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New physics increasing the expansion rate just prior to recombination is among the least unlikely
solutions to the Hubble tension and would be expected to leave an important signature in the early
integrated Sachs-Wolfe (eISW) effect, a source of cosmic microwave background (CMB) anisotropies
arising from the time variation of gravitational potentials when the Universe was not completely matter
dominated. Why, then, is there no clear evidence for new physics from the CMB alone, and why does the Λ
cold dark matter (ΛCDM) model fit CMB data so well? These questions and the vastness of the Hubble
tension theory model space provide the motivation for general consistency tests of ΛCDM. I perform an
eISW-based consistency test of ΛCDM introducing the parameter AeISW, which rescales the eISW
contribution to the CMB power spectra. A fit to Planck CMB data yields AeISW ¼ 0.988� 0.027, in perfect
agreement with the ΛCDM expectation AeISW ¼ 1 and posing an important challenge for early-time new
physics, which I illustrate in a case study focused on early dark energy (EDE). I explicitly show that the
increase in ωc needed for EDE to preserve the fit to the CMB, which has been argued to worsen the fit to
weak lensing and galaxy clustering measurements, is specifically required to lower the amplitude of the
eISW effect, which would otherwise exceed ΛCDM’s prediction by ≈20%: this is a generic problem
beyond EDE that likely applies to most models enhancing the expansion rate around recombination. Early-
time new physics models invoked to address the Hubble tension are therefore faced with the significant
challenge of making a similar prediction to ΛCDM for the eISW effect while not degrading the fit to other
measurements in doing so.
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I. INTRODUCTION

The six-parameter Λ cold dark matter (ΛCDM) model
has proven to be extremely successful in explaining a
wide range of cosmological and astrophysical observa-
tions, including observations of the cosmic microwave
background (CMB), the clustering of the large-scale
structure (LSS), the magnitude-redshift relation of distant
type Ia supernovae (SNeIa), and light element abundan-
ces [1–10]. However, discrepancies between independent
inferences of cosmological parameters under the
assumption of ΛCDM might be a sign of the model’s
incompleteness and pave the way toward new physics:
this should not come as a surprise, given that several of
the ingredients of ΛCDM, not least the nature of the dark
sector, remain puzzling to date [11–13]. Among these
discrepancies, the most significant one is the “Hubble
tension,” which refers to a persisting mismatch between
several early- and late-time inferences of the Hubble
constant H0 [14–16].

The possibility that the Hubble tension calls for new
physics is being given very serious consideration in the
literature (see, e.g., Refs. [17–94]). This new physics
should be able to accommodate a higher value of H0 from
CMB data while complying with constraints from other
datasets: examples are baryon acoustic oscillations (BAOs)
[8,95,96] and Hubble flow SNeIa measurements [4], which
severely restrict the possibility of solving the Hubble
tension via global late-time new physics. These measure-
ments single out the least unlikely scenarios as those
operating at early times, prior to and around recombination,
and lowering the sound horizon at recombination by ≈7%
[97–103]. However, it is fair to say that none of the many
proposed new physics models have succeeded at the task of
solving the Hubble tension while at the same time not
degrading the fit to other datasets or worsening other
discrepancies.
The theory model space with regard to the Hubble

tension is extremely vast and, besides the few data-driven
indications discussed above, is short of a clear direction.
In this sense, two types of analyses can be very useful to
either point toward a definite direction toward which to
move or further restrict the set of viable directions:*sunny.vagnozzi@ast.cam.ac.uk

PHYSICAL REVIEW D 104, 063524 (2021)

2470-0010=2021=104(6)=063524(16) 063524-1 © 2021 American Physical Society

https://orcid.org/0000-0002-7614-6677
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.063524&domain=pdf&date_stamp=2021-09-15
https://doi.org/10.1103/PhysRevD.104.063524
https://doi.org/10.1103/PhysRevD.104.063524
https://doi.org/10.1103/PhysRevD.104.063524
https://doi.org/10.1103/PhysRevD.104.063524


(i) model-agnostic tests of new physics, and (ii) consistency
tests of the ΛCDM model.1 The analysis I will pursue in
this paper, while by construction focused more on (ii), will
contain a combination of these two features.
A non-negligible amount of early-time new physics needs

to be present around the time of recombination for it to solve
the Hubble tension [101]. One would therefore expect this
new physics to already show up in CMB data alone, even
before looking at localH0 measurements. The key question
motivating my analysis is then the following: Why is there
no clear evidence for new physics fromCMBdata alone?, or
this closely related question,Why does theΛCDMmodel fit
CMBdata sowell?While the twomight at first glance sound
like trivial questions, I believe that finding a clear answer to
them can teach us valuable general lessons not only on why
several early-time modifications toΛCDMultimately fail at
solving the Hubble tension, but perhaps also on which
direction(s) one should look toward in an attempt to
construct successful early-time new physics models.
Where should a non-negligible amount of early-time new

physics first show up in the CMB? The answer for many
models, I argue, has to do with the early integrated Sachs-
Wolfe (eISW) effect. The eISW effect is a contribution to
CMB anisotropies arising from time-varying gravitational
potentials at early times, immediately after recombination,
when the Universe was not entirely matter dominated
[106,107]. It is then not hard to understand why new physics
altering the expansion rate around recombination would
almost inevitably leave an important imprint on the eISW
effect. In fact, one can generically expect that many types of
early-time new physics models introduced to solve the
Hubble tensionwill enhance the amplitudeof the eISWeffect.
These considerations provide the motivation for a con-

sistency test of the ΛCDM model: to test whether its
predictions for the eISWeffect fit CMB data well. I perform
such a consistency test by introducing the parameter AeISW,
which artificially rescales the eISW contribution to the
CMB power spectra. This is closely reminiscent of the
better known Alens lensing amplitude, rescaling the ampli-
tude of lensing in the CMB power spectra [108]. Inferring a
value of AeISW that is strongly inconsistent with the
standard value AeISW ¼ 1 could be a clear sign of early-
time new physics in the CMB alone, whereas the converse
could present an important challenge for these models.
From a fit to the Planck 2018 CMB temperature and

polarization anisotropy measurements, I find AeISW ¼
0.988� 0.027, showing that ΛCDM’s prediction for the
amplitude of the eISWeffect is in perfect agreement with the
data. To illustrate the implications for early-time new
physics, I provide a case study focused on the well-known
early dark energy (EDE) model, one of the leading con-
tenders to solve the Hubble tension [17–42]. EDE’s success

hinges upon its ability to accommodate a higher value ofH0

while fitting CMB data as well asΛCDM. This comes at the
price of an increase in the cold dark matter (DM) densityωc,
which has been argued to worsen the fit to weak lensing
(WL) and galaxy clusteringmeasurements, possibly leading
to the demise of the EDE model as a solution to the Hubble
tension [25,30,31] (see, however, a partial rebuttal of these
results in Refs. [34,35]). I explicitly show that the increase in
ωc is required to lower the amplitude of the eISW effect,
which would otherwise be overpredicted by ≈20%, well
beyond what is allowed by the data.
The problems faced by EDE in the context of the eISW

effect, and the required increase in ωc, might actually more
generally be a stumbling block for several other early-time
new physics models proposed to solve the Hubble tension,
particularly if these models enhance the expansion rate
around recombination. It is in this sense that matching
ΛCDM’s prediction for the eISW effect presents an
important challenge for early-time new physics. While
not being a strict no-go theorem, these results place further
restrictions on the possibility of solving the Hubble tension
with early-time new physics alone and support recent
findings along a related line [109–115].
The rest of this paper is organized as follows. In Sec. II I

review the physics of the early ISW effect and discuss how
AeISW is introduced from a practical point of view, along-
side the impact of this parameter on the CMB power
spectrum. In Sec. III I discuss the datasets and analysis
methodology that I make use of. The results of this analysis
are presented in Sec. IV. The importance of these results in
the context of early-time new physics is investigated
through a case study focused on early dark energy in
Sec. V. Finally, in Sec. VI I provide concluding remarks. I
recommend that very busy readers skip to the key results
presented in Table I and Fig. 2, whereas slightly less busy
readers could also consult Table III and Fig. 4 if they are
interested in the extended parameter space results, or
Figs. 5 and 6 if they are interested in the early dark energy
case study.

II. EARLY ISW EFFECT

I work in the Newtonian gauge on a spatially flat
background where the perturbed line element is charac-
terized by the two scalar potentials Ψ and Φ: the former is
the Newtonian gravitational potential, i.e., the perturbation
to the metric element g00 ¼ −1 − 2Ψ, while the latter is the
perturbation to the metric element gij ¼ a2δijð1þ 2ΦÞ (see
Ref. [116] for a pedagogical discussion). I denote by Θ≡
δTγ=T̄γ the relative photon temperature shift, quantifying
the deviation of the CMB photon distribution from that of a
perfect blackbody, and by Θl the lth multipole moment of
Θ (after moving to Fourier space).
When one focuses on a given multipole l, ΘlðkÞ

receives contributions from several source terms,
1A particularly interesting consistency test of ΛCDM is via the

use of so-called metaparameters; see, e.g., Refs. [104,105].
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including the gravitational redshift of CMB photons at the
surface of last scattering (Sachs-Wolfe effect), Doppler
shifting, and CMB polarization. The effect I will be
interested in is the integrated Sachs-Wolfe (ISW) effect,
a contribution to the CMB anisotropies resulting from
time-varying gravitational potentials. Since gravitational
potentials are constant in a matter-dominated Universe,
the ISW effect can be active only (i) at early times, when
potentials decay in the presence of a non-negligible
radiation component, and (ii) at late times, when their
decay is due to the dark energy component responsible for
cosmic acceleration. The former contribution corresponds
to the eISW effect, while the latter corresponds to the late
ISW effect. In this paper, of the two I will be interested
only in the eISW effect.
To linear order in temperature perturbations, the con-

tribution of the eISW effect to ΘlðkÞ, which I denote by
ΘeISW

l ðkÞ, is given by

ΘeISW
l ðkÞ ¼

Z
ηm

0

dηe−τðηÞ½ _Ψðk; ηÞ − _Φðk; ηÞ�jlðkΔηÞ; ð1Þ

with η denoting conformal time, τðηÞ the optical depth to a
given conformal time, jl the spherical Bessel function of
order l, and Δη≡ η − η0, where η0 is the conformal time
today. Finally, ηm is the conformal time at an arbitrary point
deep inside the matter-domination era (the exact value of
ηm is irrelevant since gravitational potentials are constant in
a matter-dominated Universe).
The eISW effect is expected to be dominant around

recombination, when the contribution of radiation to the
Universe’s energy budget is still important. Because of this,
Eq. (1) can be approximated by setting the argument of jl
to kΔrec ≡ kðηrec − η0Þ, with ηrec the conformal time at
recombination. If I further make the approximation
Ψ ≈ −Φ, valid in the absence of anisotropic stress,
Eq. (1) is then well approximated by

ΘeISW
l ðkÞ ∝ 2jlðkΔrecÞ½Ψðk; ηmÞ −Ψðk; ηrecÞ�: ð2Þ

From Eq. (2) one sees that the eISW effect receives
contributions mainly from perturbations with wave number
k ∼ 1=ηrec. Combined with the fact that the eISW effect
adds in phase with the Sachs-Wolfe contribution to Θl (as
the two are multiplied by the same Bessel function), this
shows that the main consequence of the eISW effect is to
boost the height of the first acoustic peaks, the first one in
particular.
My goal is now to isolate the eISW contribution to CMB

power spectra, and to phenomenologically rescale this
contribution by a factor whose value will then be deter-
mined by the data. Throughout this paper, I will refer to this
factor as the “eISW amplitude” and will denote it by AeISW.
To do so, I multiply the integrand of Eq. (1) by a function
fðηÞ which takes the value AeISW if zðηÞ > zt ¼ 30, and 1

otherwise. The choice of zt ¼ 30 is purely phenomeno-
logical and dictated by the fact that the minimum of the
ISW source term occurs roughly for z ∼ 30. I have
explicitly checked that other reasonable choices of zt have
no effect on my results, insofar as zt is chosen to be deep
within the matter-dominated era.
Note that at least three earlier works previously intro-

duced AeISW, which was constrained using data from
WMAP7 and the South Pole Telescope (SPT) [117], from
the Planck 2015 data release [118], and finally from the
Planck 2018 temperature data alone [119]. It is, of course,
worth revisiting constraints on AeISW not only in light of the
Planck legacy data release (including polarization data, for
reasons discussed toward the end of Sec. IV, and assessing
the stability of the results against a different choice of high-
l Planck likelihood [120]), but especially with an eye
toward early-time new physics models, given their potential
to address the Hubble tension. Note, furthermore, that
AeISW bears close resemblance to the better known Alens, a
phenomenological scaling parameter which rescales the
amount of lensing in the CMB power spectra [108]. Planck
primary CMB measurements exhibit a ≳2σ preference for
Alens > 1 [5]: this “lensing anomaly” is not supported by
the amplitude of the Planck CMB lensing power spectrum
Cϕϕ
l reconstructed from the temperature four-point function

[121], or by the latest Atacama Cosmology Telescope
results [7], and might be the result of a statistical fluctuation
[120]. Much like Alens, AeISW is a purely phenomenological
scaling parameter: rather than as standard cosmological
parameters, AeISW and Alens should be viewed as consis-
tency test parameters.
In Fig. 1, I show the effect of varying AeISW on the CMB

temperature power spectrum while keeping all the other
cosmological parameters fixed. Relative to the standard
case AeISW ¼ 1, from Fig. 1 one sees that the main effect of
varying AeISW is to enhance (suppress) power for AeISW > 1
(AeISW < 1), with the change in power being most evident
for the first peak, as I anticipated earlier from Eq. (2). This
is clear from the bottom panel of Fig. 1, which shows that
the largest relative enhancement/suppression of power
occurs at multipoles l ∼ 100, i.e., around the first peak.
Varying AeISW also has a subdominant effect on the higher
acoustic peaks.
In the rest of this paper, rather than fixing AeISW to the

standard value AeISW ¼ 1, I will allow the eISW amplitude
to vary and let the data constrain this parameter, first within
a seven-parameter ΛCDMþ AeISW model, then within
extensions thereof. This will serve as an important con-
sistency test of ΛCDM. Inferring a value of AeISW con-
sistent with 1 would indicate that the ΛCDM prediction for
the eISWeffect fits the Planck data remarkably well, which
in turn could pose a challenge for early-time new physics.
Conversely, any deviation from AeISW ¼ 1 could provide
clues as to where and what kinds of early-time modifica-
tions are necessary or even allowed. This consistency test
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can therefore act as a signpost in the large theoretical
parameter space of proposed early-time modifications to
ΛCDM motivated by the Hubble tension.

III. DATASETS AND METHODOLOGY

In my baseline analysis, I make use of measurements
only of CMB temperature anisotropy and polarization
power spectra, as well as their cross spectra, from the
Planck 2018 legacy data release. In particular, I combine
the high-l Plik likelihood for TT (30 ≤ l≲ 2500) as
well as TE and EE (30 ≤ l≲ 2000), the low-l TT-only
(2 ≤ l < 29) likelihood based on the COMMANDER com-
ponent-separation algorithm in pixel space, and the low-l
EE-only (2 ≤ l < 29) SimAll likelihood [122]. This
combination is typically referred to as Planck TTTEEEþ
lowE by the Planck Collaboration, while I will refer to it as
Planck. Where deemed necessary, I will explicitly remind
the reader that it is the high-l Plik likelihood which I am
making use of, referring to the full CMB dataset as
Planck (Plik).
To assess the robustness of my results, I will also

consider combinations of the Planck dataset with the
following external datasets:
(a) Big bang nucleosynthesis (BBN) prior on 100ωb ¼

2.233� 0.036, informed by the latest improved meas-
urement of the rate of deuterium burning by LUNA
[10]. I refer to this dataset/prior as BBN.

(b) Baryon acoustic oscillation measurements from the
6dFGS [95], SDSS-MGS [96], and BOSS DR12 [123]
surveys. I refer to this dataset as BAO.

(c) Distance moduli measurements in the range 0.01 <
z < 2.3 from the Pantheon SNeIa sample [4]. I refer to
this dataset as Pantheon.

In particular, I will consider the constraints obtained within
the Planckþ BBN and Planckþ BAOþ Pantheon
dataset combinations, which I will then compare to the
Planck-only constraints.
Finally, to further assess the robustness of my results, I

replace the Plik TTTEEE likelihood with the CamSpec
12.5HMcl likelihood, which has access to a larger
sky fraction and hence is statistically more powerful (see
Ref. [120] for a detailed discussion). When the CamSpec
12.5HMcl likelihood is combined with the COMMANDER

low-l TT and SimAll low-l EE likelihoods, I refer to the
resulting combination as Planck (CamSpec).
In terms of models, I begin by considering a seven-

parameter model extending the six-parameter ΛCDM
model by allowing the eISW amplitude AeISW to vary. I
refer to this model as ΛCDMþ AeISW. I set a uniform prior
in the range AeISW ∈ ½0; 2�.
To assess the robustness of my results against extensions

of this minimal parameter space, I extend the ΛCDMþ
AeISW model by varying one or two additional parameters
which are otherwise fixed to standard values. In particular,
the following parameters are varied in addition to the seven
standard ones:
(a) The effective number of relativistic degrees of freedom

Neff , which is otherwise fixed at Neff ¼ 3.046.
(b) The primordial helium abundance YP, otherwise fixed

at the value obtained from standard BBN, given the
values of ωb and Neff (in other words, when varying
YP, I set bbn_consistency=F).

(c) The lensing amplitude Alens, which is otherwise fixed
at Alens ¼ 1.

(d) The running of the scalar spectral index αs ≡ dns=
d ln k, which is otherwise fixed at αs ¼ 0.

(e) The running of the scalar spectral index βs≡
dαs=d ln k ¼ d2ns=dðln kÞ2, which is otherwise fixed
at βs ¼ 0.

Therefore, I consider in total five extended models.
Uniform priors are set on Neff ∈ ½0; 10�, YP ∈ ½0.1; 0.5�,
Alens ∈ ½0; 10�, αs ∈ ½−1; 1�, and βs ∈ ½−1; 1�, as done by
the Planck Collaboration. Note that when βs is varied, I
vary αs as well.
Theoretical predictions for the CMB power spectra

and the background expansion are obtained using the
Boltzmann solver CAMB [124]. I use Monte Carlo
Markov chain (MCMC) methods to sample the posterior
distributions for the parameters of the six cosmological
models considered (ΛCDMþ AeISW as well as the five
extensions thereof), using the cosmological sampler
CosmoMC [125] to generate the MCMC chains. I assess

FIG. 1. Impact of varying AeISW on the CMB temperature
anisotropy power spectrum. Upper panel: CMB temperature
anisotropy power spectrum for different values of AeISW, speci-
fied by the color coding, with the black curve corresponding to
the standard case AeISW ¼ 1. Notice that, as standard in the field,
plotted on the y axis is T2

CMBD
TT
l ≡ T2

CMBlðlþ 1ÞCTT
l , with

TCMB ≈ 2.725 K the CMB temperature today. Bottom panel:
relative differences between the power spectra shown in the upper
panel, relative to the baseline AeISW ¼ 1 power spectrum, with the
color coding used in the upper panel. It is clear that varying AeISW
mostly affects scales around the first acoustic peak, with AeISW >
0 (AeISW < 0) enhancing (suppressing) power.
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the convergence of theMCMC chains by using the Gelman-
Rubin parameter R − 1 [126] and set the requirement R −
1 < 0.03 for theMCMC chains to be considered converged.

IV. RESULTS

I begin by discussing the results obtained within the
baseline seven-parameter ΛCDMþ AeISW model from the
Planck (Plik) dataset alone. In this case, I find AeISW ¼
0.988� 0.027 at 68% confidence level (C.L.), which is
perfectly consistent with the standard ΛCDM expectation
of AeISW ¼ 1. The inferred values of the other six param-
eters are reported in Table I (right column) and compared to
their values inferred within the ΛCDM model (where
AeISW ¼ 1 is fixed).
From Table I, it is clear that the inferred values of all 6

ΛCDM parameters are extremely stable against the exten-
sion where AeISW is allowed to vary, with their uncertainties
in most cases barely increasing. This result indicates a
simple but very important fact: ΛCDM’s prediction for the

amplitude of the eISW effect agrees perfectly with the
Planck data. Conversely, as far as the eISW effect is
concerned, there is no obvious sign or need for new physics
beyond ΛCDM. As I discussed earlier, and will discuss
again later in the context of EDE, this simple observation
has important consequences for early-time modifications to
ΛCDM, including modifications motivated by attempts to
solve the Hubble tension.
The largest parameter shifts are observed for the two

parameters most strongly correlated with AeISW, i.e., ωb and
ns, which, however, shift by no more than 0.3σ when one
allows AeISW to vary. In particular, I find AeISW to be
negatively correlated with ωb and positively correlated with
ns. Overall, the most noticeable effect of allowing AeISW to
vary is a ≈30% broadening of the uncertainty on ωb. The
reason why AeISW is most strongly correlated with ωb and
ns can be understood by recalling the effect of these two
parameters on the CMB temperature power spectrum (see,
e.g., the top right and bottom left panels of Fig. 4.5 of
Ref. [127]). Increasing ωb increases the relative odd/even
peak height, with the effect being most noticeable espe-
cially for the first peak: the effect is therefore similar to that
of increasing AeISW, which explains the negative correlation
between these two parameters. Similarly, increasing ns
reduces power on large angular scales (while increasing it
on small angular scales), an effect which for scales around
the first peak is similar to that of decreasing AeISW,
explaining the positive correlation between these two
parameters. Moreover, the mild positive correlation
existing between ωb and ns within ΛCDM is considerably
reduced, to the extent of there being almost no correlation,
when one varies AeISW.
I now assess the robustness of my results against (i) the

inclusion of additional external datasets, or (ii) the use of
the CamSpec likelihood in place of Plik in analyzing the
high-l Planck measurements. The results are summarized
in Table II. When one adds the BBN prior on ωb to the
baseline Planck dataset, the largest improvement is, as
expected, for ωb, whose uncertainty decreases by ≈10%,
with the BBN prior cutting out part of the parameter space

TABLE II. 68% C.L. constraints on the cosmological parameters of the seven-parameterΛCDM þ AeISW model obtained from various
datasets/dataset combinations, as indicated in the upper section of the Table.

ΛCDM þ AeISW

Parameter Planck (Plik) Planck (CamSpec) Planckþ BBN Planck þ BAOþ Pantheon

100ωb 2.241� 0.020 2.219� 0.020 2.239� 0.018 2.251� 0.020
ωc 0.1203� 0.0014 0.1197� 0.0013 0.1203� 0.0013 0.1192� 0.0010
θs 1.0409� 0.0003 1.0411� 0.0003 1.0409� 0.0003 1.0410� 0.0003
τ 0.0541� 0.0078 0.0527� 0.0083 0.0548� 0.0076 0.0557� 0.0081
lnð1010AsÞ 3.046� 0.016 3.038� 0.017 3.047� 0.016 3.047� 0.016
ns 0.963� 0.005 0.969� 0.006 0.964� 0.005 0.966� 0.005
AeISW 0.988� 0.027 1.016� 0.027 0.993� 0.025 0.986� 0.027
H0ðkm=s=MpcÞ 67.28� 0.62 67.37� 0.57 67.26� 0.56 67.80� 0.47
Ωm 0.317� 0.009 0.314� 0.008 0.317� 0.008 0.310� 0.006

TABLE I. 68% C.L. constraints on the cosmological parame-
ters of the six-parameter ΛCDM (left column) and seven-
parameter ΛCDMþ AeISW (right column) models, obtained from
the Planck (Plik) dataset alone. The eISW amplitude AeISW is
fixed to the standard value AeISW ¼ 1 within the ΛCDM model.
The final two rows are separated from the previous rows to
highlight the fact that the two associated parameters (H0 and Ωm)
are derived parameters.

Planck

Parameter ΛCDM ΛCDMþ AeISW

100ωb 2.235� 0.015 2.241� 0.020
ωc 0.1202� 0.0013 0.1203� 0.0014
θs 1.0409� 0.0003 1.0409� 0.0003
τ 0.0544� 0.0078 0.0541� 0.0078
lnð1010AsÞ 3.045� 0.016 3.046� 0.016
ns 0.965� 0.004 0.963� 0.005
AeISW 1.0 0.988� 0.027
H0ðkm=s=MpcÞ 67.26� 0.57 67.28� 0.62
Ωm 0.317� 0.008 0.317� 0.009
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at higher ωb. Given the direction of the AeISW − ωb
degeneracy discussed earlier, this results in part of the
parameter space at lower AeISW being cut, as well as the
corresponding parameter uncertainty slightly decreasing.
From the Planck+BBN dataset combination, I infer
AeISW ¼ 0.993� 0.025, which further improves the con-
sistency with the standard value AeISW ¼ 1.
Qualitatively similar results are obtained when one

considers the Planck+BAO+Pantheon dataset combination.
While larger parameter shifts are observed than in the
previous case, these remain small overall, and still well
below the 1σ level. In particular, I infer AeISW ¼ 0.986�
0.027, which is still perfectly consistent with the standard
value AeISW ¼ 1.
Finally, I again consider the Planck data alone,

but this time adopt the CamSpec likelihood in place of
the Plik high-l (TTTEEE) one. In this case, I find larger
parameter shifts, although again these all remain relatively
small, always below the 1σ level. The magnitudes of
these shifts are consistent with those reported by the
Planck Collaboration [5] and investigated in Ref. [120].
The largest observed shift is a ≈0.8σ shift toward lower
values of ωb. Again, given the previously discussed mutual
degeneracies between ωb, ns, and AeISW, this shift in ωb is
unsurprisingly accompanied by correlated shifts in ns and
AeISW toward larger values. Overall, the inferred value of

AeISW ¼ 1.016� 0.027 remains in excellent agreement
with the standard value AeISW ¼ 1.
The main message is therefore that the Planck-only

result, which sees remarkable consistency between the
inferred value of AeISW ¼ 0.988� 0.027 and the standard
value of AeISW ¼ 1, is very stable against (i) the addition of
external datasets (BBN and BAO+Pantheon), and (ii) the
choice of high-l Planck likelihood (Plik or CamSpec).
A visual representation of these results is given in Fig. 3,
where I plot the 1D marginalized AeISW posterior distri-
butions within the ΛCDMþ AeISW model given all the
dataset combinations/choices discussed.
I now assess the robustness of the previous results

against extended parameter spaces, considering the one-
and two-parameter extensions discussed in Sec. III.
The results are reported in Table III, which focuses only
on ωb, ns, AeISW, and, of course, the additional parameters
themselves. I have chosen to varyNeff, YP, Alens, αs, and βs,
as these are the parameters I expect to be the most strongly
correlated with AeISW (for reasons similar to those pre-
viously discussed for ωb and ns).
Overall, I find that the inferred value of AeISW is very

stable against these extensions. The largest shifts are
observed when one allows Alens to vary. This is hardly
surprising given that the Planck data appear to show a
moderate preference for Alens > 1: this lensing anomaly
(and the closely related apparent preference for a spatially
closed Universe from Planck primary CMB data) is an

FIG. 2. Triangular plot showing 2D joint and 1D marginalized
posterior probability distributions for the eISW amplitude AeISW,
the physical baryon density ωb, and the scalar spectral index ns,
obtained from a fit to the Planck dataset. The blue contours are
obtained within the seven-parameter ΛCDM þ AeISW model,
while the red contours are obtained within the six-parameter
ΛCDMmodel, where AeISW is fixed to AeISW ¼ 1, as indicated by
the vertical red line.

FIG. 3. One-dimensional marginalized normalized posterior
distribution for AeISW, obtained within the baseline seven-param-
eter ΛCDMþ AeISW model, from four different datasets/dataset
combinations: the baseline Planck data using the high-l Plik
likelihood (blue curve); a combination of Planck and a BBN prior
on ωb (black curve); a combination of Planck with late-time BAO
and Pantheon Hubble flow SNeIa measurements (red curve); and
the baseline Planck data, where the high-l Plik likelihood is
replaced by the CamSpec one (green curve). It is clear that the
inferred value of AeISW is very stable overall against these choices
of datasets/dataset combinations.

SUNNY VAGNOZZI PHYS. REV. D 104, 063524 (2021)

063524-6



issue which is well known and well documented in the
literature (see, e.g., Refs. [120,122,128–140]). However,
even within the ΛCDMþ AeISW þ Alens model, the asso-
ciated parameter shifts relative to the ΛCDMþ AeISW
model (with Alens ¼ 1 fixed) remain small. The largest
observed shift is for ωb, which increases by ≈1σ. On the
other hand, AeISW decreases by ≈0.3σ to AeISW ¼ 0.975�
0.027 but still remains perfectly consistent with the
standard value AeISW ¼ 1 within better than 1σ.
Shifts of comparable magnitude are observed in ns and

AeISW when one allows αs and βs to vary. In particular,
within the ΛCDMþ AeISW þ αþ βs model, I infer
AeISW ¼ 0.978� 0.030, which also remains perfectly con-
sistent with the standard value AeISW ¼ 1within better than
1σ, accompanied by ≈1σ hints for nonzero βs. As discussed
in Ref. [141], the 1σ hint for nonzero βs, already reported
by the Planck Collaboration [5], is due to the fact that a
positive βs provides a slightly better fit to the low-l part of
the CMB power spectrum. While it remains consistent with
αs ¼ 0 within 1σ, the slight preference for negative αs
when this parameter is varied and βs is fixed is instead
related to the mild tensions between high-l and low-l
multipoles in the CMB temperature power spectrum, as
discussed in Refs. [5,142].
Overall, the main message here is that the inferred value

of AeISW, being highly consistent with the standard value
AeISW ¼ 1 obtained within the baseline ΛCDMþ AeISW
model, is very stable against the minimal one- and two-
parameter extensions I have studied. A visual representa-
tion of these results is given in Fig. 4, where I plot the 1D
marginalized AeISW posterior distributions obtained from
the Planck dataset given the baseline and extended models
considered.
These results place important restrictions on early-time

new physics models, for instance, those invoked to address
the Hubble tension. Clearly, in order to fit the CMB data
well, these models will need to make a prediction for the
eISW effect which is similar to, or at least not too distant
from, that of ΛCDM. Since a non-negligible amount of
early-time new physics is required to significantly alleviate

the Hubble tension, the resulting impact on the eISWeffect
is expected to be equally non-negligible, thereby posing a
significant challenge to these models. One possible solution
is that of shifting the values of some of the standard ΛCDM
parameters (such as ωc) in order to readjust the eISW
amplitude, a shift which, however, may come at the price of
degrading the fit to other datasets. In the following section,
I will provide a case study of early dark energy, with the
goal of illustrating the challenges that it faces in relation to
the eISW effect, as anticipated in Sec. I.
Note that at least three earlier works previously intro-

duced AeISW, constrained to AeISW ¼ 0.979� 0.055 from

TABLE III. As in Table II, but focused on one- and two-parameter extensions of the baseline seven-parameter ΛCDMþ AeISW model,
with the extra parameters being the effective number of relativistic species Neff , the primordial helium fraction YP, the lensing amplitude
Alens, the running of the scalar spectral index αs, and the running of the running of the scalar spectral index βs. Note that whenever βs is
varied, αs is varied as well. These extra parameters are indicated by X in the parameters column. The row labeled “X (AeISW ¼ 1)”
reports constraints on the extra parameter(s) X within the seven- or eight-parameter ΛCDMþ X model, where AeISW is fixed to the
standard value AeISW ¼ 1.

Planck

Parameter ΛCDMþ AeISW þNeff þYP þAlens þαs þαs þ βs

100ωb 2.241� 0.020 2.225� 0.028 2.234� 0.025 2.275� 0.024 2.243� 0.020 2.243� 0.021
ns 0.963� 0.005 0.958� 0.009 0.961� 0.008 0.969� 0.005 0.963� 0.006 0.958� 0.007
AeISW 0.988� 0.027 0.994� 0.029 0.991� 0.029 0.975� 0.027 0.992� 0.027 0.978� 0.030
X � � � 2.89� 0.19 0.239� 0.013 1.192� 0.065 −0.006� 0.007 0.005�0.011;0.017�0.014
X (AeISW ¼ 1Þ � � � 2.92� 0.19 0.240� 0.013 1.180� 0.065 −0.006� 0.007 0.001�0.010;0.012�0.013

FIG. 4. One-dimensional marginalized normalized posterior
distribution for AeISW, obtained from the Planck data, within
the baseline seven-parameter ΛCDMþ AeISW model (blue
curve), as well as extensions where the following parameters
are allowed to vary as well: the effective number of relativistic
species Neff (red curve), the helium fraction YP (green curve), the
lensing amplitude Alens (black curve), the running of the scalar
spectral index αs (magenta curve), and both the running αs and
the running of the scalar spectral index βs (cyan curve). It is clear
that the inferred value of AeISW is very stable overall against these
parameter space extensions.
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WMAP7þ SPT [117], to AeISW ¼ 1.06� 0.04 from the
Planck 2015 temperature and large-scale polarization data
[118], and to AeISW ¼ 1.064� 0.042 from the Planck 2018
temperature data alone [119]. It is, of course, worth
revisiting these constraints (i) in light of the full Planck
2018 legacy release data (including polarization data and
assessing the stability of the results against a different choice
of high-l Planck likelihood [120]), and (ii) in view of the
Hubble tension and the possible implications of the results
for early-time new physics. Concerning (i), particularly
crucial are the inclusion of small-scale TTTEEE polarization
data, and the significant improvements which led to the
SimAll large-scale EE likelihood. As discussed in detail in
Ref. [143], the TE cross spectrum is remarkably good at
constraining ωb, while the EE power spectrum is extremely
good at constraining ωb, ωc, and ns, and, in particular, at
breaking the ωb − ns degeneracy (due to the fact that the
amplitude of the EE power spectrum is sensitive to c2s , the
square of the photon-baryon sound speed). This is particu-
larly true when the TE and EE spectra are combined with
measurements of the TT power spectrum, as this combina-
tion is very efficient at breaking degeneracies between the
main cosmological parameters. However, EE alone is
already able to constrain ωb, ωc, and ns as well as or better
than TT, even at a lower signal-to-noise level [143].
For the reasons discussed above, the use of the

latest large- and small-scale polarization data included
in this analysis is crucial to further improving the con-
straints on AeISW. This results in an uncertainty which is
reduced by up to a factor of 2 compared to the results of the
previously published Refs. [117–119], while the central
value of AeISW is also in better agreement with the standard
value AeISW ¼ 1.
Future Stage III and Stage IV CMB experiments (mostly

ground based) will significantly improve CMB power
spectrum measurements compared to Planck, especially
insofar as the E-mode power spectrum is concerned,
significantly improving constraints on the base ΛCDM
parameters. As far as ωb and ns are concerned, their
determinations will improve by up to a factor of 2 for
stage III experiments such as Simons Observatory (see
Table 3 of Ref. [144]) and by up to a factor of 3 or more for
planned stage IV experiments such as CMB-S4 (see
Table 8-1 of Ref. [145]). While a fully fledged forecast
is beyond the scope of this paper, I expect comparable
improvements in the achievable AeISW sensitivity. This
means that AeISW might potentially be inferred to ≲1%
precision from stage IV experiments: this would set even
more important limits on the extent to which early-time
new physics can operate.

V. EARLY ISW EFFECT AND NEW PHYSICS:
CASE STUDY WITH EARLY DARK ENERGY

In this section, I will discuss how the previous
results affect early-time new physics in practice. For

convenience, I will present a case study focused on the
eISW effect in EDE models (see, e.g., Refs. [17–42] for
examples of EDE models). The arguments I will present in
this section, however, are likely to apply more broadly
than just to EDE, but more generally to most models
whose effect is to enhance the expansion rate around
recombination.
Early dark energy is among the most promising (or

“least unlikely” in the words of Ref. [101]) proposed
solutions to the Hubble tension. EDE falls within a class
of models which increase the expansion rate just prior to
recombination. This reduces the sound horizon at last
scattering, allowing for a higher H0 from CMB data
without running afoul of late-time constraints from BAO
and Hubble flow SNeIa. In the implementation I will
consider here, the role of EDE is played by an ultralight
scalar field with mass of order Oð10−27Þ eV. At early
times, the field is displaced from the minimum of its
potential while being held in place by Hubble friction,
therefore behaving as an effective dark energy component.
Once the expansion rate drops below the mass of the
field, Hubble friction is no longer important and the
field is free to roll down the potential and oscillate
around the minimum. If the potential around the minimum
is sufficiently steep (in particular, steeper than quartic),
EDE then redshifts faster than radiation and rapidly
becomes a subdominant component of the Universe’s
energy budget.
Consider an EDE axion-like field ϕ, i.e., a pseudoscalar

enjoying a global Uð1Þ shift symmetry, broken by non-
perturbative effects generating a potential VðϕÞ, which in
turn dictates the dynamics of the EDE field.2 Here I will
consider a potential of the form

VðϕÞ ¼ m2f2
�
1 − cos

�
ϕ

f

��
n
; ð3Þ

where m is a mass scale and f is the EDE decay
constant, at which the global Uð1Þ symmetry is
broken. A potential of this form requires a careful fine-
tuning of the hierarchy of instanton actions [151,152], but
for integer values of n the fine-tuning is restricted to the
first n terms. I will fix n ¼ 3, as this is the minimum
integer value which allows EDE to redshift faster than
radiation once the field reaches the minimum of the
potential. At its minimum, the potential is locally
V ∝ ϕ6, so the subsequent effective equation of state of
EDE is wEDE ¼ 1=2. The dynamics of the EDE field in an
expanding Universe is governed by the Klein-Gordon
equation as follows:

2This type of EDE field could arise from the so-called string
axiverse [146–150], featuring multiple axionlike particles span-
ning various decades in mass.
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ϕ̈þ 3H _ϕþ dVðϕÞ
dϕ

¼ 0; ð4Þ

with the dot denoting a derivative with respect to time.
The cosmological dynamics of this EDE model are

more simply described in terms of three parameters: the
initial field displacement (or misalignment angle)
θi ¼ ϕi=f, with ϕi being the initial value at which ϕ is
held by Hubble friction, as well as the “critical redshift” zc
and the “EDE fraction” fEDE. More specifically, at the
critical redshift zc, which approximately corresponds
to the moment just before the field starts to oscillate
around its minimum, EDE provides its maximum frac-
tional contribution to the energy budget of the Universe
fEDE ≡ ρEDEðzÞ=ð3M2

PlH
2ðzÞÞjz¼zc , with ρEDEðzÞ and MPl

being the EDE energy density and reduced Planck mass,
respectively. Alleviating the Hubble tension requires an
EDE fraction of order fEDE ≃ 10%.
To illustrate the issues EDE faces in relation to the eISW

effect, I will consider a numerical example closely follow-
ing that of Ref. [25] which focuses on n ¼ 3 EDE. I will
compare EDE to ΛCDM, with the parameters of both
models in this numerical example being summarized in
Table IV. The EDE parameters (right column) are set to
their best-fit values as determined from a fit to Planck,
BAO, Pantheon, and redshift-space distortions measure-
ments, alongside a SH0ES prior on H0, as reported in
Ref. [18]. The key to the success of the EDE proposal is its
ability to accommodate a higher value of H0 while fitting
the CMB power spectra as well as ΛCDM (with a lower
H0). In the context of this numerical example, the ΛCDM
parameters (left column) are chosen so that the resulting
CMB power spectra are essentially indistinguishable from
those within the EDE model.
As can clearly be seen from Table IV, and as already

noted elsewhere (see, e.g., Refs. [18,25]), the fact that EDE
can accommodate a higher H0 while preserving the fit to
CMB data comes at the cost of important shifts in some of
the standard ΛCDM parameters. In particular, both ωc and
ns need to increase, rather substantially in the case ofωc. To
show the importance of the increase in ωc, in Fig. 5 I show
the resulting ΛCDM and EDE temperature power spectra,
with parameters as given in Table IV, with the EDE model
with low (high) ωc given in the left (right) panel. The
corresponding bottom panels show the relative differences
in the EDE power spectrum relative toΛCDM. Figure 5 has
been produced using CLASS_EDE [25],3 a modified
version of the Boltzmann solver CLASS [153].
In Fig. 5 we see that an EDE model with low ωc predicts

excess power, particularly around the first acoustic peak,
and more generally for all multipoles l≳ 100. The power
spectrum of the EDE model with high ωc, however, is
essentially indistinguishable from the ΛCDM one. In both

models, the slight decrease of power at large scales
(l≲ 30) is swamped by cosmic variance and hence
virtually impossible to observe. Analogous effects are
observed in the CMB polarization power spectra and
temperature-polarization cross spectra, which for concise-
ness I do not show here.
The physical origin of the shift in ωc can be traced

back to the effect of EDE during the time when its
contribution to the Universe’s energy budget is non-
negligible. During this time, the increase in the expansion
rate brought upon by EDE suppresses the growth of
perturbations: this is analogous to how cosmic acceler-
ation at late times also suppresses the growth of structure.
To preserve the fit to the CMB power spectra, this needs to
be accompanied by an increase in ωc which compensates
for the decreased efficiency in the growth of the structure.4

The increase in ωc, however, directly increases the late-
time amplitude of the matter fluctuations σ8, exacerbating
the discrepancy between CMB and WL probes, and
degrading the fit to LSS clustering data. This degraded
fit to WL and LSS data ultimately limits the success of the
EDE proposal in solving the Hubble tension [25,30,31]
(see, however, a partial rebuttal of these results in
Refs. [34,35]).
Here, I will show that these shifts in ωc are essentially

required to preserve the amplitude of the eISW effect
predicted by ΛCDM, which perfectly fits the Planck data,
as per my earlier results discussed in Sec. IV, inferring that
AeISW is remarkably consistent with the standard value
AeISW ¼ 1. Let us focus on the EDE model with low ωc,
which I argue increases the amplitude of the eISW effect

TABLE IV. Values of the cosmological parameters used in the
numerical example comparing ΛCDM against two EDE models
in Sec. V (see Figs. 5 and 6). The difference between the two
EDE models is in the value of the physical cold DM density ωc,
which is fixed to ωc ¼ 0.1320 in the “high” case (middle
column), and to ωc ¼ 0.1177 (as in the ΛCDM model it is being
compared against) in the “low” case (right column).

Parameter ΛCDM EDE (high ωc) EDE (low ωc)

100ωb 2.253 2.253 2.253
ωc 0.1177 0.1322 0.1177
H0ðkm=s=MpcÞ 68.21 72.19 72.19
τ 0.085 0.072 0.072
lnð1010AsÞ 3.0983 3.0978 3.0978
ns 0.9686 0.9889 0.9889
fEDE � � � 0.122 0.122
log10 zc � � � 3.562 3.562
θi � � � 2.83 2.83
n � � � 3 3

3Available at github.com/mwt5345/class\_ede.

4A smaller increase in ns is instead also needed to compensate
for the scale-dependent suppression of growth due to the fact that
EDE is dynamically relevant for only a short amount of time.
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compared to ΛCDM (with the same value of ωc). This
comes about for two reasons, working at the perturbation
and background levels, respectively:
(a) At the perturbation level, the EDE-induced suppres-

sion of the growth of perturbations is accompanied by
a related enhanced decay of the gravitational potentials
Φ andΨ, which decay more quickly than they would if
the Universe were filled with radiation alone. This
leads to a scale-dependent enhancement of the eISW
effect. The increase in ωc helps counteract this
enhanced decay of the gravitational potentials.

(b) At the background level, the presence of an extra
component delays the onset of matter domination.
This increases the time over which gravitational
potentials vary with time, leading to a global enhance-
ment of the eISW effect. The increase in ωc helps
counteract this effect by anticipating the onset of
matter domination.

Note that the two effects are similar in that increasing the
energy density of dark energy at late times enhances the
decay of gravitational potentials and anticipates the onset of
dark energy domination, leading to an enhanced late ISW
effect, visible in the low-l part of CMB temperature power
spectrum or, more clearly, in cross-correlations between
CMB and LSS probes [154–158]. The first of the two
points above, i.e., the excess decay of the Weyl potential
Φ − Ψ, was first pointed out in the context of an EDE-type
model in Ref. [54]; see also Sec. III. E and Fig. 8 of
Ref. [29] in the context of the related new EDE (NEDE)
model (the different sign convention in the perturbed line
element means that the Weyl potential in Ref. [29] is given
by Φþ Ψ rather than Φ −Ψ).

Besides these two physical effects enhancing the eISW
amplitude, there is potentially a third effect which comes
into play purely at the perturbation level. As first pointed
out in Refs. [29,54], once EDE starts decaying, the
decaying fluid supports its own acoustic oscillations, which
in turn source the gravitational potential. The subsequent
Jeans stabilization of these acoustic oscillations then leads
to an enhanced decay of the Weyl potential, which in turn
enhances the eISWeffect. This effect can be clearly seen in
Fig. 8 of Ref. [29] to the right of the vertical dotted line
(whereas the previous two effects show up to the left
thereof). It is worth noting that, while the previous two
physical effects apply to generic EDE implementations, this
third effect is significantly more model dependent and
depends on specific details of the EDE model, such as
sound speed, perturbation mode, trigger dynamics, and
viscosity parameter.
To confirm that the observed shifts in ωc are indeed

required to reduce the amplitude of the eISW effect, I
produce plots comparing ΛCDM and EDE that are analo-
gous to those in Fig. 5, this time isolating the eISW
contribution to the CMB temperature power spectrum,
CTT;eISW
l . The result is shown in Fig. 6, from which one

clearly sees that an EDE model with low ωc (left panel)
predicts an enhanced eISW effect on all scales. In particu-
lar, I find a nearly 20% excess in the eISW power on
multipoles l≲ 500 that is particularly evident around the
scale of the first peak (see the left panel of Fig. 5). Raising
ωc (right panel) considerably suppresses this effect, leading
to an excess in eISW power at the Oð3%Þ level, which in
turn significantly improves the fit to the CMB temperature

FIG. 5. CMB temperature anisotropy power spectra for ΛCDM and early dark energy (EDE). Top left panel: CMB temperature
anisotropy power spectrum for a ΛCDM model (black curve) with parameters given by the left column of Table IV, and for an EDE
model (red curve) with parameters given by the middle column of Table IV, where, in particular, the physical cold DM density is fixed to
the low value ωc ¼ 0.1177. Bottom left panel: relative differences between the EDE and ΛCDM power spectra shown in the upper
panel, with the former clearly predicting an excess of power compared to the latter, particularly around the scale of the first peak. Right
panel: as in the left panel, but with the EDE parameters given by the right column of Table IV, where, in particular, the physical cold DM
density is fixed to the high value ωc ¼ 0.1320. As the lower panel shows, this increase in ωc makes the two power spectra nearly
indistinguishable.
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power spectrum, leading to predictions which are essen-
tially indistinguishable from those of ΛCDM (see the right
panel of Fig. 5).
As my earlier results in Sec. IV have shown, a Oð20%Þ

increase in the eISW effect is excluded at >5σ by the
Planck measurements, and therefore needs to be counter-
acted by means of shifts in some of the standard ΛCDM
parameters, in this case ωc. My results in this section,
particularly Fig. 6, therefore show that, if the increase in ωc
(and the corresponding worsened fit to WL and LSS data)
leads to the demise of the EDE scenario in terms of solving
the Hubble tension (modulo the rebuttal arguments dis-
cussed in Refs. [34,35]), it is really the eISW effect which
ultimately is to blame. More precisely, what is to “blame” is
the fact that ΛCDM’s prediction for the eISW effect is in
excellent agreement with the Planck measurements, which
show no obvious evidence for new physics at early times.
Are the EDE-specific arguments presented here more

general, i.e., do they apply more generally to other early-
time new physics scenarios? I believe that the answer is yes,
at least insofar as this early-time new physics increases the
expansion rate around recombination. In fact, from very
general considerations one can expect that this type of
early-time new physics will (i) lead to a decay of the
gravitational potentials (much like dark energy at late
times), and (ii) slow down the growth of perturbations.
To confirm this, one should solve the equation governing
the time evolution of gravitational potentials, which is
generically given by (see, e.g., Ref. [159])

k2Φþ 3Hð _ϕ − 3HΨÞ ¼ 4πGa2
X
i

ρiδi; ð5Þ

withH being the conformal Hubble rate,G being Newton’s
constant, a being the scale factor, the dot denoting a

derivative with respect to conformal time η, and the
sum on the right-hand side running over all components
contributing to the Universe’s energy budget, with
energy densities and density contrasts given by ρi and δi,
respectively. Approximate solutions to Eq. (5) are known
only for idealistic situations where the Universe is domi-
nated by a single component, e.g., deep in the matter era
[ΦðηÞ ¼ const] or deep in the radiation era (ΦðηÞ ∝
½sinðηÞ − η cosðηÞ�=η3). In all other situations, including
the simultaneous presence of radiation, matter, and a new
component at early times (such as EDE), Eq. (5) needs to be
solved numerically. However, given the form of Eq. (5), it is
reasonable to expect that any component whose effect is to
speed up (even if only slightly) the expansion of the
Universe, and hence raise H, will contribute to the decay
ofΦ, which in itself is already decaying during the radiation-
dominated era, thus enhancing the eISW effect.
Similarly, the equation for the growth of matter pertur-

bations δ does not take a simple closed form in a generic
Universe where radiation, matter, and a new component at
early times are simultaneously present. However, if the new
component is subdominant, the equation governing δ
should approximately reduce to the form

δ̈þ
_δ

η
¼ Sðk; ηÞ; ð6Þ

with the source term Sðk; ηÞ given by

Sðk; ηÞ ¼ −3Φ̈þ k2Φ −
3 _Φ
η

: ð7Þ

Given the previous considerations on the behavior of Φ in
the presence of a new component speeding up the

FIG. 6. Like Fig. 5 but focusing on the early ISW (eISW) contribution to the CMB temperature anisotropy power spectrum. It is clear
that the increase in ωc significantly decreases the excess eISW contribution on most scales of interest. Note that the x axis covers
multipoles only in the range 50 < l < 300, where the eISW effect is most prominent, as shown in Fig. 1.
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expansion of the Universe, and the form of Eqs. (6) and (7),
one can generically expect δ to grow more slowly in the
presence of such a component.
I wish to clarify that the arguments presented above

concerning the enhanced decay of potentials and
reduced growth of perturbations are not a rigorous
no-go theorem, nor is it my intention to elevate them
to such a degree. While I expect these arguments to hold
generically for models which decrease the sound hori-
zon by introducing a new dark energy–like component,
or in any case through a speedup of the expansion of the
Universe around recombination, I stress that the validity
of these conclusions should be checked on a case-by-
case basis for each given model. Note that a similar
argument (at a similar level of rigor) was also presented
in Ref. [25]. In any case if, as I expect, these arguments
apply more generically to models beyond EDE, I
would also expect these models to have to compensate
for the enhanced eISW effect. The most direct, but by
no means only, way of doing so would be to raise
ωc, which, however, would exacerbate the S8 discrep-
ancy,5 worsening the fit to WL and LSS clustering
measurements and possibly leading to the demise of
these models.
However, model-dependent aspects make it important

to assess the details of early-type models on a case-by-
case basis to judge their prospects. Specific early-type
models may be able to introduce ingredients which can
at least partially counteract the enhanced eISW effect.
The NEDE model is an example in this sense (see the
discussion in Ref. [33]), as it does not significantly
worsen the S8 discrepancy already present within
ΛCDM. Another example is that of the Majoron model,
which can damp neutrino free streaming and inject
additional energy density into the neutrino sector prior
to recombination, thereby enhancing the pre-recombi-
nation expansion rate [161] and requiring an increase in
ωc. However, these neutrino-Majoron interactions leave
peculiar imprints in the low-l part of the CMB power
spectrum, where the eISW effect is relevant (see Fig. 5
of Ref. [161]): these imprints might be partially respon-
sible for the model’s good performance in solving the
Hubble tension when confronted against CMB and LSS
data, despite the increase in ωc. The NEDE and
Majoron cases are just two examples of models intro-
ducing specific model-dependent ingredients which can
partially counteract the two effects I previously identi-
fied as being responsible for the enhanced eISW effect:
other ingredients which also do so are, of course,
possible. However, it is likely that these ingredients
will not be able to fully resolve the discrepancies

between CMB and LSS/WL data already present within
ΛCDM, and that further extensions will be required to
do so.6

Other types of early-time new physics which accom-
modate a higher H0 without speeding up the expansion of
the Universe around recombination should be immune to
these conclusions, although they are, of course, subject to
stringent constraints from the full CMB power spectra. One
example is the strongly interacting neutrino model [50],
whose worsened fit to CMB polarization measurements
limits its success in solving the Hubble tension [89,91,92],
although it is worth noting that the preference for a higher
value of Neff within this model indirectly leads to an
enhancement of the pre-recombination expansion rate.
My overall findings are similar in spirit to those of recent

works along a related line, which question the ability of
early-time new physics, or, more precisely, early-time new
physics lowering the sound horizon alone, to fully resolve
the Hubble tension [109–115]. There is, of course, no
question about the fact that late-time new physics alone
falls short of fully solving the Hubble tension due to
constraints imposed by BAO and SNeIa measurements
[97–103] (with the possible exception of models invoking
local effects such as those considered in Refs. [162–168]).
My results, alongside those of Refs. [109–115] (though
perhaps less model independent than the latter), show that
early-time new physics models face equally severe (if not
more severe) stumbling blocks as late-time new phys-
ics ones.

VI. CONCLUSIONS

Why does ΛCDM fit CMB measurements so well? Why
is there no evidence for new physics from CMB data alone?
The answers to these questions, and to other general
model-agnostic questions testing the consistency of
ΛCDM, can provide a compass for navigating the mare
magnum which is the theory space of proposed solutions
to the Hubble tension. Early-time new physics, particu-
larly models which raise the expansion rate around
recombination to lower the sound horizon, should leave
an important imprint on the eISW effect, which should
typically be enhanced. Motivated by this, I have per-
formed an eISW-based consistency test of ΛCDM by
introducing the phenomenological scaling parameter
AeISW, artificially rescaling the amplitude of the eISW
contribution to the CMB power spectra.

5See, however, Ref. [160] for a recent work arguing
that the S8 discrepancy may be compatible with a statistical
fluctuation.

6In the context of NEDE, these ingredients could
include interactions between the scalar field and the visible
sector and/or a significant amount of oscillations around the new
vacuum after the phase transition, all of which affect the way the
Weyl potential decays, and therefore the way in which the eISW
effect is enhanced (see, e.g., the discussion toward the end of
Ref. [33]).
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From a fit to the Planck 2018 legacy data release
temperature and polarization data within a seven-parameter
ΛCDMþ AeISW model, I infer AeISW ¼ 0.988� 0.027,
which is in perfect agreement with the standard value
AeISW ¼ 1. This result shows that ΛCDM’s prediction for
the eISWeffect is in perfect agreement with data, and there
is room for no more than an≈3% enhancement/suppression
of the eISWeffect relative to this prediction. More crucially,
this result poses important restrictions on early-time new
physics models, which will need to (approximately) match
this prediction.
I have illustrated the implications of these results for

new physics focusing on the well-known EDE model.
For EDE to fit CMB data as well as ΛCDM while
accommodating a higher H0, an increase in ωc is
required—this has been argued to worsen the fit to
WL and galaxy clustering measurements, leading to the
conclusion that EDE fails to restore cosmic concord-
ance. I have explicitly shown that the increase in ωc is
required to bring the amplitude of the eISW effect
(which would otherwise be overpredicted by ≈20%)
into better agreement with ΛCDM’s prediction. I have
argued that this problem should go beyond EDE
and be a general feature of early-time new physics,
at least for models which raise the expansion rate
around recombination.
My findings join further existing restrictions concern-

ing the ability of early-time new physics lowering the
sound horizon alone to fully resolve the Hubble tension
[109–115]. On the other hand, the late-time expansion
history is too well constrained by BAO and uncalibrated
SNeIa measurements for late-time new physics to be able
to fully resolve the Hubble tension on their own [97–103].
Overall, this suggests that a definitive resolution of the
Hubble tension might require one or more of the follow-
ing: (i) a combination of modifications to ΛCDM, at both
early and late times, (ii) highly nontrivial early-time
modifications to ΛCDM which are able to match
ΛCDM’s prediction for the eISW effect while not

degrading the fit to other datasets, (iii) local new
physics (in agreement with the findings of Ref. [111]
and including models of the types proposed in
Refs. [163,165–168]), or (iv) convincingly identifying
systematic errors in one or more of the involved datasets
(see, e.g., Refs. [169–171]).
It is, of course, entirely possible that clear signs of new

physics will appear in future CMB data [144,145,172]. In
that case, whatever emerges will undoubtedly teach us
something fundamental about nature. Until then, however,
general consistency tests of ΛCDM will keep providing
important taffrails while steering through the vast sea that is
the theory space of new physics.
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