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There have been thousands of cosmological models for our early Universe proposed in the literature,
and many of them claimed to be able to give rise to scale-invariant power spectrum as was favored by the
observational data. It is thus interesting to think about whether there are some relations among them, e.g.,
the duality relation. In this paper, we investigate duality relations between cosmological models in
framework of general relativity, not only with varying slow-roll parameter ϵ but also with sound speed cs,
which can then be understood as adiabatic duality. Several duality relationships are formulated analytically
and verified numerically. We show that models with varying ϵ and constant cs can be dual in the scalar
spectral index, but not the tensor one. On the other hand, allowing both ϵ and cs to vary can make models
dual in both scalar and tensor spectral indices.
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I. INTRODUCTION

It is always interesting to ask what our Universe was
like at its earliest stage. A most acceptable answer might
be that it experienced a period of an inflation era [1–3],
for it provides a solution to many big bang problems.
Nevertheless, due to its incapability of solving another
issue of the big bang scenario known as the singularity
problem [4,5], many other scenarios/models are coming
out constantly as its complementary/alternative candidates,
such as bounce [6], ekpyrotic [7], slow expansion [8], and
so on. These scenarios/models bring our early Universe
with full of possibilities.
For these models, what is among the most important

things is the necessity of being consistent with the
observational data. Especially, there has been precise
evidence that the scalar perturbations are nearly scale
invariant, with only a few percent level of deviation [9].
Decades before, it had been thought that there were only
two possibilities that could obtain nearly scale invariance,
namely, slow-roll inflation and matter bounce (bounce with
matterlike contracting phase before the Universe’s expan-
sion) [10,11], while ekpyrotic and slow expansion models
suffered from the blue power spectrum [12,13]. However, it
was later realized that, by requiring a varying slow-roll
parameter ϵ [14] in these models scale invariance can be
recovered again [15–17]. The reason that varying ϵ can

promote scale invariance of the power spectrum is simply
due to the fact that it can get involved in the perturbation
action and change the behavior of the perturbation equa-
tions, which is also known as the “adiabatic mechanism”
(see Ref. [15] and also Refs. [18,19] for a debate). Further
study shows that, for models constructed under GR, scale
invariance will be obtained as long as the condition

ða ffiffiffiffiffijϵjp Þ00
a

ffiffiffiffiffijϵjp ¼ 2

jτj2 ð1Þ

is satisfied, where a is the scale factor and τ is the
conformal time, τ≡ R

a−1ðtÞdt. With the varying behavior
of ϵ, the constraint on a by this condition gets loosened,
making more cosmic evolutions allowable.
The adiabatic mechanism can also be applied to the

inflation model itself. Recently, there has been a model
attracting people’s eyes called the ultra-slow-roll inflation
[20,21]. It possesses an “exact” flat potential, namely,
dV=dϕ ¼ 0, which further results in a decreasing ϵ,
namely, ϵ ∼ a−6. Although as an inflation model it is not
necessary to have varying ϵ, this interestingly makes the
behavior of its perturbations like those of the matter
contraction phase in Refs. [10,11] or slow expansion phase
in Ref. [8], which is dominated by its growing mode, rather
than the constant one. It implies some links between
inflation and other cosmological models.
Other than ϵ, the behavior of the power spectrum can

also be affected by the sound speed cs. The sound speed is a
factor in front of the spatial derivative of the perturbations
in the equation of motion; therefore, different from ϵ which
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modifies the background evolution, the sound speed
modifies the effective horizon as well as the values when
perturbations exit and reenter the horizon. For perturbations
that are not conserved outside the horizon, such a modi-
fication will correspondingly affect the scale variance of the
power spectrum. Therefore, if we further allow cs to vary,
we may have even more models with a scale-invariant
power spectrum [22–26].
Although the current work focuses on the framework of

GR, as a side remark, let us also mention that when the
modified gravity is taken into account the possibility of
getting scale invariance will also be enlarged, due to the fact
that the scale factor can be corrected by a conformal factorF,
namely, a → a

ffiffiffiffi
F

p
. For relevant works, see Refs. [27–30].

Given the more-than-enough models that can meet with
the current observational data, as an extension, we would
ask if there can be more links between those models.
Especially, among the models with varying ϵ and cs, will
they have some relations such as dualities? Actually, there
have been many papers discussing dualities between early
Universe models; for example, Ref. [11] showed us the
duality between slow-roll inflation and matterlike contrac-
tion, Ref. [31] discussed the dualities of the primordial
perturbation spectra from various expanding/contracting
phases with constant ϵ, while Ref. [32] presented that the
duality between ekpyrosis with varying ϵ is dual to inflation
with constant ϵ. In Refs. [33–35], there are also debates on
whether there is duality between slow-roll inflation and
ultra-slow-roll inflation models. In this paper, we try to
investigate as a whole the duality among varying ϵ and cs
models, in order to see whether such nontrivial parameters
will bring us anything new about the duality relations.
Since these duality relations are based on the aforemen-
tioned adiabatic mechanism, they can be called a kind of
“adiabatic duality,” in contrast to the “conformal duality”
studied in Refs. [27–30].
The rest of the paper is arranged as follows. In Sec. II, we

show the formulation of perturbations from a single-field
cosmological model in the general case. In Sec. III, we
focus on the duality for varying ϵ and constant cs models,
while in Sec. IV, we extend our discussion to the case where
both ϵ and cs are varying. In Sec. V, we check our analysis
by performing numerical calculation of the perturbation
equations. In Sec. VI, we discuss the effects of primordial
non-Gaussianities on the duality. Section VII is the final
conclusions and discussions.

II. PERTURBATIONS FROM A
SINGLE-FIELD MODEL

Wewill consider the linear perturbations generated in the
early Universe, which are described by the action

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½M2
pRþ 2Pðϕ; XÞ�; ð2Þ

where ϕ is a scalar field while X ≡ −∂μϕ∂μϕ=2. Hereafter,
we choose the unit M2

p ¼ 1. As there is only one scalar
degree of freedom in this kind of model, the scalar
perturbations are purely adiabatic. A tedious but conven-
tional calculation shows that such adiabatic perturbations
obey the perturbation equation,

u00 þ
�
c2sk2 −

z00

z

�
u ¼ 0; ð3Þ

where we define the perturbation variable u≡ zζ, with ζ

denoting the curvature perturbation, and z≡ a
ffiffiffiffiffijϵjp
=cs.

The slow-roll parameter ϵ is defined as ϵ≡ − _H=H2, where
H is the Hubble parameter, and the sound speed squared c2s
is defined as

c2s ≡ P;X

ð2XP;X − PÞ;X
: ð4Þ

Moreover, the prime in Eq. (3) means a derivative with
respect to conformal time τ.
In the usual case where zðτÞ can be parametrized as a

power-law form of τ, one in general has z00=z ∝ jτj−2.
Therefore, it is reasonable to set

z00

z
¼ 4ν2z − 1

4jτj2 ; ð5Þ

where νz is a parameter. Moreover, we assume that the cs
also has a power-law form of τ, namely, cs ∼ ð−τÞs with s
the power index; then, Eq. (3) has the Hankel-function
solution,

u ≃
ffiffiffiffiffi
jτj

p �
c1Hν

�Z
cskdτ

�
þ c2H−ν

�Z
cskdτ

��
; ð6Þ

where ν≡ νz=ðsþ 1Þ. Here, sþ 1 > 0 is required in
order to ensure that the fluctuation modes can exit the
sound horizon. Note that, in general, the index of the
Hankel function ν is different from νz; however, for
the constant cs case where s ¼ 0, the two indices coincide
with each other. Moreover, comparing with the initial
condition solution [36]

uini ¼
1ffiffiffiffiffiffiffiffiffi
2csk

p ei
R

cskdτ; ð7Þ

which is obtained from Eq. (3) in the k → ∞ limit, one can
fix the coefficients c1 ¼ c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ðsþ 1Þp

=2. Therefore,
the power spectrum can be obtained as
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PS ≡ k3

2π2

���� u

a
ffiffiffiffiffijϵjp
=cs

����2

∼
ðsþ 1Þ2H2�
8π2jϵ�jcs�

�
τ

τ�

�
−ð3−2νÞðsþ1Þ

jcskτj3−2jνj; ð8Þ

with the spectral index

nS − 1≡ d lnPS

d ln k
¼ 3 − 2jνj; ð9Þ

where � means values taken at some pivot time point
τ ¼ τ�. From the expression, one can easily see that both ν
and −ν can give rise to the same spectral index. Moreover,
to get the scale-invariant power spectrum which is favored
by the observational data, we need to have jνj ¼ 3=2. In the
case where ϵ and cs are constants, this requires either
a ∼ ð−τÞ−1 or a ∼ ð−τÞ2 [11]. In the former case, the
perturbations are dominated by their constant mode, which
makes their behavior like those in slow-roll inflation
regime, while in the latter case, those are dominated by
their growing model, like a matter-dominated contraction.
However, as we will see below, for varying ϵ and cs, the
case may be different.
We also consider the tensor perturbation generated by

model (2), which is important as it provides the primordial
gravitational waves that we are searching for. The tensor
perturbation equation can be derived from the action (2) as

v00 þ
�
k2 −

a00

a

�
v ¼ 0;

a00

a
¼ 4ν2T − 1

4jτj2 ; ð10Þ

where v≡ ah=2 and h is the tensor mode of the metric
perturbation. Note that, since we restrict ourselves in the
case of general relativity (GR), the sound speed of tensor
perturbation is unity. Similar calculation shows that the
power spectrum for tensor perturbation is

PT ≡ k3

π2

���� v
a=2

����2

∼
2H2�
π2

�
τ

τ�

�
−ð3−2νTÞjkτj3−2jνT j; ð11Þ

with the tensor spectral index

nT ≡ d lnPT

d ln k
¼ 3 − 2jνT j: ð12Þ

In practical analysis and observations, people are used to
expressing the tensor spectrum in terms of the tensor-scalar
ratio, which is

r≡ PT

PS
¼ 16ϵ�jcs�j

ðsþ 1Þ2
�
τ

τ�

�
ηþs

: ð13Þ

III. COSMIC DUALITY FOR VARYING ϵ
AND CONSTANT cs

As a first step, we now consider the case where the slow-
roll parameters are varying while the sound speed remains
constant. From the very definition of the slow-roll param-
eter, one thus derives the expression of ϵ in terms of
conformal time τ as

ϵ ¼ 1 −
H0

H2
¼ 1þ

�
1

H

�0
; ð14Þ

where H is conformal Hubble parameter, H≡ aH. The
conformal time τ will be negative, with its absolute value
jτj ¼ −τ decreasing. Assuming ϵðτÞ ¼ ϵ0ð−τÞη, one can
solve (14) to get

1

HðτÞ ≃
ð−τÞð1þ η − ϵÞ

1þ η
;

HðτÞ ≃ 1þ η

ð−τÞð1þ η − ϵÞ : ð15Þ

Here, the approximation in computingHðτÞ is due to the
fact that the integration constant has been neglected. This
approximation is acceptable as we will verify our final
analytical result of the spectral index by numerical simu-
lations later. Moreover, according to H≡ a0ðτÞ=aðτÞ, one
also has

aðτÞ ¼ e
R

Hdτ ≃ ð−τÞ−1j1þ η − ϵj1=η: ð16Þ

Substituting the expressions of aðτÞ and ϵðτÞ into the
expression of z (where we set cs ¼ 1), one has

z ≃
ffiffiffiffiffiffiffi
jϵ0j

p
ð−τÞη2−1j1þ η − ϵ0ð−τÞηj1=η;

z00

z
¼ 1

4
ð1 − ϵþ ηÞ−2ð−τÞ−2½ð1þ ηÞ2ðη − 2Þðη − 4Þ

− 2ϵð2 − η2 þ η3Þ þ ϵ2ηðη − 2Þ�; ð17Þ

and from (5), we get

ν ¼ νz ¼ � 1

2

�
ϵ − 3ð1þ ηÞ
ϵ − ð1þ ηÞ − η

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ϵηðηþ 1Þ
½ϵð1 − ηÞ þ ðηþ 1Þðη − 3Þ�2

s

≃� 1

2

�
ϵ − 3ð1þ ηÞ
ϵ − ð1þ ηÞ − η

�
: ð18Þ

In deriving the second step, notice that since we only
consider the zeroth-order approximation for varying ϵ,
the last term in the square root can be ignored safely
either the value of epsilon becomes large or small.
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Note also that when η ¼ 0, ϵ becomes constant and the
result recovers the usual one of 2ν ¼ �ðϵ − 3Þ=ðϵ − 1Þ.
Reference [11] points out that any two scenarios giving

opposite νwill become dual to each other, for they give rise
to the same power spectrum. Here, we revisit this remark
for scenarios with varying ϵ. For two scenarios with

ν ¼ 1

2

�
ϵ − 3ð1þ ηÞ
ϵ − ð1þ ηÞ − η

�
; ν̃ ¼ 1

2

�
ϵ̃ − 3ð1þ η̃Þ
ϵ̃ − ð1þ η̃Þ − η̃

�
;

ð19Þ

a dual relation between the two is jνj ¼ jν̃j, namely,

ϵ − 3ð1þ ηÞ
ϵ − ð1þ ηÞ − η ¼ �

�
ϵ̃ − 3ð1þ η̃Þ
ϵ̃ − ð1þ η̃Þ − η̃

�
: ð20Þ

We first consider the case where “�”→ “−” in Eq. (20).
Since now both ϵ and ϵ̃ are varying, an interesting case is
that they approach different directions. For ϵðτÞ → �∞ and
ϵ̃ðτ̃Þ → 0, or vice versa, one has

ηþ η̃ ¼ 4; ð21Þ

which is a duality relation between η and η̃. Considering
the constraint of scale invariance of the power spectrum,
namely, 3 − 2jνj ¼ 0, we have the following possibilities:

(i) ν ¼ −ν̃ ¼ 3=2, which leads to η ¼ 4, η̃ ¼ 0.
(ii) ν ¼ −ν̃ ¼ −3=2, which leads to η ¼ −2, η̃ ¼ 6.

There are also nontrivial possibilities for ϵ and ϵ̃ approach-
ing the same direction. For example, for both ϵ and ϵ̃
approaching to �∞, one has

ηþ η̃ ¼ 2; ð22Þ

and considering the constraint of scale invariance, we have
η ¼ −2 and η̃ ¼ 4. For both ϵ and ϵ̃ approaching 0, one has

ηþ η̃ ¼ 6; ð23Þ

and considering the constraint of scale invariance, we have
η ¼ 0 and η̃ ¼ 6.
Another duality relation arises for � → þ in Eq. (20).

Note that this becomes trivial for constant ϵ and will give
ϵ ¼ ϵ̃ only. However, for varying ϵ, by requiring ϵ and ϵ̃
approaching different directions [ϵðτÞ → �∞ and
ϵ̃ðτ̃Þ → 0, or vice versa], one has

jη − η̃j ¼ 2: ð24Þ

Considering the scale invariance, we have the following
possibilities:

(i) ν ¼ ν̃ ¼ 3=2, which leads to η ¼ 4, η̃ ¼ 6.
(ii) ν ¼ ν̃ ¼ −3=2, which leads to η ¼ −2, η̃ ¼ 0.

Moreover, if ϵ and ϵ̃ approach the same direction, it gives a
trivial result as well.

From above, one can see that, requiring the scalar
spectral index to be identical, we can in total get four
kinds of duality relations of cosmological models with
varying slow-roll parameter ϵ. Moreover, taking into
account the observational constraint that the scalar spec-
trum is scale invariant, we can actually reduce to four
representative models, which, under different relations, are
dual to each other: ϵ → 0, η → 0 [slow-roll inflation (SR)],
jϵj → ∞, η → −2 [slow-evolving universe I (SE1)],
jϵj → ∞, η → 4 [slow-evolving universe II (SE2)], and
ϵ → 0, η → 6 [ultra-slow-roll inflation (USR)]. It is clearer
to draw a sketch plot to express these models under the
duality relation, as shown in Fig. 1.
As a side remark, we mention that, in principle, one can

also use Eq. (18) to make up duality relations for models
with constant ϵ, such as inflation or matter bounce, just as is
done in Ref. [11]. However, in those cases, the approx-
imations of ðϵ − 3Þ=ðϵ − 1Þ will be dependent on specific
values of ϵ. Therefore, our duality relations will not apply.
We will not bring these cases into the current discussion.
On the other hand, we can also discuss the duality relation
given by tensor perturbation. According to Eq. (16), it is
straightforward to get

a00

a
¼ ð1 − ϵþ ηÞ−2ð−τÞ−2ð1þ ηÞ2ð2 − ϵÞ; ð25Þ

and from Eq. (10), one has

νT ¼ � 1

2

ϵ − 3ð1þ ηÞ
ϵ − ð1þ ηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ϵηðηþ 1Þ
½ϵ − 3ð1þ ηÞ�2

s

≃� 1

2

ϵ − 3ð1þ ηÞ
ϵ − ð1þ ηÞ : ð26Þ

FIG. 1. The sketch plot that demonstrates the dual relationship
of models for varying ϵ and constant cs in the ðϵ; ηÞ plane. The
colored points represent models, and the black lines between
them denote various relationships. Moreover, the dashed line
divides the whole region into two parts. In the upper parts, the
perturbations are dominated by the growing modes, while in the
lower parts, the perturbations are dominated by the freezing
(constant) modes.
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Similarly, we are using the zeroth approximation for
varying ϵ and when η ¼ 0, and the result covers the usual
case of 2νT ¼ �ðϵ − 3Þ=ðϵ − 1Þ.
One can see that requiring the duality relation to be

maintained also for for tensor spectral index, jνT j ¼ jν̃T j,
namely, to have

ϵ − 3ð1þ ηÞ
ϵ − ð1þ ηÞ ¼ � ϵ̃ − 3ð1þ η̃Þ

ϵ̃ − ð1þ η̃Þ ; ð27Þ

results in the fact that ϵ and ϵ̃ must be approaching to the
same direction, and � can only be þ. This means that the
duality relations (21) and (24) will be broken, while only
(22) and (23) remain. Therefore, if we detect the tensor
spectral index, the dual symmetry among these models will
get reduced.
As is well known, the tensor perturbations contribute

to the primordial gravitational waves. Note that recently
more and more programs detecting gravitational waves are
coming out, among which there are not only those aiming
at medium-/low-frequency gravitational waves (GWs)
(mainly generated by compact binary systems), such as
FAST [37], LISA [38], LIGO [39], SKA [40], TianQin
[41], Taiji [42], GECAM [43], NANOGrav [44], and so on
but also those aiming at the primordial GW program
(mainly via polarizations of cosmic microwave background
photons), such as AliCPT [45], ACT [46], POLARBEAR
[47], SPT [48], BICEP [49], LiteBIRD [50], and so on.
These programs can make the detections of tensor spectrum
(in terms of tensor/scalar ratio r), and even tensor spectral
index, possible in the future. This will break the duality
relation between those models and thus can differentiate
different models of the early Universe.

IV. COSMIC DUALITY FOR BOTH
VARYING ϵ AND cs

In the following, we will extend our consideration to
include the case where cs is also varying. Assuming that
cs ¼ cs0ð−τÞs, Eq. (17) will be modified as

z≃
ffiffiffiffiffiffiffi
jϵ0j

p
c−2s0 ð−τÞ

η
2
−1−sj1þ η− ϵ0ð−τÞηj1=η;

z00

z
¼ 1

4
ð1− ϵþ ηÞ−2ð−τÞ−2½ð1þ ηÞ2ðη− 2− 2sÞðη− 4− 2sÞ

− 2ϵðηþ 1Þðη2 − 2η− 4sηþ 8sþ 4s2þ 2Þ
þ ϵ2ðη− 2sÞðη− 2− 2sÞ�; ð28Þ

and from (5), we get

ν ¼ � 1

2ðsþ 1Þ
�
ϵ − 3ð1þ ηÞ
ϵ − ð1þ ηÞ − ηþ 2s

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ϵηðηþ 1Þ
½ϵð1 − ηþ 2sÞ þ ðηþ 1Þðη − 3 − 2sÞ�2

s
: ð29Þ

In the limit of small ϵ and large ϵ, we have

ν ¼
(� 1

2
ð2 − ηþ1

sþ1
Þ; jϵj ≫ 1;

� 1
2
ð2 − η−1

sþ1
Þ; jϵj ≪ 1:

ð30Þ

As shown in the last section, taking into account the
tensor spectral index, the two models to be dual must
have the same approximate behavior of ϵ; therefore, for
ϵ; ϵ̃ → �∞, the duality relation for ν is

�
2 −

ηþ 1

sþ 1

�
¼ �

�
2 −

η̃þ 1

s̃þ 1

�
: ð31Þ

When � → −, the above relation reduces to

ηþ 1

sþ 1
þ η̃þ 1

s̃þ 1
¼ 4: ð32Þ

Note that if we set s ¼ s̃ ¼ 0, Eq. (32) will further reduce to
Eq. (22). In other words, Eq. (32) will be the generalized
version of (22) by taking into account the varying of sound
speed. Moreover, for the case � → þ, which is trivial in
the absence of s; s̃, we can also get a somehow nontrivial
relation, namely,

ηþ 1

sþ 1
¼ η̃þ 1

s̃þ 1
: ð33Þ

Furthermore, we consider the constraint of scale invariance
of the power spectrum, 3 − 2jνj ¼ 0. For � → −, we have
ν ¼ −ν̃ ¼ 3=2, which leads to η ¼ −2 − s, η̃ ¼ 4þ 5s̃.
One could see that the duality between two model points

(η ¼ −2, η̃ ¼ −4) on the η axis (one dimensions) in the last
section has been extended to that of two lines on the ðη; sÞ
plane (two dimensions). For ν ¼ −ν̃, the two models dual
to each other lie on the two lines separately, while for ν ¼ ν̃,
as is the case of � → þ, both models will lie on the same
line, and which line depends on whether ν=ν̃ is positive or
not. Therefore, models presented by either two points lying
on those two lines can be dual to each other. To illustrate
this, we plot the two lines in the ðη; sÞ plane in Fig. 2.
The solid line represents the relation η ¼ −s − 2, while the
dashed line represents the another relation η̃ ¼ 4þ 5s̃. We
also point out SE1 and SE2 scenarios when s ¼ 0 by the
orange point and blue point, respectively.
We can also do the same thing for ϵ; ϵ̃ → 0. In this case,

the duality relation for ν is

�
2 −

η − 1

sþ 1

�
¼ �

�
2 −

η̃ − 1

s̃þ 1

�
: ð34Þ

When � → −, the above relation reduces to
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η − 1

sþ 1
þ η̃ − 1

s̃þ 1
¼ 4; ð35Þ

and by setting s ¼ s̃ ¼ 0, Eq. (35) will further reduce to
Eq. (23); namely, (35) will be the generalized version of
(23) by taking into account the varying of sound speed.
Moreover, for the case � → þ, which is trivial in the
absence of s; s̃, we can also get a somehow nontrivial
relation, namely,

ηþ 1

sþ 1
¼ η̃þ 1

s̃þ 1
: ð36Þ

We also consider the constraint of scale invariance of
the power spectrum, 3 − 2jνj ¼ 0. For � → −, we have
ν ¼ −ν̃ ¼ 3=2, which leads to η ¼ −s, η̃ ¼ 6þ 5s̃.
In a similar manner as above, models presented by either

of the two points lying on those two lines can be dual to
each other. To illustrate this, we plot these two lines in
Fig. 3. The solid line represents the relation η̃ ¼ 6þ 5s̃,
while the dashed line represents the another relation η¼−s.
The two points where s ¼ 0 correspond to SR and USR
scenarios, respectively.

V. NUMERICAL VERIFICATION

In the above section, we finished the theoretical analysis
of which cosmological models with parametrized slow-roll
parameter and sound of speed can give rise to spectral
indices that can be dual to each other. The analysis is,
however, semianalytical, and several approximations
have been used. To verify our results, in this section, we
calculate numerically the equation of motion, Eqs. (3) as

well as (10) with different behaviors of aðτÞ, ϵðτÞ, and
csðτÞ, to see how their tensor and scalar spectra (and their
indices) will behave.
We plot our numerical results for scalar and tensor power

spectra for constant and varying sound speed models in
Figs. 4–7, respectively. The lines in the figures represent the
spectrum for each model, while their slopes reflect the
information of the spectral indices. One can see from Fig. 4
that, for the trivial sound speed case (s ¼ 0), the spectrum
of the four models will have the same behavior at least
around the observable range, namely, k ≃ 0.05 Mpc−1.
Moreover, this is not only for indices of the spectra (slope
of each line) but for amplitudes as well. The coincidence
of the amplitudes can be done by setting proper initial
conditions of background quantities such as aðτÞ, HðτÞ,
and ϵðτÞ. For the smaller k region, however, there might be
some differences; for example, the slow-evolution models
present an oscillating behavior, which might be due to the
features in the earlier time that possibly break down some
of the approximations in our analytical study. On the other
hand, as shown in Fig. 5, neither the amplitude nor slope of
the tensor spectra coincides with the other. The reason for
the slope has already been shown by calculation in the last
section, while the reason for the amplitude is also under-
standable; since PT=PS ¼ 16jϵj and those models have
different ϵ, it is impossible to have both PS and PT
coincide. That means, in the s ¼ 0 case, we can only have
the scalar power spectra dual to each other, but not
tensor ones.
For the s ≠ 0 case, however, things become different.

First of all, as there is one more degree of freedom,
the models dual to each other become richer. In Fig. 6,

FIG. 3. The sketch plot that demonstrates the dual relationship
of models for both varying ϵ and cs, provided that ϵ; ϵ̃ → 0. The
yellow solid line and the blue dashed line represent models with
η ¼ 6þ 5s and η̃ ¼ −s̃, respectively. The intersection points of
the two lines with the vertical axis denote models with s ¼ 0
(constant cs), namely, the ultra-slow-roll and usual slow-roll
inflation models.

FIG. 2. The sketch plot that demonstrates the dual relationship
of models for both varying ϵ and cs, provided that ϵ; ϵ̃ → �∞.
The yellow solid line and the blue dashed line represent models
with η ¼ −2 − s and η̃ ¼ 4þ 5s̃, respectively. The intersection
points of the two lines with the vertical axis denotes models with
s ¼ 0 (constant cs), namely, the slow-evolving models defined in
the context.
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we show that for several choices of s, as long as the
relationship η¼−s, η̃¼6þ5s̃ (upper panel) or η ¼ −s − 2,
η̃ ¼ 4þ 5s̃ (lower panel) is satisfied, the amplitude and
slope of each line will coincide with each other (note that in
the analytical study we approximate the spectral index to
be unity but the realistic observation favors nS ≃ 0.965,
so the numerical values will be slightly deviated from the
analytical formulas). Moreover, for the lower panel for the
slow-evolution case, one can see that, while the duality
happens around the observable range, k ≃ 0.05 Mpc−1, it

may not do so for smaller k region, for the same reason as in
the s ¼ 0 case.
For tensor spectra, one can see from Fig. 7 that the slopes

of each line now get identical, indicating that, different
from the s ≠ 0 case, the tensor spectral indices can be dual
to each other. However, the amplitude of the tensor
spectrum still cannot be the same because these models
have quite different ϵ (although in this case
PT=PS ¼ 16jϵjcs, where cs can also help to do the
modulation, since cs is constrained to be between [0, 1],
the modulation is not efficient enough). Therefore, with
varying sound speed taken into account, only the spectral
index of the scalar and tensor spectra can be made dual to
each other.
The nonduality in the amplitude of tensor perturbations,

due to the discrepancy of ϵ, has also been realized in

FIG. 4. The scalar power spectrum with constant sound speed
(s ¼ 0). The nearly scale-invariant (i.e., nS ≃ 0.965 at the pivot
scale k� ¼ 0.05 Mpc−1) scalar power spectra against wave
number k are shown by four lines (blue dotted, orange dashed,
green solid, and red dot-dashed) corresponding to four different
scenarios SR, USR, SE1, and SE2, respectively. Here, we set
ϵ < 0, H > 0 for slow-evolving models and ϵ > 0, H > 0 for
inflation models.

FIG. 5. The tensor power spectrum with constant sound speed
(s ¼ 0). The tensor power spectra against wave number k are
shown by four lines (blue dotted, orange dashed, green solid, and
red dot-dashed) corresponding to four different scenarios SR,
USR, SE1, and SE2, respectively. Here, we set ϵ < 0, H > 0 for
slow-evolving models and ϵ > 0, H > 0 for inflation models.

FIG. 6. The scalar power spectrum with varying sound speed.
Upper panel: the nearly scale-invariant (i.e., nS ≃ 0.965 at the
pivot scale k� ¼ 0.05 Mpc−1) scalar power spectra against wave
number k are shown for SR and USR models (s ¼ 0) and their
variations (s ¼ 0.1, 0.2, 0.3, 0.4). Lower panel: the nearly scale-
invariant scalar power spectra against wave number k (i.e., nS ≃
0.965 at the pivot scale k� ¼ 0.05 Mpc−1) are shown for SE1 and
SE2 models (s ¼ 0) and their variations (s ¼ 0.1, 0.2, 0.3, 0.4).
Here, we set ϵ < 0, H > 0 for slow-evolving models and ϵ > 0,
H > 0 for inflation models.
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Ref. [34], although they have been considering such a
problem in the case of scalar perturbations. Can we have
the amplitude of tensor spectrum coincide as well, namely,
to have full duality of all the quadratic perturbations for
cosmological models? Fortunately, the answer maybe
“yes,” but some delicate mechanisms may be needed.
For example, in Ref. [35], the authors suggested that in
the case of ultra-slow-roll inflation the ultra-slow-roll
region is not an attractor solution but only a transient
phase, which would eventually evolve into the slow-roll
phase. Therefore, in this model, the perturbations produced
will be totally the same as that of the slow-roll inflation
models, and there will be fully duality. However, such a
mechanism seems model dependent; namely, according to
each specific model, the details might be different. Since in
this paper we are only trying to discuss the general features

without going into details of each model, such mechanisms
are somehow beyond the scope of our discussion.

VI. DISCUSSION: NON-GAUSSIANITIES

In previous sections, we discussed the duality relations
in linear perturbation theories. However, they will be
broken when the higher-order perturbations (i.e., the
non-Gaussianities) are taken into account. To see this,
let us first write down the third-order perturbation action for
a general single field [51,52],

S3 ¼
Z

dtd3x

�
−a3

�
Σ
�
1−

1

c2s

�
þ 2λ

�
_ζ3

H3

þ a3ϵ
c4s

ðϵ− 3þ 3c2sÞζ _ζ2 þ
aϵ
c2s

ðϵ− 2sþ 1− c2sÞζð∂ζÞ2

− 2a
ϵ

c2s
_ζð∂ζÞð∂χÞ þ a3ϵ

2c2s

d
dt

�
η

c2s

�
ζ2 _ζ

þ ϵ

2a
ð∂ζÞð∂χÞ∂2χ þ ϵ

4a
ð∂2ζÞð∂χÞ2

	
; ð37Þ

where Σ≡ XP;X þ 2X2P;XX, λ≡ X2P;XX þ 2X3P;XXX=3,
∂2χ ≡ a2ϵ_ζ. According to the “in-in” formalism [53], the
three-point correlation function is described as

hjζðτ; k⃗1Þζðτ; k⃗2Þζðτ; k⃗3Þji

¼−iT
Z

t

t0

dt0hj½ζðt; k⃗1Þζðt; k⃗2Þζðt; k⃗3Þ;Hintðt0Þ�ji; ð38Þ

where Hint¼−S3 is the third-order interaction Hamiltonian
and T is the time-ordering operator. On the other hand, it is
useful to define the bispectrum of the three-point correla-
tion function,

hjζðτ; k⃗1Þζðτ; k⃗2Þζðτ; k⃗3Þji

¼ ð2πÞ3δ3
�X

i

k⃗i

�
Bðk1; k2; k3Þ; ð39Þ

and the non-Gaussianity estimator is defined as

fnl ≡ 5

6

Bðk1; k2; k3Þ
ð2π2=k31Þð2π2=k32ÞPSðk1ÞPSðk2Þ þ 2 perms:

; ð40Þ

which can be constrained by the observational data [54].
From the action (37), one can see that the varying ϵ and

cs will also affect the non-Gaussianity. The effects are at
least in two aspects:
(1) The time dependence of ϵ and cs will be inherited to

fnl through the action (37). For example, the equi-
lateral non-Gaussianity is calculated when all the
fluctuation modes exit the horizon; therefore, the fnl
will be dependent on the total wave number

FIG. 7. The tensor power spectrum with varying sound speed.
Upper panel: the tensor power spectra against wave number k are
shown for SR and USR models (s ¼ 0) and their variations
(s ¼ 0.1, 0.2, 0.3, 0.4), where the tensor spectral index nT ≃ 0.
Lower panel: the tensor power spectra against wave number k are
shown for SE1 and SE2 models (s ¼ 0) and their variations
(s ¼ 0.1, 0.2, 0.3, 0.4), where the tensor spectral index nT ≃ 2.
Here, we set ϵ < 0, H > 0 for slow-evolving models and ϵ > 0,
H > 0 for inflation models.
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K ≡ k1 þ k2 þ k3. For large K, it also brings the
danger of breaking the perturbation theory [32].

(2) The dominant term will be different. From (37), we
can see that each term has a different power of ϵ;
therefore, for ϵ ≫ 1 and ϵ ≪ 1, the dominant term
will be different, which will give rise to different
bispectra Bðk1; k2; k3Þ. Moreover, while the usual
slow-roll inflation mainly generates equilateral non-
Gaussianity, for nonattractor inflation with cs ≠ 1,
large local non-Gaussianity will also be generated,
dominating over the equilateral one [51]. Therefore,
the detection of the non-Gaussianities will be a good
probe into the early Universe models.

VII. CONCLUSIONS

In this paper, we discussed cosmological models of the
early Universe, in the framework of GR, but relaxed other
parameters such as the slow-roll parameter and sound speed
to be varying quantities. It was found that, provided those
parameters behave under certain relations, the model will
give the same spectral index. Based on the adiabatic
mechanism of perturbation production, those relations
can be viewed as the adiabatic duality relationship that
links different models together.
For models in which only slow-roll parameter ϵ is

varying, we found that there are four possible duality
relationships between the parameter η, which is the power-
law index of ϵ (also known as the second slow-roll
parameter), namely, ηþ η̃ ¼ 6, ηþ η̃ ¼ 4, ηþ η̃ ¼ 2 as
well as jη − η̃j ¼ 2, depending on the evolution trend of ϵ.
However, considering the requirement that the scalar power
spectrum must be nearly scale invariant, we found that only
four kinds of models as well as the matter bounce model
could dual to each other. Moreover, when the tensor power
spectrum and spectral index are taken into account, the
duality relation will be broken.
We also extended the discussion to the wider case, where

the sound speed cs is varying as well. In this case, there are
two duality relationships, namely, η ¼ −s, η̃ ¼ 5s̃þ 6 and
η ¼ −s − 2, η̃ ¼ 5s̃þ 4, but the models dual to each other
get enlarged; even scale invariance of scalar perturbation is
still required. Moreover, the spectral index of tensor
spectrum can also be dual, although the amplitude of the

tensor spectrum cannot. Therefore, in contrast to conformal
duality, the adiabatic duality might not be a full duality
of early-time cosmological models. Although all the
models can be made within the current bound of tensor
perturbations, the future GW detectors may have the power
to differentiate these models on the observational side. We
checked all the above results by performing numerical
calculations. We also mentioned that, via some specific
mechanisms, we may have a chance to have full duality
among cosmological models. However, these mechanisms
seem to be model dependent and have to be studied case
by case.
We would like to demonstrate that our analysis has been

from a very general ansatz solution, namely, ϵ ∼ ð−τÞη. As
long as this condition is not deviated too much, our results
can be applied. In this sense, the duality relations are
somehow insensitive to the specific initial conditions for
the scalar field and its velocity. However, the test of non-
Gaussianities will be a good filter to the early Universe
models, for it can break the duality in various aspects. It
will be interesting to investigate in a more thorough way in
future work.
Before ending, let us also mention an interesting

extension of our study, which is to the multiple-field
models. For multiple-field models, the primordial pertur-
bations consist of not only adiabatic modes but also
isocurvature modes. Therefore, the scale-invariant power
spectrum of curvature perturbations is sourced by the
isocurvature ones, which is known as the “isocurvature
mechanism” [55,56]. Currently, we still do not know
whether in this case there is still duality among different
scenarios, and even if it does exist, the relationship must be
very different, which we can dub as “isocurvature duality”
as a counterpart of the current duality. We will leave the
related discussions for a separate work.
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