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Ansermet 24, CH-1211 Genève 4, Switzerland
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One of the main goal of large-scale structure surveys is to test the consistency of general relativity at
cosmological scales. In the ΛCDM model of cosmology, the relations between the fields describing the
geometry and the content of our Universe are uniquely determined. In particular, the two gravitational
potentials—that describe the spatial and temporal fluctuations in the geometry—are equal. Whereas large
classes of dark energy models preserve this equality, theories of modified gravity generally create a
difference between the potentials, known as anisotropic stress. Even though measuring this anisotropic
stress is one of the key goals of large-scale structure surveys, there are currently no methods able to measure
it directly. Current methods all rely on measurements of galaxy peculiar velocities (through redshift-space
distortions), from which the time component of the metric is inferred, assuming that dark matter follows
geodesics. If this is not the case, all the proposed tests fail to measure the anisotropic stress. In this paper,
we propose a novel test, Ostress, which directly measures anisotropic stress, without relying on any
assumption about the unknown dark matter. Our method uses relativistic effects in the galaxy number
counts to provide a direct measurement of the time component of the metric. By comparing this with
lensing observations our test provides a direct measurement of the anisotropic stress.
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I. INTRODUCTION

Testing the law of gravity at cosmological scales is one
of the main science driver for the coming generation of
large-scale structure surveys. At large scale, the geometry
of our Universe can be consistently described by two metric
potentials, Φ and Ψ, describing perturbations around a
homogeneous and isotropic background.1 Testing the law
of gravity requires to test the relations between these two
potentials and the energy-momentum tensor describing the
content of our Universe, in particular the matter density
fluctuation, δ, and the galaxy peculiar velocity, V. Two
approaches can be used for this. The first one consists in
assuming a specific model or class of models of gravity
(e.g., Horndeski models [1]), determine how the four fields,
Φ,Ψ, δ, and V, depend on the parameters of the model, and
use observations (which depend on the four fields) to
constrain the parameters. This approach has the obvious
disadvantage that it has to be performed separately for each
model or class of models.
The second approach consists in building model-inde-

pendent tests, that allow to probe directly the relations
between the four fields without assuming any model, see,
e.g., [2–10]. The outcome of these tests can then be used to

determine the validity of any theory of gravity. This second
approach, which is more powerful, is however suffering
from an important limitation: the fact that our observables
at late time are sensitive to only three combinations of the
four fields, namely δ and V (through redshift-space dis-
tortions, see, e.g., [11,12]) and Φþ Ψ (through cosmic
shear [13,14], CMB lensing [15–18] or integrated Sachs
Wolfe [19]). This means that current observations are not
able to test all relations between the four fields. The
standard way of overcoming this problem is to assume
that some of the relations between the four fields are
known. Typically, one usually assumes that the continuity
equation for dark matter holds: there is no exchange of
energy between dark matter and dark energy; and that Euler
equation for dark matter holds: there is no fifth force acting
on dark matter, which consequently follows geodesics.
Under these conditions, a measurement of V can be
translated into a measurement of Ψ, which can then be
compared to Φþ Ψ to test if the two metric potentials are
the same, i.e., to test for the presence of anisotropic stress
[3,20–22]. This is a key test for modified theories of gravity
since in general relativity (GR) and for large classes of dark
energy models,Φ ¼ Ψ at late time,2 whereas very generally
in modified theories of gravity Φ ≠ Ψ, see, e.g., [25].

1We use the metric convention ds2 ¼ a2½−ð1þ 2ΨÞdτ2 þ
ð1 − 2ΦÞdx2� where τ denotes conformal time, and we neglect
vector and tensor modes, that are negligible with respect to scalar
modes in the linear regime.

2Note that neutrinos also generate a nonzero anisotropic stress,
which is however very small [23,24].

PHYSICAL REVIEW D 104, 063516 (2021)

2470-0010=2021=104(6)=063516(7) 063516-1 © 2021 American Physical Society

https://orcid.org/0000-0001-9559-3651
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.063516&domain=pdf&date_stamp=2021-09-08
https://doi.org/10.1103/PhysRevD.104.063516
https://doi.org/10.1103/PhysRevD.104.063516
https://doi.org/10.1103/PhysRevD.104.063516
https://doi.org/10.1103/PhysRevD.104.063516


In this paper we propose a novel model-independent test
for the anisotropic stress,Ostress, which does not rely on any
assumption for dark matter, i.e., which does not rely on the
validity of the continuity or Euler equation. To build this
test we use the fact that galaxy number counts are affected
by gravitational redshift, a relativistic effect that is directly
proportional to the field Ψ [26–29]. We develop a method
to isolateΨ from galaxy number counts observations. More
precisely we build an observable which measures the
correlations between the matter density fluctuations and
the gravitational potential Ψ: OδΨ ∝ hδΨi. We then com-
pare this with lensing observations, which provide a
measurement of OδðΦþΨÞ ∝ hδðΦþ ΨÞi. Our test is then
simply given by the ratio between these two observables:

Ostress ≡OδðΦþΨÞ

OδΨ ¼ 1þ η; ð1Þ
where η relates the two metric potentials, Φ ¼ ηΨ. In
ΛCDM, the two metric potentials are equal and therefore
Ostress ¼ 2 at all scales and redshifts. Any observed
deviation from 2 would therefore unambiguously mean
that the anisotropic stress is nonzero in our Universe, which
is a strong indication for deviations from GR.
The rest of the paper is structured as follows: in Sec. II

we build the observables OδΨ and OδðΦþΨÞ. In Sec. III we
define our test, Ostress. We then compare this test with the
method presented in [3] to measure the anisotropic stress,
which assumes the validity of the continuity and Euler
equation for dark matter, and we show how this method
breaks down if these assumptions are not valid. We
conclude in Sec. IV.

II. METHODOLOGY

A. Galaxy number counts

Redshift surveys map the distribution of galaxies in the
sky, providing a measurement of the galaxy number counts
fluctuations

Δ≡ Nðn; zÞ − N̄ðzÞ
N̄ðzÞ ; ð2Þ

whereN denotes the number of galaxies per pixel detected in
direction n and at redshift z, and N̄ is the average number of
galaxies per pixel at redshift z. At linear order in perturbation
theory, the dominant contributions to Δ are [26–29]

Δðn; zÞ ¼ bδ −
1

H
∂rðV · nÞ

þ ð5s − 2Þ
Z

r

0

dr0
ðr − r0Þr0

2r
Δ⊥ðΦþΨÞðn; r0Þ

þ
�
1 − 5sþ 5s − 2

rH
−

_H
H2

þ fevol
�
V · n

þ 1

H
_V · nþ 1

H
∂rΨ; ð3Þ

whereH denotes the Hubble parameter in conformal time τ,
r ¼ rðzÞ is the comoving distance to redshift z, a dot denotes
derivative with respect to conformal time and Δ⊥ is the
Laplacian transverse to the photon direction n. The func-
tions bðzÞ, sðzÞ and fevolðzÞ are the galaxy bias, the
magnification bias and the evolution bias respectively.
These functions depend on the population of galaxy which
is observed as well as on the specifications of the survey.
The first contribution in Eq. (3), δ, is the matter density

fluctuation in comoving gauge. The second term, which
depends on the galaxy peculiar velocity, V, is the con-
tribution from redshift-space distortion (RSD) [30,31]. The
second line contains the effect of lensing magnification
[32,33]. This contribution is subdominant with respect to
density and RSD, except at high redshift [34,35]. From [10]
we expect this term to be negligible for our test, at least
below z ¼ 1.5. In a forthcoming paper we will study this in
more detail for specific surveys. The last 2 lines in Eq. (3)
contain the so-called relativistic effects, that depend on the
galaxy peculiar velocity, through Doppler effects, and on
the metric potentialΨ, through gravitational redshift. These
relativistic effects have the specificity to generate odd
multipoles in the power spectrum and correlation function
[34,36–38]. As such they can be isolated from the dominant
density and RSD contributions, which generate even multi-
poles.3 In addition to these terms, Δ contains other
relativistic effects that contribute to the even multipoles.
These terms are however suppressed by ðH=kÞ2 with
respect to density and RSD and can therefore be safely
neglected.
Note that Eq. (3) is valid at linear order in perturbation

theory. In the nonlinear regime, other terms have been
shown to contribute to the observable Δ, modifying the
RSD contribution [39,40], and also the relativistic effects
(like transverse Doppler effects [41–44]). The test proposed
in this paper is valid only in the linear regime, where the
impact from nonlinear corrections can be neglected.

B. Isolating gravitational redshift

The aim of our work is to isolate the contribution from
gravitational redshift given by the last term in Eq. (3),
∂rΨ=H, since it is directly proportional to the time
component of the metric Ψ. The optimal way of targeting
this contribution is to cross-correlate two populations of
galaxies with different luminosities, such that this term
contributes to odd multipoles [34,36–38]. In Fourier space,
the galaxy number counts fluctuations for a population of

3Let us mention that the separation of Δ into RSDþ relativistic
effects is gauge-dependent. However the separation in odd and
even multipoles is gauge-independent. In the flat-sky approxi-
mation, RSD contribute only to even multipoles whereas the
relativistic effects in the third and fourth line of (3) contribute
only to odd multipoles. At large scales however, wide-angle and
evolution effects mix the two types of contributions.
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galaxies with luminosity L becomes (we use the convention
fðk; τÞ ¼ R

d3xeikxfðx; τÞ)

ΔLðk; zÞ ¼ bLδðk; zÞ−
k
H
ðk̂ ·nÞ2Vðk; zÞ

þ iðk̂ ·nÞ
�
αLVðk; zÞþ

1

H
_Vðk; zÞ− k

H
Ψðk; zÞ

�
;

ð4Þ

where αL ≡ 1 − 5sL þ
5sL − 2

rH
−

_H
H2

þ fevolL ; ð5Þ

and the velocity potential, V, is defined through
Vðk; zÞ ¼ ik̂Vðk; zÞ. Equation (4) is valid only in the
flat-sky approximation, where n can be considered as fixed.
We will study in a future work the validity of this
approximation for our test.
The correlations between a bright, L ¼ B, and a faint,

L ¼ F, population of galaxies are given by

hΔBðk; zÞΔFðk0; zÞi ¼ ð2πÞ3PBFðk; μ; zÞδDðkþ k0Þ;
where

PBF¼ bBbFPδδ−
1

3
ðbBþbFÞ

k
H
PδV þ

1

5

�
k
H

�
2

PVV

þ
�
−
2

3
ðbBþbFÞ

k
H
PδV þ

4

7

�
k
H

�
2

PVV

�
L2ðμÞ

þ 8

35

�
k
H

�
2

PVVL4ðμÞþ
�
ðbFαB−bBαFÞPδV

þðbF−bBÞ
1

H
Pδ _V þ

3

5
ðαF−αBÞ

k
H
PVV

�
iL1ðμÞ

þ2

5
ðαF−αBÞ

k
H
PVViL3ðμÞþðbB−bFÞ

k
H
PδΨiL1ðμÞ:

ð6Þ
Here Ll denotes the Legendre polynomial of degree l, the
angle μ ¼ k̂ · n and the power spectra are defined through

hXðk; zÞYðk0; zÞi ¼ ð2πÞ3PXYðk; zÞδDðkþ k0Þ; ð7Þ

for X; Y ¼ δ; V; _V;Ψ.
Our aim is to isolate the last term in Eq. (6), which is

proportional to PδΨ. The anisotropic stress can then be
directly measured by dividing this contribution with the so-
called galaxy-galaxy lensing correlation, which is propor-
tional to PδðΦþΨÞ [45]. To isolate PδΨ, we first extract the
dipole of PBF which is proportional to PδΨ; PδV; Pδ _V and
PVV . We then look for combinations of the other multipoles
in order to cancel the PδV; Pδ _V and PVV contributions.
The multipole l of PBF can be extracted by weighting it

with the Legendre polynomial of degree l and integrating
over μ

PðlÞ
BF ðk; zÞ ¼

2lþ 1

2

Z
1

−1
dμLlðμÞPBFðk; μ; zÞ: ð8Þ

For our test, we need to measure the monopole and
quadrupole of the bright and faint populations, the hex-
adecapole of the whole population and the dipole and
octupole of the cross-correlation between bright and faint:

Pð0Þ
L ¼ b2LPδδ −

2bL
3

k
H

PδV þ 1

5

�
k
H

�
2

PVV; ð9Þ

Pð2Þ
L ¼ −

4bL
3

k
H

PδV þ 4

7

�
k
H

�
2

PVV; ð10Þ

Pð4Þ ¼ 8

35

�
k
H

�
2

PVV; ð11Þ

Pð1Þ
BF ¼ −i

�
ðbBαF − bFαBÞPδV þ ðbB − bFÞ

1

H
Pδ _V

−
3

5
ðαF − αBÞ

k
H

PVV

�
þ iðbB − bFÞ

k
H

PδΨ; ð12Þ

Pð3Þ
BF ¼ i

2

5
ðαF − αBÞ

k
H

PVV; ð13Þ

with L ¼ B, F. From these observed multipoles we con-
struct the following observables:

Oδδ
L ðk; zÞ≡ Pð0Þ

L −
1

2
Pð2Þ
L þ 3

8
Pð4Þ
L ¼ b2LPδδðk; zÞ; ð14Þ

OδV
L ðk; zÞ≡ 3

4
Pð2Þ
L −

15

8
Pð4Þ ¼ −bL

k
H

PδVðk; zÞ; ð15Þ

Oδ _V
L ðk; zÞ≡ −ð1þ zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oδδ

L ðk; zÞ
q d

dz

�
OδV

L ðk; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oδδ

L ðk; zÞ
p

�

¼ bL
k
H

�
_H
H2

PδVðk; zÞ −
1

H
Pδ _Vðk; zÞ

�
: ð16Þ

To obtain the last line in Eq. (16) we use the fact that, in
generic theories of gravity, the density and velocity fields in
the linear regime can be written as δðk; zÞ ¼ Dðk; zÞδðk; 0Þ
and Vðk; zÞ ¼ Gðk; zÞδðk; 0Þ, where δðk; 0Þ is a constant
and denotes the present dark matter density, while Dðk; zÞ
and Gðk; zÞ are functions of k and z mapping δðk; 0Þ into
the past.4 With this we can easily verify that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pδδðk; zÞ

p d
dτ

�
PδVðk; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pδδðk; zÞ

p
�

¼ Dðk; zÞ _Gðk; zÞPδδðk; 0Þ

¼ Pδ _Vðk; zÞ; ð17Þ

4These relations are valid in theories of gravity where mode
couplings are negligible in the linear regime.
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which gives rise to expression (16). We are now able to
isolate PδΨ with the following combination

OδΨðk;zÞ≡i
H
k

�
3

2
Pð3Þ
BF−Pð1Þ

BF

�

−
�
H
k

�
2

½Oδ _V
B ðk;zÞ−Oδ _V

F ðk;zÞ�

−
�
H
k

�
2
�
1−

2

rH
−5sF

�
1−

1

rH

�
þfevolF

�
OδV

B ðk;zÞ

þ
�
H
k

�
2
�
1−

2

rH
−5sB

�
1−

1

rH

�
þfevolB

�
OδV

F ðk;zÞ

¼ðbB−bFÞPδΨðk;zÞ: ð18Þ
We see that OδΨðk; zÞ can be measured from the galaxy

number counts, without making any assumption on the
theory of gravity. It depends indeed on

(i) The multipoles of the power spectrum, which are
observable.

(ii) The background quantities H=k and rH. These two
combinations can be inferred from background
observations. For example, observations of type Ia
supernovae provide a measurement of the luminosity
distance, up to a multiplicative constant5: d̂L≡
dLH0, from which one can infer the ratio
HðzÞ=H0. We then have

rH ¼ d̂L
1þ z

H
H0

; and
H
k
¼ H

H0

1

k̂
; ð19Þ

where k̂≡ k=H0 is independent of h for k in
units Mpc−1h.

(iii) The magnification bias, s, and evolution bias, fevol,
of the bright and faint populations. These quantities
can be directly measured from the two populations
of galaxies. The magnification bias requires a
measurement of the number of galaxies as a function
of luminosity [32], whereas the evolution bias
requires a measurement of the number of galaxies
as a function of redshift [28,46].

The observable OδΨ is, on its own, a very interesting
quantity since it probes directly the correlations between
density and gravitational potentialΨ. It provides therefore a
way of measuring these correlations at cosmological scales,
for the first time.
This observable relies on the dipole and octupole of the

power spectrum, that are too small to be measured with
current surveys [47]. The signal-to-noise ratio (SNR) of the
dipole has however been forecasted for the upcoming
generation of surveys (in configuration space), and is
expected to reach 9.6 for the DESI survey (7.4 for the

Bright Galaxy Sample and 6.2 for the emission line
galaxies and luminous red galaxies [48]), and 46.4 for
the SKA phase 2 [8]. The octupole is between 2 to 5 times
smaller than the dipole [34], and its SNR is therefore
expected to be reduced accordingly (its variance should
indeed be similar, since it is dominated by density and
RSD). The octupole may therefore degrade the overall SNR
of OδΨ. If this is the case, this could be circumvented by
replacing the octupole with the hexadecapole, which is
similarly sensitive to PVV , see Eq. (11). Due to the
relatively large SNR of the dipole for DESI and the
SKA, we expectOδΨ to be well measured in future surveys.
We will study this in detail in a forthcoming work.
Let us mention that one limitation of the observable OδΨ

is to rely on the flat-sky approximation. Since relativistic
effects may be of similar order as wide-angle effects, this
approximation may not be accurate enough and wide-angle
effects may modify the form of Eq. (18). To study the
importance of wide-angle effects, one needs to work in
configuration space, where these effects can be consistently
included [34]. In particular, in configuration space one can
construct estimators that remove wide-angle effects directly
from the signal [8,49], without relying on any theoretical
modelling. Adapting the observable OδΨ to configuration
space will not change its form, and we defer this to a
future work.

C. Galaxy-galaxy lensing

To extract the anisotropic stress from OδΨ, we need in
addition a measurement of PδðΦþΨÞ. This can be obtained
by correlating gravitational lensing with galaxy number
counts, called galaxy-galaxy lensing [45]. Observations of
galaxy shapes provide a measurement of the convergence
field κ

κðn; zÞ ¼
Z

rðzÞ

0

ds
ðr − sÞs

2r
Δ⊥ðΦþ ΨÞðn; sÞ: ð20Þ

The Fourier transform of κðn; τÞ cannot be calculated in a
straightforward way. It contains indeed an integral of
κðn; τÞ on a hypersurface of constant time. However, the
integral in Eq. (20) is only meaningful on the past light-
cone of the observer. Therefore, we first define the
correlation function in configuration space, and then extract
the power spectrum from this well-defined quantity.
The observable OδΨ depends on the bias difference

between the bright and faint populations, bB − bF. In order
to cancel this dependence we consider the following
galaxy-galaxy lensing correlation

ξBFΔκ ≡ hΔBðn;zÞκðn0;z0Þi− hΔFðn;zÞκðn0;z0Þi

¼ ðbB−bFÞ
Z

r0

0

ds
ðr0− sÞs

2r0
hδðn;zÞΔ⊥ðΦþΨÞðn0;sÞi;

ð21Þ
5This is due to the fact that the absolute intrinsic luminosity of

supernovae is unknown, so that only ratios of luminosity
distances at different redshifts are independent of normalization.
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where r0 ≡ rðz0Þ. Fourier transforming δ and ΦþΨ and
using Limber approximation [50,51], we obtain

ξBFΔκ ¼ −ðbB − bFÞ
ðr0 − rÞr

2r0
Θðr0 − rÞ

×
1

2π

Z
∞

0

dk⊥k3⊥PδðΦþΨÞðk⊥; zÞJ0ðk⊥Δx⊥Þ: ð22Þ

Here J0 is the Bessel function of order zero, k⊥ ¼ jk⊥j is
the amplitude of the wave number contribution per-
pendicular to the line-of-sight, Δx⊥ ¼ jΔx⊥j denotes the
amplitude of the vector joining the pixel in which ΔL is
measured and the pixel in which κ is measured, projected in
the plane orthogonal to the line-of-sight, and Θ is the
Heaviside function, accounting for the fact that the corre-
lation between ΔL and κ is nonzero only if κ is behind ΔL.
Note that hΔLκi contains also a lensing-lensing contribu-
tion, due to the second line in Eq. (3) [52]. However this
contribution does not depend on the galaxy population and
vanishes therefore in ξBFΔκ . Moreover, the correlation
between κ and the velocity contributions in Eq. (3) exactly
vanishes in the Limber approximation.
Since ξBFΔκ depends on PδðΦþΨÞ, on the bias difference

bB − bF and on the observable quantities r and r0, we could
directly compare it with OδΨ to extract the anisotropic
stress. However, to build a more direct test, it is convenient
to Fourier transform the correlation function and define

OδðΦþΨÞðk⊥; zÞ

≡ −4π
Δrk2

Z
∞

0

dΔx⊥Δx⊥ξBFΔκðΔr;Δx⊥; zÞJ0ðk⊥Δx⊥Þ

¼ ðbB − bFÞPδðΦþΨÞðk⊥; zÞ: ð23Þ

Here the correlation function is expressed in terms of the
transverse separation, Δx⊥, and the radial separation, Δr,
betweenΔL and κ. To obtain the second equality in Eq. (23)
we have used the orthogonality relation for J0. Eq. (23)
contains an integral over Δx⊥ going from 0 to ∞. In
practice, since the correlation function and the Bessel
function go to zero at large separation, the integral can
be cut at some maximum transverse separation Δxmax⊥ . The
observable OδðΦþΨÞ depends only on the transverse wave
number k⊥ (in the Limber approximation, the radial modes
do not contribute to the correlation function ξBFΔκ).
Therefore, to compare with OδΨ, we have to evaluate
OδðΦþΨÞ at k ¼ k⊥.
The galaxy-galaxy lensing correlations have already

been measured with high significance in several surveys,
e.g., by the Dark Energy Survey [45,53]. To build OδðΦþΨÞ
we need to measure these correlations for two different
populations of galaxies and to take their difference. In a
forthcoming paper we will study the SNR of this observ-
able with the coming generation of surveys.

Note that OδðΦþΨÞ has been build to cancel the bias
difference of OδΨ, see Eq. (18). This is however only
possible if the galaxy-galaxy lensing correlations are
measured from the same galaxy populations as the cluster-
ing correlations. It requires therefore a spectroscopic survey
and a lensing survey that cover the same part of the sky
[54]. This is for example the case for Euclid, which will
measure spectroscopic redshifts and photometric galaxy
images over the same sky area [55]. Similarly, one can
combine the spectroscopic redshifts measured by DESI
[56], with the galaxy images measured by the DESI Legacy
Imaging Survey [57].

III. ANISOTROPIC STRESS ESTIMATOR

In ΛCDM and for large classes of dark energy models,
the two metric potentials are the same at late time, and we
have therefore

Ostress ¼ OδðΦþΨÞ

OδΨ ¼ 2: ð24Þ

On the other hand, in theories of modified gravity, the
metric potentials are generally different. This difference,
that can be parameterized by the variable η through
Φðk; zÞ ¼ ηðk; zÞΨðk; zÞ, leads to

Ostress ¼ OδðΦþΨÞ

OδΨ ¼ 1þ η: ð25Þ

The observable OδΨ provides therefore a direct way of
measuring η. In particular, if the ratio in Eq. (25) is different
from 2 at any redshift or scale k, then ΛCDM is ruled out,
as well as all classes of dark energy models with no
anisotropic stress.
To emphasise the robustness of our test compared to

standard methods, let us consider the following model,
widely used in the literature: we parametrize deviations
from GR by two functions, ηðk; zÞ (introduced above)
and Yðk; zÞ, which encodes modifications to Poisson
equation [3]

−k2Ψðk; zÞ ¼ 3

2
H2ΩmðzÞYðk; zÞδðk; zÞ; ð26Þ

where ΩmðzÞ is the matter density parameter at redshift z.
The function Yðk; zÞ (sometimes called μ in the literature)
reduces to 1 in GR. In addition to these functions, we
allow for another departure from GR by modifying Euler
equation

_Vðk; zÞ þHVðk; zÞ − kΨðk; zÞ ¼ Êbreakðk; zÞ; ð27Þ

where Êbreak is a generic function encoding deviations from
geodesic motion for dark matter. For example, in models
where dark matter experiences a fifth force due to a
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nonminimal coupling to a scalar field, Êbreak takes the form
Êbreak ¼ kΓðzÞΨðk; zÞ, where Γ is the amplitude of the fifth
force [8].
We now apply the test developed in [3] to this particular

model. By doing this we clearly use the test outside of its
domain of validity, since in [3] it is explicitly assumed that
Euler equation is valid. However, since in practice we do
not know if dark matter obeys Euler equation or not, it is
relevant to see what happens in this case. The evolution
equation for the density contrast becomes

δ00 þ
�
2þH0

H

�
δ0 ¼ −

k2

ðaHÞ2Ψ −
k

ðaHÞ2 Ê
break; ð28Þ

where HðzÞ ¼ HðzÞð1þ zÞ and a prime denotes a deriva-
tive with respect to N ¼ ln a. The violation of the equiv-
alence principle modifies therefore the way structures grow
as a function of time, see also discussion in [58]. The
combination of observables proposed in [3] to measure the
anisotropic stress becomes then

3ð1þ zÞ3P2

2E2ðP3 þ 2þ E0
EÞ

− 1

¼ ηþ k
ðaHÞ2

ð1þ ηÞ
f0 þ f2 þ ð2þ E0

EÞf
Êbreak

δ
≠ η: ð29Þ

Here P2 and P3 are the ratios of observables defined in [3]
[see their Eqs. (14) and (15)], f is the growth rate
and E≡H=H0.
From Eq. (29) we see that the test developed in [3] is not

a measurement of η when Euler equation is not valid. In
other words, a nontrivial outcome of this test can either
mean that the anisotropic stress is nonzero, or that dark
matter does not obey the Euler equation.

IV. CONCLUSION

In this paper, we have constructed an observable, OδΨ,
which is directly proportional to the time component of the
metric Ψ. This observable is constructed from the multi-
poles of the galaxy number counts, Δ, and it relies only on
observable quantities. We have then shown how this novel
observable can be used to measure directly the anisotropic
stress, i.e., the difference between the two metric potentials
Φ and Ψ.
This test,Ostress, has the strong advantage that it does not

rely on any assumption about the theory of gravity, apart

from the fact that photons propagate on null geodesics. In
particular, Ostress does not assume that dark matter obeys
the continuity or Euler equation. This differs from standard
measurement of the anisotropic stress, which rely on the
validity of the continuity and Euler equations. As an
example, we have shown how the test proposed in [3]
will fail if Euler equation is not valid: instead of measuring
directly η, the combination of observables defined in [3]
contains an additional term proportional to the deviation
from Euler equation. This limitation simply follows from
the fact that standard observables are insensitive to Ψ. The
only way to test the relation between Ψ and ΦþΨ is then
to translate a measurement of V into a measurement of Ψ
assuming that dark matter obeys Euler equation.
Our test, Ostress, overcomes this limitation by using an

observable sensitive to relativistic effects, which allows a
direct measurement of Ψ. Of course, the price to pay is that
Ostress will be more difficult to measure than standard tests,
since relativistic effects are more challenging to measure
than RSD. In a forthcoming paper we will study in more
detail the sensitivity of Ostress for the coming generation
of large-scale structure surveys, like DESI, Euclid and
the SKA.
Finally, let us note that our test, Ostress, is highly

complementary to the well-known Eg statistics [2,7,59],
which measures the ratio between density-lensing correla-
tions, hδðΦþ ΨÞi, and density-velocity correlations, hδVi.
Similarly to our test, the Eg statistics does not rely on the
validity of Euler equation, and is therefore truly model-
independent. It provides however constraints on the com-
bination of parameters: Yð1þ ηÞ=f. An observed deviation
from the ΛCDM value in Eg can therefore either be due to a
non-zero anisotropic stress (suggesting a modification of
the theory of gravity) or to a growth rate which differs from
ΛCDM (which also happens in simple models of dark
energy). Having a test which directly and uniquely targets
the anisotropic stress is therefore of high importance to test
the theory of gravity.
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