ϵλ̃2SH
128πN9=4

�
30

π2

�
5=4

�
ζð3Þ
π2

�
2 ρ1=4S

aH

¼ c ×
�
1 for a ≤ 1

a−2 for a ≥ 1
; ð81Þ

where

c ¼ ϵλ̃2SH
128πN9=4

�
30

π2

�
5=4

�
ζð3Þ
π2

�
2 V1=4

TI

HTI

¼ 33=255=4ζð3Þ2λ̃2SH
24π7N9=4

Mpl

mZ0
: ð82Þ

Equation (81) can be solved as

X − XTI ¼ c ×
�
a − 1 for a ≤ 1

1 − a−1 for a ≥ 1
; ð83Þ

from which we obtain

XTI ≃ Xreh þ c ðfor areh ≪ 1Þ ð84Þ
and

X ≃ XTI þ c ≃ Xreh þ 2c ðfor a ≫ 1Þ; ð85Þ
where Xreh comes from the SM energy density generated
during the reheating after the primordial inflation. In the
top-left panel of Fig. 5, we show the time evolution of
ðX − XrehÞ=Xreh. Note that, compared to the massive case
Eq. (55), the ratio X keeps increasing and approaches a
constant value Xreh þ 2c because both of S and SM
particles behave as radiation and their energy densities
dilute with a−4. On the other hand, if Xreh is larger than 2c,

Xreh > 2c ð86Þ

X is almost constant from the onset of the OðNÞ-radiation
dominated phase,

FIG. 5. Time evolutions of the ratio X ¼ ρS=ρSM (top left), temperature of the SM sector T (top right) and the Higgs vev (down) in the
massless case.
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X ≃ Xreh: ð87Þ

We will see that this situation is necessary for the axion-
CMB scenario in the massless OðNÞ case because other-
wise the CMB fluctuations transferred from the axions are
diluted after QCD phase transition.

3. Various quantities at TQCD

The required value of N is determined in a similar way as
the massive case. By using Eq. (78), the condition for the
Higgs vev at T ¼ TQCD becomes

XjT¼TQCD
¼ ρSM

ρS

����
T¼TQCD

¼ gSM
N

�
TQCD

T̃

�
4

¼ gSM
N

�
λ̃SH
24λH

�
2
�
TQCD

hhi
�

4

; ð88Þ

Let T̃QCD denote the temperature T̃ of S sector at
T ¼ TQCD. The scale factor at this moment is then given by

aQCD ≔ ajT¼TQCD
¼ T̃TI

T̃QCD

∼ 1.4 × 10−4 × λ̃1=2SH

�
0.1
λH

�
1=2

�
1019

N

�
1=4

×

�
mZ0

10 TeV

��
246 GeV

hhi
�
; ð89Þ

where we used Eqs. (76) and (78). Due to HTItQCD ¼
a2QCD ∼ 2 × 10−8 ≪ HTItTI ¼ 1, it is much before the
beginning of the thermal inflation. This means that, if
Eq. (86) is not satisfied, the perturbations of ρSM generated
at the QCD phase transition is diluted due to further
productions of the SM particles from the OðNÞ scalar after
the transition. Hence, for realizing the axion-CMB scenario
in explained in Sec. III, we simply impose the condition
Eq. (86). Then X is almost constant as in Eq. (87) and it
must be given by

Xreh ¼
gSM
N

�
λ̃SH
24λH

�
2
�
TQCD

hhi
�

4

ð90Þ

to realize Eq. (88). Combined with Eq. (86), it reads

N > 7.9 × 1017
�

ϵ

0.1

�
4=5

�
100

gSM

�
4=5

�
10 TeV
mZ0

�
4=5

�
λH
0.1

�
8=5

×

�
150 MeV
TQCD

�
16=5

� hhi
246 GeV

�
16=5

: ð91Þ

As mentioned in the Introduction, such a large value of
N is still allowed phenomenologically because collider

observables are typically functions of Nλ2SH ¼ λ̃2SH=N or
Nλ3SH ¼ λ̃3SH=N

2. See Refs. [36,38] for more details.

4. Dilution factor by thermal inflation

First, ρS is given by VTI at T̃ ¼ T̃TI by definition. The
Higgs vev hhi decreases with temperature and finally
approaches vQCD;

hhi2 ¼
( hhi2jT¼TQCD

ðaQCD=aÞ2 T ∼ TQCD

v2QCD T ≪ TQCD

: ð92Þ

We need to know the temperature T̃end at which the thermal
inflation ends. In the massless case, the quadratic term of
the B − L scalar ϕ of Eq. (28) is modified to be

T2

2
g2B−Lϕ

2 þ λ̃Sϕ
24

T̃2ϕ2 − g2B−L

�
mH

mZ0

�
2

hhi2ϕ2; ð93Þ

where the second term is the thermal mass correction
by S and this dominates over the first term as long as
λ̃Sϕ > 12g2B−LðT=T̃Þ2. Then, the end of the thermal infla-
tion is determined by the last two terms of Eq. (93) with
hhi ¼ vQCD

2;

T̃end ¼
ffiffiffiffiffiffiffi
24

λ̃Sϕ

s
× gB−L

�
mH

mZ0

�
vQCD: ð94Þ

As a result, the dilution factor during the thermal inflation is
given by

e−4ΔN ¼
�
T̃end

T̃TI

�
4

¼ 30g4B−L
π2N

�
24

λ̃Sϕ

�
2
�
mH

mZ0

�
4 v4QCD
VTI

; ð95Þ

where we have used the relation (75) at T̃ ¼ T̃TI. For given
values of gB−L and λ̃Sϕ, the above dilution factor becomes
tiny ifmZ0 is heavy. On the other hand, as wewill see below,
mZ0 must be typically lighter than 10 TeV for sufficient
dilution of axions.

5. Dilution of axions

We now estimate rA in the massless case. As well as the
massive case, the oscillating temperature is determined by
mA0 ¼ 3H;

2As discussed below, mZ0 ∼ 10 TeV is allowed in the massless
case because we can easily earn the dilution of S compared to the
massive case. For such a small value of mZ0 , the third term in
Eq. (93) is already bigger than the first term due to the largeness
of the Higgs vev hhi ∼ 100 GeV at T ¼ TQCD.
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T̃osc ¼
�

10

π2N

�
1=4

ðmA0MplÞ1=2

¼ 2.2 × 10−3 GeV

�
1019

N

�
1=4

�
mA0

6 × 10−6 eV

�
1=2

;

ð96Þ
which is much smaller than T̃TI. Thus, the axion field does
not evolve until the beginning of thermal inflation and we
can again use the same result of rA,

rA ∼
�
2 tanðθ̄ini=2Þ

0.3

�
2
�

fA
1012 GeV

�
1.16

expð−2η × ΔNÞ;

ð97Þ

where η is the same as Eq. (71) and

ΔN ¼ log ðT̃TI=T̃endÞ: ð98Þ

From the observational constraint for R ∼ 0.01 in Fig. 2 and
rA in Eq. (15), rA must be as tiny as 10−4. We will thus plot
the excluded region of rA < 8.2 × 10−3R in the λ̃SH-m0

Z
plane for a given value of fA.

6. Dilution of initial abundance of S

Let us now evaluate the relic abundance of S in the
massless case. Instead of Eq. (73), the relic abundance of
massless components of S is estimated as

ρS
ργ

����
today

¼ ρS
ργ

����
T¼TR

¼
�
gRπ2

30

T4
R

VTI

�
4=3

× e−4ΔN ×
VTI

ργjT¼TR

¼ N − 1

2

�
gRπ2

30

T4
R

VTI

�
4=3

�
T̃end

TR

�
4

∼
3.4 × 10−7

λ̃2Sϕ

�
N
1019

��
gR
100

�
4=3

�
gB−L
0.1

�
4
�

vQCD
150 MeV

�
4
�
10 TeV
mZ0

�
28=3

�
TR

mH

�
4=3

: ð99Þ

The above relic abundance contributes to the present
energy density as dark radiation. Extra contribution to
the number of relativistic species is defined by

ρrad ≔ Neff
7

8

�
4

11

�
4=3

ργ: ð100Þ

The current bound by Planck 2018 [1] is

Neff ¼ 2.99þ0.34
−0.33 ð95% CLÞ: ð101Þ

In the standard cosmology, Neff ¼ 3.046 by neutrinos.
Thus, Eq. (99) corresponds to

ΔNeff ¼
8

7

�
11

4

�
4=3

ρS=ργjtoday ¼ 1.5 × 10−6 × � � � : ð102Þ

On the other hand, the massive component of the OðNÞ
scalars becomes nonrelativistic when the temperature T is
of the same order asmS ¼ ðλ̃SH=NÞ1=2v. With ρSjtoday being
the energy density of the N − 1 massless components, the
energy density of the massive component is evaluated as

rS ¼
ρMassive
S

ρDM
¼ 1

N − 1

ρS
ργ

����
today

ðργ=ρDMÞjtoday
mS

T0

∼ 10−20 ×
λ̃1=2SH

λ̃2Sϕ

�
1019

N

�
1=2

�
gR
100

�
4=3

�
gB−L
0.01

�
4
�

vQCD
150 MeV

�
4
�
10 TeV
mZ0

�
28=3

�
TR

mH

�
4=3

; ð103Þ

which is tiny and we can safely neglect the isocurvature of
the OðNÞ scalar.

7. Productions of S after thermal inflation

We also have to consider the production of S after the
secondary reheating. Here we consider a case of low
reheating temperature, TR ≤ mH, and focus on hh → SS.

In the following, we set a ¼ 1 at T ¼ TR i.e., T ¼ TRa−1.
The Boltzmann equation is

_ρS þ 4HρS ¼
Nλ2SH
16πmH

n2H ¼ λ̃2SH
16πNmH

�
mHT
2π

�
3

e−2mH=T;

ð104Þ
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from which the ratio Y ≔ ρS=ρSM obeys

dY
da

¼ λ̃2SH
16πNmH

�
mHT
2π

�
3 e−2mH=T

aHρSM

¼ dðmH=TRÞðmHa=TRÞ2e−2ðmH=TRÞa; ð105Þ

where we defined

d ≔
31=2λ̃2SH
27π4N

�
30

π2gSM

�
3=2Mpl

mH

¼ 1.4 × 10−9 × λ̃2SH

�
100

gSM

�
3=2

�
1019

N

�
: ð106Þ

The integration of Eq. (105) gives

Y ∼ d=4 for a ≫ TR=mH; ð107Þ

which contributes to the dark radiation as well as the
initial abundance of S. Thus, if N is sufficiently large with
λ̃SH fixed, we can safely avoid the overproduction of S. As
for the massive component, it is easy to see that its
production is also negligible by the same calculation as
Eq. (103). In D, we also discuss the productions via
ff̄ → SS, which is found to be subdominant compared
to hh → SS.
In Fig. 6, we show the allowed parameter region on the

(λ̃SH, mZ0) plane. The left (right) panel corresponds to
fA ¼ 109ð1010Þ GeV. In the figure, the green regions are
excluded by the constraint on the dark radiation Eq. (101)
while the blue regions are excluded by the isocurvature
constraint of the CMB observations, rA < 8.2 × 10−3R. As
a result, one can see that mZ0 is constrained to be 1 TeV≲
mZ0 ≲ 22 TeV ð6 TeVÞ when fA ¼ 109ð1010Þ GeV.

V. CONCLUSIONS

In the paper, we have investigated a possibility of the
axion-CMB scenario in particle physics models with
classical conformality (CC). In such CC models, the early
universe often experiences supercooled era of the EW
symmetry breaking until the temperature of the universe
cools down to QCD scale TQCD, and the thermal inflation
naturally occurs at low temperature. On the other hand, the
axion-CMB scenario in which the CMB fluctuations are
assumed to be generated from the primordial axion fluc-
tuations requires that the axion abundance must be suffi-
ciently diluted after the axion potential is generated at
TQCD. Thus, if the thermal inflation in the CC models
occurs below TQCD, CC models can be candidates for
particle physics models realizing the axion-CMB scenario.
In this paper, we have particularly studied the CC B − L

model with an additional extension ofOðNÞ scalars S. Such
an extension is necessary in order to generate sufficiently
large amplitude of axion potential at QCD temperature.
Namely, the Higgs vev in the supercooled era of EW
symmetry must be generated by a negative scalar coupling
with S and become as large as 102 GeV. This requirement
is fulfilled by considering decoupled evolutions of the SM
sector and OðNÞ sector where the temperature of each
sector is completely different.
We have investigated various observational constraints

of CMB observations and the present abundance of axions
and the additional particles S, and shown that, if S is
massless, there is a parameter region in which all the
constraints are satisfied.
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FIG. 6. Allowed parameter regions in the case of massless S. The left (right) panel corresponds to fA ¼ 109ð1010Þ GeV.
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APPENDIX A: BOLTZMANN EQUATIONS

In this Appendix, we summarize the basic calculations of Boltzmann equations [52,53].

1. Thermal average of cross sections

The thermal average of cross section by the Maxwell-Boltzmann distribution is given by [52]

hσvi ¼ 1

T2xK2ðxÞ2
Z

∞

1

dyð4m2σÞðy − 1Þ ffiffiffi
y

p
K1ð2x

ffiffiffi
y

p Þ; x ¼ m=T; y ¼ s=ð4m2Þ; ðA1Þ

where

KνðzÞ ¼
π1=2ðz=2Þν
Γðνþ 1=2Þ

Z
∞

1

dte−ztðt2 − 1Þν−1=2 ðA2Þ

is the modified bessel function of the second kind. The cross sections of SS ↔ HH are

σSS→HHðsÞ ¼
λ2SH
16πs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

H

s − 4m2
S

s
; σHH→SSðsÞ ¼

λ2SH
16πs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

S

s − 4m2
H

s
; ðA3Þ

from which we obtain

hσSS→HHvi ¼
λ2SH

16πT̃2xSK2ðxSÞ2
Z

∞

ðmH=mSÞ2
dyy−1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy − 1Þðy − ðmH=mSÞ2Þ

q
K1ð2xS

ffiffiffi
y

p Þ; ðA4Þ

hσHH→SSvi ¼
λ2SH

16πT2xHK2ðxHÞ2
Z

∞

ðmS=mHÞ2
dyy−1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy − 1Þðy − ðmS=mhÞ2Þ

q
K1ð2xH

ffiffiffi
y

p Þ; ðA5Þ

where xS ¼ mS=T̃, xH ¼ mH=T. Our main focus is
Eq. (A4) because we assume that S is the dominant
component during the period between the primordial
preheating and the thermal inflation. In the massive S
case, we saw that mH=mS is always negligible as shown in
Eq. (47). Thus, we can neglect the higher order terms of
ðmH=mSÞ2 in the rhs in Eq. (A4). Within this approxima-
tion, the integration becomesZ

∞

1

dyðy − 1Þ1=2K1ð2xS
ffiffiffi
y

p Þ ¼ K1ðxSÞ2=2xS; ðA6Þ

which leads to

hσSS→HHvi ¼
λ2SH

32πT̃2x2S

�
K1ðxSÞ
K2ðxSÞ

�
2

: ðA7Þ

When T ≫ m, i.e., x ≪ 1, the bessel functions are
expanded as

�
K1ðxÞ
K2ðxÞ

�
2

¼ x2

4
þOðx3Þ; ðA8Þ

from which we have

hσSS→HHvi ∼
λ2SH

128πT̃2
for T̃ ≫ mS; : ðA9Þ

On the other hand, in the non-relativistic limit T̃ ≪ mS, i.e.,
xS ≪ 1, the bessel functions are expanded as

�
K1ðxÞ
K2ðxÞ

�
2

¼ 1 −
3

x
þOðx−2Þ; ðA10Þ

from which we have

hσSS→HHvi ∼
λ2SH

16πm2
S

�
1 −

3T̃
mS

�
for T̃ ≪ mS: ðA11Þ

2. Boltzmann equations

In general, the Boltzmann equation for particle species 1
is given by

∂n1
∂t þ 3Hn1 ¼

Z
d3p

ð2πÞ3EðpÞ Ĉ½f1� ðA12Þ

where the collision term is
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Z
C½f1�

d3p
ð2πÞ3 ¼ −

X
dof

Z
d3p1

ð2πÞ32E1

d3p2

ð2πÞ32E2

d3p3

ð2πÞ32E3

d3p4

ð2πÞ32E4

× ff1f2ð1� f3Þð1� f4ÞjM12→34j2 − f3f4ð1� f1Þð1� f2ÞjM34→12j2g
× ð2πÞ4δðp1 þ p2 − p3 − p4Þ: ðA13Þ

In our model, 1,2 corresponds to Siði ¼ 1; 2;…; NÞ, and
3,4 corresponds to the SM Higgs, and vice versa. When
the system is not experiencing BEC and Fermi degeneracy,
it is good to approximate ð1� flÞ by 1. Then, assuming
thermal (kinetic) equilibrium in each particles, we have

_ni þ 3Hni ¼ −hσSS→HHvin2i þ hσHH→SSvin2H; ðA14Þ

where hσSSðHHÞ→HHðSSÞvi is the thermal average
Eqs. (A4) (A5).

APPENDIX B: REHEATING TEMPERATURE
AFTER THERMAL INFLATION

In this Appendix, we give a rough estimation of the
reheating temperature TR after the thermal inflation. It is
defined as the temperature of the SM radiation at the
moment when the coherent oscillation of the flaton field ϕ
is disintegrated into radiation. We assume that the reheating
is completed either by ϕ’s decay into two SM Higgs
particles or by ϕ’s scattering with the Higgs in the SM
thermal bath. Reheating by ϕ decay into SM particles via
the scalar mixing is neglected for simplicity.
We restrict ourselves to the case where the B − L gauge

boson Z0 is much heavier than the right-handed neutrino N
and the coefficient in Eq. (17) is dominantly given by Z0.
Then, the mass of ϕ field at the true vacuum is obtained as
mϕ ∼ gB−LmZ0 . If mϕ ≳mh, or equivalently,

gB−L ≳mh=mZ0 ; ðB1Þ

ϕ can decay into two Higgs particles with the rate

Γd ∼
ðλϕHvϕÞ2

mϕ
∼ gB−L

m4
h

m3
Z0
: ðB2Þ

Equating this with the Hubble expansion rate H ∼ T2=Mpl,
we get

Tðd1Þ
R ¼ ðgB−LmZ0MplÞ1=2ðmh=mZ0 Þ2: ðB3Þ

The derivation is valid as far as the thermal mass of the

Higgs is below mϕ. The condition mhðTðd1Þ
R Þ ∼ Tðd1Þ

R ≲mϕ

is rewritten as

gB−L ≲ x ≔
m4

hMpl

m5
Z0

: ðB4Þ

If the condition is not satisfied, the decay process is
kinematically forbidden until the temperature is reduced
to T ¼ mϕ ∼ gB−LmZ0 . In this case, the reheating temper-

ature is given by Tðd2Þ
R ¼ mϕ ∼ gB−LmZ0. To summarize, the

reheating temperature by decay is

TðdÞ
R ∼minfTðd1Þ

R ;mϕg ≤ mϕ: ðB5Þ

Note that the scalar field ϕ acquires mass through the
Coleman Weinberg mechanism, and mϕ is generally small.
In the CC B − L model, in particular, it cannot be much
heavier than the SM Higgs; mϕ ≤ mH. Thus the reheating
temperature by the decay process is also expected to be not
so high compared to mH.
On the other hand, the scattering process is not thermally

blocked. Once the SM thermal bath is generated, the
coherent oscillation is disintegrated into ϕ particles due
to scattering with the Higgs in the bath. The interaction rate
in the relativistic region T ≳mϕ is given by

Γs ∼ λ2ϕHT ∼ g4B−L

�
mh

mZ0

�
4

T; ðB6Þ

whereas Γs ∼ λ2ϕHT
3=mϕ for T ≲mϕ. By comparing it with

the Hubble, the reheating temperature by the scattering
process is given by3

TðsÞ
R ∼ g4B−LMpl

�
mh

mZ0

�
4

ðB7Þ

as far as TðsÞ
R ≳mϕ is satisfied, i.e.,

g3B−L ≳ m5
Z0

m4
hMpl

¼ 1=x: ðB8Þ

If it is not satisfied, we have TðsÞ
R ¼ 0. For example, if

mZ0 ¼ 10 TeV and gB−L ¼ 0.01, TðsÞ
R ∼ 600 GeV.

3The ϕ particles produced in the scattering process have yet to
decay or pair-annihilate into the SM particles. Therefore, this TðsÞ

R
should be regarded as a maximum value of the reheating
temperature.
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The reheating temperature is given by TR ¼
maxfTðdÞ

R ; TðsÞ
R g. Comparing Eq. (B5) and Eq. (B7), we

have TR ¼ TðsÞ
R when the condition (B8) is satisfied.

Provided gB−L < 1, when the condition (B8) is violated,
the inequality x > 1=g3B-L > gB-L follows and Eq. (B4) is
always satisfied. Thus as far as Eq. (B1) is satisfied,

TR ∼ Tðd1Þ
R < mϕ for gB−L ≳ mh

mZ0
: ðB9Þ

If Eq. (B1) is not satisfied, the decay process is forbidden,
and the reheating is only possible because of the scattering
process. Then, the condition (B8) must be satisfied so that

TR ¼ TðsÞ
R is non-zero.

APPENDIX C: S PRODUCTION DURING
REHEATING

In the body of the paper, we have considered the
production of the OðNÞ scalar particles after the reheating
is discussed. Here, we will consider the production during
the reheating of thermal inflation and show that it does not
surpass the production after the reheating.
Neglecting the Boltzmann suppression, the Boltzmann

equation for the energy density is given as

_ρS þ 4HρS ∼ Nλ2SHTρSM; ðC1Þ

where ρSM ∼ T4 and H ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρϕ=3M2

pl

q
¼ HRa−3=2 with

HR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρϕ=3M2

pl

q
jT¼TR

. ρSM first grows by its production

from coherent oscillation of ϕ, and then it is expected to
decrease with a scaling coefficient x as T ¼ TRa−x. After
the reheating, the coefficient approaches x ¼ 1. Since the
energy density of coherent oscillation behaves as a−3 and
ρϕ ∼ ρSM at TR, x is expected to be x < 3=4 so that ρSM <
ρϕ before TR.
Then, the Boltzmann equation becomes

dðρSa4Þ
da

∼
λ̃2SH
N

T5
R

HR
a

9
2
−5x ðC2Þ

and is solved as

ρS ∼ ρS;end

�
aend
a

�
4

þ dT4
Ra

−4

11=2 − 5x

�
a

11
2
−5x − a

11
2
−5x

end

�
ðC3Þ

with d defined in Eq. (106). Since 11
2
− 5x > 0, when the

reheating process ends at a ¼ 1, the energy density of
produced S is given by

ρSjT¼TR
∼ dT4

R ðC4Þ

because of aend ≪ 1. Thus the S particles produced early in
the reheating period are diluted and the ones produced

around a ¼ 1 is dominant, which justifies the analysis in
the body of the paper.

APPENDIX D: f f̄ → SS

In this Appendix, we consider production of S after the
secondary reheating via the process ff̄ → SS where f is a
SM fermion. The cross section is

σff̄→SSðsÞ ¼
y2fv

2λ2SH
64π

1

ðs −m2
HÞ2 þm2

HΓ2
H

s − 4m2
f

s
; ðD1Þ

where ΓH ¼ 4 MeV is the total decay width of the SM
Higgs. The thermal average is now given by

hσff̄→SSvi ¼
v2λ2SH

64πT2xK2ðxÞ2 × 4m2
f

×
Z

∞

1

dy
ðy − 1Þ2y−1=2

ðy −m2
H=ð4m2

fÞÞ2 þm2
HΓ2=ð4m2

fÞ2
× K1ð2x

ffiffiffi
y

p Þ; ðD2Þ
x ¼ mf=T; y ¼ s=ð4m2

fÞ: ðD3Þ

The Boltzmann equation is

_ρS þ 4HρS ¼ NThσff̄→SSvinfðTÞ2; ρSjT¼TR
¼ 0;

ðD4Þ
where

nfðTÞ ¼
Z

d3p
ð2πÞ3

1

eβEðpÞ þ 1
; EðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

f

q
:

ðD5Þ
In Fig. 7, we show the numerical calculations of Eq. (D4)
where the different colors correspond to the different values
of λ̃SH.

FIG. 7. Production of S via bb̄ after the reheating of thermal
inflation.
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