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In this work, we investigate the dynamics of the interacting dark energy and dark matter in viable models
of f(R) gravity by using a standard framework of dynamical system analysis. A simple form of the
interacting dark energy Q = 3aHp,, is used to study three viable models of f(R) gravity which are
consistent with local gravity constraints and satisfying conditions for the cosmological viability. As a result,
we find that the fixed points are slightly modified from those obtained in the standard noninteracting
analysis of f(R) gravity proposed so far in the literature. In our models of adding this interaction, we find
that the dynamical profiles of the Universe in the viable f(R) dark energy models are modified by the
interaction term as well as their relevant model parameters. Moreover, our results yield the correct
cosmological evolution with additional constraint parameter, «, from the interacting dark energy.
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I. INTRODUCTION

The observational evidence that the Universe had
entered a period of accelerated expansion has been sup-
ported by independent observational data such as the
supernovae-type Ia [1,2], the cosmic microwave back-
ground temperature anisotropies observed by WMAP
[3.4], and baryon acoustic oscillations [5,6]. In light of
the framework of general relativity (GR), the accelerated
expansion is driven by a new energy density component
with negative pressure. The unknown component giving
rise to this late time cosmic acceleration is termed dark
energy (DE). However, little is known about this DE
component. The origin of DE responsible for the present
time cosmic acceleration is one of the unsolved problems in
modern cosmology. This phase of cosmic acceleration
cannot be explained by the standard equation of state w =
p/p satistying the condition w > 0 with p and p being the
pressure and the energy density of matter, respectively. In
fact, some unknown component having negative pressure
with w < —1/3 is needed to describe the acceleration of the
Universe. The nature of DE is still unknown yet. Many
efforts have been made to solve this serious problem, see
e.g., Refs. [7-21]. The simplest candidate for dark energy is
the cosmological constant, A. However, as mentioned in
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Ref. [22], the cosmological constant is many orders of
magnitude smaller than that estimated in modern theories
of elementary particles. Indeed, people use dynamical
models to distinguish other sources dynamically changing
in time from the cosmological constant by considering the
evolution of the equation of state of DE. Hence one needs
to find some mechanism to obtain a small value of A to
reconcile with observations.

It is well known that the pure cosmological constant
cannot be responsible for the accelerated expansion in the
very early Universe. This is so since it cannot be connected
to the radiation-dominated universe. Yet another compel-
ling candidate responsible for DE as well as inflation is a
scalar field with a slowly varying potential. In the context
of dark energy, many scalar-field models have been
constructed. These include scenarios of quintessence
[23-28] and k essence [29-32]. They predict a wide variety
of the variation of the equation of state of DE. However,
those models cannot be distinguished from the A-cold-
dark-matter (ACDM) model using the current observational
data. Additionally, because of a very tiny scalar mass
(my ~ 10733 eV) required for the cosmic acceleration today
[33,34], viable scalar-field models in the framework of
particle physics cannot be easily achieved.

There exists another approach of dynamical dark energy
models to explain the acceleration of the Universe based on
the large-distance modification of gravity. The models
belonging to this class are for instance f(R) gravity
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[35-38] in which solely Ricci scalar is replaced by more
general function, i.e., f(R), scalar-tensor theories [39-44],
Galileon gravity [45] and Gauss-Bonnet gravity [46,47].
The dynamical system analysis has been used to qualita-
tively study in cosmology for several decades [48,49] and it
is shown that this framework is very useful to identify and
classify asymptotic behaviors of the cosmological models.
Recently the dynamical system is used to investigate the
dynamics of various dark energy models [see review [12]
and for f(R) gravity [50]]. The systematic dynamical
system analysis in f(R) theories of gravity has been done
by a series of papers found in Refs. [51-56] to identify and
classify the appropriate models with a correct cosmological
evolution from a huge number of the f(R) gravity models.
As the results, the cosmological viable models of f(R)
gravity have been constructed with the appropriate trajec-
tories in the dynamical system phase space. In addition,
these viable models of f(R) gravity are compatible with the
local gravity constraints, see more detail discussions and
examples in Refs. [19,20,54]. It is worth noting that an
attractive feature of these models is that the cosmic
acceleration can be realized without invoking a DE matter
component. Moreover, in the light of those models, tight
constraints coming from local gravity tests as well as a
number of observational constraints are rigorous compared
to modified matter models.

The phase space of f(R) gravity using the autonomous
dynamical systems approach was initiated and extended by
the authors of Refs. [57-61]. Although there is a number of
work on dynamical systems in f(R) gravity with non-
interacting dark energy and dark matter, see examples and
references therein [50], a study of interacting dark energy
of f(R) gravity counterpart is less attentive [62-66], in
particular, for dynamical system analysis [67]. The study
of interacting dark energy and dark matter is useful for
understanding accelerated scaling solution behavior
between dark energy and dark matter under the conditions
Qpp/Q, ~ 1, d > 0 with Qpg , being the energy densities
of dark energy and dark matter and ¢ an accelerating rate of
the Universe’s expansion. In addition, the investigation of
the interacting dark energy and dark matter might describe
a coupling between the structure formation of the dark
matter and the time evolution of the dark energy. In other
words, it might be helpful to explain why dark energy
dominates dark matter at the late time of the Universe.
Notice that the effect of interacting dark energy models in
global 21 cm signal was studied in Ref. [68]. Some
interacting dark energy models and the occurrence of
future singularities have been analyzed in Ref. [69].

The main purpose of this work is to study the interacting
dark energy and dark matter in the viable models of f(R)
gravity in the following aspects. On the one hand, we do
ask the question whether adding the interaction to the
viable f(R) models is worth for providing the correct
behavior of the cosmological evolution compared to the

noninteracting one? On the other hand, we would like to see
how the interacting dark energy might modify the param-
eters in the viable f(R) gravity models.

The structure of the present work is organized as follows.
In Sec. II, we derive cosmological equations and study
dynamical system setup in the framework of f(R) gravity.
Here we also introduce autonomous system of interacting
dark energy and dark matter in f(R) gravity. In Sec. III, we
study fixed points obtained in the autonomous system
and analyze stability of such fixed points. As a simple
model of the interacting dark energy Q = 3aHp,,, in
Sec. IV we employ it to study three viable models of
f(R) gravity which is consistent with local gravity con-
straints and satisfying conditions for the cosmological
viability. In this section, cosmological implications in
viable models of f(R) gravity are given. The last section
is devoted to conclusions.

II. COSMOLOGICAL EQUATIONS AND
DYNAMICAL SYSTEM SETUP

A. Background dynamics of the cosmological
equations in f(R) gravity
In this work, we will work on the standard cosmological
background with the flat Friedmann-Robertson-Walker
(FRW) line element, it reads
ds* = —di* + a(t)*(dx* + dy* + dz*).  (2.1)
While the action of the f(R) gravity and the matter are
given by

1
S= 30 [ AR + [ Erlr 22)

where ¢ is determinant of the metric tensor g, k = V8xG
with G is gravitational Newton’s constant and L qer 1S
Lagrangian density of the matter fields which will be
considered as the perfect fluid. Varying the action in
Eq. (2.2) with respect to the inverse metric tensor g,
the Einstein field equation of the f(R) gravity is written by

1
R, F— Eg/wf -V, V,F+g,0F =«’T,, (2.3)

where F'=fr=0f/OR and J=V,V¥. The energy-
momentum tensor 7, is defined by

2 6L
w — M= (pm +/)r>uﬂuv — Pr9w

V=9 69"
where #* = (1,0,0,0) is four velocity in the comoving
frame. p,, , are energy density of the dark (and dust) matter
and radiation respectively, p, is the radiation pressure that
obeys the equation of state (EOS) as p, = p,/3. Here we

(2.4)
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included the dark matter and dust as the same matter specie
for simplicity. According to field equation in (2.3) with the
FRW metric in (2.1), one finds

1 .
3FH? = 2 (FH = f) = 3HF + ©(p, +p,).  (2.5)
) - 4
2FH = HF — F - (pm + 3ﬂr>» (2:6)

where H = a/a is the Hubble parameter and Ricci scalar
from FRW metric is R = 6(2H?* + H) while " = d/dt is
represented by the cosmic time derivative. More impor-
tantly, one can rewrite the Friedmann and Raychuadhuri
equations in the following forms [53]:

3AH? = K*(ppE + P + P1)» (2.7)

: 4
2AH = —«* <pDE + PoE + P+ §Pr>» (2.8)

where A is arbitrary real constant and ppg and ppg are
defined by

PDE = % (FR—f)=3HF +3H*(A-F), (2.9)

pog = F +2HF —%(FR —f)— (BH> +2H)(A - F),
(2.10)

see more detail discussions of physical meaning of ppg and
ppE in [19,53,54]. We might call the quantities ppg and ppg
as effective energy density and pressure of the curvature
fluid. It was shown in Refs. [19,53] that ppg and ppg obey
the conservation equation as

Pr + 3H(ppe + ppe) = 0. (2.11)
By considering the conservation of energy-momentum
tensor, V”T,w =0, we find

pm +3Hp,, =0, (2.12)

pr+4Hp, =0. (2.13)
We observe that the evolution equations in Egs. (2.11),
(2.12), and (2.13) are conserved separately. To study the
|

F f

NETHFE T TerR®

HF’

The autonomous system is given by

X3

interaction between dark energy and dark matter, however,
we can modify the conservation equations of the dark
energy of the curvature fluid and the matter in Eqs. (2.11)
and (2.12) by including some coupling term, Q as

pr +3H(ppg + ppe) = 0. (2.14)

pm+3Hp, =-0. (2.15)
Although the above equations do not follow the conserva-
tion law separately, the total energy density P = Ppg +
pm + p, does conserve without violating the total energy-
momentum tensor. In addition, the coupling dark energy
and dark matter term Q can be interpreted as the exchange
rate of the energy density between dark energy and dark
matter. The signs of Q also reflect that Q > 0 means the
energy density of dark matter transfer to dark energy
whereas Q < 0 the energy density of dark energy will
be transferred to dark matter. It is worth to note that the
physical range of the a parameter should be @ < —1/3 in
order to prevent the dark (and dust) matter decaying slower
than the radiation.

In this work, we will examine the interacting dark energy
in viable f(R) gravity models by using a simple coupling
term as

0 = 3aHp,,. (2.16)
This model is proposed in Refs. [70-72] and mostly used to
study cosmological evolution of interacting dark energy
and dark matter in the dynamical system analysis. We have
completed deriving all important cosmological equations
that are crucial for dynamical system analysis. In the next
section, we will set up the autonomous equations of the
dynamical system of the interacting dark energy and dark
matter.

B. Autonomous system of interacting dark energy
and dark matter in f(R) gravity

In this section, we will derive the autonomous equations
which are the main ingredients for studying the dynamical
system in the interacting dark energy and dark matter in
general f(R) gravity. After setting up the dynamical
equations, we then find the fixed points of the system.

According to the Friedmann equation in Eq. (2.5), we
can define the dimensionless variable as [53]

R H K*p
= = — 2’ = r .
6 H TR

(2.17)
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d
di]\;: =1 —x3=3x) +x —xyx3 + x4 — 9a(l —x; —x; — X3 — xy4),
dx, xx
d—l\? = 173 —x(2x3 =4 —xy),
dx XX
dx
d—]\‘; = —2X3X4 + X1 X4, (218)
where the variable N = Ina is e-folding number and leads to d/dN = d/(Hdt). The parameter m is defined by
dinF RFy dlnf RF  x;
= = =—, =- =——=— 2.19
m=mr) =R F dnR~ f x (2.19)

with Fr = dF/dR and it has been explained in Ref. [53] that the parameter m is represented by the deviation of the f(R)
gravity from the ACDM. For example, f(R) = R — 2A leads to m = 0. In addition, the density parameters for each species
of matter can be related to the dimensionless variables in Eq. (2.17) by the Friedmann equation in Eq. (2.5) as the following

constraint equations:

Finally, the effective EOS is written in terms of the
dimensionless variable by

2H

1

Wetf — -1 (221)

The effective EOS parameter is also used to identify that the
Universe is accelerated expansion when wey < —1/3. We
will use the derived autonomous system in this section to
determine the fixed points and evaluate its eigenvalues for
analyzing the dynamical system of the interacting dark
energy and dark matter in the next section.

III1. FIXED POINTS AND
STABILITY ANALYSIS

In the previous section, we have already set up the
autonomous system and we are now ready to determine the
fixed points from the autonomous system in Eq. (2.18)
directly by setting dx;/dN = 0 with i = 1, 2, 3, 4. We find
that there are total eight fixed points and they are classified
into two cases as absent of the radiation and nonvanished
radiation in the Universe as found in Ref. [53] for the
dynamical system analysis of the noninteracting dark
energy in f(R) gravity. In addition, all fixed points found
in this work are modified by the interacting dark energy
parameter @ and they will be reduced down to all fixed
points in Ref. [53] when @ — 0. Therefore, we will call all
fixed points following Ref. [53] with slight distinction. The
fixed points and its eigenvalues of the stability matrix will
be determined in the following subsections.

=1l-x—x—-x3—x,

Qr = X4, QDE =X +X2+)C3. (220)
A. P;: The de Sitter fixed point
Pl: (XI,X2,X3,X4) == (O,—I,Z,O) (31)

The dark matter density and EOS parameters are given by

Qm = O, Weff = —1. (32)
In this point, both dark matter and radiation are absent
while the Universe is dominated by dark energy. EOS of
this fixed point indicates that the Universe is in the
accelerating expansion phase. To study the stability of
the fixed point, we can use the eigenvalues of the stability
matrix to characterize the behaviors of the fixed point. The

stability matrix is defined by

Ox;  Oxy  Ox3  Oxy
Ox;  Oxy  Ox3  Oxy
oxy Oxy,  Oxz3  Oxy
oxy Oxy,  Oxz3  Oxy

(3.3)

where Y; = dx;/dN. The eigenvalues for fixed point P,
read

V25~ 16
3 VB I6m )0,

2 : (3.4)

The stability behaviors of this fixed point are as follows:
stable node or attractor fixed point for 0 <m <1 and
a < 1/3. Saddle point for otherwise.
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B. P,: Modified ¢-matter dominate epoch point

This fixed point is similar to the fixed point in non-
interacting dark energy in f(R) gravity case found in
Ref. [53]. But the fixed point P, is slightly modified by the
interacting dark energy parameter, a. It reads

Pyt (x1,%0,%3,%4) = (=1 =9,0,0,0). (3.5)
Matter density and EOS parameters are given by
1
Qm =2 + 9()!, Wefr = g . (36)
The eigenvalues of the stability matrix are read
1+9+4
3Ba—1), —9a—2, —2FEI 3
m

The conditions of stability are as follows: stable node for
(1/4)(-=1 =9a) < m < 0 and a > 1/3. Unstable node for
m <0 or m> (1/4)(—1 —9a) and a < —2/9. We note
that the fixed point P, is the stable node when a > 1/3.
This contradicts to the physical range of the interacting
dark energy parameter (a), i.e., @ < 1/3, which makes dark
matter decaying faster than the radiation.

C. P;5: Pure kinetic dominated point

The fixed point P; has the same form as the non-
interacting f(R) gravity case [53]. It reads

P3: (xl,X2,X3,X4) = (1,0,0,0) (38)

The dark matter density and EOS parameters are read

1

Qm = 0, Wef = 5 . (39)

The fixed point P shows that the Universe is dominated by
dark energy as the P; point with the decelerating universe
|

due to wey = 1/3 and making d < 0. The eigenvalues of
the fixed point P5 are given by

1
5. 4——, 9a+2. (3.10)
m

The conditions of stability are as follows: unstable node for
m<0orm>1/4 and a > —2/9, otherwise is for sad-
dle point.

D. P,: Additional pure kinetic dominated point

The fixed point P, appears the same as the noninteract-
ing dark energy f(R) gravity case [53]. It is given by

P4: (X],Xz,X3,X4) = (—4,5,0, 0) (311)

The dark matter density and the EOS parameters are

1

Qm = O, Wetf = g (312)

The fixed point P, has the same properties as the P; point
while eigenvalues of the P, point are given by

4(m+1)

-5, , 3(3a—1), 0. (3.13)
The conditions of stability are as follows: stable node for
—1 <m <0 and a < 1/3, unstable node for m < —1 or

m > 0 and a > 1/3, otherwise is for saddle point.

E. P5: Scaling solution point

The fixed point Ps represents scaling solution point of
the Universe. The scaling solution gives to the ratio
Q,,/Qpg becoming constant. It has been pointed out in
Ref. [53] that the fixed point Ps represents the standard
matter when m — 0. In addition, it is worth noting that our
result modifies the scaling solution of f(R) gravity with the
interacting dark energy parameter a. The fixed point
Ps reads

Ps: (x1,X,X3,X4) = <

The dark matter density and the EOS parameters are

Q=

where the dark matter density is greater than zero under the following condition:

4

The condition for accelerating universe is given by

3=9a)m 9a+4m+1 9a+4m+1
— 5 ,O . (3.14)
m+1 2(m+1) 2m+2
2 —4ym? -3 2 3
~ 2(9a—4)m Jr(9052 Jm + o atm (3.15)
2(m+1) m+1
1 [81a®> —198a+73 3(3a-1) 7 - 9a
— <m< . 3.16
\/ (9a — 4)? 409a—4)= "= 18a—-10 (3.16)
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1
m<-—1 or m>§(1—9a). (3.17)

The eigenvalues of the P5 read

—18am®? = 3(3a + 1)y/m + \/=16(9a + 1) + dpm?® + gm* + sm
4y/m(m +1)
where s = (8 —9a)?, ¢ = (-972a” + 252a + 160) and s = (—567a* + 198a — 31). There are no ranges of a and m

(assuming both are real number) of the eigenvalues of the P5 fixed point for stable and unstable nodes. Then Ps point is
always saddle point under the following ranges of the parameters:

2 1 [8la? -1 7 -1 1
a$—§A<O<m<—\/8a 98a + 3—3(3a )\/m>—1(9a+1)>,

. 3(1=3a), 0, (3.18)

4 Oa—47 4(9a-4)
2 1 1 1 [81a® —198a+73 3(3a—1)
_=z <__ __ 1 z _
g<as 9/\<0<m< 4(9a—l- )Vm>4\/ Oa—4)° 1004 |
1 [81a® - 198a+73 3(3a—1)
- CAm> - . 3.19
9=%%3 m>4\/ (9a — 4)? 4(9a — 4) (3.19)

We note that the energy transfer parameter, @ can be both positive and negative. In other words, the dark matter transfer
energy density to dark energy (positive a) and dark energy can also transfer energy density to dark matter (negative «) in the
scaling solution, Ps point.

F. P4: Curvature dominated point

The fixed point Pg can be used to explain the late accelerating expansion of the Universe by the curvature effect of the
f(R) gravity. The Pg point is given by

2-2m 1—4m 4m>+3m—1
Pg: (x1,x0,X3,%4) = , . , 3.20
of (10233, %) (2m +1 ' m2m+1)" m2m+1) ) (320)
The dark matter and EOS parameters of the Pg point are
—6m* —5m +2

Q, =0, = 3.21
m Wetf 6m2 +3m ( )

The accelerating universe condition (wg < —1/3) is constrained by

1 1 1

m<—§(\/§+l) or —§<m<0 or m>§(\/§—l). (3.22)
In addition, the curvature dominated point Py is reduced to the de Sitter fixed point with w,; = —1 at the limit m — 0.

Universe is entirely dominated by dark energy without any matter. The eigenvalues of the stability matrix for P point are
given by

4+l 2(1 —=m?)  18am? — 8m?* + 9am — 3m + 2
m’ m(2m+1)° m(2m+ 1)

, 0. (3.23)

The conditions of stability are as follows: stable node for m < —1 or —=1/2 <m <0 or m > 1 and @ < 1/3, while saddle
point is otherwise.
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G. P;: Standard radiation point
The fixed point P, has the same values as the non-
interacting f(R) gravity case. It characterizes the standard
radiation-dominated era in the Universe. The fixed point P
is given by

P7: (X],Xz,X3,X4) = (0,0,0, 1) (324)

The dark matter density and EOS parameters are given by

Qm = O, Wetf = g . (325)

In addition the P; point gives Q, = 1. The eigenvalues of
the P; are

4, 4 -1, 149 (3.26)

According to the P, point’s eigenvalues, this means the P,
point is saddle point obviously.

H. Pg: ¢p-radiation dominate epoch point

The fixed point Pg takes the same form as the non-
interacting f(R) gravity because we do not couple the
interaction of the dark energy to the radiation. In addition,
this fixed point contains nonvanished dark energy compo-
nent in the Universe. The fixed point Pg reads

Pg: (x1,Xp, X3, Xy)
B dm 2m 2m
S \l+m (1+m? 1 +m’

1 —2m — S5m?
(14 m)? )
(3.27)

The dark matter density and EOS parameters are given by

1-3m

Weft = 73 3m

(3.28)
According to the EOS, the Py is reduced to the standard
radiation at the limit m — 0. The eigenvalues of the Py are
given by

m? — 1+ (m+1)/327m> + 10m - 5)

4’
2(m+1)?

, 14 9a.

(3.29)

This shows clearly that the Pg point is always saddle point.

As aresult, we note that there are two fixed points P; and
Pg that can be represented as the late time accelerating
universe in f(R) gravity; while the Ps is only one fixed
point for the (dark) matter dominated epoch and then
transits to late time dark energy dominated era. It has been
shown in Ref. [53] that there are two classes of cosmo-
logical viability in f(R) gravity models, i.e., class A saddle

point Ps transits to stable node P; de Sitter fixed point and
class B saddle point Ps transits to the curvature dominated
P¢ point for noninteracting f(R) gravity. However, the
parameter a of the interacting term of the Q = 3aHp,, will
play the important roles on the cosmological viability and
the estimations of the transition from the matter dominated
era (saddle point) to the dark energy domination (stable
node) at the late time of the viable f(R) gravity models. In
the next section, we will examine the cosmological dynam-
ics for each viable f(R) gravity models in detail.

IV. STABILITY AND COSMOLOGICAL
IMPLICATIONS IN VIABLE MODELS
OF f(R) GRAVITY

In this section, we will investigate the cosmological
dynamics of the interacting dark energy in f(R) gravity for
specific viable models of f(R). The viable models of f(R)
gravity require a correct cosmological phase of evolution as
of the standard ACDM [51,52], free of matter [73,74] and
cosmological [75-77] instabilities as well as satisfy to the
local gravity constraints [78—82]. First of all, we would like
to recall the conditions for the cosmologically viable f(R)
dark energy models as given in Refs. [19,20]

F >0, Fr>0, forR>R,>0, (4.1)
where Fp =0F/OR = 0*f/OR* and R, is the current
value of the Ricci scalar. The condition F > 0 is required
to avoid the appearance of the ghost in the f(R) gravity
while the condition Fp > 0 is to prevent the negative
mass of the scalaron field in the Einstein frame. In addi-
tion, Ref. [53] has systematically studied and classified
the categories of the classes of f(R) gravity models in
the dynamical system approach. We refer readers to
Refs. [19,20] for excellent review about viable models
of f(R) gravity and reference therein. In the following
subsection, we will use three cosmologically viable f(R)
models which have been demonstrated in [19,20] that with
the proper ranges of the parameters, the models have a
correct cosmological evolution i.e. radiation (saddle point)
to dark and dust matter (saddle point) to late time dark
energy dominated (stable node). Moreover the following
viable models of f(R) gravity also agree with the local
gravity constraints.

A. Model A: f(R)=R-yR" withy >0and 0 <n <1

We start with the model A: f(R) = R — yR" with the
conditions y > 0 and 0 < n < 1 which provide a correct
cosmological evolution. This model was presented in
Refs. [53,83] First, we determine values of m and r from
their definitions in Eq. (2.19). One finds

—1)nR"
= =R (42)
R — ynR"

063517-7
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TABLE 1.

The table shows the m and r parameter for all fixed points and the stability profiles with its possible values of n for

f(R) = R — yR" model where C; = (3 —9a) and C; = (3 + 375 + 4 /%). As shown in the table, the scaling solution point Ps
is saddle point when the range of n does not lie on 0 < n < 1 for all possible a. This means that the Ps is not compatible with the
cosmologically viable of f(R) dark energy of the model A when the interacting dark energy term Q = 3aHp,, is taken into account.

Stability
r=x3/x m(r) Stable Unstable Saddle
P, -2 n/2 2<n<2 - Otherwise
Aas%
P, —1-m n—1 %<n<1 n<%v Otherwise
Ana >t h<lna<-3
P3 —-1-m n—1 n<lvn>3 Otherwise
Ana>—3
P, 0 n Always
P —1-m n—1 [n> %
N —é <a< %}
vil<n<$
(&)
vVn> =4
AN=}<a<-]
V[l <n < &
voin>g
Ana< -3
Pg —1—-m n—1 n<0v%<n<1 1<”<45‘1 Otherwise
ANa <3 na>—3
P, —1-m n—1 Always
Py —l-m n—1 0<n <t/
AN—g<a<}
R — ynR" P, = (=1-=94,0,0,0),
= (4.3) 1
R—}’R Qm:2—|—9a, Weffzg,
Then we can write m(r) as a function of r as eigenvalues: —3(3a—1), —9a—-2,
1+9 +4(n-1
r n—
m(r) =", (4.4)
r
P; =(1,0,0,0).
Notice that Eq. (4.4) does not depend on y. Next we 1
determine the values of all fixed point, &,,, weg and their Q= 0, weir = 3
eigenvalues by using the parameter m summarized in table _ 1
of each fixed point and obtain the set of r given in Table I. eigenvalues: 5, 4 — a1 9 +2, (4.7)
We find
P, =(-4,5,0,0),
P, = (0.-1,2.0), ! |
Q, =0, Wegp = —1. Qm =0, Werr = §
3.,/25-32 , : 4(n)
eigenvalues: _Eif/”’ 33a—1), 0, eigenvalues: —5, 1 33a—1), 0,
(4.5) (4.8)
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9a+4(n—1)+1 9a+4(n—1)+1

’

P <<3 —9a)(n - 1)

n

b b O
2n? 2n >

29a-4)(n=1)*+ 9a—-3)(n—1)+2 3a+n-1
Qm: 212 > Wetf = —————— >
n n
1
eigenvalues: ———(—18a(n — 1)32 =3Ba+ Vn -1
g i e = 1 =3 )Y
/=169 + 1) +4p(n— 1)* + q(n — 17 + s(n - 1)),
3(1 -3a), 0, (4.9)
2(n=2) 5—4n n(4n —15)
P6: - 5 2 B ’0 5
2n—1 "2n*=-3n+1(n-1)2n-1)
—6m? —5m+2
Q. =0, e e —
m Wetl 6m> + 3m
, 1 2(n=2)n
lues: —4 , = ,
eigenvalues +n—1 272 —3n 41
9 2(9a — 4)n? 13 =27 -3
a+ 29 ln + ( an o (4.10)
2n—=3n+1
P; =(0,0,0,1)
o _ B
m chf*?’
eigenvalues: 4, 4, — 1, 14 9a, (4.11)
~(4n—-1) 2(n-1) 2(n—1) 1-2(n—-1)—5(n—1)>
N n? n n?
4+3n
m = 0,
Weff = 3n
2_2n+ 3(27n2 — 44 12
eigenvalues: 4, " " n\/( " n ) 1+ 9a. (4.12)

2n?

We have summarized the list of parameters m and r for all
fixed points of the model A as well as their stability in
Table I.

Interestingly, the points P, ; with r = x3/x, = 0/0 are
undefined but one might use the L’Hospital rule to
represent the parameter r for P, 5 as

RF  O(RF)JOR  RFx—F
"ETT T T afR T F

=-m-1.

(4.13)

This trick also can be applied to determine the parameter m
at the P, point.

As a result given in Table I, the de Sitter fixed point P,
does violate the condition 0 < n < 1 for the f(R) =R —
yR" model as shown in [53] when it becomes the stable

node. Only physical stable node in this model is the curvature
fluid dominated point Pg with 1/2 < n < 1. More impor-
tantly, the scaling solution fixed point Ps is not compatible
with the condition 0 < n < 1 for a saddle point. The range of
n lies outside 0 < n < 1 forall possible « values, see Table I.
We find C| ~ 0.32, 3.99, 4.89 and C, ~ 7.67, 5.16, 5.00 for
ax1/3,-1/9,-2/9 respectively. Then we observe that the
interacting dark energy term Q = 3aHp,, does change the
profile of the model A and does not provide correct
cosmological evolution. In addition, we would like to stress
that the model A will be a viable f(R) gravity model when
a — 0 recovering the noninteracting DE case as shown in
Refs. [19,53,54]. The model A is apparently sensitive to the
inclusion of the interacting DE model Q = 3aHp,, for any
a # 0. However, other choices of the interacting DE cou-
pling, O, might be worth for further investigation to make the
model A viable.
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B. Model B: f(R)=(R?-A)¢ with ¢ > 1 and bc ~ 1

The model B is proposed by Refs. [53,55] to gen-
eralize the ACDM and recover the local gravity con-
straints in GR. In this model, the m and r parameters
are given by

bc— 1R —bA+ A
_{ z)eb—A (4.14)
bcRb

Then the m parameter can be written as a function of r via
|

P, =(0,-1,2,0),

m(r) = <1_C>r+b—1. (4.16)

c

We note that under limit ¢ > 1 and bc = 1 the model B will
be reduced to the ACDM with m = 0 and provide viable
cosmological evolution [53,55]. For the fixed points
P, 55678, we found r = —1 — m. The value of m in this
model is written by

m = —1+ bc. (4.17)

The explicit forms of all fixed points and their eigenvalues
in model B are give by

6+ c(=3b — 3+\/ -

241)(25b -2+9))

i lues: 33a—1), 0, 4.18
eigenvalues bt c=2) , 33a—1) (4.18)
Py = (—1 - 94,0,0,0),
1
Qm:2—|—9a, Weﬂ:zg,
9a +4bc -3
eigenvalues: —3B3a—1), —9a -2, a—li)-icl ,0, (4.19)
C —_—
Ps = (1,0,0,0).
1
Q, =0, wy ==
m Wett 3
4bc -5
eigenvalues: 5, —< > 9q 42, (4.20)
bc—1
P, =(-4,5,0,0),
1
Q, =0, S
m Weft 3
. 4b
eigenvalues: —5, b1 3(3a—-1), 0, (4.21)
P (3=9a)(bc—1) —9a —4bc +3 9a+ 4bc -3 0
> be ©o222 T 2be
9a + be(—27a+ 2(9a —4)bc + 13) — 3 1 -3a—bc
= 22 Y PR
1
eigenvalues: Thelbe—1) (—9a —3bc(a(6bc—9) +1)+3
c —_—
£/ (be — 1)(4(8 - 90)b*c* — 4pyb*c? + 3qube — 81(1 - 3a)? )).
3(1 - 3a), 0.
where pp = (9a(54a — 55) + 152), gp = (B3a—1)(261a — 139), (4.22)
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P 4 —2bc 5—4bc bc(4bce - 5) 0
0= \2bc — 17202 =3bc + 1" (bc = 1)(2bc - 1)" " )"
2 2
Q, =0, = _
m Welt = T 2be T 3(be—1)
sicenvalues: 5 —4bc B 2bc(bc —2)
g “The—1" " (be=1)2bc—1)’
9a+2(9a—4)b2C2+(13—27a)bc—3’ 7 (4.23)
(bc —1)(2bc — 1)
P, =(0,0,0,1)
1
Q :O, s = —
m Wetf 3
eigenvalues: 4, 4, — 1, 1 +9a. (4.24)
4 2-2bc 2 2 8
Py=(4-— " 0= 2 4" 5
s ( be’ b2c? e’ " be )
4
Q, =0, = =1+
m Wetr +3bc
b*c* —2bc 4 ber/3(27b% ¢ — 44be + 12
eigenvalues: 4, ¢ ¢ C\/Zb(z 5 €t ) 1 4+ 9a. (4.25)
C

|
For the parameters, m and r in the model B are shown in ~ P; and Pg4. The de Sitter fixed point P is still compatible
Table II. To study the stability of the fixed points in the  with the conditions ¢ > 1 and bc =~ 1 for model B while the
model B, we consider the limits of bc — 1 viabc — 1¥. As  curvature fluid dominated point Pg is more compatible to
shown in Table II, we find that there are two fixed points the conditions of the model B than the point P;. In addition,
that can represent the late time accelerating universe, i.e.,  the scaling solution Ps also compatible with ¢ > 1 and

TABLE II. The table shows the m and r parameter for all fixed points and the stability profiles with its possible values of b and ¢ from

the model f(R) = (R” — A)° where C; = (3 -9a) and C, = (3 + 1950+ %)

Stability
r=Xx3/x m(r) Stable Unstable Saddle
P, -2 # c> % Otherwise
P, —1-m -1+ bc bc - 1~ Otherwise
a> -1
Py —1—-m -1+ bc bc — 1~ Otherwise
a> -1
P, 0 b—1 0<b<l Otherwise
Ps —-1-m -1+ bc [bc>%
A—g<a<i
V[l <be<$
AN=}<a<-]
V[be - 1%
ANa=—3
Pg —1—-m -1+ bc bc — 1~ bc — 1T Otherwise
P, —1-m -1+ bc Always
Py “1-m —1 + be 0 < b <40
Ac>1

063517-11



SAMART, SILASAN, and CHANNUIE

PHYS. REV. D 104, 063517 (2021)

bc ~ 1 conditions for all possible values @ < 1/3. We can
see the ranges from Table II where C; ~ 0.32, 3.99, 4.89
and C, = 7.67,5.16, 5.00 fora =~ 1/3,-1/9, -2/9 respec-
tively. In particular, we found that the condition bc = 1 is
more valid when the a becomes more negative. The
interacting dark energy does not change cosmologically
viable profile of the model B.

C. Model C: f(R)=R-AR,[1+(R,/R)*"|

We can write the explicit forms of all fixed points in the
model C as

P, = (O, 1,2,0),
Qm = 0, Weff = —1,
25u — 16
eigenvalues: — =+ ﬂ4 , 33a—1), 0,
U

with n, A > 0 and R > R, (4.28)
We consider the model C: f(R) =R—AR.[1+ (R./R)*"] P, =(-1-9,0,0,0),
with n, 4 > 0 and R > R, in this section where the model C 1
is an approximation of the Hu and Sawicki model, f(R) = Qy =249, Welf = 3
R —AR.(R/R.)*/[1 + (R/R.)*"] [84] and the Starobin- . ,
sky model f(R) = R — AR,[1 — (1 + R?/R%)~"] [85] in the cigenvalues: —3(3a 1), —9a-2,
R > R, limit. Those two models were proposed to repro- 44 9o+ l)uﬁ, 0, (4.29)
duce the local gravity constraints of f(R) gravity, while still P. — (1.0.0.0
provide the accelerating universe solution at the large scale. 3 = (1,0,0.0),
The parameters m and r and their related quantities in the o —0 1
dynamical system analysis in model C are given by mo Weff = 3>
. . ot
- 2m(2n 4 1) L eigenvalues: 5, 4 — pz, 9a + 2, 0, (4.30)
m=——n—(=r=1) P, = (~4,5,0,0),
2n(2n +1 1
= p(=r =11, = % (4.26) Q, =0, Welf = 3
4
R i - —— —
P (4.27) eigenvalues: —5, 4 r 3B3a-1), 0, (4.31)
R
|
3-9a 9a+4um+1 1 3-9
Psz(l S ,—<9a+ 1 “+1>,0)
w1l 24 1)7 2 w41
18a + 3(3a — 1)z + 2u'/" — 8 3a— 1
o, — a+3(3a 1)#27:/4 Cwg =225,
2(px +1) per + 1
eigenvalues: L {—3 — a(18u7% +9)
C4(1 + )
- ﬂ—%\/256 —81a2pc — 18agc — 31" /™ 4 160u2 — 16;4%} ,
3(1 = 3a), 0,
where pe = (Tu!/" 4+ 12455 — 4), ge = (—11u"/" — 1442 + 8z + 32), (4.32)
20 = 1) pM/m =y 4 — /oy 3y
Pg = T T T 0,
/,[Zn + 2 /,{211 + 2 /,{2!1 + 2
2 4
Qu=0,  wer=-3+Ip"+—1—,
pr 2
2" = 1) 9a(us +2) + 2u'/" — 3y — 8
eigenvalues: ,uﬁ —4, (p ) Salur+2) +2u s , 0, (4.33)

pz + 2

pz + 2
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TABLE III. Table shows m and r parameters and the possible stability of all fixed points from the model C, f(R) =R —
AR[1— (B> with =24 and C; = ~9a + 3 + V8la® — 198a + 73.
Stability
r=x3/% m(r) Stable Unstable Saddle
P, -2 u L<u<1 u>1
Na <3 Aa <5
P, —1-m > # < loarm iy ]2" Otherwise
A < —2
Py “1=—m e U< 42” Otherwise
Aa > =32
Py 0 —U Always
Ps i e [0 << [F
A—fF<a<i
V[ﬂ > [ 9(;:»1 ]Zn
AN=}<a<-]
Py -1 o n>0A0<pu<l1 u >4 Otherw1se
Aa <%
P, —1-m > . Always
Py —1-m > u>0An>0
P;=1(0,0,0,1)
Q 0 !
=V, Weff = 5
'm eff 3
eigenvalues: 4, 4, —1, 1+ 9a, (4.34)
< 2y 2 pm—2um - 5>
S\ @) (1)
1
=0, Weft = 7,
33+ 1)
1+ pul/n (1 + \/3(27u‘2/” + 42u " 4 64p — 5))
eigenvalues: 4, ) ,
2(1 + p2n)
1 + 9a. (4.35)

The values of the m and r parameters for all fixed points in
the model C as well as their stability are summarized in
Table III.

We close this section by discussing the influence of the
interacting dark energy in the f(R) gravity model C.
According to our results given in Table III, we discover
that the cosmological viability of the f(R) = R — AR.[l +
(R./R)*] model is still compatible with the standard
ACDM when the interacting dark energy is taken into
account. However, we find some inconsistent predictions of
the A parameter of the model C between the noninteracting
and the interacting dark energy at the de Sitter fixed point
P,. For noninteracting dark energy in f(R) gravity, it has

|
been shown in the Ref. [56] that the A1 parameter of

the model C is constrained by at A > 8v/3/9 for n =1
whereas the interacting dark energy provides the con-
straint 16/25 < u <1 for the stable node of the de
Sitter point P,. This leads to v/6 <A < 1/75/8 at n = 1
for u=2n(2n+1)/2*". As the result, we find that the
interacting dark energy increases the lower bound and
provides the upper limit of the 1 parameter in the model C.

V. CONCLUSION

In this work, we have qualitatively studied the cosmo-
logical dynamics of the interacting dark energy and dark
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matter in the viable models of f(R) gravity by using the
standard dynamical system approach. For simplicity, the
simple interacting dark energy and dark matter model
Q = 3aHp,, is used in the present study. From our setup
of an autonomous system of cosmological dynamical
equations, we have obtained total eight fixed points and
there are six and two fixed points for absent and apparent
of the radiation energy density, respectively as found in the
literature for noninteracting dark energy case with addi-
tional parameter a in the fixed point solutions. In the
present work, the cosmological viability of the f(R) gravity
is found with additional constraints from the interacting
dark energy parameter a < 1/3.

Next, three models named A, B and C of the viable f(R)
gravity are investigated in detail for interacting dark energy
system where all those three models in this work have
been systematically constructed with possible ranges of its
model parameters from the dynamical system analysis for
the interacting dark energy framework. It is worth seeing
how the interacting affect to the cosmological viability of
the f(R) gravity models.

As the result, we found that the model A, f(R) =R —
yR" withy > 0 and 0 < n < 1 is not cosmologically viable
in the presence of the interacting dark energy. The stability
condition of the de Sitter fixed point P requires 32/25 <
n < 2 and this is contradictory to the viable condition of the
model A. Interestingly, the scaling solution fixed point Ps
yields n > 1.26, 1.92 for a ~ —1/9, 1/3, respectively. For
matter dominated epoch, we can see that the possible range
of the n lies outside the 0 < n < 1 condition for cosmo-
logical viability of the P5 point in the model A, when it
becomes saddle point, see Table I; while, the model B,
f(R) = (R® — A)° is still cosmologically viable for f(R)
dark energy model. All stability of the fixed points of the
model B in the presence of the interacting dark energy are
compatible with the constraints ¢ > 1 and bc ~ 1. Con-
sidering the model C with f(R) = R — AR [1 + (R./R)*"],
the result shows that this model is also cosmologically
viable in the presence of the interacting dark energy.
However, we found some inconsistent predictions of a
coupling 4 between the noninteracting and the interacting
one. At n =1, the noninteracting dark energy reveals

4> 8v/3/9 whereas our result shows the constraint

V6 < 1 < \/75/8.

Although there are many viable f(R) models explaining
the dark energy problem in cosmology, our qualitative results
found in the present work could be guidelines for more detail
study and are used as complementary constraints on the
viable f(R) models in addition to the other cosmological
constraints on f(R) theories. All these f(R) gravity models
are significantly distinguishable by the evolution of the
cosmological perturbations. In particular, the study of
the formation of structure in the Universe is sensitive to
the interacting dark energy and dark matter in the f(R)
gravity. More importantly, the presence of the interacting
f(R) dark energy and dark matter in the early phase of the
Universe might affect the epoch of matter-radiation equality.
This pattern of anisotropies could be calculated in terms of
the growth of the structure formation in the interacting f(R)
gravity framework. Remarkably, the interaction between
f(R) dark energy and dark matter at the early stage of the
cosmological evolution might describe the discrepancy of the
Hubble tension parameter between local measurement and
another one from the cosmic microwave background result.
Moreover, the matter perturbation and the local gravity
approximations of the interacting dark energy in f (R) gravity
is worth further study in order to explain the inconsistent
predictions between the noninteracting and the interacting
f(R) dark energy models. By the way, other models of
interacting dark energy in f(R) gravity might be interesting
for further study to extract more physical implications and
cosmological consequences.
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